Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Industry Sponsored Research | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnering Mechanism Sample Sponsored Research Agreement SBIR-STTR Support Economic Development Industrial Partnerships University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Sponsored Research SHARE Sponsored Research Fiber Optic Research The Oak Ridge National Laboratory is a United States Department of Energy national laboratory, operated under contract by UT-Battelle, LLC. The laboratory's 1500+ research scientists and engineers conduct a vigorous program of scientific discovery and technology development, and ORNL is eager to engage industry in partnerships to help translate its research output into market impact and support for U.S. competitiveness. Companies wishing to learn about the research being

2

Industry-Lab Research Opportunities  

Partnering With Berkeley Lab: Industry-Lab Research Opportunities. Some of the most innovative technology transfer at Berkeley Lab involves collaborative projects ...

3

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

4

GAS INDUSTRY GROUNDWATER RESEARCH PROGRAM  

SciTech Connect

The objective of the research described in this report was to provide data and insights that will enable the natural gas industry to (1) significantly improve the assessment of subsurface glycol-related contamination at sites where it is known or suspected to have occurred and (2) make scientifically valid decisions concerning the management and/or remediation of that contamination. The described research was focused on subsurface transport and fate issues related to triethylene glycol (TEG), diethylene glycol (DEG), and ethylene glycol (EG). TEG and DEG were selected for examination because they are used in a vast majority of gas dehydration units, and EG was chosen because it is currently under regulatory scrutiny as a drinking water pollutant. Because benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) compounds are often very closely associated with glycols used in dehydration processes, the research necessarily included assessing cocontaminant effects on waste mobility and biodegradation. BTEX hydrocarbons are relatively water-soluble and, because of their toxicity, are of regulatory concern. Although numerous studies have investigated the fate of BTEX, and significant evidence exists to indicate the potential biodegradability of BTEX in both aerobic and anaerobic environments (Kazumi and others, 1997; Krumholz and others, 1996; Lovely and others, 1995; Gibson and Subramanian, 1984), relatively few investigations have convincingly demonstrated in situ biodegradation of these hydrocarbons (Gieg and others, 1999), and less work has been done on investigating the fate of BTEX species in combination with miscible glycols. To achieve the research objectives, laboratory studies were conducted to (1) characterize glycol related dehydration wastes, with emphasis on identification and quantitation of coconstituent organics associated with TEG and EG wastes obtained from dehydration units located in the United States and Canada, (2) evaluate the biodegradability of TEG and DEG under conditions relevant to subsurface environments and representative of natural attenuation processes, and (3) examine the possibility that high concentrations of glycol may act as a cosolvent for BTEX compounds, thereby enhancing their subsurface mobility. To encompass a wide variety of potential wastes representative of different natural gas streams and dehydration processes, raw, rich, and lean glycol solutions were collected from 12 dehydration units at eight different gas-processing facilities located at sites in Texas, Louisiana, New Mexico, Oklahoma, and Alberta. To generate widely applicable environmental fate data, biodegradation and mobility experiments were performed using four distinctly different soils: three obtained from three gas-producing areas of North America (New Mexico, Louisiana, and Alberta), and one obtained from a North Dakota wetland to represent a soil with high organic matter content.

James A. Sorensen; John R. Gallagher; Steven B. Hawthorne; Ted R. Aulich

2000-10-01T23:59:59.000Z

5

Industry-Lab Research Opportunities - Lawrence Berkeley ...  

This provides industry with an excellent way to leverage R&D funds and conduct research that might otherwise not be possible.

6

Ohio State's industry research partnerships  

E-Print Network (OSTI)

, in such critical projects as conversion of biomass to alternative energy and the creation of nanomaterials across the nation by enhancing industry productivity, generating jobs, and increasing revenues. 9 1 92 4

7

Office of Industrial Technologies research in progress  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

8

Storage research in industry and universities  

Science Conference Proceedings (OSTI)

We review activities at universities and industrial research centers in the storage area, but also briefly mention topics such as processor design, operating systems, databases, and performance analysis. Our starting point is the Berkeley RAID proposal ...

Alexander Thomasian

2010-06-01T23:59:59.000Z

9

Energy efficient industrialized housing research program  

Science Conference Proceedings (OSTI)

This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-12-01T23:59:59.000Z

10

Industry/University Consortium for ATS research  

SciTech Connect

The Industry/University ATS research program is the result of two planning workshops. Workshop I was held April 8--10, 1991 and had the goal of identifying research needs for advanced gas turbine cycles that would permit rapid commercialization of cycles with significant improvements over the machines currently under development, in terms of the cost of electricity produced and the environmental burdens resulting from their use in power producing. Workshop II was held in January 1992 and continued the identification of the research needs to develop advanced gas turbine systems. The goals established for the ATS systems were: (1) efficiency exceeding 60% for large utility turbine system and 15% improvement in heat rate for industrial systems; (2) busbar energy costs 10% less than current state of the art and (3) fuel flexible designs. In addition Workshop II participants agreed that an industry driven research consortium was an acceptable mechanism to achieve base technology development needs.

Allen, R.P.; Golan, L.P.

1993-11-01T23:59:59.000Z

11

Supporting rural wood industry through timber utilization research. Research paper  

SciTech Connect

The report evaluates the potential impact of USDA Forest Service wood utilization and wood energy research on rural employment and income. Recent projections suggest employment will decrease in many forest products industries, such as softwood sawmilling, but will eventually increase in softwood plywood and reconstituated panel mills. Forest products industries expected to provide wages exceeding the average manufacturing production wage include logging, softwood sawmills, millwork, softwood plywood--veneer, structural wood members, particle-board, wood partitions, pulp mills, paper mills, and paperboard mills. Industries expected to pay 90 percent of the average manufacturing production wage include wood kitchen cabinets, mobile homes, prefabricated wood buildings, and wood preservatives.

Skog, K.

1991-10-01T23:59:59.000Z

12

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

13

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

An NSF Industry/University Cooperative Research Program CCMC PROSPECTUS  

E-Print Network (OSTI)

An NSF Industry/University Cooperative Research Program CCMC PROSPECTUS May 2005 CERAMIC ........................................................................................21 #12;PROSPECTUS, MAY 2005 3 EXECUTIVE SUMMARY Ceramic and Composite Materials Center NSF Industry...................................................................................................................8 Industrial Advisory Board

15

Wood-Composites Industry Benefits from ALS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood-Composites Industry Benefits from ALS Research Wood-Composites Industry Benefits from ALS Research Print Thursday, 25 October 2012 10:44 paris-wood composites Wood scientist...

16

INDUSTRIAL ASSOCIATESHIP SCHEME Centre for Industrial Consultancy and Sponsored Research  

E-Print Network (OSTI)

) Refrigeration Industry (1994) Advances in Electrical Power Systems (1994) Photovoltaics for Terrestrial and Space Applications (1996) Plate Heat Exchangers: The New Wave (1996) Refrigeration under Cryogenic of Manufacturing Process Through ASP Model (2002) (v) Manufacturing Artificial Intelligence based Mechanical Design

Bhashyam, Srikrishna

17

ConSol (Building Industry Research Alliance) | Open Energy Information  

Open Energy Info (EERE)

ConSol (Building Industry Research Alliance) ConSol (Building Industry Research Alliance) Jump to: navigation, search Name ConSol (Building Industry Research Alliance) Place Stockton, CA Website http://www.consol.com References ConSol (Building Industry Research Alliance)[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration Partnership Year 2004 Link to project description http://www.nrel.gov/news/press/2004/382.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! ConSol (Building Industry Research Alliance) is a company located in Stockton, CA. References ↑ "ConSol (Building Industry Research Alliance)" Retrieved from "http://en.openei.org/w/index.php?title=ConSol_(Building_Industry_Research_Alliance)&oldid=379316

18

Research and Technology - Industrial Partnerships Office  

Lawrence Livermore National Laboratory (LLNL) is participating in six industry projects for the advancement of energy technologies using high ...

19

Energy efficient industrialized housing research program  

SciTech Connect

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

20

Research Findings on Energy Savings in Industrial Power Supplies  

Science Conference Proceedings (OSTI)

This report summarizes the final results of research conducted in 2007 on ways to improve the energy efficiency of industrial power supplies. The research findings and analysis confirm that significant opportunities exist for greater efficiencies in the use of a variety of industrial power supply technologies, especially in the area of transformers, motors, variable speed drives, and lighting.

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Remediation of Mercury and Industrial Contaminants Applied Field Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Located on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, the RoMIC-AFRI was established to protect water resources by addressing the challenge of preventing contamination. The initiative at Oak Ridge is a collaborative effort that leverages DOE investments in basic science and applied research and the work of site contractors to address the complex challenges in the remediation of legacy waste at the Oak Ridge Reservation. The mission of the Remediation of Mercury and Industrial Contaminants

22

Assessment of industrial attitudes toward generic research needs in tribology  

SciTech Connect

Based on extended discussions during visits with 27 companies representing 13 different parts of the tribology industry (such as bearings, lubricants, coatings, powerplants), it is apparent that only a tiny fraction of the large sums publicly reported as R and D expenditures by industry are used to fund generic tribology research. For example, of the greater than $2 B expenditures reported for R and D in the lubricants sector for 1982, the estimated total for generic tribology research was $12 M. This was the largest expenditure in any sector of the tribology industry and one-third of the total of $36 M. In the automotive industry out of a reported expenditure of $4 B, the estimated generic tribology research was $3 M. In some segments of the tribology industry, for example coatings and filters, there were no expenditures on generic research. There was little tendency to improve the state of the art of the tribology industry through long-term investment in generic R and D in ways that would foster innovation and productivity of energy conservation technology. Expenditures were oriented to development of specific commercial and military products, or to basic research focused on unspecified far term results, although useful spin-off of military developments into commercial fields sometimes occurs. There was a broad consensus in the companies visited that existing research results were not always made easily accessible to potential users in industry. The implication was that industry might benefit more if a larger fraction of the funds were devoted to putting the research results into a form design and development engineers could more readily apply. The need for a more effective presentation of research results was expressed with greater urgency at the smaller companies, but there seemed to be a broad consensus on the need for improvement. Recommendations are given.

Sibley, L.B.; Zlotnick, M.; Levinson, T.M.

1985-09-01T23:59:59.000Z

23

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

24

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

25

Assessment of industry needs for oil shale research and development  

SciTech Connect

Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

Hackworth, J.H.

1987-05-01T23:59:59.000Z

26

The Government-University-Industry Research Roundtable 1996 annual report  

SciTech Connect

The Government-University-Industry Research Roundtable was created just over a decade ago to provide a unique forum for dialogue among top government, university, and industry leaders in the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas about issues, problems, and promising opportunities facing those charged with developing and deploying science and technology resources. In 1996, Council meetings focused on the following: (1) the impact of information technology on the structure of research and educational organizations; (2) ways to improve communication between the science and engineering community and the public; and (3) new approaches both to measuring the results of research investments, and to communicating those metrics to non-technical decision-makers and to the public. Significant milestones were also achieved in four major projects, representing, impart, follow-up activity from previous Council Meeting discussions: (1) facilitating the Federal Demonstration Partnership, designed to maximize the efficiency of the federal research support system; (2) compiling results of a regional workshop on experiences in industry-university collaborative organization; (3) publishing the results of a study comparing the cost structures for research performed in the industrial, academic, and government laboratory sector; and (4) catalyzing, and participating in, a series of campus-based convocations on stresses being experienced in the research university environment.

1996-12-31T23:59:59.000Z

27

The Government-University-Industry Research Roundtable 1995 annual report  

SciTech Connect

The Government-University-Industry Research Roundtable was created just over a decade ago to provide a unique forum for dialogue among top government, university, and industry leaders of the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas about issues, problems, and promising opportunities that are facing those charged with developing and deploying science and technology resources. The open dialogue and informal exchange of ideas preclude a process of making formal recommendations or offering specific advice. Instead, the Roundtable seeks to stimulate new approaches by dissemination of its discussions, and pro-active contacts with organizations that may want to build on the idea base it establishes. After introductory material on the structure and operation of the Roundtable, accomplishments on current projects are described. Projects include: Stresses on research and education at colleges and universities; Formulating US research policies within an international context; The Federal Demonstration project, designed to improve the management of federally-funded research; Analysis of the costs of research in industrial, academic, and federal labs; Industry-university research collaborations; and Public stakeholding in America`s investment in science and technology.

1995-12-31T23:59:59.000Z

28

NSERC-Laflche Industrial Research Chair Advanced Anaerobic Treatment  

E-Print Network (OSTI)

. LANDFILL BIOREACTORS EXSITU ANAEROBIC DIGESTION Apply stand alone reactor technology to digest solidNSERC- Laflèche Industrial Research Chair Advanced Anaerobic Treatment Residuals to Energy R2E 6133. 0 100 200 300 400 500 600 700 800 900 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Digestion Time

Petriu, Emil M.

29

Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Leaders, Research Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop to someone by E-mail Share Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Facebook Tweet about Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Twitter Bookmark Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Google Bookmark Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Delicious Rank Solid-State Lighting: Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop on Digg Find More places to share Solid-State Lighting: Industry Leaders,

30

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

31

Mining industry and US government cooperative research: Lessons learned and benefits to mining industry  

SciTech Connect

Since 1994, various mines in the US have cooperated with research scientists at the Los Alamos and Lawrence Livermore National Laboratories to address issues related to verification of the Comprehensive Test Ban Treaty (CTBT). The CTBT requires that no country may conduct any nuclear explosion in the future. While the CTBT is a significant step toward reducing the global nuclear danger, verifying compliance with the treat requires that the monitoring system be able to detect, locate and identify much larger numbers of smaller amplitude seismic events than had been required previously. Large mining blasts conducted world-wide will be of sufficient amplitude to trigger the monitoring system at the lower threshold. It is therefore imperative that research into the range various blasting practices employed, the relationship of yield to seismic magnitude, and identification of anomalous blasting results be performed. This paper will describe a suite of experiments funded by the Department of Energy and conducted by the Los Alamos and Lawrence Livermore National Laboratories in cooperation with the US mining industry. Observations of cast blasting, underground long wall generated coal bumps, stoping, and explosively induced collapse of room and pillar panels will be presented. Results of these dual use experiments which are of interest to the mining community will be discussed. These include (1) variation of amplitude of seismic energy at various azimuths from cast blasts, (2) identification of the extent of back failure following explosive removal of pillars, and (3) the use of single fired shots for calibration of the monitoring system. The wealth of information and discovery described in this paper is a direct result of mutual cooperation between the US Government and the US Mining Industry.

Pearson, D.C.; Stump, B.W.; Phillips, W.S. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Martin, R. [Thunder Basin Coal Co. (United States); Anderson, D.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences

1997-09-01T23:59:59.000Z

32

The Challenges and Rewards of Industry/University Collaborative Research  

E-Print Network (OSTI)

This talk describes some successful Industry/University collaboration models currently being used at the Massachusetts Institute of Technology.

