Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Recover Heat from Boiler Blowdown  

SciTech Connect

This revised ITP tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

2

Furnaces and Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating.

3

Low Temperature Heat Recovery for Boiler Systems  

E-Print Network (OSTI)

Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas, are commonly called condensing economizers. It has traditionally been common practice in the boiler industry to not reduce flue gas temperatures below the 300F to 400F range. This barrier has now been broken by the development and application of corrosion proof heat exchanger technology. This opens up a vast reservior of untapped recoverable energy that can be recovered and reused as an energy source. The successful recovery of this heat and the optimum use of it are the fundemental goals of the technology presented in this paper. This Recovered Low Level Heat Is Normally Used To Heat Cold Make-up Water Or Combustion Air.

Shook, J. R.; Luttenberger, D. B.

1986-06-01T23:59:59.000Z

4

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

5

Boiler efficiency methodology for solar heat applications  

DOE Green Energy (OSTI)

This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

Maples, D.; Conwell, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Boiler Efficiency Inst.; Pacheco, J.E. [Sandia National Labs., Albuquerque, NM (United States)

1992-08-01T23:59:59.000Z

6

Heat Recovery Boilers for Process Applications  

E-Print Network (OSTI)

Heat recovery boilers are widely used in process plants for recovering energy from various waste gas streams, either from the consideration of process or of economy. Sulfuric, as well as nitric, acid plant heat recovery boilers are examples of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800F to 1800F. This gas, when recovered, can result in a large energy savings and steam production. This paper attempts to outline some of the engineering considerations in the design of heat recovery boilers for turbine exhaust applications (combined cycle, cogeneration mode), incineration plants (solid waste, fume) and chemical plants (reformer, sulfuric acid, nitric acid).

Ganapathy, V.; Rentz, J.; Flanagan, D.

1985-05-01T23:59:59.000Z

7

Boiler Blowdown Heat Recovery Project Reduces Steam System Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

produced. Much of this heat can be recovered by routing the blown down liquid through a heat exchanger that preheats the boiler's makeup water. A boiler blowdown heat recovery...

8

Oregon Hospital Heats Up with a Biomass Boiler | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain...

9

Biomass Boiler to Heat Oregon School | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia...

10

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network (OSTI)

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

11

Condensing Heat Exchangers Optimize Steam Boilers  

E-Print Network (OSTI)

The development of fluorocarbon resin covered tubes has advanced to the point where full scale marketing in connection with condensing heat exchangers has begun. Field installations show simple paybacks of one to one and a half years with resulting steam boiler fuel to steam efficiencies in excess of 90%. The studies and evaluations done to date indicate that units of this type will be cost effective in sizes ranging from 10,000 to 300,0000 steam per hour as long as cold makeup water is available for preheating with the waste flue gases.

Sullivan, B.; Sullivan, P. A.

1983-01-01T23:59:59.000Z

12

Waste heat boiler with feed mixing nozzle  

SciTech Connect

A waste heat boiler of the type which is particularly suited for use in marine applications and which incorporates a feed mixing nozzle that is operative for purposes of effecting, by utilizing steam taken from the steam generating bank, a preheating of the feedwater that is fed to the steam drum. In addition to the aforesaid feed mixing nozzle, the subject waste heat boiler includes a feedwater control valve, a steam drum, a circulation pump, a steam generating bank and a centrifugal water separator. The feedwater control valve is employed to modulate the flow rate of the incoming feedwater in order to maintain the desired level of water in the steam drum. In turn the latter steam drum is intended to function in the manner of a reservoir for the circulating water that through the operation of the circulating pump is supplied to the steam generating bank. The circulating water which is supplied to the steam generating bank is heated therein to saturation temperature, and steam is generated thus. A water-steam mixture is returned from the steam generating bank to the steam drum and is directed into the centrifugal water separator that is suitably located within the steam drum. It is in the centrifugal water separator that the separation of the water-steam mixture is effected such that water is returned to the lower portion of the steam drum and the steam is supplied to the upper portion of the steam drum. The preheating of the feedwater is accomplished by directing the incoming feedwater through an internal feed pipe to the mixing nozzle, the latter being positioned in the line through which the water-steam mixture is returned to the steam drum.

Mastronarde, Th.P.

1984-05-01T23:59:59.000Z

13

Heat Flux Electrochemical Studies of Underdeposit Boiler Tube Corrosion  

Science Conference Proceedings (OSTI)

Boiler water-side corrosion in fossil plants represents a key cause of availability loss and performance degradation, with underdeposit corrosion (UDC) being a major damage mechanism. UDC results from concentration of impurities and contaminants within the structure of the deposit residing on the heated internal surfaces of boiler waterwall tubing. The EPRI cycle chemistry guidelines provide control curves based on ...

2013-09-10T23:59:59.000Z

14

Characteristics of multimode heat transfer in a differentially-heated horizontal rectangular duct.  

E-Print Network (OSTI)

??This study presents the numerical analysis of steady laminar flow heat transfer in a horizontal rectangular duct with differential heating on the vertical walls. Three (more)

Wangdhamkoom, Panitan

2007-01-01T23:59:59.000Z

15

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

16

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

17

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

18

BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.  

SciTech Connect

This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

ANDREWS,J.

2001-01-01T23:59:59.000Z

19

Boiler Room Coal Drying Heat Exchanger Numerical Computational Simulation and Analysis  

Science Conference Proceedings (OSTI)

Northeast area city district heating boiler room of coal with high moisture content, have caused a large number of waste of coal resources. Boiler coal drying heat exchanger is a long design cycle, testing workload and investment is more equipment. In ... Keywords: District heating boiler room, Dry heat exchanger, Numerical simulation, Heat transfer calculation

Zhao Xuefeng, Xiong Wen-zhuo

2012-07-01T23:59:59.000Z

20

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

22

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1982-01-01T23:59:59.000Z

23

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1984-01-01T23:59:59.000Z

24

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1985-05-01T23:59:59.000Z

25

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size and unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1986-06-01T23:59:59.000Z

26

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1983-01-01T23:59:59.000Z

27

Protecting the Investment in Heat Recovery with Boiler Economizers  

E-Print Network (OSTI)

Many people consider energy to be a crisis in remission -- even with continuing high fuel costs. Some voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability of an economizer or air heater to continue to perform efficiently without corrosion. The recognized economic advantages of an economizer result from its ability to convert heat losses into sources of energy. One of the most productive means of obtaining reduced energy costs lies in the improvements of the efficiency of steam generating boilers. Industrial and institutional boilers operating at pressures of 75 psig or greater are excellent applications. The maximum gain that can be safely achieved is governed by a number of technical and physical limitations. Among these are considerations of the economics, temperatures of the flue gas and water, and the potential for corrosion. This paper will discuss the economic and practical considerations of an economizer installation.

Roethe, L. A.

1985-05-01T23:59:59.000Z

28

Oregon Hospital Heats Up with a Biomass Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Julie McAlpin Communications Liaison, State Energy Program Why biomass? Wood was the first energy source used and man's main fuel source until the Industrial Revolution.

29

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network (OSTI)

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones. The analysis shows that the low-temperature radiant floor heating system is more suitable for natural gas- condensing water boilers. It is more comfortable, more economical, and can save more energy than other heating systems.

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

30

Comments on the use of boiler efficiencies to determine unit heat rate  

SciTech Connect

The expression for boiler efficiency defined in ASME PTC4.1 was developed for evaluating boiler performance, carrying out acceptance tests on boilers and computing the effects of changes in parameters such as fuel characteristics on boiler performance. While satisfactory for applications such as these, this particular definition of boiler efficiency can result in substantial errors when used for computing unit performance. Sample calculations are presented for a 600 MW coal fired unit which show errors in net unit heat rate of 1 to 3 percent due to inconsistent definitions for boiler efficiency.

Levy, E.K.; Sarunac, N. (Lehigh Univ., Bethlehem, PA (USA). Energy Research Center); Leyse, R. (Electric Power Research Inst., Palo Alto, CA (USA))

1990-01-01T23:59:59.000Z

31

Development program for heat balance analysis fuel to steam efficiency boiler and data wireless transfer  

Science Conference Proceedings (OSTI)

This research aim to improve a combustion system of boiler within increase combustion efficiency and use all out of the energy. The large boilers were used in the industrial factories which consume a lot of energy for production. By oil and gas fuel ... Keywords: boiler, cogeneration energy, heat balance, steam efficiency, wireless data transfer

Nattapong Phanthuna; Warunee Srisongkram; Sunya Pasuk; Thaweesak Trongtirakul

2009-02-01T23:59:59.000Z

32

San Francisco Turns Up The Heat In Push To Eliminate Old Boilers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Francisco Turns Up The Heat In Push To Eliminate Old Boilers Francisco Turns Up The Heat In Push To Eliminate Old Boilers San Francisco Turns Up The Heat In Push To Eliminate Old Boilers February 8, 2011 - 5:37pm Addthis Before and after shots of a new boiler system | courtesy of the Office of Weatherization and Intergovernmental Programs Before and after shots of a new boiler system | courtesy of the Office of Weatherization and Intergovernmental Programs Johanna Sevier Project Officer, Golden Field Office San Francisco's extensive stock of multifamily properties is getting some critical assistance in replacing old and inefficient boilers with new, high-efficiency heating systems using Energy Efficiency and Conservation Block Grant (EECBG) funds. By providing financial incentives to property owners, new heating systems result in energy savings, job creation for

33

Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains  

E-Print Network (OSTI)

Air Leakage, and Heat Conduction Gains William 1. Fisk,0.75 to 0.90; thus, heat conduction decreased the coolingby air leakage or heat conduction, because these ducts are

Fisk, W.J.

2011-01-01T23:59:59.000Z

34

Thermionic nuclear reactor with internal heat distribution and multiple duct cooling  

DOE Patents (OSTI)

A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

Fisher, C.R.; Perry, L.W. Jr.

1975-11-01T23:59:59.000Z

35

Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)  

SciTech Connect

A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

Not Available

2012-04-01T23:59:59.000Z

36

Evaluating and Avoiding Heat Recovery Steam Generator Tube Damage Caused by Duct Burners  

Science Conference Proceedings (OSTI)

In heat recovery steam generators (HRSGs), supplemental firing in duct burners introduces the potential for serious HRSG tube failure and damage. Duct burners that are specified, designed, and operated properly can produce a number of significant benefits. This report will assist operators in accruing these benefits.

2007-03-20T23:59:59.000Z

37

Field measurement of the interactions between heat pumps and attic duct systems in residential buildings  

SciTech Connect

Research efforts to improve residential heat-pump performance have tended to focus on laboratory and theoretical studies of the machine itself, with some limited field research having been focused on in-situ performance and installation issues. One issue that has received surprisingly little attention is the interaction between the heat pump and the duct system to which it is connected. This paper presents the results of a field study that addresses this interaction. Field performance measurements before and after sealing and insulating the duct systems were made on three heat pumps. From the pre-retrofit data it was found that reductions in heat-pump capacity due to low outdoor temperatures and/or coil frosting are accompanied by lower duct-system energy delivery efficiencies. The conduction loss reductions, and thus the delivery temperature improvements, due to adding duct insulation were found to vary widely depending on the length of the particular duct section, the thermal mass of that duct section, and the cycling characteristics of the heat-pump. In addition, it was found that the use of strip-heat back-up decreased after the retrofits, and that heat-pump cycling increased dramatically after the retrofits, which respectively increase and decrease savings due to the retrofits. Finally, normalized energy use for the three systems which were operated consistently pre- and post-retrofit showed an average reduction of 19% after retrofit, which corresponds to a chance in overall distribution-system efficiency of 24%.

Modera, M.P.; Jump, D.A. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-11-01T23:59:59.000Z

38

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

39

Stack Gas Heat Recovery from 100 to 1200 HP Boilers  

E-Print Network (OSTI)

With newspaper reports of March 1980 fuel price increases at as much as a 110% annualized rate, energy users are becoming more keenly aware of the urgency of conserving energy--and energy dollars. It is becoming increasingly more difficult for business to remain competitive while "passing through" fuel cost increases to consumers. As energy becomes an increased percentage of the budget, energy conservation with have an increasing impact on profitability. While at the time of this writing our nation appears to be blessed with a generally expanding energy supply, not too many months ago commercial and industrial energy users in some parts of the country had experienced energy rationing or even curtailment. In certain industries, this resulted in reduced production and caused personnel layoffs. U.S. Government reports indicate that roughly 20% of all fuel is consumed in boilers. A savings in boiler fuel consumption can have a positive impact on energy conservation, and become an important component in the solution of our nation's "energy crisis."

Judson, T. H.

1980-01-01T23:59:59.000Z

40

Boiler and Heat Recovery Steam Generator Tube Failures: Theory and Practice  

Science Conference Proceedings (OSTI)

Boiler and heat recovery steam generator (HRSG) tube failures have been the primary availability problem for operators of conventional and combined cycle plants for as long as reliable statistics have been kept for each generating source. This book provides owners and operators with the technical basis to address tube failures and create permanent solutions.

2011-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Anomalous recovery of damped radial modes in a circular?sector duct with locally heated flow  

Science Conference Proceedings (OSTI)

It is often desirable to predict acoustic propagation in a circular duct carrying a locally heated flow. Common examples include jet engines and certain industrial and commercial burners whose combustion?related noise can be an environmental problem if allowed to penetrate into the surroundings. In these cases axial gradients in the steady flow variables

J. R. Maham; S.?Y. Yeh

1984-01-01T23:59:59.000Z

42

Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems  

DOE Green Energy (OSTI)

This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

Cummings, J.; Withers, C.

2011-12-01T23:59:59.000Z

43

Energy savings from operation and maintenance training for apartment boiler heating systems  

SciTech Connect

The Portland Energy Office provided operation and maintenance (O M) training to the operators of boiler heating systems for ten low-income apartment complexes in the Fall of 1990. This study tracked energy usage before and after O M training to see if savings occurred. Training was provided on both weatherized and non-weatherized apartments to find out if weatherization impacted the amount of O M savings to be obtained. Also, energy savings from the O M training and building shell weatherization are compared. The O M training averaged about four hours per building. Content was adjusted at each site to match needs of the boiler and operator. The Energy Office also provided a boiler tune-up by a service technician. The training stressed low-cost and no-cost measures which operators could either do themselves or hire service help to implement. It also emphasized boiler safety. Nine of the ten apartment complexes in the study used less energy per heating degree-day after the O M help. Average savings were 10%. Four apartments chosen randomly as controls had negative savings; they used slightly more energy during the same post-O M time frame. Weatherized and unweatherized apartments showed similar savings after the O M help, 10% and 11% percent respectively. Savings from weatherization of six of the apartments in the winter of 1988--1989 were also measured. A low average of only 4% was observed, reflecting negative savings in two buildings.

1992-02-01T23:59:59.000Z

44

Heat transfer characteristics of a surface type direct contact boiler  

DOE Green Energy (OSTI)

Two direct contact heat exchangers were constructed and test results were obtained using water and refrigerant 113 as the working fluids. The heat exchangers were operated in a three-phase mode; the water remained liquid throughout the vessel and the liquid refrigerant 113 underwent vaporization following direct injection into the water. The effect of important operational parameters--operating heights, refrigerant 113 injection techniques, mass flow ratios, and temperatures--was studied to determine generalized trends important in the design and operation of a prototype three-phase direct contact heat exchanger. The primary system used in this study performed well overall. The initial favorable results of this study warrant further investigation of direct contact heat exchange as a means of utilizing geothermal energy.

Deeds, R.S.; Jacobs, H.R.; Boehm, R.F.

1976-03-01T23:59:59.000Z

45

Expert Meeting: Optimized Heating Systems Using Condensing Boilers and Baseboard Convectors  

SciTech Connect

On August 11, 2011, in Denver, CO, a Building America Expert Meeting was held in conjunction with the Building America Residential Energy Efficiency Technical Update Meeting, to review and discuss results and future plans for research to improve the performance of hydronic heating systems using condensing boilers and baseboard convectors. A meeting objective was to provide an opportunity for other Building America teams and industry experts to provide feedback and specific suggestions for the planned research.

Arena, L.

2013-01-01T23:59:59.000Z

46

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

47

Influence of Transfer Efficiency of the Outdoor Pipe Network and Boiler Operating Efficiency on the Building Heat Consumption Index  

E-Print Network (OSTI)

This paper analyzes the influence of transfer efficiency of the outdoor pipe network and operating efficiency of the boiler on the building heat consumption index, on the premise of saving up to 65 percent energy in different climates. The results show that transfer efficiency is not influenced by the climate, and the influence is in accordance with that in other climates. The article also presents data on the energy consumption caused by the improvement of the transfer efficiency of the outdoor pipe network and the operating efficiency of the boiler, and the calculated formula for the building heat consumption index on the condition of saving 65 percent energy.

Fang, X.; Wang, Z.; Liu, H.

2006-01-01T23:59:59.000Z

48

Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application of a Moving Line Heat Source  

Science Conference Proceedings (OSTI)

Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proved to be very labor intensive and slow. ...

Cramer K. Elliott; Winfree William P.

2000-01-01T23:59:59.000Z

49

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

Science Conference Proceedings (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

50

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

Science Conference Proceedings (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. Condensed flue gas water treatment needs and costs. Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

51

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

Science Conference Proceedings (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

52

A neural-fuzzy based inferential sensor for improving the control of boilers in space heating systems  

Science Conference Proceedings (OSTI)

Conventionally the boilers in space heating systems are controlled by open-loop control systems due to the absence of a practical method for measuring the overall thermal comfort level in the building. This paper describes a neural-fuzzy based inferential ...

Zaiyi Liao

2005-08-01T23:59:59.000Z

53

Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler  

SciTech Connect

Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)

2011-02-15T23:59:59.000Z

54

New and Underutilized Technology: Duct Sealants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duct Sealants Duct Sealants New and Underutilized Technology: Duct Sealants October 8, 2013 - 3:01pm Addthis The following information outlines key deployment considerations for duct sealants within the Federal sector. Benefits Aerosol sealant is injected into the ductwork to seal leaks. This can save energy and costs associated with heating, cooling, and fan operation depending on building type. Application Condensing boilers are appropriate for most building applications. Key Factors for Deployment Sealing ductwork should be a standard energy conservation measure evaluated during design, construction, major renovation, or other HVAC projects. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are ranked 0-5 with 0 representing the lowest ranking and 5 representing the

55

Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains  

E-Print Network (OSTI)

A variety of methods of sealing supply-air registers wereand sealing practices when leakage at connections to duct-mounted equipment is not considered. The measured air-

Fisk, W.J.

2011-01-01T23:59:59.000Z

56

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network (OSTI)

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research (unrecuperated) with an ultra- low nitrous oxide (NOx) boiler burner for firetube boilers. The project goals

57

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

58

Heat Pump Markets UK in Europe  

E-Print Network (OSTI)

,000 units Total: 200,000 units 48% 19% 26% 0% 7% boilers heat pumps solar thermal micro chp & FC district% boilers heat pumps solar thermals micro chp & FC district heating 2010 2020Sales to new build 15% 51% 18 to Renewables Boiler non- con. Boilers con. Boiler Boiler + ST ST Boiler condensing Boiler non-condensing Boiler

Oak Ridge National Laboratory

59

Tips: Air Ducts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Ducts Air Ducts Tips: Air Ducts June 24, 2013 - 7:23pm Addthis Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Your air ducts are one of the most important systems in your home, and if the ducts are poorly sealed or insulated they are likely contributing to higher energy bills. Your home's duct system is a branching network of tubes in the walls, floors, and ceilings; it carries the air from your home's furnace and central air conditioner to each room. Ducts are made of sheet metal, fiberglass, or other materials.

60

BOILER PERF MODEL  

Science Conference Proceedings (OSTI)

The BOILER PERFORMANCE MODEL is a package of eleven programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. (USDOE, Pittsburgh Energy Technology Center, Pittsburgh, PA (United States))

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DEVELOPING FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS OF RECTANGULAR CROSS-SECTION  

E-Print Network (OSTI)

Forced Convection Heat Transfer in Curved RectangularInfluence of Curvature on Heat Transfer to IncompressibleT. , "Forced Convective Heat Transfer in a Curved Channel

Yee, G.

2010-01-01T23:59:59.000Z

62

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

63

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

64

Compilation of EPRI Boiler Guidelines  

Science Conference Proceedings (OSTI)

Boiler component failures are the most common cause of unplanned outages in fossil steam plants. Headers and drums are two of the largest and most expensive boiler components; however, tube failures have posed the primary availability problem for operators of conventional and combinedcycle plants for as long as reliable statistics have been kept. This product provides a compilation of technical reports covering boiler condition assessment, header and drum failures, and boiler and heat recovery steam gene...