Palacios, Tomas

33

Abstract This research investigates the requirements for proactive service delivery for heavy industrial equipment  

E-Print Network (OSTI)

Abstract ­ This research investigates the requirements for proactive service delivery for heavy. Keywords: Service contract, heavy industrial equipment, proactive service delivery, reference model. 1 Introduction Manufacturers of heavy industry are increasingly expanding into the service sector, not just

Hsu, Cheng

34

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

35

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

36

ORNL, Industry Partner in Advanced Battery Research - Materials ...  

Science Conference Proceedings (OSTI)

Apr 22, 2010... through DOE's Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program (ITP), ORNL issued a competitive...

37

Industrial Technologies Program Research Plan for Energy-Intensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and deployment in 2009 and beyond. Technology investments fall under one of four technology platforms: * Industrial Reactions and Separations-New technologies with...

38

Advanced technology options for industrial heating equipment research  

Science Conference Proceedings (OSTI)

This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

Jain, R.C.

1992-10-01T23:59:59.000Z

39

Pages that link to "ConSol (Building Industry Research Alliance...  

Open Energy Info (EERE)

| 500) Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereConSol(BuildingIndustryResearchAlliance)" Special pages About us Disclaimers Energy blogs Developer...

40

Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)  

Science Conference Proceedings (OSTI)

Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

Not Available

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assessment of pre-competitive research and development needs for industrial waste minimization  

Science Conference Proceedings (OSTI)

This report summarizes the findings of the first phase of a study undertaken to define a role for the Advanced Industrial Concepts (AIC) Division of the Office of Industrial Technologies (OIT) in developing waste minimization technologies for the industrial sector. The report describes the results of an industrial waste characterization based mainly on the US Environmental Protection Agency`s (EPA`s) 1989 Toxics Release Inventory (TRI) database. IN addition, it contains the results of interviews with personnel from trade associations, environmental advocacy groups, federal agencies, and industrial firms regarding pre-competitive research and development needs for industrial waste minimization. Recommendations for future AIC waste minimization activities are provided.

Young, J.K.; Fassbender, L.L. [Pacific Northwest Lab., Richland, WA (United States); Sen, R.K. [Sen (R.K.) and Associates, Washington, DC (United States)

1992-02-01T23:59:59.000Z

42

Assessment of pre-competitive research and development needs for industrial waste minimization  

Science Conference Proceedings (OSTI)

This report summarizes the findings of the first phase of a study undertaken to define a role for the Advanced Industrial Concepts (AIC) Division of the Office of Industrial Technologies (OIT) in developing waste minimization technologies for the industrial sector. The report describes the results of an industrial waste characterization based mainly on the US Environmental Protection Agency's (EPA's) 1989 Toxics Release Inventory (TRI) database. IN addition, it contains the results of interviews with personnel from trade associations, environmental advocacy groups, federal agencies, and industrial firms regarding pre-competitive research and development needs for industrial waste minimization. Recommendations for future AIC waste minimization activities are provided.

Young, J.K.; Fassbender, L.L. (Pacific Northwest Lab., Richland, WA (United States)); Sen, R.K. (Sen (R.K.) and Associates, Washington, DC (United States))

1992-02-01T23:59:59.000Z

43

Research in Industrial Combustion Systems - Current and Future R&D  

E-Print Network (OSTI)

This paper briefly describes the current R&D activity in industrial combustion systems. The areas covered are novel burner systems, oxygen enriched systems, combustion controls and sensors and unique industrial process modifications. Some of the future research needs in industrial combustion systems have been identified. These include improved techniques of heat transfer to the load, improved sensors, plasmas to process materials and flash or pneumatic reactors for the metals, non-metals and petrochemical industries.

Rebello, W. J.; Keller, J. G.

1987-09-01T23:59:59.000Z

44

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

45

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

46

CANMET/Industry Research Consortium on Alkali-Aggregate Reactivity  

Science Conference Proceedings (OSTI)

The alkali-silica reaction (ASR) is a deleterious chemical reaction that can result in the deterioration of concrete structures. This report presents the results of an R&D study, funded by a broadly-based multi-national industry consortium, that is developing an engineering data base on the long-term effectiveness of fly ash and other supplementary cementing materials (SCMs) in counteracting ASR in concrete.

1997-12-23T23:59:59.000Z

47

Management research in the hospitality and tourism industry.  

E-Print Network (OSTI)

??The purpose of this study is to identify the current research trends and clarify the changing direction of scholarly studies on knowledge management. The context (more)

Cheng, Xu

2010-01-01T23:59:59.000Z

48

Tobacco industry consumer research on socially acceptable cigarettes  

E-Print Network (OSTI)

Callaham P. Philip Morris. Ambrosia II (Aromatek 245) FocusBurnett Co. Philip Morris. Ambrosia Test Planning Session.Morris. Research Results On Ambrosia Concept Test. 1989. (

Ling, P M; Glantz, Stanton A. Ph.D.

2005-01-01T23:59:59.000Z

49

Industry Expert Helps ALS Scientists Craft Relevant Research  

NLE Websites -- All DOE Office Websites (Extended Search)

scientist, sharing his insight and knowledge with ALS staff scientists working on battery research. Their results could help drive the future of battery-powered transportation...

50

Assessment of industry needs for oil shale research and development. Final report  

SciTech Connect

Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

Hackworth, J.H.

1987-05-01T23:59:59.000Z

51

In vivo research scheduling and coordination in the pharmaceutical industry  

E-Print Network (OSTI)

(cont.) A multi-criteria objective function uses the researcher's preference to optimize both room assignments and procedure start time. A Tabu search meta-heuristic has been developed to generate a near-optimal solution. ...

Hill, Brent A. (Brent Alan)

2008-01-01T23:59:59.000Z

52

The research bench meets industry: New facility scales up production...  

NLE Websites -- All DOE Office Websites (Extended Search)

data in his notebook. Argonne material engineer YoungHo Shin prepares a coin cell battery in a glovebox in the Materials Engineering Research Facility. Once it is prepared,...

53

Industrial Hygiene Group annual research report, FY 1981  

SciTech Connect

Field studies have been performed at several oil shale facilities to identify unique industrial hygiene problems and provide input to inhalation toxicology studies aimed at evaluating the hazards of materials associated with this developing technology. Aerosol physics support has also been provided to develop aerosol generation and animal exposure techniques for evaluating the toxicity of oil shale materials and manmade mineral fibers. As part of the effort to assure a safe, orderly, and timely development of various synfuels, field evaluation of indicator-sampling procedures was perfomed, and industrial hygiene work practices for two synfuel technologies are being prepared. Respirator studies are used to evaluate the performances of special devices (some of which are not in the existing government approval schedules) and of a proposed test procedures for self-contained breathing apparatus. An approval procedure is being developed for air-purifying respirators required for protection against radioiodine, evaluating the adequacy of respirator programs at the Nuclear Regulatory Commission licensee facilities, and developing a program for respirator use under emergency situations. A new aerosol size-characterization stack sampler has been designed, and potential instrument changes to aerosol size monitoring for filter testing are being evaluated. Material permeability tests have identified the protection afforded by protective clothing materials, and improved analytical procedures have been developed for pentachlorophenol and plutonium.

Jackson, J.O.; Ettinger, H.J. (comps.)

1982-10-01T23:59:59.000Z

54

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

55

Ergonomics Research for the Electric Power Industry on Fleet Vehicles  

Science Conference Proceedings (OSTI)

This document is an interim report on the status of EPRI ergonomic research on utility fleet vehicles. The overall goal is to develop a method for utilities to specify, select, and purchase fleet vehicles that can be used and maintained safely, productively, and with minimal risk of injury by affected workers.

2009-11-20T23:59:59.000Z

56

Issues in gas load research: An industry perspective. A white paper, December 1992-August 1993  

SciTech Connect

An overview of recently computed and ongoing gas load metering programs (residential, commercial, and industrial) by North American utilities is presented. The project objectives, the methods used, availability of data, and problems encountered have been documented. The report provides a list of contacts in utilities with extensive metering program experience. To obtain the industry profile of current gas load research, a telephone survey was conducted, with special attention to identifying new load research applications and metering approaches in response to new technologies and structural changes in the industry.

Violette, D.M.; Brakken, R.

1993-08-01T23:59:59.000Z

57

ORNL, Industry to Collaborate in Advanced Battery Research | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry to Collaborate in Advanced Battery Research Industry to Collaborate in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new collaborations totaling $6.2 million, ORNL and American industry will tackle some of the most critical challenges facing lithium ion battery production. After receiving $3 million in American Recovery and Reinvestment Act (ARRA) funding in August through DOE's Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program (ITP), ORNL issued a competitive solicitation to industry for proposals addressing key problems centered around lithium ion battery manufacturing science, advanced materials processing, quality control, and processing scale-up. An independent council comprising ORNL and DOE representatives

58

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

59

Session 1: Fatal Construction Injuries Guiding Construction Injury Research: Data Coupled with Industry  

E-Print Network (OSTI)

of examining current construction injury research, identifying research gaps, and developing a strategic research plan. Through existing injury surveillance data systems, much is known about the leading causes of fatal (falls, motor vehicles, machines, and electrocutions) and nonfatal injury (overexertion, falls, and struck by objects) in the construction industry; however, little research has focused on identifying injury problems for specific subsectors of the construction industry. Research that is focused on specific injury problems and specific types of construction work (e.g., falls during truss installation) may lead more directly to identification of effective interventions than research on general injury categories in the construction industry as a whole (e.g., falls in construction). Three high-risk construction industry sectors (highway and street construction, residential building construction, and roofing and truss installation) were selected based on a review of fatal and nonfatal injury data, the number of workers at risk, current trends in the construction industry, OSHAs regulatory agenda, an external

Casini V; Furrow K; Hause M; Linn H; Washenitz F

1997-01-01T23:59:59.000Z

60

Federal agencies active in chemical industry-related research and development  

SciTech Connect

The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

1995-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

62

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

63

Design for energy efficiency: Energy efficient industrialized housing research program. Progress report  

Science Conference Proceedings (OSTI)

Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

1991-03-01T23:59:59.000Z

64

Priorities for Corrosion Research and Development for the Electric Power Industry  

Science Conference Proceedings (OSTI)

This report identifies the specific corrosion problems that result in the largest costs to the electric power industry. It describes the corrosion-related research and development (R&D) that is underway to address these problems and also discusses additional R&D that appears warranted. The report discusses several high-cost areas where new research is judged to be unnecessary as the problems are well understood, but where improved application of already available technology seems important.

2002-09-09T23:59:59.000Z

65

Program on Technology Innovation: Assessment of Needs for Concrete Research in the Energy Industry  

Science Conference Proceedings (OSTI)

The objective of this report is to compile information on issues pertaining to the degradation of concrete structures in the energy industry and to provide guidance in areas where research and development efforts might be needed. The state of these structures, known as concrete degradation, the life management approach, and challenges with new structures are discussed. In each case, a set of suggestions for further research is proposed. Finally, a set of recommendations for the overall needs of short-, m...

2010-12-20T23:59:59.000Z

66

Japanese industrial research on lean combustion: A case study: International Research Monitoring Program  

DOE Green Energy (OSTI)

In recent years, Japanese automakers have introduced a number of successful lean-combustion engines. These engines, in addition to the general expertise in building small cars, have made the Japanese automobiles into the gas mileage champions of the US market. The lean-combustion engines also provide very satisfactory performance and acceptable emissions. United States automakers and research managers, who were probably better informed about lean-combustion than the Japanese were, actively investigated lean-combustion but did not develop an engine. This report examines the basis for the Japanese innovations, the research that took the Japanese past the US state of the art to permit engine development. A preliminary review of recent (1980s) Japanese literature did not turn up strong evidence of new research activity in the lean-combustion area, but did provide background on new engines developed by several major manufacturers. The study was conducted solely through the Japanese and US published literature, with emphasis on early research conducted in the 1970s. This report presents an example of how Japanese research progress can be examined by reviewing the Japanese research literature. Although useful information was obtained by this method, it is still difficult to get a complete picture. When reviewing the literature, as was done for this report, one must remember that the marginal use of references by Japanese researchers obscures prior work, as does the tendency of the Japanese to publish several articles on similar or identical topics. 50 refs., 15 figs.

Hane, G.J.; Hutchinson, R.A.

1987-08-01T23:59:59.000Z

67

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

68

Science for Energy Technology: Strengthening the Link Between Basic Research and Industry  

SciTech Connect

The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology.

2010-04-01T23:59:59.000Z

69

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

DOE Green Energy (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

70

CANMET/Industry Research Consortium on Alkali-Aggregate Reactivity in Concrete  

Science Conference Proceedings (OSTI)

The alkali-silica reaction (ASR) is a deleterious chemical reaction that can result in the deterioration of concrete structures. This report presents the results of a research and development study, funded by a broadly-based multi-national industry consortium, that is developing an engineering database on the long-term effectiveness of fly ash and other supplementary cementing materials (SCMs) in counteracting ASR in concrete.

2001-12-11T23:59:59.000Z

71

2008-2010 Research Summary: Analysis of Demand Response Opportunities in California Industry  

E-Print Network (OSTI)

the California Cement Industry. Lawrence Berkeley NationalOpportunities in California Industry Sasank Goli, Danieland DR opportunities. The cement industry and agricultural

Goli, Sasank

2013-01-01T23:59:59.000Z

72

Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet), Integrated Biorefinery Research Facility (IBRF)  

NLE Websites -- All DOE Office Websites (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. Partnering with Industry to Advance Biofuels and Bioproducts Integrated Biorefinery Research Facility The IBRF can handle high concentrations of solids in the pretreatment and enzymatic hydrolysis steps, a key factor in reducing costs. Bioreactors from 10 L to 9000 L and separation and concentration equipment are housed in the IBRF allowing for biomass conversion processes to be fully integrated. Access to Experts While using the IBRF, industry partners have access to NREL's world-renowned experts, process equipment, and systems that can be used to develop and evaluate commercial processes for the production of biobased products and fuels. In addition, partners have access to NREL's state-of-the-art molecular

73

Southern California Edison's (SCE) Research Program for Industrial Volatile Organic Compound (VOC) Emissions Control  

E-Print Network (OSTI)

SCE has developed and implemented a research program for customer retention through VOC emission control. Following characterization of problematic emission sources, SCE has identified and evaluated a number of alternative solutions and is currently implementing four demonstrations for promising technologies. The SCE program focuses on three major strategies: (1) reformulation, (2) application improvements, and (3) add-on controls. Vendors were identified, contacted, and evaluated for system performance. Industrial targets were selected based on need for assistance, magnitude of emissions, and number of facilities affected. Many facility operators were approached, interviewed, and analyzed. Three technologies were selected for installation at four host sites, with continuous monitoring of inlet and outlet VOC quantities. SCE intends to continue this demonstration project and to develop an effective technology transfer program to our industrial and commercial customers.