2008-03-26T23:59:59.000Z

65

Heat transfer and pressure drop in hexagonal ducts with surface dimples  

SciTech Connect

Measurements of detailed Nusselt number (Nu) distributions and pressure drop coefficients (f) for four hexagonal ducts with smooth and dimpled walls are performed to comparatively examine the thermal performances of three sets of dimpled walls with concave-concave, convex-convex and concave-convex configurations at Reynolds numbers (Re) in the range of 900-30,000. A set of selected experimental data illustrates the influences of dimple configuration and Re on the detailed Nu distributions, the area-averaged Nu over developed flow region (Nu-bar) and the pressure drop coefficients. Relative enhancements of Nu and f from the smooth-walled references (Nu{sub {infinity}} and f{sub {infinity}}) along with the thermal performance factor ({eta}) defined as (Nu-bar/Nu{sub {infinity}})/(f/f{sub {infinity}}){sup 1/3} are examined. Nu-bar and f correlations are individually obtained for each tested hexagonal duct using Re as the controlling parameter. (author)

Chang, S.W. [Thermal Fluids Laboratory, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China); Chiang, K.F. [Thermal Dissipation Department, AVC International Company (China); Chou, T.C. [Department of Marine Engineering, National Kaohsiung Marine University (China)

2010-11-15T23:59:59.000Z

66

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

67

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

68

Oxy-combustion Boiler Material Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

69

Duct leakage impacts on VAV system performance in California large commercial buildings  

SciTech Connect

The purpose of this study is to evaluate the variability of duct leakage impacts on air distribution system performance for typical large commercial buildings in California. Specifically, a hybrid DOE-2/TRNSYS sequential simulation approach was used to model the energy use of a low-pressure terminal-reheat variable-air-volume (VAV) HVAC system with six duct leakage configurations (tight to leaky) in nine prototypical large office buildings (representing three construction eras in three California climates where these types of buildings are common). Combined fan power for the variable-speed-controlled supply and return fans at design conditions was assumed to be 0.8 W/cfm. Based on our analyses of the 54 simulation cases, the increase in annual fan energy is estimated to be 40 to 50% for a system with a total leakage of 19% at design conditions compared to a tight system with 5% leakage. Annual cooling plant energy also increases by about 7 to 10%, but reheat energy decreases (about 3 to 10%). In combination, the increase in total annual HVAC site energy is 2 to 14%. The total HVAC site energy use includes supply and return fan electricity consumption, chiller and cooling tower electricity consumption, boiler electricity consumption, and boiler natural gas consumption. Using year 2000 average commercial sector energy prices for California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in 9 to 18% ($7,400 to $9,500) increases in HVAC system annual operating costs. Normalized by duct surface area, the increases in annual operating costs are 0.14 to 0.18 $/ft{sup 2}. Using a suggested one-time duct sealing cost of $0.20 per square foot of duct surface area, these results indicate that sealing leaky ducts in VAV systems has a simple payback period of about 1.3 years. Even with total leakage rates as low as 10%, duct sealing is still cost effective. This suggests that duct sealing should be considered at least for VAV systems with 10% or more total duct leakage. The VAV system that we simulated had perfectly insulated ducts, and maintained constant static pressure in the ducts upstream of the VAV boxes and a constant supply air temperature at the airhandler. Further evaluations of duct leakage impacts should be carried out in the future after methodologies are developed to deal with duct surface heat transfer effects, to deal with airflows entering VAV boxes from ceiling return plenums (e.g., to model parallel fan-powered VAV boxes), and to deal with static pressure reset and supply air temperature reset strategies.

Wray, Craig P.; Matson, Nance E.

2003-10-01T23:59:59.000Z

70

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

Dentz, J.; Henderson, H.

2012-04-01T23:59:59.000Z

71

San Francisco Turns Up The Heat In Push To Eliminate Old Boilers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

financial incentives to property owners, new heating systems result in energy savings, job creation for local businesses, improved living conditions for many of the city's...

72

Duct systems in large commercial buildings: physical characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct systems in large commercial buildings: physical characterization, air leakage and heat conduction gains Title Duct systems in large commercial buildings: physical...

73

Lensing duct  

DOE Patents (OSTI)

A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.

Beach, R.J.; Benett, W.J.

1994-04-26T23:59:59.000Z

74

Particle deposition in ventilation ducts  

SciTech Connect

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

75

Furnaces and Boilers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency...

76

Sensitivity studies of heat transfer: forced convection across a cylindrical pipe and duct flow  

E-Print Network (OSTI)

We consider two common heat transfer processes and perform a through sensitivity study of the variables involved. We derive and discuss analytical formulas for the heat transfer coefficient in function of film velocity, air temperature and pipe diameter. The according plots relate to a qualitative analysis of the multi-variable function $h$, according to functional optimization. For each process, we provide with graphs and tables of the parameters of interest, such as the Reynolds number. This method of study and the specific values can constitute a useful reference for didactic purposes.

Ferrantelli, Andrea; Viljanen, Martti

2013-01-01T23:59:59.000Z

77

Comparison of heat pump system and boiler plant for one-family house : Heat sources in one-family house.  

E-Print Network (OSTI)

??The aim of this work is to look through, compare and choose the cheapest heat source for typical new Finnish one-family house. We will speak (more)

Kaydalova, Natalia

2010-01-01T23:59:59.000Z

78

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

Andrew Seltzer

2006-05-01T23:59:59.000Z

79

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

Dentz, J.; Henderson, H.; Varshney, K.

2013-10-01T23:59:59.000Z

80

Super Boiler 2nd Generation Technology for Watertube Boilers  

Science Conference Proceedings (OSTI)

This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

Mr. David Cygan; Dr. Joseph Rabovitser

2012-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. The measures include: 1) Reheating of dehumidified cleanroom make-up air with heat extracted during precooling. 2) Preheating of deionization feedwater with refrigerant heat of condensation. 3) Preheating of boiler combustion air with heat extracted from boiler flue gas. 4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust. 5) Variable speed operation of boiler feedwater pumps and forced-draft fans. 6) Preheating of boiler make-up water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) reduced the amount of steam produced by about 25% and saved about $1,010,000/yr by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the unit cost of steam produced by about 13% and saved about $293,500/yr by reducing natural gas and electricity usage at the steam boiler plant. The combined result was a 35% reduction in annual steam costs (fuel and power).

Fiorino, D. P.

2000-04-01T23:59:59.000Z

82

Energy savings from operation and maintenance training for apartment boiler heating systems. An energy study on ten low-income apartments  

SciTech Connect

The Portland Energy Office provided operation and maintenance (O&M) training to the operators of boiler heating systems for ten low-income apartment complexes in the Fall of 1990. This study tracked energy usage before and after O&M training to see if savings occurred. Training was provided on both weatherized and non-weatherized apartments to find out if weatherization impacted the amount of O&M savings to be obtained. Also, energy savings from the O&M training and building shell weatherization are compared. The O&M training averaged about four hours per building. Content was adjusted at each site to match needs of the boiler and operator. The Energy Office also provided a boiler tune-up by a service technician. The training stressed low-cost and no-cost measures which operators could either do themselves or hire service help to implement. It also emphasized boiler safety. Nine of the ten apartment complexes in the study used less energy per heating degree-day after the O&M help. Average savings were 10%. Four apartments chosen randomly as controls had negative savings; they used slightly more energy during the same post-O&M time frame. Weatherized and unweatherized apartments showed similar savings after the O&M help, 10% and 11% percent respectively. Savings from weatherization of six of the apartments in the winter of 1988--1989 were also measured. A low average of only 4% was observed, reflecting negative savings in two buildings.

1992-02-01T23:59:59.000Z

83

Boiler Alloys  

Science Conference Proceedings (OSTI)

Table 4   Major international research and development efforts...650 °C Ferritic steel development EPRI, U.S.A. Electric Power Research Institute 1978??2003 ? Boiler and turbine thick-walled components; standardization

84

Condensing Heat Exchanger for Optimization of Energy Efficiency  

E-Print Network (OSTI)

Historically, boiler efficiency has been limited due to the minimum temperature allowed at the stack. Heat lost up the stack was in exchange for keeping the flue gas temperature above the water vapor dew point. If water vapor was allowed to condense out, rapid deterioration, due to acid corrosion, of the outlet duct and stack would result. With the development of the condensing heat exchanger, boiler efficiency can now exceed 90%. Approximately 1% gain in boiler efficiency can be expected for every 40F (4.5C) reduction in flue gas stack temperature. In the CHX condensing heat exchanger, all gas wetted surfaces are covered with DuPont Teflon. The Teflon covered heat exchanger surfaces are impervious to all acids normally resulting from the combustion of fossil fuels. This allows the flue gas to be cooled to below the water vapor dew point with no subsequent corrosion of the heat exchanger surfaces.

Carrigan, J. F.; Johnson, D. W.; DiVitto, J. G.; Schulze, K. H.

1995-04-01T23:59:59.000Z

85

OEIM 210. Industrial Mechanics III 4 cr. Air compressors, sliding surface bearings, boiler maintenance, boiler  

E-Print Network (OSTI)

OEIM 210. Industrial Mechanics III 4 cr. Air compressors, sliding surface bearings, boiler maintenance, boiler tube repairs, basic arc and gas welding, measurement tools, gauge glass maintenance, heat by employer and instructor on boiler inspection and cleaning, centrifugal pumps, basic rigging, piping

Castillo, Steven P.

86

In-Field Performance of Condensing Boilers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IN-FIELD PERFORMANCE OF CONDENSING IN-FIELD PERFORMANCE OF CONDENSING BOILERS Lois B. Arena Steven Winter Associates, Inc. March 2012 Why Research Hydronic Heating? © 2012 Steven Winter Associates, Inc. All rights reserved Reasons to Research Boilers  Approx. 14 million homes (11%) in the US are heated with a steam or hot water system  Almost 70 percent of existing homes were built prior to 1980  Boilers built prior to 1980 generally have AFUE's of 0.65 or lower  Energy savings of 20+% are possible by simply replacing older boilers with standard boilers & up to 30% with condensing boilers.  Optimizing condensing boilers in new and existing homes could mean the difference of 8-10% savings with little to no

87

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

88

Quantifying Energy Savings by Improving Boiler Operation  

E-Print Network (OSTI)

On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers. The methods include calculation of combustion temperature, calculation of the relationship between internal convection coefficient and gas flow rate, and calculation of overall heat transfer assuming a parallel-flow heat exchanger model. The method for estimating savings from changing from on/off to modulation control accounts for purge and drift losses through the boiler and the improved heat transfer within the boiler due to the reduced combustion gas flow rate. The method for estimating savings from reducing excess combustion air accounts for the increased combustion temperature, reduced internal convection coefficient and increased residence time of combustion gasses in the boiler. Measured boiler data are used to demonstrate the accuracy of the methods.

Carpenter, K.; Kissock, J. K.

2005-01-01T23:59:59.000Z

89

Field Guide: Boiler Tube Failure  

Science Conference Proceedings (OSTI)

In conventional and combined-cycle plants, boiler tube failures (BTFs) have been the main availability problem for as long as reliable statistics have been kept for each generating source. The three volumes of the Electric Power Research Institute (EPRI) report Boiler and Heat Recovery Steam Generator Tube Failures: Theory and Practice (1012757) present an in-depth discussion of the various BTF and degradation mechanisms, providing plant owners and operators with the technical basis to address tube failu...

2009-12-22T23:59:59.000Z

90

Building Energy Software Tools Directory: DD4M Air Duct Design  

NLE Websites -- All DOE Office Websites (Extended Search)

friction, constant velocity and or static regain procedures to design air ducts for air conditioning, heating, ventilation and materials handling. Allows 1000 duct sections...

91

Duct injection technology prototype development: Evaluation of engineering data  

SciTech Connect

The objective of the Duct Injection Technology Prototype Development Project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2}emissions control method to existing coal-fired power plants. The necessary engineering design and scale-up criteria will be developed for the commercialization of duct injection technology for the control of SO{sub 2} emissions from coal-fired boilers in the utility industry. The primary focus of the analyses summarized in this Topical Report is the review of the known technical and economic information associated with duct injection technology. (VC)

Not Available

1990-07-01T23:59:59.000Z

92

Residential Duct Sealing Cost-Benefit Analysis  

Science Conference Proceedings (OSTI)

Residential air duct leakage can account for as much as 15 percent of a utility bill. Research has shown that houses with supply leakage fractions of 10 percent or greater are viable candidates for air duct sealing or retrofit. This report details the development of a regional program designed to measure and improve residential heating system distribution efficiency via air duct sealing and retrofits. The program consolidates the efforts of several utilities and coordinates a region-wide assessment of th...

2000-06-05T23:59:59.000Z

93

List of Boilers Incentives | Open Energy Information  

Open Energy Info (EERE)

Boilers Incentives Boilers Incentives Jump to: navigation, search The following contains the list of 550 Boilers Incentives. CSV (rows 1-500) CSV (rows 501-550) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

94

Boilers | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Boilers Jump to: navigation, search TODO: Add description List of Boilers Incentives...

95

CONTAM Overview - Ducts  

Science Conference Proceedings (OSTI)

... Ducts. As an alternative to the simple air-handling system, CONTAM allows you to model HVAC systems using detailed duct systems. ...

96

Heating  

SciTech Connect

According to The Hydronics Institute, the surge in gas-fired boiler shipments brought about 3 years ago by high oil prices and the availability of natural gas after years of curtailment has almost competely subsided. Gas prices continue to escalate and the threat of decontrol by 1985 continues. Likewise, the Gas Appliance Manufacturers Association reports that shipments of gas-fired unit heaters, duct furnaces, and wall furnaces have also dropped as homeowners adopt a wait-and-see attitude toward conversion. However, the market for high- and ultra-high-efficiency furnaces appears to hold potential for expansion. Because of the rebounding home market, a steady replacement market, and increased sales for reasons of efficiency, GAMA expects the total (gas, oil, and electric) central furnace market to increase by 16% in 1983.

1983-04-04T23:59:59.000Z

97

Handover Performance of HVAC Duct Based Indoor Wireless Networks  

E-Print Network (OSTI)

Handover Performance of HVAC Duct Based Indoor Wireless Networks A. E. Xhafa, P. Sonthikorn, and O in indoor wireless net- works (IWN) that use heating, ventilation, and air conditioning (HVAC) ducts.e., new call blocking and handover dropping probabilities, of an IWN that uses HVAC ducts are up to 6

Stancil, Daniel D.

98

Encapsulated and Buried Ducts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Encapsulated and Buried Ducts Robb Aldrich Steven Winter Associates, Inc. Why Buried Ducts?  Ductwork thermal losses can range from 10-45%  Interior ducts current solution, but may be impractical, expensive, or increase envelope loads Insulation & Air Barrier First Tests - Florida Early Buried Duct Tests (FL) Condensation? Master Bedroom Duct in Attic 10 15 20 25 30 35 40 45 50 55 Duct Top Temp Duct Side Temp Duct Bot. Temp Duct Side Dewpoint Duct Bot. Dewpoint Attic Temp 7/8/2000 7/8/2000 7/8/2000 7/8/2000 7/8/2000 7/8/2000 7/9/2000 0:00 4:00 8:00 12:00 16:00 20:00 0:00 Time California: Much drier, no Problem Implementation Getting it Right... in Florida A Solution for Humid Climates Encapsulated, then Buried Research Questions  What are the effective R-values?

99

Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections  

SciTech Connect

Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

None

2002-10-01T23:59:59.000Z

100

Effect of flow topology on the calculation of two-phase frictional multipliers in uniformly heated flow of R-134a in a rectangular duct  

SciTech Connect

The two-phase frictional multipliers for SUVA R-134a flowing in a rectangular duct (with D{sub H} = 4.8 mm) have been measured for three nominal system pressures (0.88, 1.34 and 2.34 MPa) and four nominal mass fluxes (510, 1020 and 1740, 2040 kg/m{sup 2}/s) under uniform heat flux conditions. The data is compared with adiabatic data previously taken at similar flow conditions, as well as with several classical multiplier correlations. The comparisons reveal a strong effect of pressure and mass flux on the flow topology and, by extension, a large effect on the calculation of acceleration and frictional pressure drop components. For this fluid and this geometry, entrainment and fluid separation is enhanced at higher pressures and mass flux such that most of the liquid exists in the test section edges and as dispersed droplets in the core. For these cases, the classical simplified approach to calculate acceleration pressure drop fails to adequately predict the acceleration component and leads to erroneous calculations of frictional pressure drop from the measured total pressure drop. Best estimates of the true acceleration component are given, based on void profiles measured with a gamma densitometer system, comparisons to the adiabatic data, and recasting the data in terms of the total pressure drop multiplier as a function of the Martinelli parameter, X{sub tt}. (author)

Vassallo, Peter; Kevin Cope, W.; Smith, Walter C. [Bechtel Marine Propulsion Corporation, Niskayuna, NY 12309 (United States)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cost-Effective Industrial Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were implemented during a recently completed boiler plant replacement project at a large semiconductor manufacturing complex. The "new" boiler plant began service in November, 1996 and consists of four 75,000 lb/hr water-tube boilers burning natural gas and producing 210 psig saturated steam for heating and humidification. Efficiency advancements include: 1) Reheating of cleanroom make-up air with heat extracted during precooling. 2) Preheating of combustion air with heat extracted from boiler flue gas. 3) Preheating of boiler feedwater with heat extracted from the exhaust of a nearby gas turbine. 4) Variable speed operation of boiler feedwater pumps and forced-draft fans. 5) Preheating of boiler make-up water with heat extracted from boiler blow-down. These efficiency advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

Fiorino, D. P.

1997-04-01T23:59:59.000Z

102

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

103

Simulation of air flow in the typical boiler windbox segments  

Science Conference Proceedings (OSTI)

Simulation of turbulent air flow distribution in CFBC furnace, wherein primary air is entrained through inlet duct system called windbox, is attempted through state of art CAD/CFD softwares. Establishment of flow in windbox channel, distributed plate ... Keywords: CFBC boiler, air flow, combustor geometry, distributed plate nozzles, multi-block grids, recirculation flow, simulation of flow, unequal air flow, windbox channel

C. Bhasker

2002-12-01T23:59:59.000Z

104

Minimizing Energy Losses in Ducts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimizing Energy Losses in Ducts Minimizing Energy Losses in Ducts Minimizing Energy Losses in Ducts June 24, 2012 - 5:45pm Addthis Placing ductwork in conditioned space can help reduce energy losses. | Photo courtesy of ©iStockphoto/SimplyCreativePhotography Placing ductwork in conditioned space can help reduce energy losses. | Photo courtesy of ©iStockphoto/SimplyCreativePhotography In new home construction or in retrofits, proper duct system design is critical. In recent years, energy-saving designs have sought to include ducts and heating systems in the conditioned space. Many existing duct systems lose a lot of energy from leakage and poor insulation, but you can reduce that loss by sealing and insulating your ducts. Existing ducts may also be blocked or may require simple upgrades.

105

Aerosol-Based Duct Sealing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Aerosol-Based Duct Sealing Technology During the past five years, research has quantified the impacts of residential duct system leakage on HVAC energy consumption and peak electricity demand. A typical house with ducts located in the attic or crawlspace wastes approximately 20% of heating and cooling energy through duct leaks and draws approximately 0.5 KW more electricity during peak cooling periods. A 1991 study indicated that sealing leaks could save close to one Quadrillion Btus per year. (see also Commercializing a New Technology) Because the major cost of sealing leaks in existing air distribution systems is the labor for the location and sealing process, reducing the labor could greatly improve the cost-effectiveness of such a retrofit. Field studies of duct sealing programs performed by HVAC contractors show

106

Modelling of a Utility Boiler Using Parallel Computing  

Science Conference Proceedings (OSTI)

A mathematical model for the simulation of the turbulent reactive flow and heat transfer in a power station boiler has been parallelized. The mathematical model is based on the numerical solution of the governing equations for mass, momentum, energy ... Keywords: boilers, computational fluid dynamics, discrete ordinates, parallel processing, radiative heat transfer, turbulent reactive flows

P. J. Coelho; P. A. Novo; M. G. Carvalho

1999-03-01T23:59:59.000Z

107

Energy Conservation for Boiler Water Systems  

E-Print Network (OSTI)

In the last ten years energy costs have soared. The cost of coal and # 2 fuel oil have gone up by a factor of 3-5. Residual fuel oil cost has increased by approximately ten times. The cost of natural gas has gone up at an even higher rate. This paper reviews methods to conserve energy in industrial boiler water systems. Both mechanical and chemical approaches for energy conservation are discussed. The important aspects of efficient combustion are covered as well as other mechanical factors such as boiler blowdown heat recovery, economizers, air preheaters, and boiler blowdown control. The chemical aspects discussed for energy conservation include fuel additives, boiler internal treatment, and condensate treatments. The emphasis in this paper, for both mechanical and chemical approaches to energy conservation covers three areas: 1) maximizing the use of available Btu's in fuel through more efficient combustion, 2) improving the efficiency of heat transfer, and 3) recovering Btu's that have been previously considered uneconomical.

Beardsley, M. L.

1981-01-01T23:59:59.000Z

108

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler efficiency and availability. Proper control of boiler blowdown is also important to assure clean boiler surfaces without wasting water, heat, and chemicals. Recovering hot condensate for reuse as boiler feedwater is another means of improving system efficiency. Condensate which is contaminated with corrosion products or process chemicals, however, is ill fit for reuse; and steam which leaks from piping, valves, traps and connections cannot be recovered. Effective chemical treatment, in conjunction with mechanical system improvements, can assure that condensate can be safely returned and valuable energy recovered.

Bloom, D.

1999-05-01T23:59:59.000Z

109

Economizer Applications in Dual-Duct Air-Handling Units  

E-Print Network (OSTI)

This paper provides analytical tools and engineering methods to evaluate the feasibility of the economizer for dual-duct air-handling units. The results show that the economizer decreases cooling energy consumption without heating energy penalties for dual-fan, dual-duct air-handling units. The economizer has significant heating energy penalties for single-fan, dual-duct air-handling units. The penalties are higher than the cooling energy savings when the cold airflow is less than the hot airflow. Detailed engineering analyses are required to evaluate the feasibility of the economizer for single-fan, dual-duct systems.

Joo, I.; Liu, M.