Sung, R. D.; Cascone, R.; Reese, J.

1990-06-01T23:59:59.000Z

74

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

75

Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center  

SciTech Connect

This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

Brown, G.Z.

1990-01-01T23:59:59.000Z

76

Associations and Industry - TMS  

Science Conference Proceedings (OSTI)

... Associations and Industry, Research Programs, ==== Basic Metallurgy ==== ... FORUMS > ASSOCIATIONS AND INDUSTRY, Replies, Views, Originator, Last...

77

Research utilization in the building industry: decision model and preliminary assessment  

Science Conference Proceedings (OSTI)

The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

1985-10-01T23:59:59.000Z

78

Research, Commercialization, & Workforce Development in the Polymer/Electronics Recycling Industry  

Science Conference Proceedings (OSTI)

The Mid-Atlantic Recycling Center for End-of-Life Electronics (MARCEE) was set up in 1999 in response to a call from Congressman Alan Mollohan, who had a strong interest in this subject. A consortium was put together which included the Polymer Alliance Zone (PAZ) of West Virginia, West Virginia University (WVU), DN American and Ecolibrium. The consortium developed a set of objectives and task plans, which included both the research issues of setting up facilities to demanufacture End-of-Life Electronics (EoLE), the economics of the demanufacturing process, and the infrastructure development necessary for a sustainable recycling industry to be established in West Virginia. This report discusses the work of the MARCEE Project Consortium from November 1999 through March 2005. While the body of the report is distributed in hard-copy form the Appendices are being distributed on CD's.

Carl Irwin; Rakesh Gupta; Richard Turton; GangaRao Hota; Cyril Logar; Tom Ponzurick; Buddy Graham; Walter Alcorn; Jeff Tucker

2006-02-01T23:59:59.000Z

79

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

80

Therapeutic Ultrasound Research And Development From An Industrial And Commercial Perspective  

Science Conference Proceedings (OSTI)

The objective of this paper is to share the challenges and opportunities as viewed from an industrial and commercial perspective that one encounters when performing therapeutic ultrasound research, development, manufacturing, and sales activities. Research in therapeutic ultrasound has become an active field in the last decade, spurred by technological advances in the areas of transducer materials, control electronics, treatment monitoring techniques, an ever increasing number of clinical applications, and private and governmental funding opportunities. The development of devices and methods utilizing therapeutic ultrasound to cure or manage disease is being pursued by startup companies and large established companies alike, driven by the promise of profiting at many levels from this new and disruptive technology. Widespread penetration within the clinical community remains elusive, with current approaches focusing on very specific applications and niche markets. Challenges include difficulties in securing capital to develop the technology and undertake costly clinical trials, a regulatory landscape that varies from country to country, resistance from established practitioners, and difficulties in assembling a team with the right mix of technological savvy and business expertise. Success is possible and increasing, however, as evidenced by several companies, initiatives, and products with measurable benefits to the patient, clinician, and companies alike.

Seip, Ralf [Philips Research, 345 Scarborough Road, Briarcliff Manor, NY 10510 (United States)

2009-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Wind Research - Landing a Job in the Wind Industry: Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

Landing a Job in the Wind Industry: Wind Powering America Lessons Learned January 28, 2013 Wind Powering America interviewed Marilla Lamb, a 2012 graduate of Northern Arizona...

82

2008-2010 Research Summary: Analysis of Demand Response Opportunities in California Industry  

E-Print Network (OSTI)

NIST Framework and Roadmap for Smart Grid Interoperability29 2.7.3. Smart Grid and Industrial Auto-of actors in different Smart Grid domains through secure

Goli, Sasank

2013-01-01T23:59:59.000Z

83

Green IS for GHG emission reporting on product-level? an action design research project in the meat industry  

Science Conference Proceedings (OSTI)

Greenhouse gas emission reporting gained importance in the last years, due to societal and governmental pressure. However, this task is highly complex, especially in interdependent batch production processes and for reporting on the product-level. Green ... Keywords: GHG emissions, Green IS, PCF, action design research, design science, meat industry, product carbon footprint

Hendrik Hilpert, Christoph Beckers, Lutz M. Kolbe, Matthias Schumann

2013-06-01T23:59:59.000Z

84

Development & expansion of an industrial control system security laboratory and an international research collaboration  

Science Conference Proceedings (OSTI)

In this paper, we describe the incremental building of a unique industrial control system laboratory designed to investigate security vulnerabilities and to support development of mitigating tools and techniques. The laboratory has been built over time ... Keywords: SCADA, critical infrastructure security, industrial control systems, test bed

Rayford B. Vaughn; Thomas Morris; Elena Sitnikova

2013-01-01T23:59:59.000Z

85

Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research  

Science Conference Proceedings (OSTI)

The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

Bickford, D.F.

1993-12-31T23:59:59.000Z

86

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

87

Program on Technology Innovation: Research Plan for Applying Visualization, Simulation, and Interactive Human System Interface Technologies to Sensor Information for Electric Power Industry Activities  

Science Conference Proceedings (OSTI)

This report presents a plan for a multi-year research program to identify, evaluate, and demonstrate visualization, simulation, and interactive human system interface (HSI) technologies to support electric power industry needs. The research program will include demonstrations and produce guidelines. These guidelines will aid not only in identifying and selecting electric power industry applications that are the most likely to provide benefits to the electric power industry from applying advances in visua...

2010-04-12T23:59:59.000Z

88

The research bench meets industry: New facility scales up production of  

NLE Websites -- All DOE Office Websites (Extended Search)

Video: Scenes from Argonne's Materials Engineering Research Facility Video: Scenes from Argonne's Materials Engineering Research Facility Scenes from Argonne's Materials Engineering Research Facility Experiments can keep researchers on their feet all day long. Process R&D chemist Kris Pupek moves between fume hoods in the Materials Engineering Research Facility's process research and development lab, while lab-mate Trevor Dzwiniel records data in his notebook. Experiments can keep researchers on their feet all day long. Process R&D chemist Kris Pupek moves between fume hoods in the Materials Engineering Research Facility's process research and development lab, while lab-mate Trevor Dzwiniel records data in his notebook. Argonne material engineer YoungHo Shin prepares a coin cell battery in a glovebox in the Materials Engineering Research Facility. Once it is prepared, the battery can be tested to determine the energy output characteristics of a cathode material for lithium-ion batteries.

89

Open-Source Software for Power Industry Research, Teaching, and Training  

E-Print Network (OSTI)

for power Transmission grid congestion managed via some variant of Locational Marginal Pricing (LMP) Prices version of the WPMP market design. #12;5 Regions Adopting Versions of WPMP Design to Date http://www.ferc.gov/industries/electric/indus-act/rto/rto-map by an Independent System Operator (ISO) or a Regional Transmission Organization (RTO) Day-ahead & real-time markets

Tesfatsion, Leigh

90

Chapter 5.3: Corporate and Industry Research1 Context Starting Points  

E-Print Network (OSTI)

qualification, project execution capability, understanding standing of resource needs/wants, and engagement as a solution provider. o Project management support for the duration of a project through the final in the company/industry relationship. o A mechanism to recover all direct costs including risk pool (bad debt

91

Material Sustainability Issues for the North American Electric Power Industry: Results of Research with Electric Power Companies and Stakeholders in the United States and Canada  

Science Conference Proceedings (OSTI)

This report presents results of research regarding sustainability issues faced by the electric power industry. Specifically, the research effort was directed toward identifying which sustainability issues affecting the power companies in North America are considered to be the most relevant, or material, and gathering perspectives on those issues from the industry and its stakeholders.The research team collected information from three sources: direct interviews with utility managers and ...

2013-04-25T23:59:59.000Z

92

Continuation of Research, Commercialization, and Workforce Development in the Polymer/Electronics Recycling Industry  

Science Conference Proceedings (OSTI)

The MARCEE Project was established to understand the problems associated with electronics recycling and to develop solutions that would allow an electronics recycling industry to emerge. While not all of the activities have been funded by MARCEE, but through private investment, they would not have occurred had the MARCEE Project not been undertaken. The problems tackled and the results obtained using MARCEE funds are discussed in detail in this report.

Mel Croucher; Rakesh Gupta; Hota GangaRao; Darran Cairns; Jinzing Wang; Xiaodong Shi; Jason Linnell; Karen Facemyer; Doug Ritchie; Jeff Tucker

2009-09-30T23:59:59.000Z

93

Freight Transportation Electronic Marketplaces: A Survey of the Industry and Exploration of Important Research Issues  

E-Print Network (OSTI)

Coia, A. , Evolving transportation exchanges, World trade,of Carrier strategies in an auction based transportationmarketplace, Transportation Research Board, Journal of the

Nandiraju, Srinivas; Regan, Amelia

2008-01-01T23:59:59.000Z

94

Properties of geopressured brines and wells in the Gulf Coast and opportunities for industrial/research participation  

DOE Green Energy (OSTI)

Geopressured reservoirs exhibit pressure gradients in excess of the normal hydrostatic gradient. (In the Gulf Coast area the normal gradient is 0.465 psi/ft.) Pressures may approach lithostatic pressure and have been measured as high as 1.05 psi/ft in the Gulf Coast area. Geopressured basins exist worldwide and in a number of US locations, east, west, north and south. The Gulf Coast area has been studied extensively and is the subject of the DOE geopressured-geothermal research at present. Present industrial interest in the Pleasant Bayou and Hulin wells include: desalination plants, an economic study by a power company for regional use, use of generated electricity by a coalition of towns, aquaculture (catfish farming) research program, and an unsolicited proposal for enhanced oil recovery of heavy oil. Direct uses of the hot brine cover dozens of industries and processes. An example of multiple uses in the USSR is shown. A research spin-off: a sensitive in-line benzene monitor has been designed by USL and will be tested in the near future. An in-line pH monitor is also under development for the harsh conditions of the geopressured-geothermal wells. 24 refs., 12 figs.

Negus-de Wys, J.

1989-01-01T23:59:59.000Z

95

The Government-University-Industry Research Roundtable. Annual reports for 1997, 1998, 1999  

SciTech Connect

The Roundtable was created in 1984 to provide a unique forum for dialog among top government, university, and industry leaders of the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas regarding issues, problems, and promising opportunities that are facing those charged with developing and deploying science and technology resources. These annual reports begin by describing the purpose, structure, and mode of operation of the Roundtable. There follow sections devoted to the council activities, major projects, and follow-up planning, and the activities of the Roundtable working groups. Meeting agendas and publications lists are also included.

1999-12-31T23:59:59.000Z

96

Technologies development for environmental restoration and waste management: International university and research institution and industry partnerships  

SciTech Connect

The Institute for Central and Eastern European Cooperative Environmental Research (ICEECER) at Florida State University was formed in 1990 soon after the end of the Cold War. ICEECER consists of a number of joint centers which link FSU, and US as well as international funding agencies, to academic and research institutions in Hungary, Poland, the Czech Republic, Russia, and the other countries of Central and Eastern Europe and the Newly Independent States. Areas of interest include risk assessment, toxicology, contaminated site remediation/characterization, waste management, emergency response, environmental technology development/demonstration/transfer, and some specialized areas of research (e.g., advanced chemical separations). Through ICEECER, numerous international conferences, symposia, training courses, and workshops have also been conducted on a variety of environmental topics. This paper summarizes the mission, structure, and administration of ICEECER and provides information on the projects conducted through this program at FSU.

Herndon, R.C.; Moerlins, J.E.; Kuperberg, J.M.

1996-12-31T23:59:59.000Z

97

Active load management with advanced window wall systems: Research and industry perspectives  

SciTech Connect

Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

2002-06-01T23:59:59.000Z

98

Active load management with advanced window wall systems: Research and industry perspectives  

SciTech Connect

Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

2002-06-01T23:59:59.000Z

99

Development of an XUV-IR free-electron laser user facility for scientific research and industrial applications  

Science Conference Proceedings (OSTI)

Los Alamos has designed and proposes to establish an XUV-IR free- electron laser (FEL) user facility for scientific research and industrial applications based on coherent radiation ranging from soft x-rays as short as 1 nm to far-infrared wavelengths as long as 100 {mu}m. As the next-generation light source beyond low-emittance storage rings with undulator insertion devices, this proposed national FEL user facility should make available to researchers broadly tunable, picosecond-pulse, coherent radiation with 10{sup 4} to 10{sup 7} greater spectral flux and brightness. The facility design is based on two series of FEL oscillators including one regenerative amplifier. The primary series of seven FEL oscillators, driven by a single, 1-GeV rf linac, spans the short-wavelength range from 1 to 600 nm. A second 60-MeV rf linac, synchronized with the first, drives a series of three Vis/IR FEL oscillators to cover the 0. 5 to 100-{mu}m range. This paper presents the motivation for such a facility arising from its inherently high power per unit bandwidth and its potential use for an array of scientific and industrial applications, describes the facility design, output parameters, and user laboratories, makes comparisons with synchrotron radiation sources, and summarizes recent technical progress that supports the technical feasibility. 80 refs., 9 figs., 6 tabs.

Newnam, B.E.; Warren, R.W.; Conradson, S.D.; Goldstein, J.C.; McVey, B.D.; Schmitt, M.J.; Elliott, C.J.; Burns, M.J.; Carlsten, B.E.; Chan, K.C.; Johnson, W.J.; Wang, T.S.; Sheffield, R.L.; Meier, K.L.; Olsher, R.H.; Scott, M.L.; Griggs, J.E.

1991-01-01T23:59:59.000Z

100

13. international conference on the application of accelerators in research and industry. Final performance technical report  

SciTech Connect

This report summarizes attendance at the conference, describes its session subjects and other activities, names its sponsoring organizations, and references where the papers published for it may be found (in Nuclear Instruments and Methods in Physics Research Vol. B 99 (1995)).

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Program on Technology Innovation: An Energy/Water Sustainability Research Program for the Electric Power Industry  

Science Conference Proceedings (OSTI)

This report presents a research plan, based on business and economic as well as technical considerations, that would create and test new technology and science to overcome present and future constraints on thermoelectric generation resulting from limited freshwater availability. The report will be of value to power company strategic planners, environmental managers, and generation managers as well as regulators, water resource managers, and environmentalists.

2007-07-19T23:59:59.000Z

102

Fermilab Industrial Affiliates roundtable on research technology in the twenty-first century  

SciTech Connect

This collection of articles presents views on the future of physics research by leading experts in the field. Topics discussed include particle physics, the Superconducting Super Collider, and the development of new superconducting materials. The articles have been abstracted and indexed separately.

Carrigan, R.A. Jr.; Fenner, R.B. (eds.)

1987-05-01T23:59:59.000Z

103

Geothermal industry position paper: EPA regulatory options and research and development information needs  

DOE Green Energy (OSTI)

The environmental impact of geothermal energy development may be less intense or widespread than that of some other energy sources; however, it is the first example of a number of emerging energy technologies that must be dealt with by EPA. EPA may consider a spectrum of options ranging from a posutre of business as usual to one of immediate setting of standards, as favored by ERDA. The paper discusses the regulatory approaches and the potential problems that geothermal energy may present in the areas of air quality, water quality, and other impacts. It is recommended that a coordinated program of research be drawn up, comprised of specific research projects, the types of geothermal resource to which they apply, and the date by which the information is required.

D'Alessio, G.

1977-08-01T23:59:59.000Z

104

Geothermal Industry Position Paper: EPA Regulatory Options and Research and Development Information Needs  

DOE Green Energy (OSTI)

The environmental impact of geothermal energy development may be less intense or widespread than that of some other energy sources; however, it is the first example of a number of emerging energy technologies that must be dealt with by EPA. EPA may consider a spectrum of options ranging from a posture of business as usual to one of immediate setting of standards, as favored by ERDA. The paper discusses the regulatory approaches and the potential problems that geothermal energy may present in the areas of air quality, water quality, and other impacts. It is recommended that a coordinated program of research be drawn up, comprised of specific research projects, the types of geothermal resource to which they apply, and the date by which the information is required.

Swetnam, G.F.

1976-11-01T23:59:59.000Z

105

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

106

Properties of Geopressured Brines and Wells in the Gulf Coast and Opportunities for Industrial/Research Participation  

DOE Green Energy (OSTI)

Geopressured reservoirs exhibit pressure gradients in excess of the normal hydrostatic gradient. In the Gulf Coast area the normal gradient is 0.465 psi/ft. Pressures may approach lithostatic pressure and have been measured as high as 1.05 psi/ft in the Gulf Coast area. Geopressured basins exist worldwide and in a number of U.S. locations, east, west, north and south. The Gulf Coast area has been studied extensively and is the subject of the DOE geopressured-geothermal research at present. The assumed ranges in resource characteristics include: depth from -12,000 to > -20,000 feet, brine flow rate from 20,000 to 40,000 bpd, temperature from 300 to 400 F, bottomhole pressure from 12,000 to 18,500 psi; salinity from 20,000 to 200,000 mg/L, gas-water ratio from 40 to 80 scf/bbl., and condensate from a trace to production. Energy in the geopressured resource includes gas, thermal, and hydraulic energy. It has been estimated that there are 6,000 quads of methane and 11,000 quads of thermal energy in the Gulf Coast area geopressured-geothermal reservoirs. Estimates run as high as 50,000 quad for the thermal energy (Wallace et al, 1978). Present industrial interest in the Pleasant Bayou and Hulin wells includes: desalination plants, an economic study by a power company for regional use, use of generated electricity by a coalition of towns, aquaculture (catfish farming) research program, and an unsolicited proposal for enhanced oil recovery of heavy oil. Direct uses of the hot brine cover dozens of industries and processes. An example of multiple uses in the USSR is shown. Outside agency interest includes the U.S.G.S., N.S.F., G.R.I., and possibly other areas within DOE. A research spin-off: a sensitive in-line benzene monitor has been designed by USL and will be tested in the near future. An in-line pH monitor is also under development for the harsh conditions of the geopressured-geothermal wells.

Wys, J. Nequs- de

1989-03-21T23:59:59.000Z

107

Research Opportunities  

Science Conference Proceedings (OSTI)

... industrial or academic partner perform joint research with outcomes ... these collaborations arise spontaneously and the researchers jointly pursue ...

2013-06-27T23:59:59.000Z

108

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

109

Submission House of Representatives Standing Committee on Industry, Science and Innovation Inquiry into Research Training and Research Workforce Issues in Australian Universities  

E-Print Network (OSTI)

The contribution that Australian universities make to research training in Australia a) Contribution of research training programs to Australias competitiveness in the areas of science, research and innovation Australian universities are clearly the primary research training platform in regards to science, research and innovation. Commonwealth research training scheme funding is accessed by The University of Notre Dame Australia (UNDA) to provide, primarily, relief from tuition fees for higher degree by research students. Only a very minimal amount of RTS funding is used to fund skills acquisition and professional development for research active staff and students at UNDA. Other programs within UNDA that are linked to RTS include a limited injection of funding into student research project costs and general research capacity building. UNDA has undergone a sustained growth in its research student population; our enrolled research students have increased seven-fold between 2002 and 2008. RTS funding has significantly supported this growth and, as a result, the capacity to support research in other ways has remained limited. One example of where the University has achieved success on a limited budget has been in the implementation of a Research Incentive Scheme that rewards research output and acts as a catalyst for future research initiatives. In the context of seeking to achieve excellence in niche research UNDA has expanded its research program in the

unknown authors

2008-01-01T23:59:59.000Z

110

National Residential Efficiency Measures Database Reduces Risk for Home Retrofit Industry (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most cost-effective means of improving efficiency of existing homes.

Not Available

2011-05-01T23:59:59.000Z

111

Strategic Activities to Address Material Sustainability Issues in the Electric Power Industry: Results of Research with Electric Power Companies and Stakeholders in the United States and Canada  

Science Conference Proceedings (OSTI)

This report discusses activities that electric utilities can take to address the 15 key material sustainability issues that were identified in Material Sustainability Issues for the North American Electric Power Industry (EPRI report 3002000920). This report adds insight to that previous analysis by considering activities and actions for addressing the 15 material sustainability issues. Overall, the research identified 145 possible activities across all 15 material issues, and ...

2013-12-03T23:59:59.000Z

112

Traceability in Systems Engineering - Review of industrial practices, state-of-the-art technologies and new research solutions  

Science Conference Proceedings (OSTI)

This article discusses issues and solutions regarding traceability for Systems Engineering projects. A review of industrial Systems Engineering practice is presented based on observations and studies that have been carried out at different original equipment ... Keywords: Efficient trace link modelling, Morphological schema, Nomenclature, Systems Engineering, Systems modelling, Traceability

Simon Frederick KNigs; Grischa Beier; Asmus Figge; Rainer Stark

2012-10-01T23:59:59.000Z

113

National program plan for research and development in solar heating and cooling for building, agricultural, and industrial applications  

DOE Green Energy (OSTI)

The main feature of the directed program is the focus on specific approaches, called paths, to the application of solar energy. A path is the linking of a method of energy collection or rejection with a particular application. Eleven such paths are identified for building applications and eleven for agricultural and industrial process applications. Here, an overview is given of the program plan. The 11 paths to the solar heating and cooling of buildings and the 11 paths for agricultural and industrial process applications are described. Brief descriptions of these tasks and of the non-engineering tasks are included. The importance of each non-engineering task to the overall R and D program is indicated. (MHR)

Not Available

1978-08-01T23:59:59.000Z

114

How influential has academic and industrial research been in current software life cycles? A retrospective analysis of four mainstream activities  

Science Conference Proceedings (OSTI)

Context: Knowledge transfer is an important responsibility of universities and research institutes as part of their contribution to society. In the field of software engineering, several studies have been performed to show the influence of research in ... Keywords: History of computing, Knowledge transfer, Practice of software development, Standardisation

Jos Miguel CaEte-ValdeN

2013-02-01T23:59:59.000Z

115

Real Options Valuation of U.S. Federal Renewable Energy Research, Development, Demonstration, and Deployment  

E-Print Network (OSTI)

Research Conference on Electricity Industry Restructuring.Research Conference on Electricity Industry Restructuring,Research Conference on Electricity Industry Restructuring,

Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

2005-01-01T23:59:59.000Z

116

Industry participation in DOE-sponsored geopressured geothermal research development. Final report, May 1, 1979-April 30, 1982  

DOE Green Energy (OSTI)

Nine DOE/Industry Forum meetings where the progress of DOE's resource development program was outlined and discussed were planned, organized, conducted, and reported. These nine forum meetings included three meetings of the Drilling and Testing group, two Site Selection meetings, one meeting each of the Legal and Environmental groups and two Overview meetings where the entire DOE program was discussed. Summaries of each of these meetings are included and the progress of DOE's geopressured geothermal resource evaluation program from its early beginnings to demonstration of the tremendous size and widespread availability of this supplementary energy resource are shown. Attendees at the meetings represented a broad cross section of state and federal agencies and potential users and developers of this large energy source. Attendance at meetings averages 50 to 80 with the most interest shown at meetings where reservoir testing results were discussed. In addition to the forums 16 newsletters were prepared and distributed to all participants. These were instituted to keep industry apprised of the latest developments in this DOE resource evaluation program. Three additional studies were carried out for DOE under this contract: a reservoir continuity study, a survey of gas stripping operations, and the development of a lease agreement for design well prospects.

Coffer, H.F.

1982-07-01T23:59:59.000Z

117

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

118

Tobacco Industry Interference with Tobacco Control  

E-Print Network (OSTI)

143. Bero L. Tobacco industry manipulation of research.Glantz SA. German tobacco industrys successful efforts toBarnoya J, Glantz S. Tobacco industry success in preventing

World Health Organization

2009-01-01T23:59:59.000Z

119

Industrial alliances  

Science Conference Proceedings (OSTI)

The United States is emerging from the Cold War era into an exciting, but challenging future. Improving the economic competitiveness of our Nation is essential both for improving the quality of life in the United States and maintaining a strong national security. The research and technical skills used to maintain a leading edge in defense and energy now should be used to help meet the challenge of maintaining, regaining, and establishing US leadership in industrial technologies. Companies recognize that success in the world marketplace depends on products that are at the leading edge of technology, with competitive cost, quality, and performance. Los Alamos National Laboratory and its Industrial Partnership Center (IPC) has the strategic goal to make a strong contribution to the nation`s economic competitiveness by leveraging the government`s investment at the Laboratory: personnel, infrastructure, and technological expertise.

Adams, K.V.

1993-09-13T23:59:59.000Z

120

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A World-Class University-Industry Consortium for Wind Energy Research, Education, and Workforce Development: Final Technical Report  

Science Conference Proceedings (OSTI)

During the two-year project period, the consortium members have developed control algorithms for enhancing the reliability of wind turbine components. The consortium members have developed advanced operation and planning tools for accommodating the high penetration of variable wind energy. The consortium members have developed extensive education and research programs for educating the stakeholders on critical issues related to the wind energy research and development. In summary, The Consortium procured one utility-grade wind unit and two small wind units. Specifically, the Consortium procured a 1.5MW GE wind unit by working with the world leading wind energy developer, Invenergy, which is headquartered in Chicago, in September 2010. The Consortium also installed advanced instrumentation on the turbine and performed relevant turbine reliability studies. The site for the wind unit is Invenergy???????¢????????????????s Grand Ridge wind farmin Illinois. The Consortium, by working with Viryd Technologies, installed an 8kW Viryd wind unit (the Lab Unit) at an engineering lab at IIT in September 2010 and an 8kW Viryd wind unit (the Field Unit) at the Stuart Field on IIT???????¢????????????????s main campus in July 2011, and performed relevant turbine reliability studies. The operation of the Field Unit is also monitored by the Phasor Measurement Unit (PMU) in the nearby Stuart Building. The Consortium commemorated the installations at the July 20, 2011 ribbon-cutting ceremony. The Consortium???????¢????????????????s researches on turbine reliability included (1) Predictive Analytics to Improve Wind Turbine Reliability; (2) Improve Wind Turbine Power Output and Reduce Dynamic Stress Loading Through Advanced Wind Sensing Technology; (3) Use High Magnetic Density Turbine Generator as Non-rare Earth Power Dense Alternative; (4) Survivable Operation of Three Phase AC Drives in Wind Generator Systems; (5) Localization of Wind Turbine Noise Sources Using a Compact Microphone Array; (6) Wind Turbine Acoustics - Numerical Studies; and (7) Performance of Wind Turbines in Rainy Conditions. The Consortium???????¢????????????????s researches on wind integration included (1) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (2) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection; (3) Integration of Non-dispatchable Resources in Electricity Markets; (4) Integration of Wind Unit with Microgrid. The Consortium???????¢????????????????s education and outreach activities on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development; (3) Wind Energy Outreach.

Shahidehpour, Mohammad

2012-10-30T23:59:59.000Z

122

Big Picture 19912012 other industry  

E-Print Network (OSTI)

Consulting Research Google Goldman BCG IBM Research Yahoo Barclays McKinsey Microsoft Research Amazon Goldman BCG IBM Research Yahoo Barclays McKinsey Microsoft Research Amazon Credite Suisse Bain Honda;Industry Finance Consulting Research Google Goldman BCG IBM Research Yahoo Barclays McKinsey Microsoft

123

USB's Industrial Uses of Soybean Oil Award  

Science Conference Proceedings (OSTI)

Recognizing outstanding research into new industrial applications or uses for soybean oil, sponsored by the United Soybean Board. USB's Industrial Uses of Soybean Oil Award Awards Soybeans USB's

124

NREL: TroughNet - Industry Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

the solar energy industry that partner with the U.S. Department of Energy's SunLab on parabolic trough technology research, development, and deployment efforts. Industry Partner...

125

Edmund G. Brown, Jr. PIER INDUSTRIAL, AGRICULTURAL, AND  

E-Print Network (OSTI)

, petroleum refining, natural gas, beverage industry, water and wastewater, energy efficiency, industrial natural gas efficiency, electronics, Public Interest Energy Research crosscutting, Industrial ......................................................................................................... 8 2.0 Natural Gas

126

Turning industry visions into reality  

Science Conference Proceedings (OSTI)

This brochure outlines the activities of the Office of Industrial Technologies (OIT) in the Department of Energy. OIT activities are aimed at industry adoption of energy-efficient, pollution-reducing technologies and include research and development on advanced technologies, financing, technical assistance, information dissemination, education, and bringing together industry groups, universities, National Laboratories, states, and environmentalists. OIT`s core initiative is to facilitate partnerships within seven materials and process industries: aluminum, chemicals, forest products, glass, metalcasting, petroleum refining, and steel industries.

NONE

1997-01-01T23:59:59.000Z

127

Argonne CNM: Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industrial Users For Industrial Users The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through peer review of user proposals. Before you submit your first user proposal, we encourage you to contact any of our staff researchers, group leaders, the User Office, or division management to discuss the feasibility of your intended research using the expertise and facilities at the CNM. We are here to serve you as part of our user community and will be happy to address any questions you might have.

128

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

129

on technology transfer, industry research +  

E-Print Network (OSTI)

& Rehabilitation Psychiatry 1 Radiation Oncology 7 Radiology 5 Surgery 15 Total 118 ENgINEERINg Aerospace Engineering 3 Biomedical Engineering 18 Chemical Engineering 15 Civil & Environmental Eng 4 Electrical Eng & Computer Sci 65 Mechanical Engineering 16 Materials Science & Engineering 4 Nuclear Eng & Radiological Sci

Michigan, University of

130

Available Technologies - Industrial Research Areas  

... price of oil continuously increases and global production nears its peak, pursuing unconventional oil supplies such as oil shale, heavy oil, ...