2002-01-01T23:59:59.000Z

110

DOE Webcast: GTI Super Boiler Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webcast Webcast GTI Super Boiler Technology by Dennis Chojnacki, Senior Engineer by Curt Bermel, Business Development Mgr. R&D > November 20, 2008 November 20, 2008 2 November 20, 2008 2 WHO WE ARE Gas Technology Institute >Leading U.S. research, development, and training organization serving the natural gas industry and energy markets ─ An independent, 501c (3) not-for-profit Serving the Energy Industry Since 1941 > Over 1,000 patents > Nearly 500 products commercialized November 20, 2008 3 November 20, 2008 3 Super Boiler Background > U.S. industrial and commercial steam boilers ─ Consume over 6 quads of natural gas per year ─ Wide range of steam uses from process steam to space heating > Installed base of steam boilers ─ Largely over 30 years old

111

Water treatment program raises boiler operating efficiency  

Science Conference Proceedings (OSTI)

This report details the boiler water treatment program which played a vital role in changing an aging steam plant into a profitable plant in just three years. Boiler efficiency increased from approximately 70 percent initially to 86 percent today. The first step in this water treatment program involves use of a sodium zeolite water softener that works to remove scale-forming ions from municipal water used in the system. A resin cleaner is also added to prolong the life of resins in the softener. The water is then passed through a new blow-down heat exchanger, which allows preheating from the continuous blow-down from the boiler system. The water gets pumped into a deaerator tank where sulfite treatment is added. The water then passes from feedpumps into the boiler system.

Not Available

1984-03-01T23:59:59.000Z

112

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

113

BPM2.0. Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

BOILER PERFORMANCE MODEL (BPM2.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. [USDOE, Pittsburgh Energy Technology Center, Pittsburgh, PA (United States)

1988-01-01T23:59:59.000Z

114

BPM3.0. Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

The BOILER PERFORMANCE MODEL (BPM3.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. [USDOE, Pittsburgh Energy Technology Center, PA (United States)

1992-03-01T23:59:59.000Z

115

Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

Liss, William E; Cygan, David F

2013-04-17T23:59:59.000Z

116

Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration  

SciTech Connect

Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

Liss, William E; Cygan, David F

2013-04-17T23:59:59.000Z

117

Boilers and Fired Systems  

SciTech Connect

This chapter examines how energy is consumed, how energy is wasted, and opportunities for reducing energy consumption and costs in the operation of boilers.

Parker, Steven A.; Scollon, R. B.

2009-07-14T23:59:59.000Z

118

Minimize Boiler Blowdown  

SciTech Connect

This revised ITP tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

119

Shield for Water Boiler  

SciTech Connect

Siimplified shielding calculations indicating the proposed design for the water boiler assembly will reduce the radiation at normal operaton to values well below those which are considered tolerable.

Balent, R.

1951-08-08T23:59:59.000Z

120

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

IMPROVEMENTS IN OR RELATING TO VALVED DUCTING  

SciTech Connect

A coaxial valved ducting is designed for fluid flow to and from a heat exchanger. The ducting comprises an inner pipe for flow of hot fluid, an outer pipe providing an annular passage for the countercurrent flow of cool fluid, a butterfly valve in the inner pipe, peripherally spaced longitudinal ribs joining the two pipes in the region of the valve, an extension of the outer pipe, and a butterfly or poppet valve associated with the extension. the inner pipe communicates with the heat exchanger by means of an extension through the outer pipe wall. (D.L.C.)

Blackburn, G.; Long, E.

1962-05-30T23:59:59.000Z

122

INTERIOR DUCT SYSTEM DESIGN, CONSTRUCTION, AND PERFORMANCE  

DOE Green Energy (OSTI)

By removing air distribution and conditioning equipment from unconditioned spaces, homeowners stand to benefit substantially with respect to both energy savings and indoor air quality. Duct leakage introduces: Greater heating and cooling loads from air at extreme temperatures and humidity levels; Outside air and air from unconditioned spaces that may contain air borne contaminants, combustion gases, pollen, mold spores, and/or particles of building materials; and Higher whole-house infiltration/exfiltration rates. Exemplary studies conducted since 1990 have demonstrated the prevalence of duct leakage throughout the United States and measured energy savings of approximately 20% during both heating and cooling seasons from leakage reduction. These all dealt with duct leakage to and/or from unconditioned spaces. In the building science community, leakage within the conditioned space is generally presumed to eliminate the negative consequences of duct leakage with the exception of possibly creating pressure imbalances in the house which relates to higher infiltration and/or exfiltration. The practical challenges of isolating ducts and air handlers from unconditioned spaces require builders to construct an air-tight environment for the ducts. Florida Solar Energy Center researchers worked with four builders in Texas, North Carolina, and Florida who build a furred-down chase located either in a central hallway or at the edges of rooms as an architectural detail. Some comparison homes with duct systems in attics and crawl spaces were included in the test group of more than 20 homes. Test data reveals that all of the duct/AHU systems built inside the conditioned space had lower duct leakage to unconditioned spaces than their conventional counterparts; however, none of the homes was completely free of duct leakage to unconditioned spaces. Common problems included wiring and plumbing penetrations of the chase, failure to treat the chase as an air tight space, and misguided fresh air inlet design. Improvements were implemented by the Texas builder and retested in July. Results showed a 36% reduction in duct leakage, significant enough to warrant the builder adopting the new sealing procedure.

Janet E.R. Mcllvaine; David Beal; Philip Fairey

2001-10-10T23:59:59.000Z

123

Boiler Stack Economizer Tube Failure  

Science Conference Proceedings (OSTI)

Presentation Title, Boiler Stack Economizer Tube Failure ... performed to investigate the failure of a type 304 stainless steel tube from a boiler stack economizer.

124

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

125

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, P.M.

1979-12-27T23:59:59.000Z

126

A thermal computation program of process steam boilers obtained with reusable equipments and plants  

Science Conference Proceedings (OSTI)

This paper presents a process steam boiler dimensioned by means of two computer programs. The first computer program entitled "thermal computation of the chamber furnace of boiler" provides the utilization of the Boltzmann criterion. This computer program ... Keywords: boiler, chamber furnace, computer program, heat exchanger

Aurel Gaba; Ion-Florin Popa; Alexis-Daniel Negrea

2010-05-01T23:59:59.000Z

127

Boiler using combustible fluid  

DOE Patents (OSTI)

A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

Baumgartner, H.; Meier, J.G.

1974-07-03T23:59:59.000Z

128

PROBLEM 13.94 KNOWN: Diameter, temperature and emissivity of boiler tube. Thermal conductivity and emissivity of  

E-Print Network (OSTI)

PROBLEM 13.94 KNOWN: Diameter, temperature and emissivity of boiler tube. Thermal conductivity of 0.5 mm), Td = 773 K nd the ash provides a significant resistance to heat transfer.a COMMENTS: Boiler

Rothstein, Jonathan

129

RF propagation in an HVAC duct system: impulse response characteristics of the channel  

E-Print Network (OSTI)

RF propagation in an HVAC duct system: impulse response characteristics of the channel Pavel V, the heating, ventilation, and air conditioning (HVAC) duct system in buildings is a complex network of hollow at RF and microwave frequencies of com- mon interest. HVAC ducts can be used as a wireless communication

Stancil, Daniel D.

130

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

131

Drum-boiler dynamics  

Science Conference Proceedings (OSTI)

A nonlinear dynamic model for natural circulation drum-boilers is presented. The model describes the complicated dynamics of the drum, downcomer, and riser components. It is derived from first principles, and is characterized by a few physical parameters. ...

K. J. StrM; R. D. Bell

2000-03-01T23:59:59.000Z

132

Boiler Condition Assessment Guideline  

Science Conference Proceedings (OSTI)

This report Boiler Condition Assessment Guideline provides a concise overview of procedures developed by the Electric Power Research Institute EPRI to help power plant operators cost-effectively determine the extent of degradation and remaining life of key boiler components. The Guideline draws from EPRIs detailed area-specific guidelines, which in turn are based on extensive research findings by EPRI, member companies, and other organizations. This Guideline offers a starting point for power plant perso...

2010-12-23T23:59:59.000Z

133

Heating facilities: Klamath Lutheran Church, Klamath Falls, Oregon  

DOE Green Energy (OSTI)

The Klamath Lutheran Church is a masonry structure with cathedral ceiling containing approximately 5800 sq ft of floor area. This building is currently heated by two duct furnaces and a unit heater all of which are gas fired. An Educational Wing of approximately 6300 sq ft was added in 1958. This building, containing 2 assembly rooms and a number of classrooms is of uninsulated frame construction, with extensive glass area. A gas-fired boiler supplying finned tube radiators currently heats this wing. Four specific options for displacing all or part of the heating duty with geothermal were examined. These options are: case 1 - drilling a production and injection well on the property and using the resultant hot water (180/sup 0/F) to heat the entire facility; case 3 - using effluent from the Klamath Union High School to heat the entire facility; no well drilling required; case 2 - using effluent from the Klamath Union High School to heat only the church building; the present gas boiler would heat the Educational Wing; and case 4 - drilling a production and injection well on the property and using the resulting water (70/sup 0/F) to supply a water-to-water heat pump. Of the four cases examined, case 3 (heating of both the church building and educational wing with effluent from the Klamath Union High School) seems to offer the greatest potential and earliest simple payback period. (MHR)

Not Available

1980-08-01T23:59:59.000Z

134

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

135

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

136

Field Measurements of Efficiency and Duct Effectiveness in Residential Forced Air Distributions Systems  

E-Print Network (OSTI)

sealing and insulating the duct system. ABSTRACT Forced airair conditioning, gas furnaces, electric furnaces and heat pumps. The retrofits consisted of sealing

Jump, D.A.

2011-01-01T23:59:59.000Z

137

Boiler MACT Technical Assistance (Fact Sheet)  

Science Conference Proceedings (OSTI)

Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

Not Available

2012-03-01T23:59:59.000Z

138

Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet)  

SciTech Connect

Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation. There are three possible combinations of BED strategies: (1) buried ducts; (2) encapsulated ducts (with ccSPF); and (3) buried and encapsulated ducts. The best solution for each situation depends on the climate, age of the house, and the configuration of the HVAC system and attic. For new construction projects, the team recommends that ducts be both encapsulated and buried as the minimal planning and costs required for this will yield optimal energy savings. The encapsulated/buried duct strategy, which utilizes ccSPF to address condensation concerns, is an approach that was developed specifically for humid climates.

Not Available

2013-11-01T23:59:59.000Z

139

Commonwealth Small Pellet Boiler Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Maximum Rebate $15,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 03/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Base Grant: $7,000 Automated Conveyance of Fuel Adder: $3,000 Thermal Storage Adder: $2,000 Solar Thermal Hybrid System Adder: $1,000 Moderate Income Adder or Moderate Home Value Adder: $2,000 Maximum Grant: $15,000 Provider Massachusetts Clean Energy Center The Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER) are offering the Commonwealth Small Pellet Boiler

140

Flue heat reclaimer  

Science Conference Proceedings (OSTI)

A flue heat reclaimer is constructed to be mounted on the exterior of a flue duct of a heater and provide a spiral-shaped heat transfer passage extending around the flue duct. A fan causes air to flow through the heat transfer passage so that the temperature of this air is elevated by reason at its extended heat transfer relationship with the flue duct.

Paolino, R.J.

1983-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

142

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

coil (G) of the absorption chiller (or boiler of a Rankineor heat input to the absorption chiller of approximately

Dols, C.

2010-01-01T23:59:59.000Z

143

Radiant Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

heating because it eliminates duct losses. People with allergies often prefer radiant heat because it doesn't distribute allergens like forced air systems can. Hydronic...

144

Inherently Reliable Boiler Component Design  

Science Conference Proceedings (OSTI)

This report summarizes the lessons learned during the last decade in efforts to improve the reliability and availability of boilers used in the production of electricity. The information in this report can assist in component modifications and new boiler designs.

2003-03-31T23:59:59.000Z

145

Modular approach for modelling a multi-energy district boiler Julien Eynard, Stphane Grieu1 and Monique Polit  

E-Print Network (OSTI)

Modular approach for modelling a multi-energy district boiler Julien Eynard, Stéphane Grieu1 with the modelling of a district boiler (city of La Rochelle, west coast of France), as part of the OptiEnR research project. This "multi- energy" boiler supplies domestic hot water and heats residential and public

Paris-Sud XI, Université de

146

Modern Boiler Control and Why Digital Systems are Better  

E-Print Network (OSTI)

Steam generation in petrochemical plants and refineries is in a state of change. Expensive fuels have resulted in greater use of waste heat recovery boilers and other energy conservation measures. As a result, many conventional boilers have been mothballed. Improved flue gas analyzers and digital controls are replacing less efficient and less reliable control hardware. As the production of steam becomes decentralized, control systems needed to meet expanded plant objectives must be installed. Production, engineering and maintenance personnel are finding increased need to learn more about this specialized control area. This article will discuss conventional controls systems common in industrial boilers plus improvements made possible with currently available hardware.

Hughart, C. L.

1983-01-01T23:59:59.000Z

147

Ductless, Mini-Split Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Ductless, mini-split-system heat pumps (mini splits), as their name implies, do not have ducts. Therefore, they make good retrofit add-ons to houses or buildings with "non-ducted" heating systems,...

148

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

149

Cornice Duct System  

Science Conference Proceedings (OSTI)

SYNERGETICS, INC., has designed, developed, and tested an air handling duct system that integrates the air duct with the cornice trim of interior spaces. The device has the advantage that the normal thermal losses from ducts into unconditioned attics and crawl spaces can be totally eliminated by bringing the ducts internal to the conditioned space. The following report details work conducted in the second budget period to develop the Cornice Duct System into a viable product for use in a variety of residential or small commercial building settings. A full-scale prototype has been fabricated and tested in a laboratory test building at the Daylighting Facility at North Carolina State University., Based on the results of that testing, the prototype design as been refined, fabricated, installed, and extensively tested in a residential laboratory house. The testing indicates that the device gives substantially superior performance to a standard air distribution system in terms of energy performance and thermal comfort. Patent Number US 6,511,373 B2 has been granted on the version of the device installed and tested in the laboratory house. (A copy of that patent is attached.) Refinements to the device have been carried through two additional design iterations, with a particular focus on reducing installation time and cost and refining the air control system. These new designs have been fabricated and tested and show substantial promise. Based on these design and testing iterations, a final design is proposed as part of this document. That final design is the basis for a continuation in part currently being filed with the U.5, Patent office.

Wayne Place; Chuck Ladd

2004-10-29T23:59:59.000Z

150

Development of an ASHRAE 152-2004 Duct Model for the Single-Family Residential House  

E-Print Network (OSTI)

This paper presents the results of the development of the duct model based on ASHRAE standard 152-2004 (ASHRAE, 2004) using the DOE-2.1e building energy simulation program. To accomplish this, FUNCTION commands for DOE-2 were used to develop the duct model and provide the improved predictions of the duct heat loss or gain from the unconditioned space as well as supply or return duct leakage. After applying the duct model to the DOE-2 base-case simulation model, simulation results were compared with the measurement from the case-study house for verification.

Kim, S.; Haberl, J.

2008-12-01T23:59:59.000Z

151

Demonstration of Advanced Boiler Instrumentation Technologies  

Science Conference Proceedings (OSTI)

New and increasing limits on emissions (in particular, NOx) and new emphasis on heat rate have underscored the need to measure flue gas constituents more accurately and in more locations. Utilities are making large capital investments in boiler improvements and emission control devices. These investments can be enhanced through the use of innovative, on-line instrumentation closer to the furnace combustion zone. Traditionally, sensors for flue gas constituents, such as NOx and CO, are implemented as part...

2005-03-31T23:59:59.000Z

152

Boiler Chemical Cleaning Waste Management Manual  

Science Conference Proceedings (OSTI)

Chemical cleaning to remove tube deposits/oxides that occur during unit operation or scale during unit commissioning from conventional fossil plants and combined cycle plants with heat recovery steam generators (HRSGs) will result in the generation of a waste solution. The waste contains residual solvent and elevated levels of heavy metals (primarily iron and copper) in addition to rinse and passivation solutions. An earlier manual, Boiler Chemical Cleaning Wastes Management Manual (EPRI ...

2013-12-20T23:59:59.000Z

153

Boiler steam engine with steam recovery and recompression  

SciTech Connect

A boiler type of steam engine is described which uses a conventional boiler with an external combustion chamber which heats water in a pressure chamber to produce steam. A mixing chamber is used to mix the steam from the boiler with recovered recompressed steam. Steam from the mixing chamber actuates a piston in a cylinder, thereafter the steam going to a reservoir in a heat exchanger where recovered steam is held and heated by exhaust gases from the combustion chamber. Recovered steam is then recompressed while being held saturated by a spray of water. Recovered steam from a steam accumulator is then used again in the mixing chamber. Thus, the steam is prevented from condensing and is recovered to be used again. The heat of the recovered steam is saved by this process.

Vincent, O.W.

1980-12-23T23:59:59.000Z

154

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 2, FEBRUARY 2005 335 On the Capacity Limits of HVAC Duct Channel for  

E-Print Network (OSTI)

of HVAC Duct Channel for High-Speed Internet Access Ariton E. Xhafa, Member, IEEE, Ozan K. Tonguz, Member and experimental channel-capacity estimates of heating, ventilation, and air condi- tioning (HVAC) ducts based suppressed. Our experimental results also show that even in the case of more complex HVAC duct networks (i

Stancil, Daniel D.

155

SNAP I MERCURY BOILER DEVELOPMENT, JANUARY 1957 TO JUNE 1959  

SciTech Connect

The mercury-boiler development program was undertaken to develop a system that would utilize the heat of radioisotope decay to boil and superheat mercury vapor for use with a small turbine-generator package. Through the use of a Rankine cycle, the mercury vapor can be provided continuously to power a turbine-driven alternator and produce electricity for extended periods of time. This mercury boiler and the related power-conversion system was planned for a satellite that would orbit the earth. This system design and development program was designated as SNAP-I. Development of the mercury boiler is described and a chronological description of the various mercury-boiler concepts is presented. The applicable results of an extensive literature survey of mercury are included. The mercury-boiler experimental-test-program description provides complete coverage of each experimental boiler and its relation to the system design of that period. A summary of all mercury boilers and their final disposition is also given. (auth)

Jicha, J.; Keenan, J.J.

1960-06-01T23:59:59.000Z

156

An Overview of Hot Corrosion in Waste to Energy Boiler ...  

Science Conference Proceedings (OSTI)

Presentation Title, An Overview of Hot Corrosion in Waste to Energy Boiler ... boiler designers, and boiler tube manufacturers since quite a few number of boiler...

157

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

158

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

159

Recovery Boiler Modeling  

E-Print Network (OSTI)

Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown to provide good resolution of the complex flow near the air ports and greatly improve the convergence characteristics of the numerical procedure. The improved resolution enhances the predictive capabilities of the computations, and allows the assessment of the relative performance of different air delivery systems.

Abdullah, Z.; Salcudean, M.; Nowak, P.

1994-04-01T23:59:59.000Z

160

SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report  

Science Conference Proceedings (OSTI)

The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

Not Available

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Postcombustion and its influences in 135 MWe CFB boilers  

SciTech Connect

In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2009-09-15T23:59:59.000Z

162

Development of a new duct leakage test: DeltaQ  

SciTech Connect

Duct leakage is a key factor in determining energy losses from forced air heating and cooling systems. Several studies (Francisco and Palmiter 1997 and 1999, Andrews et al. 1998, and Siegel et al. 2001) have shown that the duct system efficiency cannot be reliably determined without good estimates of duct leakage. Specifically, for energy calculations, it is the duct leakage air flow to outside at operating conditions that is required. Existing test methods either precisely measure the size of leaks (but not the flow through them at operating conditions), or measure these flows with insufficient accuracy. The DeltaQ duct leakage test method was developed to provide improved estimates of duct leakage during system operation. In this study we developed the analytical calculation methods and the test procedures used in the DeltaQ test. As part of the development process, we have estimated uncertainties in the test method (both analytically and based on field data) and designed automated test procedures to increase accuracy and reduce the contributions of operator errors in performing field tests. In addition, the test has been evaluated in over 100 houses by several research teams to show that it can be used in a wide range of houses and to aid in finding limits or problems in field applications. The test procedure is currently being considered by ASTM as an update of an existing duct leakage standard.

Walker,I.S.; Sherman,M.H.; Wempen, J.; Wang, D.; McWilliams, J.A.; Dickerhoff, D.J.

2001-08-01T23:59:59.000Z

163

Flame Doctor for Cyclone Boilers  

Science Conference Proceedings (OSTI)

This development program was designed to enhance monitoring and diagnostic technology for cyclone furnaces using the Flame Doctor combustion diagnostic system. First developed for wall-fired pulverized-coal burner systems and boilers, Flame Doctor allows simultaneous, continuous monitoring and evaluation of each burner in a boiler using signals from optical flame scanners. An initial feasibility test conducted at the AmerenUE Sioux cyclone boiler indicated Flame Doctor technology could be extended to cyc...

2007-12-12T23:59:59.000Z

164

Duct Tape and Sealant Performance  

E-Print Network (OSTI)

were convinced that sealing air leaks in ducts was a costsealing approaches. Background UL has developed standards for closure systems for use with rigid air

Walker, Iain S.; Sherman, Max H.

2005-01-01T23:59:59.000Z

165

Increase Duct and Plenum Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

changes to the commercial provisions of the 2012 IECC: Increase Duct and Plenum Insulation R Hart Pacific Northwest National Laboratory December 2012 Proposal Description This...

166

Return Condensate to the Boiler  

SciTech Connect

This revised ITP tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

167

Energy Basics: Supporting Equipment for Heating and Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Heating and Cooling Systems Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat...