131

The Semiconductor Industry's Nanoelectronics Research ...  

Science Conference Proceedings (OSTI)

... Active power ? Passive power ... Start of Water Cooling 2005 ~ 2015: New utilization of technology ... Cooler operation, manage power density ...

132

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

133

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

134

Remediation of Mercury and Industrial Contaminants Applied Field...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

135

New Recovery Act Funding Boosts Industrial Carbon Capture and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and...

136

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

137

Industrial Applications  

Science Conference Proceedings (OSTI)

Table 2   Frequently used rubber linings in other industries...Application Lining Power industry Scrubber towers Blended chlorobutyl Limestone slurry tanks Blended chlorobutyl Slurry piping Blended chlorobutyl 60 Shore A hardness natural rubber Seawater cooling water

138

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

139

Industries Affected  

Science Conference Proceedings (OSTI)

Table 2   Industries affected by microbiologically influenced corrosion...generation: nuclear, hydro, fossil fuel,

140

Industrial Technologies Available for Licensing - Energy ...  

Industrial Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have technologies ...

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

142

Industrial Assessment Center  

SciTech Connect

The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

J. Kelly Kissock; Becky Blust

2007-04-17T23:59:59.000Z

143

Influence of Industry Characteristics on Information Technology Outsourcing  

Science Conference Proceedings (OSTI)

Despite the extensive research on information technology (IT) outsourcing, our knowledge and understanding of how industry characteristics impact the use of IT outsourcing remain limited. Drawing upon theories from organization behavior and industrial ... Keywords: Capital Intensity, Industry Concentration, Industry Dynamism, Industry Environments, Industry Munificence, It Outsourcing

Wen Qu; Alain Pinsoneault; Wonseok Oh

2011-04-01T23:59:59.000Z

144

An Input-Output Analysis of the Relationships Between Communications and Travel for Industry  

E-Print Network (OSTI)

Make of Commodities by Industries 2. The Use of Industriesrelationships in industry. Transportation Research A 31A(for Classification of Industries in 1997 B. Comparison of

Lee, Taihyeong; Mokhtarian, Patricia L.

2004-01-01T23:59:59.000Z

145

For Industry - Industrial Partnerships Office  

... from multi-disciplinary research teams of world-class science and engineering talent and research capabilities in high-performance computing and ...

146

Future Prospects for Industrial Biotechnology  

Science Conference Proceedings (OSTI)

The field of industrial biotechnology has moved rapidly in recent years as a combined result of international political desire, especially in the case of biofuels, and unprecedented progress in molecular biology research that has supplied the enabling ...

OECD Organisation for Economic Co-operation and Development

2011-10-01T23:59:59.000Z

147

Export.gov - Market Research Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Research Print | E-mail Page Market Research Market Research Home Learn to Benefit from FTAs Webcasts on Exporting Country & Industry Webinars Order Custom Research Other...

148

Rotem Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

research, development, construction & consultation of major solar energy projects: solar power plants and solar powered desalination study. References Rotem Industries Ltd1...

149

Bulletin of Latin American Research, 2011 DOI:10.1111/j.1470-9856.2011.00529.x The Global Gold Mining Industry,  

E-Print Network (OSTI)

became deputy and acting director of the Office of Energy Research and Development Policy of the National, awarded jointly by the American Association of Engineering Societies and the National Audubon Society. He, and Asia and on energy facil ity siting, including nuclear waste shipping and storage. In addition to his

Wisconsin at Madison, University of

150

THE MANY MEANS OF "SMART GRID" At Carnegie Mellon, research on the electricity system is being conducted by the campus-wide Electricity Industry  

E-Print Network (OSTI)

THE MANY MEANS OF "SMART GRID" At Carnegie Mellon, research on the electricity system is being seems to have decided that a "smart grid" is what we need to solve the problems of our electric power system. But, what exactly is a "smart grid"? The answer is that it is many different things. Some

151

Cooperative Research and Development Agreement (CRADA)  

Industrial Partnerships Office. Available ... technologies through cooperative research and development projects. ... in a protected environment, ...

152

THE TOBACCO INDUSTRY DOCUMENTS: What they are, what they tell us, and how to search them. A practical manual  

E-Print Network (OSTI)

control of the tobacco industrys external research program.the door to the tobacco industrys secrets about nicotine.Perry CL. The tobacco industry and underage youth smoking:

2004-01-01T23:59:59.000Z

153

End User Perspective - Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Research Center Solid State Research Center DOE Fuel Cell Portable Power Workshop End User Perspective - Industrial Consumer Electronics Power (< 20-50W) Department of Energy Fuel Cell Portable Power Workshop Jerry Hallmark Manager Energy Technologies Lab Motorola Labs Solid State Research Center DOE Fuel Cell Portable Power Workshop Outline * Energy & Power of Portable Devices * Fuel Cell Applications & Cost * Key Requirements & Challenges * Fuels for Portable Fuel Cells * Fuel Transportation Regulations and Standards * Methanol Fuel Cells - Direct Methanol Fuel Cells - Reformed Methanol Fuel Cells * Technical Challenges 2 Solid State Research Center DOE Fuel Cell Portable Power Workshop Portable Electronics Yearly Energy Usage  :KU 1990 1980  :KU

154

A New, "New Paradigm" for Government-Industry Cooperation ...  

Science Conference Proceedings (OSTI)

... sometimes is called basic technology -- the ... jointly funded, collaborative research effort with ... government, industry, and university partnerships now ...

2010-10-05T23:59:59.000Z

155

NREL: Biomass Research - Alexandre Chapeaux  

NLE Websites -- All DOE Office Websites (Extended Search)

biofuels with industrial partners. Alex's research areas of interest are: Integrated biomass processing High solids biomass conversion Fermentation development Separation...

156

Transforming the Freight Industry  

E-Print Network (OSTI)

Transforming the Freight Industry From Regulation to Icommon-carrier freight industry was Competition to backwardjourneys. When the freight industry was deregulated, it was

Regan, Amelia

2002-01-01T23:59:59.000Z

157

Demographics and industry returns  

E-Print Network (OSTI)

Demographics and Industry Returns By Stefano DellaVigna andand returns across industries. Cohort size fluc- tuationspredict profitability by industry. Moreover, forecast demand

Pollet, Joshua A.; DellaVigna, Stefano

2007-01-01T23:59:59.000Z

158

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repurposing lithium-ion batteries at the end of useful life Repurposing lithium-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications. Increasing the number of plug-in electric drive vehicles (PEVs) is one major strategy for reduc- ing the nation's oil imports and greenhouse gas emissions. However, the high up-front cost and end-of-service disposal concerns of their lithium-ion (Li-ion) batteries could impede the proliferation of such vehicles. Re-using Li-ion batteries after their useful automotive life has been proposed as a way to remedy both matters. In response, the National Renewable Energy Laboratory (NREL) and its partners are conducting research to identify, assess, and verify profitable

159

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

160

Growth Trends in the South African Manufactured Export Industry.  

E-Print Network (OSTI)

??Through empirical research the researcher gained an in-depth knowledge regarding the growth trends in the South African manufactured export industry as well as the factors (more)

Moloto, Phineas Rameshovo

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Materials Science and Engineering, Industrial Applications, and ...  

Science Conference Proceedings (OSTI)

CAST has 18 industry and research provider participants and is focused on light metals research for companies that span metal producers, their equipment...

162

Building Technologies Office: Appliances Research  

NLE Websites -- All DOE Office Websites (Extended Search)

team conducts research into residential and commercial appliances. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst...

163

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

164

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network (OSTI)

bio-oil, crude distillation, chalcogenide nanoparticles, nanoparticle inks and photovoltaic printing are highlighted -- frying foods with minimal oil and rapidly cooling eggs. Purdue has been a leader in computing and conducting polymer electronic devices us- ing well-established, solution-based (e.g., inkjet printing

Pittendrigh, Barry

165

DOE/Industry Matching Grant Program  

SciTech Connect

For the academic year 2001-2002, the Department of Nuclear Engineering and Radiological Sciences received $50,000 of industrial contributions, matched by a DOE grant of $35,000. We used the combined DOE/Industry Matching Grant of $85,000 toward (a) undergraduate merit scholarships and research support, (b) graduate student support, and (c) partial support of a research scientist.

John C. Lee

2003-09-30T23:59:59.000Z

166

Industrial Boilers  

E-Print Network (OSTI)

This report has been peer and administratively reviewed by the U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Southern Research Institute/US EPA

Evaluation Biomass; Co-firing Industrial; Technology Type; Renewafuels Pelletized; Wood Fuel

2008-01-01T23:59:59.000Z

167

Office of Industrial Technologies: Industry partnerships  

SciTech Connect

US industries are making progress in turning the vision of the future into reality: More effective competition in global markets, increased industrial efficiency, more jobs, reduced waste generation and greenhouse gas emissions (to 1990 levels), improved environment. DOE`s Office of Industrial Technologies is catalyzing and supporting industry progress in many ways. This pamphlet gives an overview of OIT.

1995-04-01T23:59:59.000Z

168

Materials needs and opportunities in the pulp and paper industry  

SciTech Connect

The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

Angelini, P. [comp.

1995-08-01T23:59:59.000Z

169

BESC Research : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research Biomass Formation Deconstruction and Conversion Enabling Technologies BESC Research...

170

NREL: Photovoltaics Research - NCPV Partnering Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry The National Center for Photovoltaics (NCPV) provides several non-proprietary and proprietary partnering opportunities for industry researchers. We are actively pursuing...

171

Global Industry Analysts | Open Energy Information  

Open Energy Info (EERE)

Global Industry Analysts Global Industry Analysts Jump to: navigation, search Name Global Industry Analysts Address 6150 Hellyer Avenue Place San Jose, California Zip 95138 Product Market research services Year founded 1987 Number of employees 501-1000 Phone number (408) 528-9966 Website http://www.strategyr.com/ Region Bay Area References Global Industry Analysts[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Global Industry Analysts Global Industry Analysts, Inc., (GIA) offers one of the world's largest portfolios of research reports in terms of topics covered, geographic regions analyzed, companies profiled, and pages published. The company's current portfolio consists of more than 900 Global Strategic Business Reports (large multi-client research programs); 45,000+ Market Trend

172

Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor  

E-Print Network (OSTI)

The Department of Energys Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R&D, incorporating projects with such risk that the private sector will not pursue them independently. This paper describes the Offices major activities, operating premises and research areas. Policy considerations affecting the programs content are identified and criteria applied in project selection are discussed. Achievement of constructive industry involvement in program development and review is viewed as vital to success. This goal, and the means by which it is being pursued, are emphasized.

Gross, T. J.

1986-06-01T23:59:59.000Z

173

Research Challenges for CMOS Scaling: Industry Directions  

Science Conference Proceedings (OSTI)

... English French Russian German Italian Spanish Brazilian Portuguese Arabic Traditional Chinese Simplified Chinese Hindi Tamil Thai Korean

174

AMO Industrial Distributed Energy: Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, waste energy recovery systems, and demonstrations of these technologies....

175

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

| Industrial Program Coordinator | Publications Courtesy of The New York Times, Noah Berger The overall goal of the plan to enhance the NSLS facility's Industrial Users'...

176

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

177

Construction Industry Institute  

Science Conference Proceedings (OSTI)

... in one of our country's most vital industries. ... An industry-led program to disseminate practical ... fire-proofing materials, connections, and steel trusses; ...

2010-10-05T23:59:59.000Z

178

Electrotechnology Applications in Industrial Process Heating  

Science Conference Proceedings (OSTI)

Electrotechnology applications in industrial process heating are discussed in this technical update. This report builds on the research activities from the previous years and adds new and emerging process heating technologies. The primary focus is given to energy intensive industrial sectors such as primary metals and metal treatment. Successful implementation of the electrotechnologies in various industry applications are also presented in the form of case studies. The technical update also ...

2012-11-26T23:59:59.000Z

179

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

180

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Industrial Applications of Renewable Resources  

Science Conference Proceedings (OSTI)

Archive of Industrial Applications of Renewable Resources Industrial Applications of Renewable Resources Cincinnati, Ohio, USA Industrial Applications of Renewable Resources ...

182

Web-Based Industrial Energy Management Tool  

Science Conference Proceedings (OSTI)

This report describes continuing research on the Industrial Energy Management Tool (IEMT), a web-based software resource intended for the evaluation of industrial energy efficiency measures. The IEMT software development is ongoing, and this report covers the status of an alpha tool that has already been created and plans for moving forward with development of a beta product.

2008-03-31T23:59:59.000Z

183

Safe controllers design for industrial automation systems  

Science Conference Proceedings (OSTI)

The design of safe industrial controllers is one of the most important domains related to Automation Systems research. To support it, synthesis and analysis techniques are available. Among the analysis techniques, two of the most important are Simulation ... Keywords: Formal verification, Industrial systems behaviour modelling, Real-time systems, Safe controllers, Simulation

Jos Machado; Eurico Seabra; Jos C. Campos; Filomena Soares; Celina P. Leo

2011-05-01T23:59:59.000Z

184

System dynamics simulation of the telecom industry  

E-Print Network (OSTI)

The primary goal of this research effort was to integrate several pieces of relatively simple dynamics simulations into a full blown system dynamics simulation of the telecom industry. The economic simulation model was ...

Shapira, Gil, 1971-

2004-01-01T23:59:59.000Z

185

Microprocessor applications in the nuclear industry  

Science Conference Proceedings (OSTI)

Microprocessors in the nuclear industry, particularly at the los Al amos Scientific Laboratory, have been and are being utilized in a wide variety of applications ranging from data acquistion and control for basic physics research to monitoring special ...

C. Dwayne Ethiridge

1980-04-01T23:59:59.000Z

186

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

187

NSLS Industrial User Enhancement Plan The overall goal of this plan for enhancing the NSLS Industrial Users' Program is to encourage greater  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial User Enhancement Plan Industrial User Enhancement Plan The overall goal of this plan for enhancing the NSLS Industrial Users' Program is to encourage greater use of synchrotron tools by industry researchers, improve access to NSLS beamlines by industrial researchers, and facilitate research collaborations between industrial researchers and NSLS staff, as well as researchers from university and government laboratories. The implementation of this plan will also involve modifications of the existing user access policy. The plan includes the following major elements: Improve the NSLS proposal review system:  Proposal rating review criteria has been modified to reflect the importance of technology

188

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

189

Opportunities for international collaboration in industrial pollution prevention  

SciTech Connect

The goal of this paper is to describe international research opportunities for in-process reduction of wastes from industrial processes. Written responses from 52 researchers were obtained from 15 different countries in mid-1992. Each researcher provided information about products to reduce waste in industrial processes and recommended joint activities and mechanisms for working collaboratively with the United States.

Young, J.K.; Fowler, K.M.