168

Duct Leakage Impacts on VAV System Performance in Large Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Leakage Impacts on VAV System Performance in Large Commercial Duct Leakage Impacts on VAV System Performance in Large Commercial Buildings Title Duct Leakage Impacts on VAV System Performance in Large Commercial Buildings Publication Type Report LBNL Report Number LBNL-53605 Year of Publication 2003 Authors Wray, Craig P., and Nance Matson Abstract The purpose of this study is to evaluate the variability of duct leakage impacts on air distribution system performance for typical large commercial buildings in California. Specifically, a hybrid DOE-2/TRNSYS sequential simulation approach was used to model the energy use of a low-pressure terminal-reheat variable-air-volume (VAV) HVAC system with six duct leakage configurations (tight to leaky) in nine prototypical large office buildings (representing three construction eras in three California climates where these types of buildings are common). Combined fan power for the variable-speed-controlled supply and return fans at design conditions was assumed to be 0.8 W/cfm. The VAV system that we simulated had perfectly insulated ducts, and maintained constant static pressure in the ducts upstream of the VAV boxes and a constant supply air temperature at the air-handler. Further evaluations of duct leakage impacts should be carried out in the future after methodologies are developed to deal with duct surface heat transfer effects, to deal with airflows entering VAV boxes from ceiling return plenums (e.g., to model parallel fan-powered VAV boxes), and to deal with static pressure reset and supply air temperature reset strategies.

169

Stopping duct quacks: Longevity of residential duct sealants  

Science Conference Proceedings (OSTI)

Duct leakage has been identified as a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums or branches in the duct system. At each of these connections a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have shown that these seals tend to fail over time periods ranging from days to years. We have used several test methods over the last few years to evaluate the longevity of duct sealants when subjected to temperatures and pressures representative of those found in the field. Traditional cloth duct tapes have been found to significantly under-perform other sealants and have been banned from receiving duct tightness credits in California's energy code (California Energy Commission 1998). Our accelerated testing apparatus has been redesigned since its first usage for improved performance. The methodology is currently under consideration by the American Society for Testing and Materials (ASTM) as a potential new test method. This report will summarize the set of measurements to date, review the status of the test apparatus and test method, and summarize the applications of these results to codes and standards.

Sherman, Max H.; Walker, Iain S.; Dickerhoff, Darryl J.

2000-08-01T23:59:59.000Z

170

Measurement and Modeling of SO3 Formation in Coal-Fired Power Boilers  

Science Conference Proceedings (OSTI)

Some fraction of the SO2 formed by oxidation of sulfur in a coal-fired boiler is further oxidized to SO3. As a rule of thumb, the SO3 concentration at the boiler's economizer exit is expected to be about 1% of the SO2 concentration; however, the actual value is strongly dependent on the fuel composition, boiler design, and the boiler operating conditions. Qualitatively, it is well accepted that iron in the convection section heat exchanger tubes and in the ash acts as a catalyst to promote oxidation of S...

2011-09-27T23:59:59.000Z

171

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

172

Duct Testing | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Testing This video offers tips and instruction for duct testing, and is a portion of the Duct Leakage Testing presentation given at Energy Codes 2009. Estimated Length: 12...

173

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps  

E-Print Network (OSTI)

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced evaporator airflow, and return air leakage from hot attic spaces. There were five sets of tests used for this research: two of them for the charging tests, two for the reduced evaporator airflow, and one for the return air leakage tests. For the charging tests, the indoor room conditions were 80'F (27.8'C) dry-bulb and 50% relative humidity. The outdoor conditions ranged from 95'F (350C) all the way up to 120'F (48.9'C). Charge levels ranged from 30% undercharged to 40% overcharged for the short-tube orifice unit. For the thermal expansion valve (TXV) unit, charge levels ranged from-36% charging to +27% charging. Performance was quantified with the following variables: total capacity, energy efficiency ratio (EER), and power. The performance of the orifice unit was more sensitive to charge than it was for the TXV unit. For the TXV unit on the -27% to +27% charging range, the capacity and EER changed little with charge. A TXV unit and a short-tube orifice unit were also tested for reduced evaporator airflow. As evaporator airflow decreased, the capacity and EER both decreased as expected. However, the drop was not as significant as with the charging tests. For the extreme case of 50% reduced evaporator airflow, neither unit's capacity or EER dropped more than 25%. Return air leakage from hot attic spaces was simulated by assuming adiabatic mixing of the indoor air at normal conditions with the attic air at high temperatures. Effective capacity and EER both decreased with increased return air leakage. However, power consumption was relatively constant for all variables except outdoor temperature, which meant that for the same power consumption, the unit delivered much lower performance when there was return air leakage. The increase in sensible heat ratio (SHR) with increasing leakage showed perhaps the most detrimental effect of return air leakage on performance, which was the inability of the unit to absorb moisture from the environment.

Rodriguez, Angel Gerardo

1995-01-01T23:59:59.000Z

174

Effect of Refrigerant Charge, Duct Leakage, and Evaporator Air Flow on the High Temperature Performance of Air Conditioners and Heat Pumps  

E-Print Network (OSTI)

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced evaporator airflow, and return air leakage from hot attic spaces. There were five sets of tests used for this research: two of them for the charging tests, two for the reduced evaporator airflow, and one for the return air leakage tests. For the charging tests, the indoor room conditions were 80F (27.8C) dry-bulb and 50% relative humidity. The outdoor conditions ranged from 95F (35C) all the way up to 120F (48.9C). Charge levels ranged from 30% undercharged to 40% overcharged for the short-tube orifice unit. For the thermal expansion valve (TXV) unit, charge levels ranged from -36% charging to +27% charging. Performance was quantified with the following variables: total capacity, energy efficiency ratio (EER), and power. The performance of the orifice unit was more sensitive to charge than it was for the TXV unit. For the TXV unit on the -27% to +27% charging range, the capacity and EER changed little with charge. A TXV unit and a short-tube orifice unit were also tested for reduced evaporator airflow. As evaporator airflow decreased, the capacity and EER both decreased as expected. However, the drop was not as significant as with the charging tests. For the extreme case of 50% reduced evaporator airflow, neither unit's capacity or EER dropped more than 25%. Return air leakage from hot attic spaces was simulated by assuming adiabatic mixing of the indoor air at normal conditions with the attic air at high temperatures. Effective capacity and EER both decreased with increased return air leakage. However, power consumption was relatively constant for all variables except outdoor temperature, which meant that for the same power consumption, the unit delivered much lower performance when there was return air leakage. The increase in sensible heat ratio (SHR) with increasing leakage showed perhaps the most detrimental effect of return air leakage on performance, which was the inability of the unit to absorb moisture from the environment.

Rodriguez, Angel Gerardo

2007-11-29T23:59:59.000Z

175

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and...

176

Simulation of Combustion and Thermal Flow in an Industrial Boiler  

E-Print Network (OSTI)

Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand the combustion and thermal flow behaviors inside the boiler. This study performs a detailed simulation of combustion and thermal flow behaviors inside an industrial boiler. The simulations are conducted using the commercial CFD package FLUENT. The 3-D Navier-Stokes equations and five species transport equations are solved with the eddy-breakup combustion model. The simulations are conducted in three stages. In the first stage, the entire boiler is simulated without considering the steam tubes. In the second stage, a complete intensive calculation is conducted to compute the flow and heat transfer across about 496 tubes. In the third stage, the results of the saturator/superheater sections are used to calculate the thermal flow in the chimney. The results provide insight into the detailed thermal-flow and combustion in the boiler and showing possible reasons for superheater tube rupture. The exhaust gas temperature is consistent with the actual results from the infrared thermograph inspection.

Saripalli, R.; Wang, T.; Day, B.

2005-01-01T23:59:59.000Z

177

Notice of construction for proposed backup package boiler  

Science Conference Proceedings (OSTI)

The Hanford Site steam plant consists of coal-fired boilers located at the 200 East and the 200 West Areas. These boilers have provided steam to heat and cool facilities in the 200 Areas since the early 1940`s. As part of Project L-017, ``Steam System Rehabilitation, Phase II``, the 200 West Area coal-fired boilers will be permanently shut down. The shut down will only occur after a proposed package backup boiler (50,000 pounds per hour (lb/hr) steam, firing No. 2 oil) is installed at the 200 West Area. The proposed backup boiler will provide back-up services when the 200 East Area steam line, which provides steam to the 200 West Area, is down for maintenance or, when the demand for steam exceeds the supply available from the 200 East Plant. This application is a request for approval to construct and operate the package backup boiler. This request is being made pursuant to Washington Administration Code (WAC) Chapter 173-400, ``General Regulations for Air Pollution Sources``, and Chapter 173-460, ``Controls for New Sources of Toxic Air Pollutants``.

Not Available

1993-10-01T23:59:59.000Z

178

Flame Doctor for Cyclone Boilers  

Science Conference Proceedings (OSTI)

NOx control and combustion optimization in cyclone boilers requires a monitoring technique that can assess the quality of combustion in the burner and barrel and provide guidance to the operator to make adjustments in the air distribution. This report describes the results through the end of 2008 of a beta demonstration of the Flame Doctor combustion diagnostic system at five working cyclone boilers.

2009-07-22T23:59:59.000Z

179

Boiler Reliability Optimization: Interim Guideline  

Science Conference Proceedings (OSTI)

Competitive pressures to drive costs down in the new business environment sometimes conflict with the demands of increased reliability and quality of supply. The Boiler Reliability Optimization program, which makes use of a number of applicable EPRI technologies, was developed to assess, create, and implement an effective boiler maintenance strategy for the changing business environment.

1999-11-30T23:59:59.000Z

180

On HVAC duct acoustical end reflection  

Science Conference Proceedings (OSTI)

Duct end reflection (ER) is the apparent loss of sound power resulting from an abrupt change in a cross?sectional area of the duct. In most references

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Aerogel Impregnated Polyurethane Piping and Duct Insulation ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building Technologies Office's...

182

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

Central warm-air furnace with ducts to individual rooms other than a heat pump ..... 03 Steam/Hot water ... REVERSE Heat pump ... Don't have a separate water heater ...

183

Multi-carrier Signal Transmission through HVAC Ducts: Experimental Results for Channel Capacity  

E-Print Network (OSTI)

Multi-carrier Signal Transmission through HVAC Ducts: Experimental Results for Channel Capacity, for the first time, experimental results on channel capacity of heating, ventilation, and air-conditioning (HVAC through a building HVAC duct system demonstrate the ability to transmit with a spectral efficiency of 3

Stancil, Daniel D.

184

Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture  

E-Print Network (OSTI)

Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture Ariton E. Xhafa, Paisarn-- In this paper, we present an innovative solution to the handover problem in multi-story buildings using HVAC of the indoor wireless networks that use the heating, ventilation, and air conditioning (HVAC) ducts

Stancil, Daniel D.

185

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities in EPA's Boiler Rules Opportunities in EPA's Boiler Rules On December 20, 2012, the US Environmental Protection Agency (EPA) finalized new regulations to control emissions of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and Boiler Area Source Rule (smaller sources), will reduce the amount of HAPS such as mercury, heavy metals, and other toxics that enter the environment. Since emissions from boilers are linked to fuel consumption, energy efficiency is an important strategy for complying with the new Boiler rules. Who is affected? Most existing industrial, commercial and institutional (ICI) boilers will not be affected by the Boiler MACT. These unaffected boilers are mostly small natural gas-fired boilers. Only about 14% of all existing

186

Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study  

SciTech Connect

Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

2006-06-30T23:59:59.000Z

187

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

188

Duct Systems in Large Commercial Buildings: Physical  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Systems in Large Commercial Buildings: Physical Characterization, Air Leakage, and Heat Conduction Gains William 1. Fisk, Woody Delp, Rick Diamond, Darryl Dickerhoff, Ronnen Levinson, Mark Modera, Matty Nematollahi, Duo Wang Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley CA 94720 March 30, 1999 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology and Community Systems, of the US Department of Energy under Contract No. DE-AC03-76SF00098 and by the California Institute For Energy Efficiency. LBNL-42339

189

Building America Top Innovations 2013 Profile … Buried and Encapsulated Ducts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

match the performance of ducts in conditioned space. match the performance of ducts in conditioned space. For years builders have designed their homes with the HVAC ducts in the attic. There is plenty of space up there to run the ducts, and if the air handler is located in the attic as well, it is not taking up valuable square footage inside the home. The only problem is vented attics can be very hot in the summer and very cold in the winter. Estimated thermal losses through ducts installed in unconditioned attics range from 10% to 45%, contributing significantly to homeowners' heating and cooling costs. The Consortium for Advanced Residential Buildings (CARB), a Building America research team led by Steven Winter Associates, has done extensive research on the feasibility of insulating ducts that are located in the attic and has

190

Building America Top Innovations 2013 Profile … Buried and Encapsulated Ducts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

meet the code requirements for ducts in conditioned space. meet the code requirements for ducts in conditioned space. For years builders have designed their homes with the HVAC ducts in the attic. There is plenty of space up there to run the ducts and if the air handler is located in the attic as well, it's not taking up valuable square footage inside the home. The only problem is uninsulated attics can be very hot in the summer and very cold in the winter. Estimated thermal losses through ducts installed in unconditioned attics range from 10% to 45%, contributing significantly to homeowners' heating and cooling costs. The Consortium for Advanced Residential Buildings (CARB), a Building America research team led by Steven Winter Associates, has done extensive research on the feasibility of insulating ducts that are located in the attic and has

191

Integrated boiler, superheater, and decomposer for sulfuric acid decomposition  

DOE Patents (OSTI)

A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

2010-01-12T23:59:59.000Z

192

Heat Recovery from Coal Gasifiers  

E-Print Network (OSTI)

This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant and convection waste heat boilers. Medium level waste heat leaving fixed bed type gasifiers can be recovered more economically by convection type boilers or shell and tube heat exchangers. An economic analysis for the steam generation and process heat exchanger is presented. Steam generated from the waste heat boiler is used to drive steam turbines for power generation or air compressors for the oxygen plant. Low level heat recovered by process heat exchangers is used to heat product gas or support the energy requirement of the gasification plant. The mechanical design for pressure vessel shell and boiler tubes is discussed. The design considers metallurgical requirements associated with hydrogen rich, high temperature, and high pressure atmosphere.

Wen, H.; Lou, S. C.

1981-01-01T23:59:59.000Z

193

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

194

The combustion and the thermal-energetic behavior of an oil-fired condensing boiler.  

E-Print Network (OSTI)

??The purpose of this Masters Thesis is to analyze an oil-fired condensing boiler describing the aspects concerning the combustion, condensation latent heat recovery from the (more)

Cattarinussi, Cristian

2013-01-01T23:59:59.000Z

195

New and Underutilized Technology: Condensing Boilers  

Energy.gov (U.S. Department of Energy (DOE))

The following information outlines key deployment considerations for condensing boilers within the Federal sector.

196

Property Libraries for Working Fluids for Calculating Heat ...  

Science Conference Proceedings (OSTI)

... properties of working fluids can be used for the daily work of an engineer who calculates heat cycles, steam or gas turbines, boilers, heat pumps or ...

2006-07-20T23:59:59.000Z

197

Modern Heating Options for Commercial/Institutional Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

reducing the heating energy in buildings using a combination of low temperature boilers, heat recovery strategies and a new approach to geo-thermal systems. His data from...

198

Practical Procedures for Auditing Industrial Boiler Plants  

E-Print Network (OSTI)

Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis, and the preparation of recommendations. A complete boiler plant program will consider each individual boiler, boiler room auxiliary equipment, steam distribution and return systems, and steam end use equipment. This paper summarizes the practical procedures, techniques, and instrumentation which Nabisco uses in its boiler plant energy conservation program.

O'Neil, J. P.

1980-01-01T23:59:59.000Z

199

Flow duct for nuclear reactors  

DOE Patents (OSTI)

Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

Straalsund, Jerry L. (Richland, WA)

1978-01-01T23:59:59.000Z

200

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Computer Control of Boiler Operation  

E-Print Network (OSTI)

Rapidly rising energy costs present the opportunity for substantial cost savings through improved boiler combustion control. A process computer control system was installed at an Air Products & Chemicals facility in 1978. As a result the boiler efficiency has increased over 11%. The control system includes; air flow, fuel flow, pressure and drum level control. Air flow control is achieved through modulation of the F.D. fan inlet vanes. Demand for airflow is produced from a high signal selection of the steam pressure controller or the total fuel signal. The output of the oxygen controller is used to modify this airflow index by the desired air/fuel ratio. The air/fuel ratio is a polynomial function of the type of fuel used. In summary, the computer control system provides for; greater overall boiler stability, operation within tight air/gas limits, increased boiler efficiency, capability to burn multiple fuels, faster response to demand changes, and fewer shutdowns.

Pareja, G. E.

1981-01-01T23:59:59.000Z

202

A Boiler Plant Energy Efficiency and Load Balancing Survey  

E-Print Network (OSTI)

Daily energy use data was used to perform an energy efficiency survey of a medium-sized university boiler plant. The physical plant operates centralized mechanical plants to provide both chilled water and steam for building conditioning. Steam is used for heating buildings and to operate a 4000-ton steam-driven chiller. There are five natural gas-fired steam boilers that have rated capacities ranging from 40,000 lb/hr to 100,000 lb/hr at an operating pressure of 125 psig. This paper discusses the operating characteristics of the boiler and potential energy efficiency improvements. Results from the study included that reducing excess air levels to recommended minimums would save over $15,000 per year.

Nutter, D. W.; Murphy, D. R.

1997-04-01T23:59:59.000Z

203

Modeling of a coal-fired natural circulation boiler  

SciTech Connect

Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N. [Indian Institute of Technology, Bombay (India). Dept. of Mechanical Engineering

2007-06-15T23:59:59.000Z

204

Residential Duct Design Guide  

Science Conference Proceedings (OSTI)

To provide comfortable levels of heating or cooling, a space-conditioning system must be properly sized and carefully installed. Movement of air and passages through which air is moved are vitally important for comfort. An inadequate system can cause uncomfortable drafts, may fail to move sufficient air to meet space heating and cooling loads, or may result in excessive energy costs. The best way to avoid problems is to prevent them in the design stage. This guide gives HVAC specialists basic information...

2000-11-02T23:59:59.000Z

205

Standby cooling system for a fluidized bed boiler  

DOE Patents (OSTI)

A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

1990-01-01T23:59:59.000Z

206

Techno-economic analysis of wood biomass boilers for the greenhouse industry  

SciTech Connect

The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

2009-01-01T23:59:59.000Z

207

Advanced Manufacturing Office: Process Heating Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-Up Energy-Efficiency Opportunity Assessment Tool for Chemical Plants and Refineries Mechanical Insulation Assessment and Design Calculators Combined Heat and Power...

208

Coast Electric Power Association - Heat Pump and Weatherization...  

Open Energy Info (EERE)

CaulkingWeather-stripping, Doors, DuctAir sealing, Heat pumps, Water Heaters, Windows, Geothermal Heat Pumps, Generators Active Incentive No Incentive Inactive Date 0803...

209

CASE STUDY OF DUCT RETROFIT OF A 1985 HOME AND GUIDELINES FOR ATTIC AND CRAWL SPACE DUCT SEALING  

SciTech Connect

The U.S. Department of Energy (DOE) is fully committed to research for developing the information and capabilities necessary to provide cost-effective residential retrofits yielding 50% energy savings within the next several years. Heating, ventilation, and air conditioning (HVAC) is the biggest energy end use in the residential sector, and a significant amount of energy can be wasted through leaky ductwork in unconditioned spaces such as attics and crawl spaces. A detailed duct sealing case study is presented for one house along with nine brief descriptions of other duct retrofits completed in the mixed-humid climate. Costs and estimated energy savings are reported for most of the ten houses. Costs for the retrofits ranged from $0.92/ft2 to $1.80/ft2 of living space and estimated yearly energy cost savings due to the duct retrofits range from 1.8% to 18.5%. Lessons learned and duct sealing guidelines based on these ten houses, as well as close work with the HVAC industry in the mixed-humid climate of East Tennessee, northern Georgia, and south-central Kentucky are presented. It is hoped that the lessons learned and guidelines will influence local HVAC contractors, energy auditors, and homeowners when diagnosing or repairing HVAC duct leakage and will be useful for steering DOE s future research in this area.

Boudreaux, Philip R [ORNL; Christian, Jeffrey E [ORNL; Jackson, Roderick K [ORNL

2012-01-01T23:59:59.000Z

210

Post-test examination of a pool boiler receiver  

DOE Green Energy (OSTI)

A subscale pool boiler test apparatus to evaluate boiling stability developed a leak after being operated with boiling NaK for 791.4 hr at temperatures from 700 to 750 {degrees}C. The boiler was constructed using Inconel 625 with a type 304L stainless steel wick for the boiler and type 316 stainless steel for the condenser. The boiler assembly was metallurgically evaluated to determine the cause of the leak and to assess the effects of the NaK on the materials. It was found that the leak was caused by insufficient (about 30 percent) joint penetration in a butt joint. There was no general corrosion of the construction materials, but the room temperature ductility of the Inconel 625 was only about 6.5 percent. A crack in the heat affected zone of the Inconel 625 near the Inconel 625 to type 316 stainless steel butt joint was probably caused by excessive heat input. The crack was observed to have a zone depleted of iron at the crack surface and porosity below that zone. The mechanism of the iron depletion was not conclusively determined. 3 refs.

Dreshfield, R.L.; Moore, T.J.; Bartolotta, P.A.