1993-08-01T23:59:59.000Z

190

The future steelmaking industry and its technologies  

SciTech Connect

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

191

Industrial Decision Making  

E-Print Network (OSTI)

Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy although, freight costs, favorable exchange rates and high capacity utilization will encourage future industrial investment. Industry will eventually enter a new period of major investment. Future industrial investment will be an opportunity to influence the energy efficiency of these facilities for generations to come. Program managers must begin engaging industrial customers now, in order to exploit this unprecedented opportunity to change future energy use patterns. This paper reviews recent market trends and industrial investment decision-making. The paper will also address several important questions: Why has industrial investment declined? What is the outlook for industrial investment? How can programs engage industry for future opportunities?

Elliott, R. N.; McKinney, V.; Shipley, A.

2008-01-01T23:59:59.000Z

192

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

193

Argonne TDC: Collaborative Research and Development Agreements ...  

DOE CRADA Process. Step Argonne Both Industry Partner ; 1 : Researchers discuss ideas. Identify area of mutual interest. Draft a research plan. Generate CRADA ...

194

BCOL RESEARCH REPORT 07.05  

E-Print Network (OSTI)

This research is funded, in part, by the National Science Foundation Grant ... Department of Industrial Engineering and Operations Research, University of...

195

BCOL RESEARCH REPORT 07.01  

E-Print Network (OSTI)

This research was conducted while S. Grel was a visiting scholar at the University of ... A. Atamtrk: Industrial Engineering & Operations Research Department,...

196

BCOL RESEARCH REPORT 08.03  

E-Print Network (OSTI)

Industrial Engineering & Operations Research. University of ... This research has been supported, in part, by Grant # DMI0700203 from the Na- tional Science...

197

BCOL RESEARCH REPORT 07.03  

E-Print Network (OSTI)

hospitality of the Georgia Institute of Technology, where part of this research was ... Department of Industrial Engineering and Operations Research, University of.

198

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvancedLightSource Home Science Highlights Industry @ ALS Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23...

199

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

200

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

202

Waste Heat Recovery from Industrial Process Heating Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am...

203

NREL: Buildings Research - Residential Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

created strategic and highly collaborative multi-year programs with impactful results. An industry-driven research initiative that develops innovative solutions to achieve...

204

NREL: Photovoltaics Research - NCPV Hotline  

NLE Websites -- All DOE Office Websites (Extended Search)

industry and research happenings. The last edition of the newsletter was distributed on August 16, 2013. Below are the archived editions of the newsletter, formatted as Adobe...

205

Industrial | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends Despite a 54-percent increase in industrial shipments, industrial energy...

206

America's Booming Wind Industry  

Energy.gov (U.S. Department of Energy (DOE))

Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry.

207

The Copper Industry  

Science Conference Proceedings (OSTI)

...These products are sold to a wide variety of industrial users. Certain mill products??chiefly wire, cable, and most

208

NIST Industry Day 2012  

Science Conference Proceedings (OSTI)

... at www.fedbizopps.gov. Search NIST-AMD-INDUSTRY-DAY-2012 in the Quick Search engine. Deadline for registration ...

2013-08-30T23:59:59.000Z

209

Industrial Development Projects (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes municipalities and counties to issue bonds or interest coupons to finance industrial projects, including energy generation facilities.

210

NREL: Photovoltaics Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

to a variety of solar news sources to keep you apprised of PV Research subprogram and solar industry activities. NREL PV News Keep current on all the latest news releases and...

211

Experimental thermal/moisture mapping of industrial safety helmets  

Science Conference Proceedings (OSTI)

This paper presents the research on thermal/moisture mapping of typical industrial safety helmets using match-head-sized sensors. Three types of the industrial safety helmet were tested, one without ventilation openings, one with small ventilation holes ... Keywords: comfort, industrial helmet, micro climate, perception, thermal/moisture mapping

Z. W. Guan; A. R. Dullah; H. L. Zhou

2007-07-01T23:59:59.000Z

212

Cooperative government/industrial projects  

Science Conference Proceedings (OSTI)

This paper focuses on the organization of the Department of Energy (DOE) multiprogram national laboratories, their relationship to the DOE funding offices with respect to catalysis projects and programs, and Cooperative Research and Development Agreements (CRADA`s) between the national laboratories and industry. In addition, a representative sampling of current catalysis projects and programs at eight of the multiprogram national laboratories will be discussed. The most recent emphases at the national laboratories have been in the areas of hazardous waste clean-up and technology transfer. Catalysis projects vary from basic research to the study of multidisciplinary problems, including process science and engineering. However, the transition of funding a project from basic research to applied research has typically been difficult to bridge. Improvements and simplifications in the technology transfer process should lead to transitional funding improvements, while the utilization and combination of the various laboratory capabilities with respect to catalysis will result in expanded programs.

Brewer, T.D.

1994-06-01T23:59:59.000Z

213

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

innovation and lets industry pick winning technologies. TheTransforming the Oil Industry intothe Energy Industry BY DANIEL SPERLING AND SONIA YEH A C C E

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

214

From Industry Protection to Industry Promotion: IT Policy in Brazil  

E-Print Network (OSTI)

Brazilian banking automation industry. Science, TechnologyBrazilian liberalisation of the IT industry on technologicalWorking paper. Computer Industry Almanac, Inc. (1999).

Botelho, Antonio Jose Junqueira; Dedrick, Jason; Kraemer, Kenneth L.; Tigre, Paulo Bastos

1999-01-01T23:59:59.000Z

215

Industry Practices for Field Switchmen Qualification  

Science Conference Proceedings (OSTI)

In 2011, the Electric Power Research Institute (EPRI) Switching Safety & Reliability Task Force launched a project to prepare a report on industry practices for the qualification of field switching personnel. This report summarizes the findings of this research, and outlines the necessary elements of "best practices" for the training and qualification of field switching personnel.

2011-11-23T23:59:59.000Z

216

Scanning probe microscopy in the superconductor industry  

SciTech Connect

High-temperature superconductivity and scanning probe microscopy (SPM) have much in common. Both revolutionized their scientific fields and earned Nobel prizes for the original researchers. Both represent small-scale table-top research. Finally, both have emerged from research laboratories into growing industries. Applications of scanning probe microscopy to the superconductor industry range from the straightforward to the exotic. The superior three-dimensional resolution of scanning probe microscopes makes them ideal for routine topographic imaging and profilometry of substrates and thin films. On the other hand, the more esoteric applications of SPM include spectroscopic investigations of various electromagnetic properties of superconductors above and below the critical temperature.

Howland, R.S.; Kirk, M.D. (Park Scientific Instruments (US))

1991-01-01T23:59:59.000Z

217

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Bookmark and Share Advanced (AI-Based) Nonlinear Controllers for Industrial Processes The overall objective of this research is to explore and demonstrate the

218

Center for Productivity Innovation's Student Project with Industry Program at the University of Tennessee, Department of Industrial and Systems Engineering  

Science Conference Proceedings (OSTI)

A robust graduate engineering education experience requires students to learn the fundamental subject knowledge, to develop their ability to apply what they know to actual projects, and to contribute to the current body of knowledge by writing theses ... Keywords: Student Projects with Industry, engineering education, graduate research and education, industrial engineering, industry-university interaction

Rapinder Sawhney, Sima Maleki, Joseph Wilck, Pedraum Hashemian

2013-01-01T23:59:59.000Z

219

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

220

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Tobacco Industry Involvement in Colorado  

E-Print Network (OSTI)

Accessed May 25, 2004) Industry Summary. 1992 (est. ).11 May 2004) Tobacco Industry Involvement in Colorado Pageor (800) LUNG-USA. Tobacco Industry Involvement in Colorado

Landman, BA, Anne; Bialick, Peter

2004-01-01T23:59:59.000Z

222

For Industry | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D accelerates battery technology | More news Home | Connect with ORNL | For Industry For Industry | For Industry SHARE There are a few different way of "working" with...

223

NREL: Photovoltaics Research - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Staff Research Staff Our silicon group members have backgrounds in physics, chemistry, mathematics, materials science, and electrical engineering. Russell Bauer Howard Branz Sachit Grover Vincenzo LaSalvia Benjamin Lee William Nemeth Matt Page Lorenzo Roybal Pauls Stradins, (Acting Group Manager) Charles Teplin Qi Wang David Young Hao-Chih Yuan Photo of 21 people standing in front of a building with a silver, cylinder-shaped structure on one side. Photo of Pauls Stradins Pauls Stradins Senior Scientist II Group Manager Primary Research Interests High-efficiency silicon photovoltaics: advanced passivation techniques and industrially-relevant processes Interfacing Si cell with other materials for high-efficiency tandem Nanostructured semiconductor materials for photovoltaics: Si quantum

224

U.S. Industrial Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second U.S.-China Second U.S.-China Energy Efficiency Forum May 6, 2011 James Quinn Energy Efficiency & Renewable Energy U.S. Department of Energy U.S. Industrial Energy Efficiency Programs 2 | Industrial Energy Efficiency eere.energy.gov Global Energy Challenges Energy efficiency and renewable energy provide solutions to global energy challenges. Security Environment Economy Clean Energy Solutions Overarching Challenges: * Carbon reduction * Market delivery of clean energy technologies * Research and development needs * Economic growth * Workforce development 3 | Industrial Energy Efficiency eere.energy.gov U.S. industry accounts for about one-third of all U.S. energy consumption. Petroleum Natural Gas Electricity* Coal and Coke Renewable Energy Residential 21.8% Industry 31.4% Commercial

225

Role of fuel cells in industrial cogeneration  

SciTech Connect

During the early years (1958 to 1963), three types of fuel cells were under development: phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. Between 1963 and 1971, the IGT research and development effort concentrated on the phosphoric acid and molten carbonate technologies; since 1971, emphasis has been on the molten carbonate fuel cell. IGT believes MCFC is best suited to meet the goals of the electric industry and the requirements of industrial cogeneration. Through the years, IGT has conducted system studies to evaluate the role that each one of the three fuel cell types can play in industrial cogeneration. This paper briefly discusses the status of the three technologies, the potential industrial cogeneration market, the application of fuel cells to this market, and the potential fuel savings for several industrial categories.

Camara, E.H.

1985-01-01T23:59:59.000Z

226

PIA - Industry Interactive Procurement System (IIPS) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Interactive Procurement System (IIPS) PIA - Industry Interactive Procurement System (IIPS) PIA - Industry Interactive Procurement System (IIPS) PIA - Industry Interactive...

227

Industry-Wide Database: Circuit Breakers  

Science Conference Proceedings (OSTI)

Best practice maintenance and asset management decisions are based on risks associated with actual equipment condition and performance. However, little effort has been made to systematically collect and analyze such industry information for high-voltage circuit breakers. This document presents the results of the initial effort of the Electric Power Research Institute (EPRI) to explore the development of an industry-wide database (IDB) for high-voltage circuit breakers (HVCBs). The project identified ...

2012-12-12T23:59:59.000Z

228

Technologies for the oil and gas industry  

DOE Green Energy (OSTI)

This is the final report of a five-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors performed a preliminary design study to explore the plausibility of using pulse-tube refrigeration to cool instruments in a hot down-hole environment for the oil and gas industry or geothermal industry. They prepared and distributed a report showing that this appears to be a viable technology.

Goff, S.J.; Swift, G.W.; Gardner, D.L.

1998-12-31T23:59:59.000Z

229

Industry Partnerships | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Industry Licensing The Office of Technology Commercialization and Partnerships (TCP) grants licenses for BNL-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. Nonexclusive and exclusive licenses are granted. TCP is committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Search available technologies | See DOE Tech Transfer Working Group Licensing Guide (PDF) Sponsored Research BNL has many ways of collaborating with industry on emerging technologies that are geared toward bringing new technologies to the marketplace. Learn more | See Guide to Partnering with DOE's National Laboratories (PDF)

230

Demand-Side Response from Industrial Loads  

Science Conference Proceedings (OSTI)

Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

2013-01-01T23:59:59.000Z

231

Industrial | OpenEI  

Open Energy Info (EERE)

Industrial Industrial Dataset Summary Description The Industrial Assessment Centers (IAC) Database is a collection of all the publicly available data from energy efficiency assessments conducted by IACs at small and medium-sized industrial facilities. Source Department of Energy Industrial Assessment Centers Date Released September 20th, 2012 (2 years ago) Date Updated September 20th, 2012 (2 years ago) Keywords assessment energy efficiency Industrial manufacturing small and medium-sized Data application/vnd.ms-excel icon copy_of_iac_database.xls (xls, 28.7 MiB) Quality Metrics Level of Review Standards Comment Temporal and Spatial Coverage Frequency Daily Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

232

Industrial Partnerships Office  

Industrial Partnerships Office 6/13 Richard Rankin Director----Roger Werne Deputy Director-----Yvonne King Administrator Nina Potter Manager Intellectual Property

233

Industrial Waste Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

9) Page 2 of 7 Industrial Waste Generation Work with Engineered Nanomaterials Power Consumption Historical Contamination (groundwater, soil) Hazardous Waste Generation Atmospheric...

234

Construction Industry Software  

Science Conference Proceedings (OSTI)

... Translates a CIS/2 (CIMsteel Integration Standards) file into a 3D interactive VRML model of a steel structure or an IFC (Industry Foundation Classes ...

2012-04-23T23:59:59.000Z

235

Search - Industrial Partnerships Office  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore ...

236

Technologies - Industrial Partnerships Office  

Energy, Utilities, & Power Systems. Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988

237

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

238

OpenEI - Industrial  

Open Energy Info (EERE)

renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by...

239

Current and future industrial energy service characterizations  

DOE Green Energy (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

240

Biomass energy conversion workshop for industrial executives  

DOE Green Energy (OSTI)

The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

None

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Submitter: Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L., and Y. Liu, Sensitivity of the First Indirect Aerosol Effect to an Increase in Cloud Droplet Spectral Dispersion with Droplet Number Concentration, Journal of Climate: Vol. 16, No. 21, pp.3476-3481, May 2003. Figure 1. Measurements of the relation between the relative dispersion of the cloud droplet spectrum and the cloud droplet number concentration (N). The lower, middle, and upper curves show the parameterizations used in the LOWER, MIDDLE, and UPPER simulations, respectively. A recent study by DOE Atmospheric Radiation Measurement (ARM) Program

242

Cloud Computing Operations Research  

Science Conference Proceedings (OSTI)

This paper argues that the cloud computing industry faces many decision problems where operations research OR could add tremendous value. To this end, we provide an OR perspective on cloud computing in three ways. First, we compare the cloud computing ... Keywords: cloud IT, cloud computing, green IT, operations research, supply chain

Ilyas Iyoob, Emrah Zarifoglu, A. B. Dieker

2013-06-01T23:59:59.000Z

243

Building America Industrialized Housing Partnership (BAIHP II)  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

2010-11-30T23:59:59.000Z

244

Critique of Drilling Research  

SciTech Connect

For a number of years the Department of Energy has been funding research to reduce the cost of drilling geothermal wells. Generally that research has been effective and helped to make geothermal energy economically attractive to developers. With the increased competition for the electrical market, geothermal energy needs every advantage it can acquire to allow it to continue as a viable force in the marketplace. In drilling related research, there is essentially continuous dialogue between industry and the national laboratories. Therefore, the projects presented in the Program Review are focused on subjects that were previously recommended or approved by industry.