1992-04-01T23:59:59.000Z

211

Implementation of Boiler Best Practices  

E-Print Network (OSTI)

Boilers are an essential part of any industrial plant, and their efficient, economical operation can significantly affect the reliability and profitability of the entire plant. Best Practices for Boilers include tools to determine where a plant or corporation is with respect to boiler treatment, what needs to be done to make the plant (corporation) the "best of the best," and how to get there. When implemented, Best Practices provide a method to measure and track progress, and represent a benchmark for continuous improvement. Best Practices combine our global collective experience from the areas of research, consulting, sales and marketing, and involve not only recommendations and specifications, but also the rationale behind them for the application of the chosen treatment, monitoring, and instrumentation. Best practices provide energy savings, profitability improvement, reduction in total cost of operations, project management, optimized treatment choices, enhanced safety, system assessment processes and facilitated system improvements.

Blake, N. R.

2000-04-01T23:59:59.000Z

212

Improving Control of a Dual-Duct Single-Fan Variable Air Volume Systems  

E-Print Network (OSTI)

This paper discusses improved control strategies for dual-duct single-fan variable air volume (VAV) systems. Common control strategy for supply air volume modulation is evaluated, and an improved air volume control strategy that maintains separate cold and hot air duct static pressure set points is presented. The paper also explores the interactions between the cold and hot deck temperatures and duct static pressures, and discusses the impact of non-ideal deck temperature settings on duct static pressures and overall system energy consumption. To compensate the negative impact of non-ideal cold and hot deck temperature set points, the authors propose using real-time duct static pressure readings as feedback signals to fine-tune the deck temperature set points. These new control schemes can reduce simultaneous cooling and heating while reducing fan power consumption.

Wei, G.; Martinez, J.; Minihan, T.; Brundidge, T.; Claridge, D. E.; Turner, W. D.

2003-01-01T23:59:59.000Z

213

Steam Boiler Control Specification Problem:  

E-Print Network (OSTI)

Our solution to the specification problem in the specification language TLA+ is based on a model of operation where several components proceed synchronously. Our first specification concerns a simplified controller and abstracts from many details given in the informal problem description. We successively add modules to build a model of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed controller specification and prove that it refines the abstract controller. We also address the relationship between the physical state of the steam boiler and the model maintained by the controller and discuss the reliability of failure detection. Finally, we discuss the implementability of our specification.

Tla Solution Frank; Frank Le Ke; Stephan Merz

1996-01-01T23:59:59.000Z

214

Fossil Boiler Life News July 2008  

Science Conference Proceedings (OSTI)

Fossil Boiler Life News, published twice yearly, is the newsletter of EPRI's Boiler Life and Availability Improvement Program (P63). The July 2008 issue includes articles on upcoming meetings, new program personnel, R&D projects for 2009, a boiler drum fracture assessment guideline, protocols for manufacturing and inspecting CSEF steels, predictive FAC codes for fossil units, corrosion-resistant nanocoatings, preventive designs for eliminating boiler tube failures, and other deliverables. The newsletter ...

2008-07-28T23:59:59.000Z

215

ECUT energy data reference series: boilers  

SciTech Connect

Information on the population and fuel consumption of water-tube, fire-tube and cast iron boilers is summarized. The use of each boiler type in the industrial and commercial sector is examined. Specific information on each boiler type includes (for both 1980 and 2000) the average efficiency of the boiler, the capital stock, the amount of fuel consumed, and the activity level as measured by operational load factor.

Chockie, A.D.; Johnson, D.R.

1984-09-01T23:59:59.000Z

216

CHP Integrated with Burners for Packaged Boilers  

SciTech Connect

The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the projects subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

Castaldini, Carlo; Darby, Eric

2013-09-30T23:59:59.000Z

217

Building Energy Software Tools Directory: Duct Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Calculator Duct Calculator Duct Calculator logo. Provides access to duct calculation and sizing capabilities either as a standalone Windows program or from within the Autodesk Building Mechanical, the new HVAC-oriented version of AutoCAD. Based on the engineering data and procedures outlined in the ASHRAE Fundamentals Handbook Calculation Methods, Duct Calculator features an advanced and fully interactive user interface. Slide controls for air flow, velocity, friction and duct size provide real-time, interactive feedback; as you spin one, the others dynamically respond in real time. When used with Autodesk Building Mechanical, Duct Calculator streamlines the design process by automatically re-sizing whole branches of ductwork. Screen Shots Keywords duct-sizing, design, engineering, calculation

218

Duct/Air sealing | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon DuctAir sealing Jump to: navigation, search TODO: Add description List of DuctAir sealing...

219

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

220

Sootblowing optimization for improved boiler performance  

SciTech Connect

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

2013-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sootblowing optimization for improved boiler performance  

SciTech Connect

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

2012-12-25T23:59:59.000Z

222

Research on virtual assembly of supercritical boiler  

Science Conference Proceedings (OSTI)

Supercritical boiler is an important measure to solve problems like electricity shortage or energy intensity, with its high combustion efficiency. As supercritical boiler is a large and complex product, it may appear some problems of collision, location ... Keywords: interaction, lightweight model, supercritical boiler, virtools, virtual assembly, virtual reality

Pi-Guang Wei; Wen-Hua Zhu; Hao Zhou

2010-09-01T23:59:59.000Z

223

Energy Saving Potentials and Air Quality Benefits of Urban Heat IslandMitigation  

E-Print Network (OSTI)

Solar Absorptance, Attic, and Duct Insulation on Cooling and Heating Energy Use in Single-Family New Residential Buildings,

Akbari, Hashem

2005-01-01T23:59:59.000Z

224

Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands  

E-Print Network (OSTI)

Solar Absorptance, Attic, and Duct Insulation on Cooling and Heating Energy Use in Single-Family New Residential Buildings,

Akbari, Hashem

2008-01-01T23:59:59.000Z

225

Energy Basics: Space Heating and Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating...

226

CALIFORNIA ENERGY Residential Duct Placement  

E-Print Network (OSTI)

Science Corporation, Bruce Wilcox of Berkeley Solar Group, Jamie Lyons of Energetics, Inc., Marshall Hunt improve the quality of life in California by bringing environmentally safe, affordable, and reliable shingles, energy credits, measurement issues, duct access, and equipment sizing issues. Commercial issues

227

Covered Product Category: Commercial Boiler  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

228

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

229

"Table B22. Primary Space-Heating Energy Sources, Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

.....",894,894,213,498,79,5 "District Heat ...",96,96,"Q",2,"Q",77 "Boilers ...",581,581,40,364,136,"Q" "Packaged Heating Units...

230

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

Exchanger 1 . 3. The Condensers . Reboiler . . . . BoilerNet Power Waste Heat Trimmer Dist. Condenser Turbine SteamLeaks LP Turbine Condenser Misc. Heat Losses Total Waste

Dayan, J.

2011-01-01T23:59:59.000Z

231

Design of Flexible-Duct Junction Boxes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design of Flexible-duct Design of Flexible-duct Junction Boxes Robert Beach, IBACOS Duncan Prahl, IBACOS Design of Flexible-duct Junction Boxes Presentation Outline * Current Standards and Practice * Analysis Methods * Recommendations Design of Flexible-duct Junction Boxes * Detailed report is in peer review anticipated to be published T3 this year. - http://www1.eere.energy.gov/library/default.aspx?page=2&spi d=2. * Measure guide to be part of Building America Solutions Center - http://basc.pnnl.gov/ Design of Flexible-duct Junction Boxes Typical Installations As Plenum As Monster Design of Flexible-duct Junction Boxes Current Standards * ASHRAE 2012 HVAC Systems and Equipment, Box Plenum Systems Using Flexible Duct - Constrains Box Width to 2-3x Entrance Width - Constrains Box Length to 2 x Box Width

232

On-line operating adjustment of small biomass fired boilers optimizing CO and NOx emissions  

Science Conference Proceedings (OSTI)

Control of combustion conditions in small-scale biomass boilers for heating purposes is a specific task because it must be carried out without any high additional costs. If a basic control of heating water on a desired value is performed by means of ... Keywords: PI temperature control, combustion, efficiency, emission limits, fuel consumption

Jan Hrdlicka; Bohumil Sulc

2011-02-01T23:59:59.000Z

233

MULTI-FUEL BOILER TECHNOLOGY RICK A. HAVERLAND  

E-Print Network (OSTI)

-fired boiler was replaced with a N. V. Vyncke multi-fuel boiler with a rated capacity of 17,600 lb/hr (8000 kg of $0.785/gal ($0.208/L). The oil-fired boiler was replaced with a N. V. Vyncke multi-fuel boiler on the conveyor. Multi-Fuel Boiler Both boilers are the JUMBO OR) series boiler man ufactured by N. V. Vyncke

Columbia University

234

CenterPoint Energy - Business Gas Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Boiler System, Modulating Boiler Burner, and Vent Dampeners: 25% of equipment cost Program Info Expiration Date 12/31/2013 State Arkansas Program Type Utility Rebate Program Rebate Amount Solutions Program: Varies Direct Install Measures: No cost to customers 85% to 91.9% Efficiency Boiler: $1,400/MMBtuh Input 92%+ Efficiency Boiler: $2000/MMBtuh Input Modulating Boiler Burners: $1,000/MMBtuh Input Vent Dampers: $250/boiler Boiler Controls: $150/system Storage Water Heater: $75 Tankless Water Heater: $500

235

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

236

Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions.  

E-Print Network (OSTI)

??Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, (more)

Yang, Dong

2008-01-01T23:59:59.000Z

237

Measure Guideline: Condensing Boilers - Control Strategies for Optimizing Performance and Comfort in Residential Applications  

Science Conference Proceedings (OSTI)

The combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater has become a common option for high-efficiency residential space heating in cold climates. While there are many condensing boilers available on the market with rated efficiencies in the low to mid 90% efficient range, it is imperative to understand that if the control systems are not properly configured, these heaters will perform no better than their non-condensing counterparts. Based on previous research efforts, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency (Arena 2010). It was found that there is a significant lack of information for contractors on how to configure the control systems to optimize overall efficiency. For example, there is little advice on selecting the best settings for the boiler reset curve or how to measure and set flow rates in the system to ensure that the return temperatures are low enough to promote condensing. It has also been observed that recovery from setback can be extremely slow and, at times, not achieved. Recovery can be affected by the outdoor reset control, the differential setting on the boiler and over-sizing of the boiler itself. This guide is intended for designers and installers of hydronic heating systems interested in maximizing the overall system efficiency of condensing boilers when coupled with baseboard convectors. It is applicable to new and retrofit applications.

Arena, L.

2013-05-01T23:59:59.000Z

238

Fluidized bed boiler feed system  

SciTech Connect

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

239

WATER BOILER REACTOR  

DOE Patents (OSTI)

As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

King, L.D.P.

1960-11-22T23:59:59.000Z

240

BOILER-SUPERHEATED REACTOR  

DOE Patents (OSTI)

A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

Heckman, T.P.

1961-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Boiler Tube Internal Oxide Scale Thickness Measurement: Best Practices  

Science Conference Proceedings (OSTI)

Long-term high-temperature exposure of reheater and superheater tubes in fossil-fired steam boilers results in the growth of iron oxide scale (magnetite) on the inner tube surface. This internal oxide layer on the water side of the tube acts as a thermal insulator, reducing heat transfer through the tube wall into the internal water vapor. Over time, this insulating effect limits heat transmission into the water vapor inside the tube, which, in turn, causes chronic overheating of the tube wall. The ...

2013-12-20T23:59:59.000Z

242

Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy  

E-Print Network (OSTI)

· Bottom-up R&D study financed by the district heating consumers · Prepared by an independent team increase of district heating · optimal zoning of district heating and natural gas networks based on overall · district heating shifts from fossil fuel boilers to CHP and renewable energy · This legislation ensures

243

Advanced Heat Resistant Austenitic Stainless Steel and Composite ...  

Science Conference Proceedings (OSTI)

... plants: newly developed advanced heat resistant austenitic stainless steels for A-USC boilers and so called composite tubes for the IGCC gasification process.

244

Pioneering Heat Pump Project Geothermal Project | Open Energy...  

Open Energy Info (EERE)

that will serve multiple buildings, converting them from a traditional gas-fired boiler system to ground source heat pumps that use carbon dioxide as the refrigerant source,...

245

Guidelines for the Nondestructive Examination of Boilers  

Science Conference Proceedings (OSTI)

As the boiler fleet ages, new demands are being placed upon them including operating in cycling modes for which they were not originally designed. Operators are experiencing an increasing incidence of boiler tube failures (BTFs). These guidelines provide guidance on the performance of nondestructive evaluation (NDE) so that operators will know what type of NDE to perform and where to perform NDE within the boiler. The use of appropriate NDE methods is an essential approach to detecting and mitigating boi...

2007-08-30T23:59:59.000Z

246

Home test kit for duct leakage  

SciTech Connect

An inexpensive device whose purpose is to test for duct leakage in the home is described. This device is intended for use by homeowners and others untrained in the art of duct testing. While not as accurate as testing done by professionals, it should be able to give the homeowners enough information to justify a decision whether or not to call on professional assistance for further testing and possible remediation of their duct systems. The device has been reduced to practice.

Andrews, J.W.

1997-04-01T23:59:59.000Z

247

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

248

ENERGY STAR Qualified Boilers | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualified Boilers Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov Communities Consumer Data ENERGY STAR Qualified...

249

Stress-Assisted Corrosion in Boiler Tubes  

Science Conference Proceedings (OSTI)

A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

Preet M Singh; Steven J Pawel

2006-05-27T23:59:59.000Z

250

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

preparation, and industrial processes. In homes with boilers, steam is distributed via pipes to steam radiators, and hot water can be distributed via baseboard radiators or...

251

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers  

E-Print Network (OSTI)

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers Carlos E. Romero *, Ying Li, Harun Bilirgen, Nenad Sarunac, Edward K. Levy Energy Research Center type, boiler operation, fly ash characteristics and type of environmental control equipment installed

Li, Ying

252

Evaluation of PEGIT duct connection system  

E-Print Network (OSTI)

flex duct-to-sheet metal). Air sealing is separate from thisconcentrate on the air sealing. The connections designed byeffect of production tolerance on air sealing and assembly

Walker, Iain S.; Brenner, Douglas E.; Sherman, Max H.; Dickerhoff, Darryl J.

2003-01-01T23:59:59.000Z

253

On the capacity limits of hvac duct channel for high-speed internet access  

E-Print Network (OSTI)

AbstractIn this paper, we report theoretical and experimental channel-capacity estimates of heating, ventilation, and air conditioning (HVAC) ducts based on multicarrier transmission that uses-ary quadrature amplitude modulation and measured channel responses at the 2.4-GHz industrial, scientific, and medical band. It is shown theoretically that data rates in excess of 1 Gb/s are possible over distances up to 500 m in straight ducts in which reflections have been suppressed. Our experimental results also show that even in the case of more complex HVAC duct networks (i.e., HVAC duct networks that include bends, tees, etc.) data rates over 2 Gb/s are possible. Our estimations in this case are valid for distances of up to 22 m, which was the maximum distance of our experimental setup. These experimental results, measured with a large-scale testbed set

Ariton E. Xhafa; Ozan K. Tonguz; Ahmet G. Cepni; Student Member; Daniel D. Stancil; Pavel V. Nikitin; Dagfin Brodtkorb

2005-01-01T23:59:59.000Z

254

Effect of bed pressure drop on performance of a CFB boiler  

Science Conference Proceedings (OSTI)

The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu [Tsinghua University, Beijing (China). Department of Thermal Engineering

2009-05-15T23:59:59.000Z

255

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 25840 of 28,904 results. Article Furnace and Boiler Basics Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either...

256

Supporting Equipment for Heating and Cooling Systems  

Energy.gov (U.S. Department of Energy (DOE))

Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use.

257

Application of the CALPHAD method for ferritic boiler steels  

Science Conference Proceedings (OSTI)

Presentation Title, Application of the CALPHAD method for ferritic boiler steels ... of the CALPHAD method on various questions concerning ferritic boiler steels...

258

Boiler Upgrades and Decentralizing Steam Systems Save Water and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval...

259

FEMP Technology Brief: Boiler Combustion Control and Monitoring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows...

260

Observations of Strong Surface Radar Ducts over the Persian Gulf  

Science Conference Proceedings (OSTI)

Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct ...

Ian M. Brooks; Andreas K. Goroch; David P. Rogers

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Compression effects on pressure loss in flexible HVAC ducts  

E-Print Network (OSTI)

to Determine Flow Resistance of HVAC Air Ducts and Fittings.Pressure Loss in Flexible HVAC Ducts Bass Abushakra, Ph.D.to Determine Flow Resistance of HVAC Air Ducts and Fittings.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-01-01T23:59:59.000Z

262

Reducing Uncertainty for the DeltaQ Duct Leakage Test  

E-Print Network (OSTI)

the DeltaQ duct Leakage Test. ASHRAE Transactions (inof a new Duct Leakage Test: DeltaQ. LBNL 47308. Walker, I,Uncertainties in the DeltaQ test for Duct Leakage.

Walker, Iain S.; Sherman, Max H.; Dickerhoff, Darryl J.

2004-01-01T23:59:59.000Z

263

Experimental evaluation of gas filled plenum (GFP) insulation for ducts  

E-Print Network (OSTI)

Gas Filled Plenum (GFP) Insulation for Ducts LBNL 52084 Iaina flexible duct. Most duct insulation has an R-value of 4.2,used. With glass fiber insulation being about R4 per inch (

Walker, Iain S.; Guillot, Cyril

2003-01-01T23:59:59.000Z

264

Measure Guideline: Sealing and Insulating of Ducts in Existing Homes  

SciTech Connect

This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

Aldrich, R.; Puttagunta, S.

2011-12-01T23:59:59.000Z

265

Passivity based control of drum boiler  

Science Conference Proceedings (OSTI)

This paper proposes a novel state space model for the drum boilers with natural recirculation. This model uses the total mass and energy inventories of the boiler as the state variables, and has an affine structure in the control variables. A passivity ...

Chengtao Wen; B. Erik Ydstie

2009-06-01T23:59:59.000Z

266

Double-duct liquid metal magnetohydrodynamic engine  

DOE Patents (OSTI)

An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

Haaland, Carsten M. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

267

Double-duct liquid metal magnetohydrodynamic engine  

DOE Patents (OSTI)

An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

Haaland, Carsten M. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

268

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

269

Alabama Power - Residential Heat Pump and Weatherization Loan...  

Open Energy Info (EERE)

Doors, DuctAir sealing, Heat pumps, Programmable Thermostats, Water Heaters, Windows Active Incentive Yes Implementing Sector Utility Energy Category Energy Efficiency...

270

A corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

271

Success Stories: Duct Sealing - Lawrence Berkeley National Laboratory  

Leaking ducts can be sealed in an average house in about a day. Start-Ups - Carrier Aeroseal, LLC. Aerosol-Based Duct Sealing Technology. Berkeley Lab has ...

272

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

273

Building Energy Software Tools Directory: MC4Suite 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

sprinkler, duct, pipe, boiler room, solar water heating, radiant heat and cooling, energy analysis, and mechanical room design. Screen Shots Keywords HVAC project design, sizing,...

274

Local Option - Special Districts (Florida) | Open Energy Information  

Open Energy Info (EERE)

Boilers, Building Insulation, Central Air conditioners, Chillers, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat pumps, Heat recovery, Lighting,...

275

Focus on Energy - Incentives for Existing Multi-Family Buildings...  

Open Energy Info (EERE)

Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat pumps, Heat recovery, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing, Building Insulation, Geothermal...

276

Building Energy Software Tools Directory: MC4Suite 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

included. Can be used for project design of the following systems: fire sprinkler, duct, pipe, boiler room, solar water heating, radiant heat and cooling, energy analysis, and...

277

Waste heat recovery system having thermal sleeve support for heat pipe  

SciTech Connect

A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat pipe support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Futhermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swages end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe, and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.

McCurley, J.

1984-01-24T23:59:59.000Z

278

Waste heat recovery system having thermal sleeve support for heat pipe  

SciTech Connect

A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat pipe support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Furthermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swaged end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe, and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.

McCurley, J.

1984-04-10T23:59:59.000Z

279

Waste heat recovery system having thermal sleeve support for heat pipe  

SciTech Connect

A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat pipe support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Furthermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swaged end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.

McCurley, J.

1984-12-04T23:59:59.000Z

280

Waste heat recovery system having thermal sleeve support for heat pipe  

SciTech Connect

A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Furthermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swaged end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe, and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.

McCurley, J.

1984-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Implementing SAV with InCITeTM Title Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Implementing SAV with InCITeTM Publication Type Report LBNL Report Number LBNL-3525E Year of Publication 2010 Authors Wray, Craig P., and Max H. Sherman Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow, building, duct, energy, energy performance of buildings group, fan, hvac, indoor environment department, other, power, retrofits, simulation, system Abstract This project addressed two significant deficiencies in air-handling systems for large commercial building: duct leakage and duct static pressure reset. Both constitute significant energy reduction opportunities for these buildings. The overall project goal is to bridge the gaps in current duct performance modeling capabilities, and to expand our understanding of air-handling system performance in California large commercial buildings. The purpose of this project is to provide technical support for the implementation of a duct leakage modeling capability in EnergyPlus, to demonstrate the capabilities of the new model, and to carry out analyses of field measurements intended to demonstrate the energy saving potential of the SAV with InCITeTM duct static pressure reset (SPR) technology.A new duct leakage model has been successfully implemented in EnergyPlus, which will enable simulation users to assess the impacts of leakage on whole-building energy use and operation in a coupled manner. This feature also provides a foundation to support code change proposals and compliance analyses related to Title 24 where duct leakage is an issue. Our example simulations continue to show that leaky ducts substantially increase fan power: 10% upstream and 10% downstream leakage increases supply fan power 30% on average compared to a tight duct system (2.5% upstream and 2.5% downstream leakage). Much of this increase is related to the upstream leakage rather than to the downstream leakage. This does not mean, however, that downstream leakage is unimportant. Our simulations also demonstrate that ceiling heat transfer is a significant effect that needs to be included when assessing the impacts of duct leakage in large commercial buildings. This is not particularly surprising, given that "ceiling regain" issues have already been included in residential analyses as long as a decade ago (e.g., ASHRAE Standard 152); mainstream simulation programs that are used for large commercial building energy analyses have not had this capability until now. Our analyses of data that we collected during our 2005 tests of the SAV with InCITeTM duct static pressure reset technology show that this technology can substantially reduce fan power (in this case, by about 25 to 30%). Tempering this assessment, however, is that cooling and heating coil loads were observed to increase or decrease significantly depending on the time window used. Their impact on cooling and heating plant power needs to be addressed in future studies; without translating the coil loads to plant equipment energy use, it is not possible to judge the net impact of this SPR technology on whole-building energy use. If all of the loads had decreased, such a step would not be as necessary.

282

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network (OSTI)

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water movement inside a boiler has remained highly speculative. This paper and support test video of actual boiler operations will illustrate the effects steam quality vs. boiler efficiency during different boiler and steam system demands. There are four different operating situations that effect the steam quality. Each of the following situation will be described in detail using visual aids and supporting literature: Case I: On/Off Feedwater Control: Wide swings in the water level of the boiler can result in unnecessary low water alarms and shut downs. Case II: Reduced Operating Pressure: By running a boiler at a lower pressure, the boiling action within the boiler becomes much more violent causing water to be carried over in to the steam system. Case III: A Demand of 15% over Capacity: Over loading a boiler will cause excessive amounts of water to be carried along with the steam into the system. Case IV: TDS Control: Without proper control of IDS within the boiler carry-over of water into the steam system will occur causing damage to equipment and/or waterhammer.

Hahn, G.

1998-04-01T23:59:59.000Z

283

Method and apparatus for duct sealing using a clog-resistant insertable injector  

DOE Patents (OSTI)

A clog-resistant injector spray nozzle allows relatively unobtrusive insertion through a small access aperture into existing ductwork in occupied buildings for atomized particulate sealing of a ductwork. The spray nozzle comprises an easily cleaned and easily replaced straight liquid tube whose liquid contents are principally propelled by a heated propellant gas, such as heated air. Heat transfer is minimized from the heated propellant gas to the liquid tube until they both exit the injector, thereby greatly reducing the likelihood of nozzle clogging. A method of duct sealing using particles driven by heated propellant gas is described, whereby duct-sealing operations become both faster, and commercially practicable in inhabited commercial and residential buildings.

Wang, Duo (Albany, CA); Modera, Mark P. (Piedmont, CA)

2007-01-02T23:59:59.000Z

284

The Design of an Inspection Robot for Boiler Tubes Inspection  

Science Conference Proceedings (OSTI)

A climbing robot with magnetic wheels is designed for the inspection of boiler tubes in fossil power plants, which can inspect the boiler tubes automatically. The climbing robot will move on the boiler tubes. The magnetic wheels of the robot can be move ... Keywords: boiler tubes, climbing robot, magnetic flux leakage sensor, VSC controller

Lu Xueqin; Qiu Rongfu; Liu Gang; Huang Fuzhen

2009-11-01T23:59:59.000Z

285

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents (OSTI)

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

Wagoner, C.L.; Foote, J.P.

1995-07-04T23:59:59.000Z

286

A new blowdown compensation scheme for boiler leak detection  

E-Print Network (OSTI)

A new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advances in identification-based leak detection techniques of boiler steam- water systems. Keywords: Industrial Boilers, Tube

Marquez, Horacio J.

287

Retrofitted coal-fired firetube boiler and method employed therewith  

SciTech Connect

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

1995-01-01T23:59:59.000Z

288

A Methodology for Optimizing Boiler Operating Strategy  

E-Print Network (OSTI)

Among the many ways by which an energy manager can conserve energy is the establishment of a strategy for operation of fired boilers. In particular, he can effect total fuel consumption by his decision on how much on-line boiler surplus is required. There is a need to be able to balance the cost advantages of operating with less boiler surplus against the potential economic losses that might result from the increased risk of not meeting demand. A methodology for doing this along with an example calculation, is presented in this paper.

Jones, K. C.

1983-01-01T23:59:59.000Z

289

www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME  

E-Print Network (OSTI)

of residential HP and AC annual/ seasonal performance (Operating Agent: SE) Establish common calculation and test ­ Refrigeration Covers applications in ­ Residential and commercial buildings ­ Industry HEAT PUMPING TECHNOLOGY boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps

Oak Ridge National Laboratory

290

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

291

ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel  

DOE Patents (OSTI)

The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

2013-04-02T23:59:59.000Z

292

AEDG Implementation Recommendations: Ducts | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ducts The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on...

293

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office...

294

Boiler scale prevention employing an organic chelant  

DOE Patents (OSTI)

An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

Wallace, Steven L. (Lake Jackson, TX); Griffin, Jr., Freddie (Missouri City, TX); Tvedt, Jr., Thorwald J. (Angleton, TX)

1984-01-01T23:59:59.000Z

295

Duct leakage impacts on VAV system performance in California large commercial buildings  

E-Print Network (OSTI)

electricity consumption, and boiler natural gas consumption. Using yearelectricity consumption, and boiler natural gas consumption. Using yearelectricity consumption, and boiler natural gas consumption. Using year

Wray, Craig P.; Matson, Nance E.

2003-01-01T23:59:59.000Z

296

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aerogel Impregnated Polyurethane Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures.

297

Metallurgical Guidebook for Fossil Power Plant Boilers  

Science Conference Proceedings (OSTI)

A wide range of steels has been used to manufacture boilers and associated piping components for fossil power plants. Detailed information on the various alloys and component design considerations is contained in applicable specifications and standards, but utility personnel often need to access basic metallurgical information to support decision making for various projects. This guidebook, developed to meet this need, provides information on all of the most common boiler and piping materials.

2008-03-25T23:59:59.000Z

298

Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)  

DOE Green Energy (OSTI)

This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1998-08-01T23:59:59.000Z

299

Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report  

DOE Green Energy (OSTI)

This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

None

1980-10-01T23:59:59.000Z

300

Industrial Boiler Optimization Utilizing CO Control  

E-Print Network (OSTI)

Escalating energy costs have caused industry to search the technical section for the current state-of-the-art in combustion and control technology for power generation. Long a forgotten area in many industrial facilities, today the steam generating complex is the focus of many corporate and plant managers. This paper discusses the approach of a large chemical company that is effectively utilizing a direct digital control (DOC) system coupled with the measurement of carbon monoxide to optimize boiler combustion and generate steam in the most cost effective manner. Significant reductions in the amount of excess air have resulted from the use of CO as a control parameter. Previously, combustion effectiveness was determined by the more typical 02 measurement. For reasons of boiler leakage and gas stratification, this control technique was not suitable when operating close to stoichiometry. The use of DOC type control in our multiple boiler installation has also enabled the intelligent allocation of boiler capacity by evaluating steam demand versus incremental boiler steam cost. The system selectively increases or decreases boiler loads within specified constraints to provide the lowest overall steam production cost while continuing to meet the steam demand.

Ruoff, C. W.; Reiter, R. E.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Central Air Conditioners","Heat Pumps","Individual Air Conditioners...  

U.S. Energy Information Administration (EIA) Indexed Site

4,89,294,9,26,327,47,4 "District Heat ...",96,77,3,4,16,39,15,35,"Q","Q" "Boilers ...",581,474,58,39,211,3,96,223,18,14 "Packaged Heating Units...

302

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

303

Section 5.2.1 Boilers: Greening Federal Facilities; Second Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

more efficient than single boilers, espe- cially under part-load conditions. * Consider solar-assisted systems and biomass-fired boilers as alternatives to conventional boiler...

304

Research Results from A Few Alternate Methods of Interior Duct Systems in Factory Built Housing Located In the Hot Humid Climate  

E-Print Network (OSTI)

The U.S. Department of Energys (DOE) Building America1 Industrialized Housing Partnership (BAIHP) has collaborated with two of its industry partners to work on a portion of the project that relates to the construction and evaluation of prototype interior duct systems. In 2006, work began on a duct system design that would locate the entire length of duct work within the air and thermal barriers of the envelope. One of these designs incorporated a high-side supply register that connects to the conventional floor duct. The other design utilized a single soffit located within the conditioned space at the marriage line. The Florida Solar Energy Centers (FSEC) Manufactured Housing Lab (MHLab) was retrofitted with an interior soffit duct. The duct system was added on so that either the attic duct system or the new interior duct system would be able to supply air to the conditioned space using the same mechanical equipment. The initial results of this work show approximately a 10% to 20% heating/cooling savings when compared to conventional attic duct work construction techniques and nearly 7% savings when compared to a conventional in-floor system.

Moyer, N.; Stroer, D.; Hoak, D.; McIlvaine, J.; Chandra, S.

2008-12-01T23:59:59.000Z

305

Duct Leakage Impacts on Airtightness, Infiltration, and Peak Electrical Demand in Florida Homes  

E-Print Network (OSTI)

Testing for duct leakage was done in 155 homes. Tracer gas tests found that infiltration rates were three times greater when the air handler was operating than when it was off. Infiltration averaged 0.85 air changes per hour (ach) with the air handler (AH) operating continuously and 0.29 ach with the AH off. Return leaks were found to average 10.3% of AH total flow. House airtightness, in 90 of these homes, determined by blower door testing, averaged 12.58 air changes per hour at 50 Pascals (ACHSO). When the duct registers were sealed, ACHSO decreased to 11.04, indicating that 12.2% of the house leaks were in the duct system. Duct leaks have a dramatic impact upon peak electrical demand. Based on theoretical analysis, a fifteen percent return leak from the attic can increase cooling electrical demand by 100%. Duct repairs in a typical. electrically heated Florida home reduce winter peak demand by about 1.6 kW per house at about one-sixth the cost of building new electrical generation capacity.

Cummings, J. B.; Tooley, J. J.; Moyer, N.

1990-01-01T23:59:59.000Z

306

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

307

Energy Basics: Furnaces and Boilers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own...

308

Aerodynamic Experiments on a Ducted Fan in Hover and Edgewise Flight.  

E-Print Network (OSTI)

??Ducted fans and ducted rotors have been integrated into a wide range of aerospace vehicles, including manned and unmanned systems. Ducted fans offer many potential (more)

Myers, Leighton

2009-01-01T23:59:59.000Z

309

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

310

Assessment of black liquor recovery boilers  

DOE Green Energy (OSTI)

In the paper making industry, pulpwood chips are digested and cooked to provide the pulp going to the refining and paper mills. Black liquor residue, containing the dissolved lignin binder from the chips, with a concentration of 12 to 16% solids, is further concentrated to 62 to 65% solids and mixed with salt cake, Sodium Sulfate (Na/sub 2/SO/sub 4/). The resulting concentrate of black liquor serves both as a fuel for generating steam in the boiler and also as the mother liquid from which other process liquors are recovered and recycled. Because the black liquor fuel contains high alkali concentrations, 18.3% sodium, 3.6% sulfur, an amount typical of midwestern bituminous coal, and measurable amounts of silica, iron oxides and other species, the black liquor boiler experience was reviewed for application to MHD boiler technology.

Not Available

1979-05-01T23:59:59.000Z

311

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high-sulfur Illinois coal. Design production is 125,000 pounds per hour of 400 psig saturated steam. An Illinois EPA construction permit has been received, engineering design is under way, major equipment is on order, ground breaking occurred in January 1984 and planned commissioning date is late 1985. This paper describes the planned installation and the factors and analyses used to evaluate the technology and justify the project. Design of the project is summarized, including the boiler performance requirements, the PYROFLOW boiler, the coal, limestone and residue handling systems and the pollutant emission limitations.

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

312

Competitive realities change focus of boiler/HRSG design  

Science Conference Proceedings (OSTI)

This article describes how, faced with competing against gas-fired plants, coal-fired-boiler designers have squeezed cost and scheduling constraints out of their product. Meanwhile, HRSG design reflects the escalating demands placed on modern combined cycles. In the US, emphasis continues to center around reducing construction time and cost. The large capital investment, particularly during the erection phase of the project, and the need to get projects on-line as quickly as possible, have placed a significant premium on fast cycle time. Innovations appear in project implementation strategies rather than on advanced boiler technologies. Perhaps nothing illustrates this last statement better than comparing recent large utility units in the US to those in Europe and japan. At the other end of the scale, heat-recovery steam generator (HRSG) technology is advancing rapidly to keep pace with ever more powerful gas turbines in combined-cycle (CC) configurations. In fact, the once simple HRSG now anchors a complex steam cycle fully integrated with the gas turbine. Triple pressure levels, NO{sub x} injection steam, steam turbine bypass, elevating steam pressures and temperatures, supplementary firing, selective catalytic reduction, and even accommodating a coal-gasification process are a sampling of extras HRSG designers must accommodate.

NONE

1996-02-01T23:59:59.000Z

313

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

Science Conference Proceedings (OSTI)

This document reviews the work performed during the quarter October-December 2003. Task 1 (Site Preparation) had been completed in the previous reporting period. In this reporting period, one week of combustion parameters optimization has been performed in Task 2 (experimental test performance) of the project. Under full-oxy conditions (100% air replacement with O{sub 2}-enriched flue gas) in 1.5MW{sub th} coal-fired boiler, the following parameters have been varied and their impact on combustion characteristics measured: the recirculated flue gas flow rate has been varied from 80% to 95% of total flue gas flow, and the total oxygen flow rate into the primary air zone of the boiler has been set to levels ranging from 15% to 25% of the total oxygen consumption in the overall combustion. In current reporting period, significant progress has also been made in Task 3 (Techno-Economic Study) of the project: mass and energy balance calculations and cost assessment have been completed on plant capacity of 533MW{sub e} gross output while applying the methodology described in previous reporting periods. Air-fired PC Boiler and proposed Oxygen-fired PC Boiler have been assessed, both for retrofit application and new unit. The current work schedule is to review in more details the experimental data collected so far as well as the economics results obtained on the 533MWe cases, and to develop a work scope for the remainder of the project. Approximately one week of pilot testing is expected during the first quarter of 2004, including mercury emission measurement and heat transfer characterization. The project was on hold from mid-November through December 2003 due to non-availability of funds. Out of the {approx}$785k allocated DOE funds in this project, $497k have been spent to date ($480 reported so far), mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $330k has been cost-shared by the participants, bringing the total project cost up to $827k ($810k reported so far) as on December 31st, 2003.

Fabienne Chatel-Pelage

2004-01-01T23:59:59.000Z

314

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

315

Energy Savings Calculator for Commercial Boilers: Closed Loop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtuhr* What is the thermal efficiency of the existing boiler? % Et New What is the...

316

Descriptions of Past Research: Boiler Life and Availability Improvement Program  

Science Conference Proceedings (OSTI)

Descriptions of Past Research: Boiler Life and Availability Improvement Program contains summaries of many past Electric Power Research Institute (EPRI) Boiler Life and Availability Improvement Program research and development (R&D) efforts.

2011-09-30T23:59:59.000Z

317

Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994  

SciTech Connect

The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

Sommer, T.; Melick, T.; Morrison, D.

1994-12-31T23:59:59.000Z

318

TA-2 Water Boiler Reactor Decommissioning Project  

Science Conference Proceedings (OSTI)

This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

Durbin, M.E. (ed.); Montoya, G.M.

1991-06-01T23:59:59.000Z

319

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the following Electric Power Research Institute (EPRI) reports: 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004; 1012207, Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization, published in 2007; 1014128, Boiler Water Deposition Model fo...

2010-01-27T23:59:59.000Z

320

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the Electric Power Research Institute (EPRI) reports Boiler Water Deposition Model for Fossil Fuel Plants, Part 1: Feasibility Study (1004931), published in 2004; Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization (1012207) published in 2007; and Boiler Water Deposition ...

2009-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Best Practices: The Engineering Approach For Industrial Boilers  

E-Print Network (OSTI)

A plant's boilers represent a large capital investment, as well as a crucial portion of overall plant operations, regardless of the industry our customers are in. It is important to have systems and procedures in place to protect this investment, as well as plant profitability. Boiler Best Practices represent The Engineering Approach for Boilers-a way to examine mechanical, operational and chemical aspects of the systems (pretreatment through condensate) to ensure reliable boiler operations with no surprises.

Blake, N. R.

2001-05-01T23:59:59.000Z

322

HYDRONIC BASEBOARD THERMAL DISTRIBUTION SYSTEM WITH OUTDOOR RESET CONTROL TO ENABLE THE USE OF A CONDENSING BOILER.  

SciTech Connect

Use of condensing boilers in residential heating systems offers the potential for significant improvements in efficiency. For these to operate in a condensing mode the return water temperature needs to be about 10 degrees below the saturation temperature for the flue gas water vapor. This saturation temperature depends on fuel type and excess air and ranges from about 110 F to 135 F. Conventional baseboard hydronic distribution systems are most common and these are designed for water temperatures in the 180 F range, well above the saturation temperature. Operating strategies which may allow these systems to operate in a condensing mode have been considered in the past. In this study an approach to achieving this for a significant part of the heating season has been tested in an instrumented home. The approach involves use of an outdoor reset control which reduces the temperature of the water circulating in the hydronic loop when the outdoor temperature is higher than the design point for the region. Results showed that this strategy allows the boiler to operate in the condensing region for 80% of the winter heating season with oil, 90% with propane, and 95% with gas, based on cumulative degree days. The heating system as tested combines space heating and domestic hot water loads using an indirect, 40 gallon tank with an internal heat exchanger. Tests conducted during the summer months showed that the return water temperature from the domestic hot water tank heat exchanger is always below a temperature which will provide condensing operation of the boiler. In the field tests both the condensing boiler and the conventional, non-condensing boiler were in the test home and each was operated periodically to provide a direct performance comparison.

BUTCHER,T.A.

2004-10-01T23:59:59.000Z

323

City of High Point Electric - Commercial Energy Efficiency Grant...  

Open Energy Info (EERE)

Technologies Lighting, Chillers, Furnaces, Boilers, Heat pumps, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing,...

324

Berkshire Gas - Residential Energy Efficiency Rebate Program...  

Open Energy Info (EERE)

Boilers, Building Insulation, CustomOthers pending approval, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Furnaces, Heat recovery,...

325

EmPOWER Maryland Commercial and Industrial Efficiency Loan Fund...  

Open Energy Info (EERE)

Chillers, Furnaces, Boilers, Heat pumps, Central Air conditioners, Compressed air, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing, Building Insulation, Windows,...

326

Building Energy Conservation Initiative (New Hampshire) | Open...  

Open Energy Info (EERE)

Technologies Lighting, Chillers, Furnaces, Boilers, Heat pumps, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing, Building Insulation Active...

327

Ameren Illinois (Electric) - Multi-Family Properties Energy Efficiency...  

Open Energy Info (EERE)

Boilers, Central Air conditioners, DuctAir sealing, Equipment Insulation, Furnaces, Heat pumps, Lighting, Lighting ControlsSensors, Programmable Thermostats Active Incentive...

328

On the Evaporation Duct for Inhomogeneous Conditions in Coastal Regions  

Science Conference Proceedings (OSTI)

Evaporation ducts are ubiquitous phenomena over the oceans, and they are responsible for much of the over-the-horizon propagation occurring with millimeter and microwave radars. The height of the evaporation duct depends on meteorological ...

G. L. Geernaert

2007-04-01T23:59:59.000Z

329

Multifunctional robot to maintain boiler water-cooling tubes  

Science Conference Proceedings (OSTI)

A robot has been developed to maintain boiler water-cooling tubes. This robot has a double tracked moving mechanism, an ash cleaning device, a slag purging device, a tubes' thickness measurement device, a marking device, and a control system. This robot ... Keywords: Boiler maintenance, Boiler water-cooling tube, Climbing robot, Mobile robot

Xueshan Gao; Dianguo Xu; Yan Wang; Huanhuan Pan; Weimin Shen

2009-10-01T23:59:59.000Z

330

Materials for Advanced Ultra-Supercritical Steam Boilers  

E-Print Network (OSTI)

Materials for Advanced Ultra-Supercritical Steam Boilers Mike Santella ORNL 25th Annual Conference ­ For Profit Cost Sharing Consortium #12;2 26-May-2010 Materials for Advanced Ultra-Supercritical Steam Boilers Estimated Total Amount of Tubing for a Generic A-USC Boiler Images courtesy of The Babcock & Wilcox Company

331

Density-Enthalpy Phase Diagram 0D Boiler Simulation  

E-Print Network (OSTI)

Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Goal

Vuik, Kees

332

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

Henzinger, Thomas A.

333

1 | P a g e Boiler Gold Rush  

E-Print Network (OSTI)

1 | P a g e Boiler Gold Rush VISION STATEMENT The vision of BGR is twofold: first, help all new by participating in the premiere orientation program in the nation, Boiler Gold Rush. Second, enhance upper leaders for the betterment of the university. PROGRAM GOALS Boiler Gold Rush will provide the following

Ginzel, Matthew

334

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

?lveczky, Peter Csaba

335

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

336

Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram  

E-Print Network (OSTI)

Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

Paris-Sud XI, Université de

337

Steam boiler control speci cation problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

Cengarle, María Victoria

338

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

Henzinger, Thomas A.

339

Steam boiler control specification problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

340

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

?lveczky, Peter Csaba

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

Cengarle, María Victoria

342

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility of modeling the various processes governing deposition in fossil boilers was assessed in EPRI report 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004. This report presents findings of follow-up activities directed toward the ultimate goal of developing an aggregate model that is applicable to the important deposition phenomena in fossil drum-type boilers.