Hamblin, Jerry

1992-03-24T23:59:59.000Z

245

Recent developments: Industry briefs  

SciTech Connect

This article is the `Industry Briefs` portion of the March 1992 `Recent Developments` section of Nuexco. Specific issues mentioned are: (1) closure of Yankee Rowe, (2) steam-generator tube plugging at Trojan, (3) laser enrichment in South Africa, (4) the US uranium industry, (5) planning for two nuclear units in Taiwan, and (6) the establishment of a Czech/French joint venture.

NONE

1992-03-01T23:59:59.000Z

246

Geothermal industry assessment  

DOE Green Energy (OSTI)

An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

Not Available

1980-07-01T23:59:59.000Z

247

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

248

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

249

Cooperative effort for industrial energy data collection (IEDC)  

DOE Green Energy (OSTI)

The expanding research effort in recent years in industrial energy use has created a need for detailed data on specific industrial processes. To meet this need and eliminate multiple contacts with individual plants, a cooperative effort to collect and centralize industrial energy-use data has been organized by several solar research organizations. To date, a centralized list has been produced of industrial plants and trade associations that have been contracted, and a data format has been created for use by all organizations interested in participating in this effort.

Green, H.J.

1979-10-01T23:59:59.000Z

250

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

251

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W. (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

252

Industrial Process Surveillance System  

DOE Patents (OSTI)

A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

2001-01-30T23:59:59.000Z

253

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

254

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry At Work Industry At Work Solar Industry At Work Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a new material.

255

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

256

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

257

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

258

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

259

Industry | OpenEI  

Open Energy Info (EERE)

Industry Industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by other industries and construction. Data is only available for Paraguay and the U.S., years 2000 to 2007. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption Industry UN Data application/zip icon XML (zip, 514 bytes) application/zip icon XLS (zip, 425 bytes) Quality Metrics

260

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Optimization of Industrial Enzymes  

Enzymes are highly efficient naturally occurring catalysts that are used in a wide range of applications from industrial processes to new drug development. Conventional mechanism for understanding the mechanisms of enzyme functions are costly and time ...

262

Technologies - Industrial Partnerships Office  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

263

Electric Power Industry Restructuring:  

U.S. Energy Information Administration (EIA)

Good morning. I was asked to speak to you today about EIAs data collection efforts in a more competitive electric power industry. I know that you want to hear ...

264

Uranium Industry Annual, 1992  

Science Conference Proceedings (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

265

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

266

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Stresses in Materials HTML, HFIR Team Work with Industry To Find Hidden Stresses in Materials Metalsa, EPRI, John Deere among partners in high-impact projects Whether it's...

267

Working Through Outsourcing: Software Practice, Industry Organization and Industry Evolution in India  

E-Print Network (OSTI)

Outsourcing: Software Practice, Industry Organizationand Industry Evolution in India Kyle EischenSoftware Practice, Industry Organization and Industry

Eischen, Kyle

2004-01-01T23:59:59.000Z

268

Industrial Retrofits are Possible  

E-Print Network (OSTI)

Ontario is the industrial heartland of Canada and more than 80% of its energy comes from Canadian sources with the remainder from the neighbouring U.S. states. Because of the ever increasing demand for energy relating to increased economic activity, the provincial government's major energy priority is efficiency. In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant. In this presentation, the author will outline the results of the program to date and will attempt to share with the audience the individual case experiences. Since the program's start, the Ontario Ministry of Energy has completed over 320 energy analyses of industrial plants which had combined energy bills of over $420 million. The potential annual energy savings identified were over $40 million or 9.51%. Electricity and natural gas are the major fuels used by Ontario industries and our surveys to date have shown savings of 6% in electricity and 11% in natural gas. Over the first two years of the program, individual plants have or are intending to implement more than half of the energy analysis recommendations.

Stobart, E. W.

1990-06-01T23:59:59.000Z

269

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

270

SunShot Initiative: CSP Systems Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Systems Research and Development The SunShot Initiative concentrating solar power (CSP) program funds research and development within the industry, national laboratories, and...

271

The Illinois Accelerator Research Center, or IARC, will  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois Accelerator Research Center, or IARC, will provide a state-of-the-art facility for accelerator research, education and industrialization. Scientists and engineers from...

272

2008-2010 Research Summary: Analysis of Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

-2010 Research Summary: Analysis of Demand Response Opportunities in California Industry Title 2008-2010 Research Summary: Analysis of Demand Response Opportunities in California...

273

The Cooperative Research and Development Agreement A Cooperative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreement A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities,...

274

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

The Potential for Energy Efficiency. Prepared for The EnergyIndustrial Sector Energy Efficiency Potential Study - DraftIndustrial Energy Efficiency Market Characterization Study.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

275

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here youll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

276

EIA Electric Industry Data Collection  

U.S. Energy Information Administration (EIA)

Steam Production EIA Electric Industry Data Collection Residential Industrial ... Monthly data on cost and quality of fuels delivered to cost-of-service plants

277

NEMS industrial module documentation report  

SciTech Connect

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

1994-01-01T23:59:59.000Z

278

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal to overcome the barriers to

279

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal of overcoming the barriers to

280

NREL: Electric Infrastructure Systems Research - Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

the distributed power industry in the development and testing of distributed power systems. Researchers use state-of-the-art laboratories and outdoor test beds to characterize...

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Solar Radiation Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's solar radiation research supports industry, government, and academia by providing solar radiation measurements, models, maps, and support services. These resources are used...

282

Research : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Research 2011 Biotechnology Industry Organization Annual Convention Plenary Session Basic Biomass info Biofuels: Bringing Biological Solutions to Energy Challenges How Cellulosic...

283

Building Technologies Office: Technology Research, Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings in a cost-effective manner. By working with teams of researchers, industry, and organizations, DOE has developed innovative solutions to helping the United...

284

NREL: Electricity Integration Research - Working With Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working With Us NREL offers industry, universities, and other government agencies opportunities to leverage NREL's research expertise. Working with outside organizations is the key...

285

Center Research  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Center Research ... Supports Electric Utility Restructuring Winds of change in the U.S. power sector: factors listed in the left column have created a gap between the prices utilities must charge to recover their embedded costs and the lower rates they would have to charge in a competitive environment. Possible responses to these pressures are listed to the right. The electricity industry in the U.S. is being dramatically restructured by state regulatory commissions and the Federal Energy Regulatory Commission. Efforts are underway to create a wholesale market for electricity, with wholesale prices to distributing utility companies no longer being regulated. Discussions in several states and at the FERC are aimed at revising the regulation of the structure, operation, and pricing of the

286

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

287

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

288

Review of tribological sinks in six major industries  

SciTech Connect

Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

1985-09-01T23:59:59.000Z

289

Made in China : the rise of the Chinese domestic firms in the information industry  

E-Print Network (OSTI)

This research uses a multi-case analysis approach to study China's catching-up as a late-industrialized economy in the information and communications technology (ICT) industries. The significant contributions of this study ...

Fan, Peilei, 1972-

2003-01-01T23:59:59.000Z

290

Metal casting industry of the future: An integrated approach to delivering energy efficiency products and services  

SciTech Connect

The Industries of the Future process is driven by industry. Through technology roadmaps, industry participants set technology priorities, assess the progress of R and D, and ultimately lead the way in applying research results. This approach to private-public partnerships ensures the most strategic allocation possible of limited resources for the development of new technologies and the enhancement of industrial processes. Based on industry`s request, OIT`s role is to help facilitate the Industries of the Future strategy and to support the development and deployment of technologies that will shape the future of the metal casting industry. Part of this role is to encourage industry to undertake long-term, sector-wide technology planning and to selectively cost-share with OIT in collaborative R and D activities that match OIT`s mission. OIT metal casting research requires a dollar for dollar industry cost share.

1998-12-01T23:59:59.000Z

291

Energy Efficiency Fund (Electric) - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

292

Industrial Distributed Energy: Combined Heat & Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Distributed Energy: Combined Heat & Power Industrial Distributed Energy: Combined Heat & Power Information about the Department of Energy's Industrial Technologies...

293

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Eligibility Commercial Industrial Local...

294

Industrial Oil Products Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the Industrial Oil Products Newsletter April 2013. Industrial Oil Products Newsletter April 2013 Industrial Oil Products Newsletter April 2013 ...

295

Sandia Combustion Research: Technical review  

SciTech Connect

This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

NONE

1995-07-01T23:59:59.000Z

296

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network (OSTI)

IGATE-E is an industrial energy analysis tool. The tool is intended to be a decision support and planning tool to a wide spectrum of energy analysts, engineers, researchers, government organizations, private consultants, industry partners, and alike. The tool applies statistical modeling to multiple datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using information from DOE's Industrial Assessment Center database (IAC-DB) and DOE's Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool utilizes the DOE EIA-MECS energy survey data to validate bottom-up estimates and permits several statistical examinations.

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

297

Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry  

Science Conference Proceedings (OSTI)

The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

NONE

1999-02-01T23:59:59.000Z

298

The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships  

Science Conference Proceedings (OSTI)

A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

NONE

1997-09-01T23:59:59.000Z

299

Development of mobile workforce management system for electricity supply industries  

Science Conference Proceedings (OSTI)

This research paper presents the features of a proposed Mobile Workforce Management System (MWMS) that will be used for the Electricity Supply Industries (ESI). The paper wraps up the types of related works that has been executed; the study on problems ... Keywords: electricity supply industry, mobile workforce management system

Faridah Hani Mohamed Salleh; Zaihisma Che Cob; Mohana Shanmugam; Siti Salbiah Mohamed Shariff

2009-12-01T23:59:59.000Z

300

The evolution of university-industry linkages-A framework  

Science Conference Proceedings (OSTI)

This qualitative study extends literature on research commercialization by examining the dynamic nature of university-industry linkages (UIL). Thirty in-depth interviews conducted in Australia and Germany/the Netherlands provide evidence of the different ... Keywords: Commercialization, Communication, I23, M31, O32, Relationship evolution, Trust, University industry linkages

Carolin Plewa; Nisha Korff; Claire Johnson; Gregory Macpherson; Thomas Baaken; Giselle Camille Rampersad

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ET Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

302

Industrial lighting handbook  

SciTech Connect

Technological advances in industrial lighting system components now make it possible to reduce lighting system consumption by up to 50% or more without loss of the benefits inherent in good quality electric illumination. Management involvement in decisions about industrial lighting is essential, however, and this document provides generalized information in lay terms to help decision-makers become familiar with the concerns that affect industrial environment and the financial well-being of their companies. The five sections (1) discuss the benefits of good lighting, (2) review certain major lighting issues and terms, (3) identify procedures for developing a lighting energy management plan, (4) identify lighting energy management options (LEMOs), and (5) discuss sources of assistance. 19 figures, 8 tables.

1985-01-01T23:59:59.000Z

303

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

304

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

305

INDUSTRIAL ASSESSMENT CENTER PROGRAM  

Science Conference Proceedings (OSTI)

Since its establishment in 1990, San Diego State Universitys Industrial Assessment Center (IAC) has served close to 400 small and medium-sized manufacturing plants in Southern California. SDSU/IACs efforts to transfer state-of-the-art technologies to industry have increased revenues, cultivated creativity, improved efficiencies, and benefited the environment. A substantial benefit from the program has been the ongoing training of engineering faculty and students. During this funding cycle, SDSU/IAC has trained 31 students, 7 of the graduate. A total of 92 assessments and 108 assessment days were completed, resulting in 638 assessment recommendations.

ASFAW BEYENE

2008-09-29T23:59:59.000Z

306

Industrial Assessment Center  

SciTech Connect

Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

Dr. Diane Schaub

2007-03-05T23:59:59.000Z

307

Solar industrial process heat  

DOE Green Energy (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

308

Geothermal Energy Industry Briefing Packet  

DOE Green Energy (OSTI)

The Earl Warren Legal Institute, part of the University of California at Berkeley, is a center for law-related interdisciplinary research and public service in areas of national social concern. Since 1975, we have worked with the U.S. Department of Energy and Lawrence Berkeley Laboratory on various projects addressing energy policy and environmental issues. We are now engaged in a major effort to identify current legal, economic and institutional obstacles to commercial development and use of geothermal energy sources. Geothermal resources--heat reservoirs beneath the earth's surface--have received increasing attention in recent years of growing energy consciousness, and much progress has been made toward understanding their nature, extent and uses. Encouraged by federal and state development programs, there now exists an active and growing community of geologists, geophysicists, engineers, drilling companies, developers and end-users of geothermal heat. However, Department of Energy studies indicate that current knowledge and available technology would support substantially broader use of the resource, particularly by private sector commercial, industrial and agricultural concerns. Accordingly, we are now seeking to determine the knowledge and attitudes of such entities toward geothermal use; the factors which will influence decisions to utilize geothermal or not; the perceived obstacles, if any, to expanded use in their own industries; and the types of government policies or programs which might minimize such obstacles. The industries we have chosen to approach have been targeted by others as potential geothermal users. However, we recognize that many firms today have little or no knowledge of the resource or of its potential applications. We have therefore prepared the following brief summary as an introduction for some, perhaps a refresher for others, and hopefully a stimulus for an exchange of ideas with all whose views we intend to solicit as our work proceeds.

Bressler, Sandra E.; Hanemann, Michael; Katz, Ira Benjamin; Nimmons, John T.

1976-01-01T23:59:59.000Z

309

The building materials industry in China: An overview  

SciTech Connect

The present study of China`s building materials industry is a collaborative work between the Energy Research Institute (ERI) of the State Planning Commission of China and Lawrence Berkeley Laboratory (LBL) of the US Department of Energy (USDOE).

Liu, Feng [Lawrence Berkeley Lab., CA (United States); Wang, Shumao [State Planning Commission, People`s Republic of China, (China). Energy Research Institute

1994-12-01T23:59:59.000Z

310

Appliances Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Appliances Research Emerging Technologies » Appliances Research Appliances Research The Emerging Technology team conducts research into residential and commercial appliances. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in driving research in energy efficient technologies, with the goal of realizing 20% energy savings relative to a 2010 baseline. Appliance research focuses on refrigerators, washers, and dryers. Refrigerators Photo of a stainless steel refrigerator. Refrigerators have become substantially more energy efficient over the years, using less energy while also providing more space. While appliance standards for refrigerators have helped, continued research into new ways of improving refrigerators in the

311

Technology Research, Standards, and Codes  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) is committed to improving the energy efficiency of residential buildings in a cost-effective manner. By working with teams of researchers, industry, and organizations...