2007-03-26T23:59:59.000Z

343

Potential Flow Calculations of Axisymmetric Ducted Wind Turbines  

E-Print Network (OSTI)

An incompressible potential-flow vortex method has been constructed to analyze the flow field of a ducted

Widnall, Sheila

2009-09-02T23:59:59.000Z

344

METHANE de-NOX for Utility PC Boilers  

SciTech Connect

The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

2005-09-30T23:59:59.000Z

345

Long Range Passive UHF RFID System Using HVAC Ducts  

E-Print Network (OSTI)

INVITED P A P E R Long Range Passive UHF RFID System Using HVAC Ducts To provide a potential communications channel, HVAC ducts can function as electromagnetic waveguides; a 30-m read range has been-conditioning (HVAC) ducts as a potential communication channel between passive ultrahigh-frequency (UHF) radio

Hochberg, Michael

346

Scaleup tests and supporting research for the development of duct injection technology  

Science Conference Proceedings (OSTI)

This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

Felix, L.G.; Dismukes, E.B.; Gooch, J.P. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Demian, A.G. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

1992-04-20T23:59:59.000Z

347

Adaptive Fuzzy PID Control for Boiler Deaerator  

Science Conference Proceedings (OSTI)

The boiler deaerator temperature control system is a non-linear, time-varying, delay control process. It can not achieve satisfying effect using traditional control algorithm to control deaerator water temperature, the paper proposes an adaptive fuzzy ... Keywords: Deaerator, Adaptive, Fuzzy control, PID control

Lei Jinli

2012-08-01T23:59:59.000Z

348

Digital radiographic systems detect boiler tube cracks  

SciTech Connect

Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

Walker, S. [EPRI, Charlotte, NC (United States)

2008-06-15T23:59:59.000Z

349

CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994  

SciTech Connect

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

BUTCHER,T.A.

1994-01-04T23:59:59.000Z

350

Effect of radiant barriers and attic ventilation on residential attics and attic duct systems: New tools for measuring and modeling  

Science Conference Proceedings (OSTI)

A simple duct system was installed in an attic test module for a large scale climate simulator at a US national laboratory. The goal of the tests and subsequent modeling was to develop an accurate method of assessing duct system performance in the laboratory, enabling limiting conditions to be imposed at will and results to be applied to residential attics with attic duct systems. Steady-state tests were done at a severe summer and a mild winter condition. In all tests the roof surface was heated above ambient air temperatures by infrared lights. The attic test module first included then did not include the duct system. Attic ventilation from eave vents to a ridge vent was varied from none to values achievable by a high level of power ventilation. A radiant barrier was attached to the underside of the roof deck, both with and without the duct system in place. Tests were also done without the radiant barrier, both with and without the duct system. When installed, the insulated ducts ran along the floor of the attic, just above the attic insulation and along the edge of the attic near the eaves and one gable. These tests in a climate simulator achieved careful control and reproducibility of conditions. This elucidated dependencies that would otherwise be hidden by variations in uncontrolled variables. Based on the comparisons with the results of the tests at the mild winter condition and the severe summer condition, model predictions for attic air and insulation temperatures should be accurate within {+-} 10 F ({+-} 6 C). This is judged adequate for design purposes and could be better when exploring the effect of changes in attic and duct parameters at fixed climatic conditions.

Petrie, T.W.; Childs, P.W.; Christian, J.E.; Wilkes, K.E.

1998-07-01T23:59:59.000Z

351

Reducing Uncertainty for the DeltaQ Duct Leakage Test  

SciTech Connect

The thermal distribution system couples the HVAC components to the building envelope, and shares many properties of the buildings envelope including moisture, conduction and most especially air leakage performance. Duct leakage has a strong influence on air flow rates through building envelopes (usually resulting in much greater flows than those due to natural infiltration) because unbalanced duct air flows and leaks result in building pressurization and depressurization. As a tool to estimate this effect, the DeltaQ duct leakage test has been developed over the past several years as an improvement to existing duct pressurization tests. It focuses on measuring the air leakage flows to outside at operating conditions that are required for envelope infiltration impacts and energy loss calculations for duct systems. The DeltaQ test builds on the standard envelope tightness blower door measurement techniques by repeating the tests with the system air handler off and on. The DeltaQ test requires several assumptions to be made about duct leakage and its interaction with the duct system and building envelope in order to convert the blower door results into duct leakage at system operating conditions. This study examined improvements to the DeltaQ test that account for some of these assumptions using a duct system and building envelope in a test laboratory. The laboratory measurements used a purpose-built test chamber coupled to a duct system typical of forced air systems in US homes. Special duct leaks with controlled air-flow were designed and installed into an airtight duct system. This test apparatus allowed the systematic variation of the duct and envelope leakage and accurate measurement of the duct leakage flows for comparison to DeltaQ test results. This paper will discuss the laboratory test apparatus design, construction and operation, the various analysis techniques applied to the calculation procedure and present estimates of uncertainty in measured duct leakage.

Walker, Iain S.; Sherman, Max H.; Dickerhoff, Darryl J.

2004-05-01T23:59:59.000Z

352

Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buried and Encapsulated Ducts Buried and Encapsulated Ducts Jacksonville, Florida PROJECT INFORMATION Project Name: Buried and Encapsulated Ducts Location: Jacksonville, FL Partners: BASF http://www.basf.com Consortium for Advanced Residential Buildings www.carb-swa.com Building Component: Ductwork and Attic Insulation Application: New and/or Retrofit; Single-Family Year Tested: 2010-2011 Applicable Climate Zone(s): All Climates in IECC Moisture Regime A. PERFORMANCE DATA Cost of Energy-Efficiency Measure (including labor): $2,439 Projected Energy Savings: 34% cooling and heating savings Projected Energy Cost Savings: $11/month or $135/year Ductwork installed in unconditioned attics can significantly increase the overall

353

From Basic Control to Optimized Systems-Applying Digital Control Systems to Steam Boilers  

E-Print Network (OSTI)

This presentation examines the application of Distributed Digital Controls in order to review the application of this recent control technology towards Steam Boilers in a step-by-step manner. The main purpose of a steam generating boiler is to supply enough steam to meet process demands. Steam conditions must remain as stable as possible, because variations in the steam system can affect downstream processes. Pressure variations in the steam supply header, for example, can have a severe effect on heat transferred to a process. If that process suffers an upset, unstable conditions can propagate from one process to another via the steam supply system. The closer the tolerance in the boiler control system, the smaller the steam header disturbances will be. This reduces the interaction, or 'coupling', of upsets between steam-consuming processes. Also, it may reduce the complexity of instrumentation needed for those processes. If the boiler control system can eliminate major upsets, the downstream processes won't need exotic schemes to compensate for such upsets.

Hockenbury, W. D.

1982-01-01T23:59:59.000Z

354

Effect of two-phase natural circulation distortion on tube failure in steam boilers  

SciTech Connect

Two different cases of evaporator tube ruptures in power station boilers due to natural circulation distortion are presented. The first case discussed concerns a 110-MW/sub e/ unit boiler with bottom evaporation tubing inclined at 15/sup 0/ to the horizontal. At the high heat fluxes present in the furnace, subcooled boiling occurs in inclined tubes. For these inclinations an insufficient flow rate causes local heat transfer deficiencies due to vapor-water separation. The introduction of internally finned tubes eliminates local heat transfer deficiencies and prevents further tube failures. The second case is that of circulation interruption due to blowdown during start-up. The water level in the drum of this second 110-MW/sub e/ unit boiler was controlled by inlet header blowdown during start-up. Thus, natural circulation was interrupted, causing local overheating of evaporator tubing. The event was identified by an increase of the tube rupture frequency. After changing the blowdown procedure, the interruptions of natural circulation were avoided and the tube failure frequency decreased substantially.

Afgan, N.; Radovanovic, P.; Brajuskovic, B.

1987-01-01T23:59:59.000Z

355

The next generation of oxy-fuel boiler systems  

SciTech Connect

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

356

Residential duct system leakage; Magnitude, impacts, and potential for reduction  

Science Conference Proceedings (OSTI)

This paper discusses the issues associated with leakage in residential air distribution systems, touching on the prevalence of duct leakage, the impacts of duct leakage, and on the techniques available for sealing duct systems. The issues examined in detail are: present techniques for measuring the leakage area of ducts existing data bases of duct leakage area measurements, the impacts of duct leakage on space-conditioning energy consumption and peak demand, and the ventilation impacts of duct leakage. The paper also includes a brief discussion of techniques for sealing duct systems in the field. The results derived from duct leakage are and driving pressure measurements indicate that in regions in which distribution systems pass through unconditioned spaces, air infiltration rates will typically double when the distribution fan is turned on, and that the average annual air infiltration rate is increased by 30% to 70% due to the existence of the distribution system. Estimates based upon a simplified analysis of leakage-induced energy losses also indicate the peak electricity demands due to duct leakage can be as high as 4 kW in Sacramento, California, and West Palm Beach, Florida, and that peak loads on the order of 1 to 2 kW are highly likely in these locations. Both peak loads and annual energy impacts are found to be strongly dependent on the location of the return duct, and attic return costing approximately 1500 kWh more energy than a crawlspace return in the two climates examined.

Modera, M.P. (Lawrence Berkeley Lab., Berkeley, CA (US))

1989-01-01T23:59:59.000Z

357

A New Diagnostic for Duct Leakage: DeltaQ  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Diagnostic for Duct Leakage: DeltaQ A New Diagnostic for Duct Leakage: DeltaQ Speaker(s): Iain Walker Date: February 21, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Cynthia Tast Duct leakage has been identified as a major contributor to HVAC energy use and building infiltration, particularly in residences. In order to make good estimates of HVAC system energy performance, we need to know how much air leaks between the ducts and outside the building during system operation. Existing methods for determining duct leakage do not perform well due to experimental procedures that produce imprecise results or they require many assumptions to convert measurements into the desired leakage flows. The DeltaQ duct leakage test has been developed by the Energy Performance of Buildings Group at LBNL to determine duct leakage flows by

358

Study of Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid Ground Source Heat Pump systems often combine a traditional geothermal system with either a cooling tower or fluid cooler for heat rejection and a boiler or solar heat collector for heat addition to the loop. These systems offer the same energy efficiency benefits as full geothermal systems to utilities and their customers but at a potentially lower first cost. Many hybrid systems have materialized to resolve heat buildup in full geothermal system loops where loop temperatures continue to rise as ...

2010-12-06T23:59:59.000Z

359

Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993  

Science Conference Proceedings (OSTI)

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

360

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

362

WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Adsorption Heat-Pumps for domestic heating  

E-Print Network (OSTI)

Energies > Instantaneous water heaters > www.stiebel-eltron.de #12;4 Motivation Gas condensing boiler HP for hot water and enhancing the heating system > From the regarded sources, solar is the best suited burner with heat pump unit > Solar hot water tank > Heat pump-unit t

Oak Ridge National Laboratory

363

Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Implementing SAV with InCITeTM  

E-Print Network (OSTI)

supply and return) ! Pumps: Pump:VariableSpeed ! Boiler:Boiler:HotWater ! Chiller: Chiller:Electric:EIR ! Tower:ventilation air for boiler ! - Constant Term Coefficient ! -

Wray, Craig

2010-01-01T23:59:59.000Z

364

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

365

Recovery Boiler Superheater Ash Corrosion Field Study  

SciTech Connect

With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2010-01-01T23:59:59.000Z

366

Biomass Cofiring in Coal-Fired Boilers  

DOE Green Energy (OSTI)

Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

Not Available

2004-06-01T23:59:59.000Z

367

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. Ultrasupercritical (USC...

2011-12-23T23:59:59.000Z

368

Effect of Operational Transients on Boiler Damage  

Science Conference Proceedings (OSTI)

It is increasingly the case that utility systems demand more flexibility in a unit's ability to respond to dispatch requirements, which can create a conflict between maximizing efficient operation and limiting damage accumulation. A boiler can be operated in various cycling modes and can be subjected to planned and unplanned transients associated with load following, minimum load operation, forced cooling, variable pressure operation, increased ramp rates, increased attemperation, over-temperature operat...

2009-03-24T23:59:59.000Z

369

Impact of Operating Factors on Boiler Availability  

Science Conference Proceedings (OSTI)

As utilities strive to achieve higher reliability and lower operation and maintenance (O&M) costs for their fossil-fired power plants, changing plant operating conditions will provide even greater challenges in meeting those objectives. This report summarizes the cause and effect relationships that exist between operating conditions and boiler component reliability. It is an initial step in developing the tools and technology that will enable utilities to meet their objectives in an ever more competitive...

2000-12-19T23:59:59.000Z

370

Improving boiler performance through operator training  

SciTech Connect

The majority of the technical training in many plant facilities is the self-study type. These courses consist of packaged text materials as well as plant specific lessons. Video-based training is more effective than textbooks alone, and computer interactive training is becoming increasingly popular. Demonstration of technical competence can be conducted in a variety of ways: supervised system check off and verification system walk-throughs; simulator evaluation; written examinations required for promotion; and oral examinations. Boiler operators can be required to demonstrate in a practical way that they can apply the boiler plant theory to actual job performance in the plant. Some classifications may be required to perform a supervised system check off and verification before promotion to the next higher classification. Personnel who operate boilers from a control room or gauge board may be required to successfully complete simulator training and evaluation. All classifications may require successful completion of written and oral examinations before being promoted to the next higher classification.

DeHart, R.M. [Cogentrix Energy, Inc., Charlotte, NC (United States)

1995-12-31T23:59:59.000Z

371

Simulating aerosol formation and effects in NOx absorption in oxy-fired boiler gas processing units using Aspen Plus.  

E-Print Network (OSTI)

??Oxy-fired boilers are receiving increasing focus as a potential response to reduced boiler emissions limits and greenhouse gas legislation. Among the challenges in cleaning boiler (more)

Schmidt, David Daniel

2013-01-01T23:59:59.000Z

372

Waste minimization and pollution prevention initiatives within Argonne National Laboratory-East (ANL-E) boiler house operations  

Science Conference Proceedings (OSTI)

The mission of ANL-E Plant Facility and Services-Utilities and Systems (PFS-US) is to operate and maintain utility services in a cost-effective manner, while utilizing new and innovative methods whenever possible. PFS-US operates an on-site coal burning boiler plant that generates steam for use throughout the Laboratory as a source to heat buildings, as well as for use in research experiments. In the recent past, PFS-US has embarked upon a series of initiatives to improve operating efficiency of boiler house operations. The results of these projects have had the following impacts on boiler house performance and operations: (1) boiler house efficiency and operations have improved, (2) boiler house operating costs have been reduced, (3) specific operating and maintenance costs have been avoided or eliminated, and (4) the amount of waste and pollution generated has been reduced. Through the implementation of these initiatives, over $250,000 of revenue and cost savings have been incurred by ANL-E. In addition, the Laboratory and DOE will benefit annually from revenues, cost savings, and the reduction of environmental liability resulting from these initiatives.

NONE

1996-08-01T23:59:59.000Z

373

Black liquor combustion validated recovery boiler modeling: Final year report. Volume 3 (Appendices II, sections 2--3 and III)  

Science Conference Proceedings (OSTI)

This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 3 contains the following appendix sections: Formation and destruction of nitrogen oxides in recovery boilers; Sintering and densification of recovery boiler deposits laboratory data and a rate model; and Experimental data on rates of particulate formation during char bed burning.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1998-08-01T23:59:59.000Z

374

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment  

Science Conference Proceedings (OSTI)

The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

National Energy Technology Laboratory

2001-02-28T23:59:59.000Z

375

BPACK -- A computer model package for boiler reburning/co-firing performance evaluations. User`s manual, Volume 1  

Science Conference Proceedings (OSTI)

This manual presents and describes a package of computer models uniquely developed for boiler thermal performance and emissions evaluations by the Energy and Environmental Research Corporation. The model package permits boiler heat transfer, fuels combustion, and pollutant emissions predictions related to a number of practical boiler operations such as fuel-switching, fuels co-firing, and reburning NO{sub x} reductions. The models are adaptable to most boiler/combustor designs and can handle burner fuels in solid, liquid, gaseous, and slurried forms. The models are also capable of performing predictions for combustion applications involving gaseous-fuel reburning, and co-firing of solid/gas, liquid/gas, gas/gas, slurry/gas fuels. The model package is conveniently named as BPACK (Boiler Package) and consists of six computer codes, of which three of them are main computational codes and the other three are input codes. The three main codes are: (a) a two-dimensional furnace heat-transfer and combustion code: (b) a detailed chemical-kinetics code; and (c) a boiler convective passage code. This user`s manual presents the computer model package in two volumes. Volume 1 describes in detail a number of topics which are of general users` interest, including the physical and chemical basis of the models, a complete description of the model applicability, options, input/output, and the default inputs. Volume 2 contains a detailed record of the worked examples to assist users in applying the models, and to illustrate the versatility of the codes.

Wu, K.T.; Li, B.; Payne, R.

1992-06-01T23:59:59.000Z

376

Failure Analysis of the Heat Exchanger Tubes Exposed to High ...  

Science Conference Proceedings (OSTI)

The bundle of the heat exchanger was removed from service after 8 years for metallurgical investigation. The tube side contains boiler feed water at 622oF and ...

377

Covered Product Category: Commercial Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Boiler Commercial Boiler Covered Product Category: Commercial Boiler October 7, 2013 - 10:27am Addthis What's Covered All Federal purchases of hot water or steam boilers (using either oil or gas) with a rated capacity (Btu/h) of 300,000-10,000,000 must meet or exceed FEMP-designated thermal efficiencies. FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Commercial Boilers Table 1 displays the FEMP-designated minimum efficiency requirements for

378

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

379

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

380

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

382

New Boilers, Big Savings for Minnesota County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

383

New Boilers, Big Savings for Minnesota County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boilers, Big Savings for Minnesota County Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

384

Improvement of the process of fuel firing on BKZ-210-140F boilers  

SciTech Connect

The existing flame processes of dual firing of gas and solid fuel are updated with reconstruction of the burners at the Chelyabinsk TETs-2. This is connected with marked worsening of the quality of local coal supplied to the cogeneration plant. Comparative tests of boilers with burners subjected to different degrees of updating have shown that replacement of the now used swirled method of introduction of reagents into the furnace by a uniflow one lowers the heat flows to the metal structures and to the settling of the burner throats making them more reliable. The emission of nitrogen oxides is minimized in the mode of gas firing and the activity of slagging of the furnace and of the platens is reduced in the mode of coal firing, which makes it possible to raise the steam rate of the boiler. Ways for further improvement of burner design with respect to nitrogen oxide emissions in the polydisperse flame are outlined.

V.V. Osintsev; M.P. Sukharev; E.V. Toropov; K.V. Osintsev [Administration of Scientific Research of the South Ural State University (Russian Federation)

2007-01-15T23:59:59.000Z

385

Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports  

DOE Green Energy (OSTI)

Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jett, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

2006-10-01T23:59:59.000Z

386

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-water cycles. Deposition in drum boilers has been identified as the area of broadest concern to the industry; therefore, an improved understanding of deposition in drum boilers is expected to represent the greatest source of benefits and value to end users. The overall objective of the modeling described here is to develop a comprehensive, integrated model for deposition process...

2011-12-16T23:59:59.000Z

387

Application of Multivariable Control to Oil and Coal Fired Boilers  

E-Print Network (OSTI)

Increased visibility provided by advanced measurement and control techniques has shown that control of oil and coal fired boilers is a complex problem involving simultaneous determination of flue gas carbon monoxide, hydrocarbon, opacity and temperature levels. A microcomputer-based control system which recognizes the inter-relationship of these variables has produced fuel savings averaging about 3% on coal and oil fired boilers. The system is described and case study data is presented for both coal and oil fired boilers.

Swanson, K.

1981-01-01T23:59:59.000Z

388

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

2414 2414 1 Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles M. P. Modera, O. Brzozowski ** , F. R. Carrié * , D. J. Dickerhoff, W. W. Delp, W. J. Fisk, R. Levinson, D. Wang Abstract Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m 2 per year (1 kWh/ft 2 ). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g., diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol

389

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

390

THE SNAP II POWER CONVERSION SYSTEM TOPICAL REPORT NO. 12. BOILER DEVELOPMENT  

SciTech Connect

The SNAP II boilers which were designed are summarized. As shown by test results from the three boilers which were tested, a continuous progress in design was achieved. These designs were based on test data from both the SNAP I and SNAP II programs. As the quantity of data increased, physical models describing the heat transfer process were developed. These physical models provide the necessary correlation parameters which permit the extension of existing data to advanced design. Preliminary test sections were designed on the assumption that an allvapor nmodel which ignores the presence of the liquid phase during forced convection boiling could be used to describe the process quantitatively. The conventional Dittus-Boelter equation was applied with the increase in the vapor flow along the tube being ascribed to liquid evaporation. The assumption led to a design that fell short by about an order of magnitude since the exit qualities were only in the range of 10%, far less than required for complete vaporization. As a result, a revision in the concept of the mechanics of boiling was found necessary and a theoretical analysis was formulated, based on a dry wall'' or dropwise'' type boiling phenomenon. The test results of the preliminary test sections and the SNAP I boiler were plotted on the basis of dry-wall boiling parameters containing the area mean temperature difference and mass velocity. A conservative design curve was established and used to design the thirteen tube boiler. The design was found by test to be conservative, and the measured performance and the degree of conservatism were found to be within the expected spread in earlier test data. Dropwise boiling pictures the heat transfer as occurring directly from the wall to the drop through a film created by the vapor being ejected from the underside of the drop. The drop is held against the wall by its inertial force induced by a swirl device. Heat transfer experiments performed with mercury droplets provided a more detailed understanding of the mechanics of dry-wall boiling. The theory thus developed compared favorably with the test data. A boiling research program was initiated to refine the design procedurcs presently available. In this progranm the detailed heat transfer data can be derived relative to a greater number of controlled variables than are attainable in prototype boiler tests. The primary efforts of the boiler development program were supplemented by other related work. These include porous bed boiler studies, mercury droplet boiling on hot plates in air, isothernial nitrogen--liquid mercury two-phases flow tests and sodium- nitrogen heat transfer tests. From these tests information was obtained on the effect of various inserts on two-phase pressure drop, the phenomena of heat transfer to drops, and the effect of primary fluid side parameters on calculation of the mercury side parameters. (auth)

Gido, R.G.; Koestel, A.; Haller, H.C.; Huber, D.D.; Deibel, D.L.

1961-07-17T23:59:59.000Z

391

Field Guide: Heat Recovery Steam Generator Tube Failure  

Science Conference Proceedings (OSTI)

In conventional and combined-cycle plants, boiler and heat recovery steam generator (HRSG) tube failures have been the main availability problem for as long as reliable statistics have been kept for each generating source. The three volumes of the Electric Power Research Institute (EPRI) report Boiler and Heat Recovery Steam Generator Tube Failures: Theory and Practice (1012757) present an in-depth description of the various HRSG and degradation mechanisms, providing plant owners and operators with the t...

2010-12-15T23:59:59.000Z

392

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

393

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

394

FEMP Technology Brief: Boiler Combustion Control and Monitoring System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows technicians observing operation at the monitoring station and making subsequent fine adjustments on combustion system controls Technical staff are making boiler adjustments with the control and monitoring system. Photo courtesy of the Department of Defense's Environmental Security Technology Certification Program. Technology Description A novel combustion control system, along with gas sensors, sets the opening of fuel and air inlets based on flue-gas concentrations. Continuous feedback from measurements of oxygen, carbon monoxide, and nitrogen oxide concentrations enable the control system

395

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

396

Simulation of Combustion and Thermal Flow inside an Industrial Boiler.  

E-Print Network (OSTI)

??Industrial boilers that produce steam or electric power represent a large capital investment as well as a crucial facility for overall plant operations. In real (more)

Saripalli, Raja

2004-01-01T23:59:59.000Z

397

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: AstraZeneca - Newark This profiles explains how Astrazeneca's Newark...

398

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Allergan - Westport This profiles explains how Allergan's Westport facility...

399

Boiler Tune-ups: Improve efficiency, reduce pollution, and save...  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

400

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Boeing Philadelphia This profiles explains how Beoing's Philadelphia plant...

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Cargill Krefeld This profiles explains how Cargill's Krefeld mill saved...

402

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: GM Marion & Orion This profiles explains how GM's Marion & Orion facilities...

403

Flame Doctor for Cyclone Boilers: Beta Demonstration Program  

Science Conference Proceedings (OSTI)

This report describes the results of the beta demonstration of the Flame Doctor system as it is applied to cyclone boilers.

2012-07-10T23:59:59.000Z

404

Shattering Kraft Recovery Boiler Smelt by a Steam Jet.  

E-Print Network (OSTI)

??Kraft recovery boiler smelt is shattered into small droplets by an impinging steam jet to prevent smelt-water explosions in the dissolving tank. Inadequate shattering increases (more)

Taranenko, Anton

2013-01-01T23:59:59.000Z

405

Modeling of a Drum Boiler Using MATLAB/Simulink.  

E-Print Network (OSTI)

??A dynamic simulator was developed for a natural circulation drum type boiler through a joint Youngstown State University/The Babcock and Wilcox Company cooperative agreement. The (more)

Anderson, Scott B.

2008-01-01T23:59:59.000Z

406

Factors Affecting the Resistivity of Recovery Boiler Precipitator Ash.  

E-Print Network (OSTI)

??Electrostatic precipitators (ESPs) are commonly used to control particulate emissions from recovery boilers in the kraft pulping process. The electrical resistivity of entrained particulates is (more)

Sretenovic, Ivan

2012-01-01T23:59:59.000Z

407

Nanostructured Environmental Barrier Coatings for Corrosion Resistance in Recovery Boilers.  

E-Print Network (OSTI)

??Corrosion of components in a recovery boiler is a major problem faced by the pulp and paper industry. The superheater tubes get severely corroded due (more)

Rao, Shishir

2011-01-01T23:59:59.000Z

408

Improving Boiler Efficiency Modeling Based on Ambient Air Temperature  

E-Print Network (OSTI)

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load significantly effects boiler efficiency. In the study reported here, the measured performance of a 300,000 lb/h steam boiler was found to show more dependence on ambient air temperature than on boiler load. It also showed an unexplained dependence on the month of the year that is comparable to the load dependence.

Zhou, J.; Deng, S.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

2002-05-01T23:59:59.000Z

409

Improving Boiler Efficiency Modeling Based On Ambient Air Temperature  

E-Print Network (OSTI)

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load significantly effects boiler efficiency. In the study reported here, the measured performance of a 300,000 lb/h steam boiler was found to show more dependence on ambient air temperature than on boiler load. It also showed an unexplained dependence on the month of the year that is comparable to the load dependence.

Zhou, J.; Deng, S.; Turner, W. D.; Claridge, D. E.; Haberl, J. S.

2002-01-01T23:59:59.000Z

410

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

411

Thermal performance of residential duct systems in basements  

Science Conference Proceedings (OSTI)

There are many unanswered questions about the typical effects of duct system operation on the infiltration rates and energy usage of single- family residences with HVAC systems in their basements. In this paper, results from preliminary field studies and computer simulations are used to examine the potential for improvements in efficiency of air distribution systems in such houses. The field studies comprise thermal and flow measurements on four houses in Maryland. The houses were found to have significant envelope leakage, duct leakage, and duct conduction losses. Simulations of a basement house, the characteristics of which were chosen from the measured houses, were performed to assess the energy savings potential for basement house. The simulations estimate that a nine percent reduction in space conditioning energy use is obtained by sealing eighty percent of the duct leaks and insulating ducts to an R-value of 0.88 {degree}C{center_dot}m{sup 2}/W (5{degree}F{center_dot}ft{sup 2}{center_dot}h/BTU) where they are exposed in the basement. To determine the maximum possible reduction m energy use, simulations were run with all ducts insulated to 17.6 {degree}C{center_dot}m{sup 2}/W (100 {degree}F{center_dot}ft{sup 2}{center_dot}h/BTU) and with no duct leakage. A reduction of energy use by 14% is obtained by using perfect ducts instead of nominal ducts.

Treidler, B.; Modera, M.

1994-02-01T23:59:59.000Z

412

Leaf seal for transition duct in turbine system  

DOE Patents (OSTI)

A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a leaf seal contacting the interface member to provide a seal between the interface member and the turbine section.

Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

2013-06-11T23:59:59.000Z

413

Aerosol Duct Sealing : Technologies : From the Lab to the Marketplace...  

NLE Websites -- All DOE Office Websites (Extended Search)

the California building code changes and increasing availability of the aerosol sealing technology, more homeowners and facilities managers will seal their duct systems and save...

414

Building Energy Software Tools Directory: Varitrane Duct Designer  

NLE Websites -- All DOE Office Websites (Extended Search)

this task and improves calculation precision, allowing you to optimize your designs from fan to diffuser and be more productive The program consists of three applications: Duct...

415

Building Energy Software Tools Directory: Varitrane Duct Designer  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing NA Expertise Required Basic knowledge of duct systems, methodologies, and terms. Users Approximately 1000 users worldwide. Audience Mechanical engineers and system...

416

A centurial history of technological change and learning curves or pulverized coal-fired utility boilers  

E-Print Network (OSTI)

allow ultra-supercritical boilers to achieve still higherthat supercritical-coal boilers, at least in the 1970s, didGW/year) by type of boiler. Source: [25]. Net Efficiency (

Yeh, Sonia; Rubin, Edward S.

2007-01-01T23:59:59.000Z

417

Robust Output Feedback Stabilization of Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler  

E-Print Network (OSTI)

to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract-- This paper boiler (Utility boiler), where the nonlinear model describes the complicated dynamics of the drum

Marquez, Horacio J.

418

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Langfitt Langfitt U S Department of State Overseas Buildings Operations Mechanical Engineering Division *Engineers are working Harder AND Smarter *New Energy Economy *Heating Is Where The Opportunity Is  39% of total US energy goes into non-residential buildings.  Gas for heating is about 60% of energy used in a building  Gas for heating is at least 25% of total energy used in the US. Heat Generation System Heat Disposal System What's Wrong With This Picture? Keep the heat IN the system Don't run main plant equipment until necessary ! Less rejected heat Less gas consumption High Temp >160F with conventional boilers Hydronic heating... condensing style modular boilers. The entire heating system... designed for low temperature water, recommend maximum temperature of 135ºF.

419

Black liquor combustion validated recovery boiler modeling: Final year report. Volume 2 (Appendices I, section 5 and II, section 1)  

DOE Green Energy (OSTI)

This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 2 contains the last section of Appendix I, Radiative heat transfer in kraft recovery boilers, and the first section of Appendix II, The effect of temperature and residence time on the distribution of carbon, sulfur, and nitrogen between gaseous and condensed phase products from low temperature pyrolysis of kraft black liquor.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1998-08-01T23:59:59.000Z

420

Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers  

Science Conference Proceedings (OSTI)

Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO2 flue gas recycle and burner feed design on flame characteristics (burnout, NOx, SOx, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO2 flue gas recycle and burner design on flame characteristics (burnout, NOx, SOx, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO2 capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

422

Flame Spectral Analysis for Boiler Control  

E-Print Network (OSTI)

An instrument has been developed by Tecogen, Inc., to determine the combustion characteristics of individual burners in multiburner installations. The technology is based on measuring the emissions in the ultraviolet (UV) and infrared (IR) spectral range from the flames and using these measurements to determine the burner operating conditions. Two prototype instruments have been installed on package boilers at a Con Edison powerplant and Polaroid facility, and their performance has been evaluated. These instruments provide data relating to the variations in the IR and UV spectrum with a change in the combustion condition in individuals burners. This paper describes the instruments operation and these tests.

Metcalfe, C. I.; Cole, W. E.; Batra, S. K.

1987-09-01T23:59:59.000Z

423

Failure Analysis of Two 80 HP Multiport Boilers - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Failure Analysis of Two 80 HP Multiport Boilers ... microstructure and the scale collected suggested overheating of the boiler during service.

424

Sigma Phase Embrittlement of a Boiler Tube Lug - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Sigma Phase Embrittlement of a Boiler Tube Lug ... which dissolves in temperatures above 1800 F. Boilers commonly operate at 1800- 2100...

425

Boiler Gold Rush Prof. Johnny Brown (MATH 700)  

E-Print Network (OSTI)

Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;#12;#12;David McCullough, Jr help Always be prepared #12;Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;

Brown, Johnny E.

426

Identification and predictive control for a circulation fluidized bed boiler  

Science Conference Proceedings (OSTI)

This paper introduces the design and presents the research findings of the identification and control application for an industrial Circulation Fluidized Bed (CFB) boiler. Linear Parameter Varying (LPV) model is used in the model identification where ... Keywords: CFB boilers, Identification, LPV model, Linear models interpolation, MPC

Guoli Ji, Jiangyin Huang, Kangkang Zhang, Yucai Zhu, Wei Lin, Tianxiao Ji, Sun Zhou, Bin Yao

2013-06-01T23:59:59.000Z

427

Compression effects on pressure loss in flexible HVAC ducts  

SciTech Connect

A study was conducted to evaluate the effect of compression on pressure drop in flexible, spiral wire helix core ducts used in residential and light commercial applications. Ducts of 6 inches, 8 inches and 10 inches (150, 200 and 250 mm) nominal diameters were tested under different compression configurations following ASHRAE Standard 120-1999--Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings. The results showed that the available published references tend to underestimate the effects of compression. The study demonstrated that moderate compression in flexible ducts, typical of that often seen in field installations, could increase the pressure drop by a factor of four, while further compression could increase the pressure drop by factors close to ten. The results proved that the pressure drop correction factor for compressed ducts cannot be independent of the duct size, as suggested by ASHRAE Fundamentals, and therefore a new relationship was developed for better quantification of the pressure drop in flexible ducts. This study also suggests potential improvements to ASHRAE Standard 120-1999 and provides new data for duct design.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-07-01T23:59:59.000Z

428

Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE  

E-Print Network (OSTI)

LBNL-50008 Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE Standard 152P of California. #12;1 LBNL-50008 Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE Standard. McWilliams Iain S. Walker, Ph.D. ASHRAE Student Member ASHRAE Member ABSTRACT The proposed ASHRAE

429

Guidelines for the Fluid Dynamic Design of Power Plant Ducts  

Science Conference Proceedings (OSTI)

The design of air and flue gas duct systems for electric power plants is an important but often neglected part of the complete design. By following the procedures outline in this report the duct engineer can develop a cost-effective design that minimizes pressure drop losses and the related operating costs.

1998-04-27T23:59:59.000Z

430

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-04-23T23:59:59.000Z

431

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-01-31T23:59:59.000Z

432

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

2003-04-21T23:59:59.000Z

433

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-01-31T23:59:59.000Z

434

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-04-27T23:59:59.000Z

435

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-01-23T23:59:59.000Z

436

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-04-20T23:59:59.000Z

437

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-07-17T23:59:59.000Z

438

Boiler Materials For Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-09-30T23:59:59.000Z

439

Handbook of single-phase convective heat transfer  

Science Conference Proceedings (OSTI)

This book presents a comprehensive collection of convective heat transfer basics, methods of calculations, tables, charts and design parameters involving single-phase flows - the most commonly experienced mode in heat transfer problems. Topics covered include natural and forced convection under a wise variety of design conditions, such as ducts, crossflows, turbulent conditions, transitional states, curved and coiled ducts, over rods in metals and through bends, valves and fittings. The book provides sections on radiation interaction and fouling conditions.

Kakac, S.; Shah, R.K.; Aung, W.

1987-01-01T23:59:59.000Z

440

Base load fuel comsumption with radiant boiler simulation  

Science Conference Proceedings (OSTI)

The operating point of an oil fired radiant boiler, 580 Megawatt capacity, is critical in maximizing the availability, performance, reliability, and maintainability of a power producing system. Operating the unit above the design operating point causes outages to occur sooner than scheduled. When the boiler is operated below the design operating point, fuel is wasted because the quantity of fuel required to operate a radiant boiler is the same, whether the design setpoint is maintained or not. This paper demonstrates by means of simulation software that the boiler design setpoints is critical to fuel consumption and optimum output megawatts. A boiler with this capacity is used to provide a portion of the base load of an electric utility in order to sustain revenues and maintain reliable generation.

Shwehdi, M.H. (Pennsylvania State Univ., Wilkes-Barre, Lehman, PA (United States)); Hughes, C.M. (Naval Aviation Depot, NAS Jacksonville, Jacksonville, FL (United States)); Quasem, M.A. (Howard Univ. School of Business, Washington, DC (United States))

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducts boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Black liquor combustion validated recovery boiler modeling: Final year report. Volume 5 (Appendix V)  

DOE Green Energy (OSTI)

This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 5 contains model validation simulations and comparison with data.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1998-08-01T23:59:59.000Z

442

Technical and economic feasibility of alternative fuel use in process heaters and small boilers  

SciTech Connect

The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

Not Available

1980-02-01T23:59:59.000Z

443

Duct thermal performance models for large commercial buildings  

SciTech Connect

Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

Wray, Craig P.

2003-10-01T23:59:59.000Z

444

Solar heating unit  

SciTech Connect

A solar heating unit is disclosed for disposition exteriorly of a building window for heating the air within the space interiorly of the window embodying a casing with a transverse divider for creating a rear passage and a front passage which are in communication in their lower portions. The upper end of the rear passage connects with the forward end of a rearwardly extending lower duct having a cool air inlet at the rearward end thereof. The upper end of the front passage connects with the forward end of an upper duct progressing rearwardly above the lower duct and with there being a warm air outlet at the rearward extremity thereof. A heat exchanger is disposed within the front passage for impingement thereon of solar radiation passing through a transparent panel defining the front of said casing. A thermal responsive closure is provided at the upper end of said front passage for closing same when the temperature within the front passage has descended to a predetermined level.

Grisbrook, R.B.

1978-10-24T23:59:59.000Z

445

List of Duct/Air sealing Incentives | Open Energy Information  

Open Energy Info (EERE)

Duct/Air sealing Incentives Duct/Air sealing Incentives Jump to: navigation, search The following contains the list of 580 Duct/Air sealing Incentives. CSV (rows 1-500) CSV (rows 501-580) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - Residential Energy Efficiency Programs (Texas) Utility Rebate Program Texas Construction Installer/Contractor Multi-Family Residential Building Insulation Caulking/Weather-stripping Comprehensive Measures/Whole Building Custom/Others pending approval Duct/Air sealing Unspecified technologies Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial Installer/Contractor Residential Central Air conditioners Custom/Others pending approval Duct/Air sealing

446

Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 2, Task 3.1: Evaluation of system performance, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio  

Science Conference Proceedings (OSTI)

This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

Felix, L.G.; Dismukes, E.B.; Gooch, J.P. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Demian, A.G. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1992-04-20T23:59:59.000Z

447

Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Implementing SAV with InCITeTM  

SciTech Connect

This project addressed two significant deficiencies in air-handling systems for large commercial building: duct leakage and duct static pressure reset. Both constitute significant energy reduction opportunities for these buildings. The overall project goal is to bridge the gaps in current duct performance modeling capabilities, and to expand our understanding of air-handling system performance in California large commercial buildings. The purpose of this project is to provide technical support for the implementation of a duct leakage modeling capability in EnergyPlus, to demonstrate the capabilities of the new model, and to carry out analyses of field measurements intended to demonstrate the energy saving potential of the SAV with InCITeTM duct static pressure reset (SPR) technology. A new duct leakage model has been successfully implemented in EnergyPlus, which will enable simulation users to assess the impacts of leakage on whole-building energy use and operation in a coupled manner. This feature also provides a foundation to support code change proposals and compliance analyses related to Title 24 where duct leakage is an issue. Our example simulations continue to show that leaky ducts substantially increase fan power: 10percent upstream and 10percent downstream leakage increases supply fan power 30percent on average compared to a tight duct system (2.5percent upstream and 2.5percent downstream leakage). Much of this increase is related to the upstream leakage rather than to the downstream leakage. This does not mean, however, that downstream leakage is unimportant. Our simulations also demonstrate that ceiling heat transfer is a significant effect that needs to be included when assessing the impacts of duct leakage in large commercial buildings. This is not particularly surprising, given that ?ceiling regain? issues have already been included in residential analyses as long as a decade ago (e.g., ASHRAE Standard 152); mainstream simulation programs that are used for large commercial building energy analyses have not had this capability until now. Our analyses of data that we collected during our 2005 tests of the SAV with InCITeTM duct static pressure reset technology show that this technology can substantially reduce fan power (in this case, by about 25 to 30percent). Tempering this assessment, however, is that cooling and heating coil loads were observed to increase or decrease significantly depending on the time window used. Their impact on cooling and heating plant power needs to be addressed in future studies; without translating the coil loads to plant equipment energy use, it is not possible to judge the net impact of this SPR technology on whole-building energy use. If all of the loads had decreased, such a step would not be as necessary.

Wray, Craig; Sherman, Max

2010-03-01T23:59:59.000Z

448

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

Science Conference Proceedings (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

None

1998-07-01T23:59:59.000Z

449

A Residential Duct Leakage Case Study on 'Good Cents' Homes  

E-Print Network (OSTI)

The Good Cents program has been adopted by many cities across the United States and has encouraged builders to employ aggressive energy conservation building techniques in residential applications. The program is well established and has been recognized for the added value it brings to homeowners. The primary energy using system in a residence is the heating and cooling system and in the hot and humid Southeast Texas climate, cooling is the predominant mode of operation for the HVAC system. This makes the system particularly susceptible to degraded performance if there are leaks in the air distribution system. Nine Good Cents homes in the College Station, Texas area were chosen for a study to determine the extent of HVAC air distribution leakage in the HVAC system. It was found that all the homes had significant measured leakage for the return-air side of the system. Houses with vertical sheet-rock lined plenums had significantly higher rates of return air leakage than homes with ducted returns.

Bryant, J. A.; Perez, R.

2001-01-01T23:59:59.000Z

450

NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis  

DOE Green Energy (OSTI)

Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system has been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.

Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.; Moreno, J.B.; Moss, T.A.; Jones, S.A.

1994-06-01T23:59:59.000Z

451

Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)  

DOE Green Energy (OSTI)

This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1998-08-01T23:59:59.000Z

452

A steady state thermal duct model derived by fin-theory approach and applied on an unglazed solar collector  

SciTech Connect

This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no 'or negligible' temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer course of events adopts a 1D heat flow that reassembles the conditions of the 1D simple model (for the assessed USC duct geometry); 1D heat flow through the top and bottom fins/sheets as the duct wall reassembles a state of adiabatic condition. (author)

Stojanovic, B.; Hallberg, D.; Akander, J. [Building Materials Technology, KTH Research School, Centre for Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden)

2010-10-15T23:59:59.000Z

453

NOx Control for Utility Boiler OTR Compliance  

Science Conference Proceedings (OSTI)

Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

Hamid Farzan

2003-12-31T23:59:59.000Z

454

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

455

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

456

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power p