312

Session: Wind industry project development  

DOE Green Energy (OSTI)

This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

Gray, Tom; Enfield, Sam

2004-09-01T23:59:59.000Z

313

Distribution System Research Priorities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark McGranaghan Mark McGranaghan EPRI ELECTRICITY DISTRIBUTION SYSTEM WORKSHOP Crystal City, VA September 24, 2012 Distribution System Research Priorities 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. The Power System Roadmaps start with a Vision Future Power System will require new technologies, infrastructure, and control systems 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. R&D Roadmaps - Coordination is Critical Roadmaps are living documents 4 © 2012 Electric Power Research Institute, Inc. All rights reserved. Developing the next generation grid * Industry needs new technologies, communication protocols, and information management methods - More variable generation sources and controllable loads - Aging infrastructure

314

Industrial Partnerships | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial Partnerships SHARE Industrial Partnerships ORNL takes great pride in its work with U.S. industry. Each year, the Industrial Partnerships team hosts more than 100 visits to ORNL by both large corporations and small companies to help our potential partners understand the capabilities and expertise that exist at the laboratory and the various mechanisms available to help facilitate collaboration. Mechanism for Partnering How do I get started exploring industrial partnerships at ORNL? As the nation's largest science and energy laboratory, it can sometimes be

315

Advanced Industrial Materials (AIM) Program annual progress report, FY 1997  

SciTech Connect

The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

NONE

1998-05-01T23:59:59.000Z

316

INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER  

SciTech Connect

The U. S. Department of Energys Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

MELINDA KRAHENBUHL

2010-05-28T23:59:59.000Z

317

Industrial cogeneration optimization program  

SciTech Connect

The purpose of this program was to identify up to 10 good near-term opportunities for cogeneration in 5 major energy-consuming industries which produce food, textiles, paper, chemicals, and refined petroleum; select, characterize, and optimize cogeneration systems for these identified opportunities to achieve maximum energy savings for minimum investment using currently available components of cogenerating systems; and to identify technical, institutional, and regulatory obstacles hindering the use of industrial cogeneration systems. The analysis methods used and results obtained are described. Plants with fuel demands from 100,000 Btu/h to 3 x 10/sup 6/ Btu/h were considered. It was concluded that the major impediments to industrial cogeneration are financial, e.g., high capital investment and high charges by electric utilities during short-term cogeneration facility outages. In the plants considered an average energy savings from cogeneration of 15 to 18% compared to separate generation of process steam and electric power was calculated. On a national basis for the 5 industries considered, this extrapolates to saving 1.3 to 1.6 quads per yr or between 630,000 to 750,000 bbl/d of oil. Properly applied, federal activity can do much to realize a substantial fraction of this potential by lowering the barriers to cogeneration and by stimulating wider implementation of this technology. (LCL)

1980-01-01T23:59:59.000Z

318

Industrial Assessment Center  

SciTech Connect

This project involved providing technical assistance to help small and medium size industries in Wisconsin to reduce operating costs by managing energy, waste and productivity. The project helped save 525 companies on average about $40,000 per year. Under the direction of Dr. Saxena, more than twenty undergraduate and ten graduate students were trained in energy, waste, and productivity management.

Umesh K. Saxena

2009-06-04T23:59:59.000Z

319

Synfuels industry opportunities  

SciTech Connect

Presentations made at the seminar are included in this volume. The present state in the development of synthetic fuels and the creation of the Synthetic Fuels Corporation are discussed by representatives of federal agencies and private industry. Separate abstracts of individual items were prepared for inclusion in the Energy Data Base and Energy Abstracts for Policy Analysis. (DMC)

Hill, R.F.; Boardman, E.B.; Heavner, M.L. (eds.)

1981-01-01T23:59:59.000Z

320

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Industrial/manufacturing resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial/manufacturing resources Industrial/manufacturing resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

322

Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants |  

NLE Websites -- All DOE Office Websites (Extended Search)

Brochure: ENERGY STAR for Commercial Buildings and Industrial Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

323

Development of a Performance-based Industrial Energy Efficiency Indicator  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Performance-based Industrial Energy Efficiency Development of a Performance-based Industrial Energy Efficiency Indicator for Food Processing Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports

324

Data Center Industry Leaders Agreement on Energy Efficiency Guiding  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Leaders Agreement on Energy Efficiency Industry Leaders Agreement on Energy Efficiency Guiding Principles, February 1, 2010 Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

325

Advanced Industrial Materials Program. Annual progress report, FY 1993  

SciTech Connect

Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

Stooksbury, F. [comp.

1994-06-01T23:59:59.000Z

326

ENERGY STAR Industrial Plant Certification: Instructions for applying |  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Certification: Instructions for Industrial Plant Certification: Instructions for applying Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

327

ENERGY STAR Industrial Plant Certification: Professional Engineers' Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Certification: Professional Industrial Plant Certification: Professional Engineers' Guide Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

328

Role of fuel cells in industrial cogeneration  

Science Conference Proceedings (OSTI)

Work at the Institute of Gas Technology on fuel cell technology for commercial application has focused on phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. The author describes the status of the three technologies, and concludes that the MCFC in particular can efficiently supply energy in industrial cogeneration applications. The four largest industrial markets are primary metals, chemicals, food, and wood products, which collectively represent a potential market of 1000 to 1500 MEe annual additions. At $700 to $900/kW, fuel cells can successfully compete with other advanced systems. An increase in research and development support would be in the best interest of industry and the nation. 1 reference, 5 figures, 5 tables.

Camara, E.H.

1985-08-01T23:59:59.000Z

329

Work with EETD scientists on cooperative research?  

NLE Websites -- All DOE Office Websites (Extended Search)

Work with EETD scientists on cooperative research? EETD invites R&D collaboration with scientists who have a mutual interest in the research areas we cover, from industry and the...

330

Proceedings of the 1992 DOE-industry thermal distribution conference  

Science Conference Proceedings (OSTI)

The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE's current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

Andrews, J.W. (ed.)

1992-06-01T23:59:59.000Z

331

Proceedings of the 1992 DOE-industry thermal distribution conference  

Science Conference Proceedings (OSTI)

The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE`s current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

Andrews, J.W. [ed.

1992-06-01T23:59:59.000Z

332

Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995  

Science Conference Proceedings (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

NONE

1996-04-01T23:59:59.000Z

333

The Department of Energy's Solar Industrial Program: New ideas for American industry  

DOE Green Energy (OSTI)

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

334

The Department of Energy's Solar Industrial Program: New ideas for American industry  

SciTech Connect

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

335

Industrial Technologies Success Stories - Energy Innovation Portal  

Bookmark Industrial Technologies Success Stories - Energy Innovation Portal on Google; Bookmark Industrial Technologies Success Stories ...

336

Photovoltaic industry manufacturing technology. Final report  

DOE Green Energy (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

337

Industrial Energy Procurement Contracts  

E-Print Network (OSTI)

Rates are going down and services are improving! Or are they? As opportunities to directly contract for energy expand from the larger industrials to include mid-market companies, existing energy supply and service contracts will be renegotiated and new ones developed. Many of these mid-level industrial customers typically lack in-house expertise on energy procurement, yet their operations use significant amounts of energy. This paper looks at some of the issues involved in the main terms of a procurement contract, as well as issues in contract formation and termination. Finally the paper reviews some of the recent energy aggregation and outsourcing deals to highlight some that worked and some that didn't.

Thompson, P.; Cooney, K.

2000-04-01T23:59:59.000Z

338

REGULATING HAWAII'S PETROLEUM INDUSTRY  

E-Print Network (OSTI)

This study was prepared in response to House Resolution No. 174, H.D. 2, which was adopted during the Regular Session of 1995. The Resolution requested the Legislative Reference Bureau to conduct a study to obtain the views of selected state agencies and representatives of Hawaii's petroleum industry in order to assist the Legislature in formulating policies that protect the interests of Hawaii's gasoline consumers. The Resolution sought information and the views of survey participants on a broad range of proposals to regulate Hawaii's petroleum industry. This study reviews each of these proposals in terms of their value to consumers, and explores both regulatory policy options and alternatives to regulation available to state lawmakers. The Bureau extends its sincere appreciation to all those whose participation and cooperation made this study possible. A list of contact persons, including the names of survey participants and others who helped to contribute to this study, is contained in Appendix B.

Mark J. Rosen; Wendell K. Kimura

1995-01-01T23:59:59.000Z

339

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

340

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Research at the University of Bath  

E-Print Network (OSTI)

the potential energy demand reductions that are achievable across the whole of the UK industrial sector of Science Review' in industrial energy efficiency commissioned by the UK Government's Office of Science oil and research into an "intelligent" lubrication oil system. This research is on target to reduce

Collomosse, John

342

Third Energy Research Summit Dr. Vania Croce  

E-Print Network (OSTI)

, nuclear and conventional energy, transmission and supply were present. This document reports the outputs could coordinate joint research council/industry summer schools, regionally based industrial energyThird Energy Research Summit May 2007 Author: Dr. Vania Croce Portfolio Manager - Energy EPSRC

343

Promoting Energy Efficiency in Cement Making: The ENERGY STAR(R) for Industry Program  

E-Print Network (OSTI)

industry. For information Energy Guide for Cement Making,Bureau, and (2) the Energy Guide, which discusses a wideair system efficiency. The Energy Guides are researched and

Masanet, Eric; Worrell, Ernst

2007-01-01T23:59:59.000Z

344

Smart Grid Technologies for Efficiency Improvement of Integrated Industrial Electric System.  

E-Print Network (OSTI)

?? The purpose of this research is to identify the need of Smart Grid Technologies in communication between industrial plants with co-generation capability and the (more)

Balani, Spandana

2011-01-01T23:59:59.000Z

345

Industrial Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

346

Evolution of industrial automation  

Science Conference Proceedings (OSTI)

Automation has been of high priority for the manufacturing sector, from Ford's first set of Model-T Assembly lines in the early 1920s to the modern factory floor. With appropriate automation, the aim was to rationalise the production and keep ... Keywords: Ethernet, architecture, automated manufacturing, bus topology, control servers, distributed control, economies of scale, embedded intelligence, functionality, fuzzy logic, global village, graphic panel, industrial automation, networking, networks

R. Murugesan

2006-03-01T23:59:59.000Z

347

Industrial - Utility Cogeneration Systems  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise wasted energy to process systems requiring energy in the form of steam or heat. Texas has a base load of some 75 million pounds per hour of process steam usage, of which a considerable portion could be generated through cogeneration methods. The objective of this paper is to describe the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology. This paper illustrates the technical and economical benefits of cogeneration in addition to demonstrating the fuel savings per unit of energy required. Specific examples show the feasibility and desirability of cogeneration systems for utility and industrial cases. Consideration of utility-industrial systems as well as industrial-industrial systems will be described in technical arrangement as well as including a discussion of financial approaches and ownership arrangements available to the parties involved. There is a considerable impetus developing for the utilization of coal as the energy source for the production of steam and electricity. In many cases, because of economics and site problems, the central cogeneration facility will be the best alternative for many users.

Harkins, H. L.

1979-01-01T23:59:59.000Z

348

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

349

Industrial Energy Use Indices  

E-Print Network (OSTI)

Energy use indices and associated coefficients of variation are computed for major industry categories for electricity and natural gas use in small and medium-sized plants in the U.S. Standard deviations often exceed the average EUI for an energy type, with coefficients of variation averaging 290% for 8,200 plants from all areas of the continental U.S. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energys national Industrial Assessment Center database.

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

350

Application - Industrial Partnerships Office  

Current Weather. Protocol Office. Where to stay. Tri-Valley ... Emphasis has been placed on analysis tools used by research seismologists in the detailed study of ...

351

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron X-ray Techniques for Industrial Research Synchrotron X-ray Techniques for Industrial Research Techniques http://www.sc.doe.gov/bes/synchrotron_techniques/ Spectroscopy Spectroscopy is used to study the energies of particles emitted or absorbed by samples that are exposed to beam to determine the characteristics of chemical bonding and electron energy band structure. Extended X-Ray Absorption Fine Structure Spectroscopy (EXAFS) X-Ray Absorption Near Edge Spectroscopy (XANES) Hard X-ray Photoelectron Spectroscopy (HAXPES) Scanning X-Ray Microscopy: Micro-XRF, -XAFS, -XRD Soft X-Ray Absorption and Scattering Infrared Vibrational Microspectroscopy Photoemission Electron Microscopy / Low-Energy Electron Microscopy (PEEM/LEEM) Scattering/Diffraction Scattering/diffraction makes use of the patterns of scattered x-rays when

352

NETL: Research Capabilities and Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities and Facilities Research Capabilities and Facilities Onsite Research Research Capabilities and Facilities Lab Worker As the lead field center for the DOE Office of Fossil Energy's research and development program, NETL has established a strong onsite research program conducted by Federal scientists and engineers. Onsite R&D – managed by NETL's Office of Research and Development – makes important contributions to NETL's mission of implementing a research, development, and demonstration program to resolve the environmental, supply, and reliability constraints of producing and using fossil resources. With its expert research staff and state-of-the-art facilities, NETL has extensive experience in working with the technical issues related to fossil resources. Onsite researchers also participate with NETL's industrial partners to solve problems that become barriers to commercialization of power systems, fuels, and environmental and waste management. Onsite research capabilities are strengthened by collaborations with well-known research universities.

353

Water Disclosure in the Electric Power Industry  

Science Conference Proceedings (OSTI)

This topical brief provides an overview of two of the prominent water disclosure mechanisms affecting the electric power industry, the Global Reporting Initiative (GRI) and Carbon Disclosure Project Water Disclosure (CDP Water), and identifies connections to relevant EPRI research. The document was developed through EPRI's Program 55 Strategic Water Issues, and the Energy Sustainability Interest Group. This collaborative interest group was launched in 2008 and is made up of nearly 30 companies representi...

2011-06-17T23:59:59.000Z

354

Energy Conservation Projects to Benefit the Railroad Industry  

DOE Green Energy (OSTI)

The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.

Clifford Mirman; Promod Vohra

2009-12-31T23:59:59.000Z

355

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

356

Sandia Combustion Research Program  

DOE Green Energy (OSTI)

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.) [eds.

1988-01-01T23:59:59.000Z

357

Sponsored Research | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsored Research Sponsored Research While the Department of Energy is the primary sponsor of research at BNL there are many ways in which industries can partner with BNL's scientific talent to accelerate innovation in their commercial field. If you're interested in learning more about the sponsored research program contact Mike Furey, (631) 344-2103. CRADA Work for Others For Small Business ACT Cooperative Research and Development Agreements (CRADA) CRADAs provide a flexible way for non-federal entities to access the unique technologies, facilities, and expertise available at BNL on a collaborative basis. Research work under a CRADA may be performed at BNL, at the laboratory of the non-federal participants(s), or at both institutions, and work is usually supported by contributions from all participants in the

358

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

359

Industrial Applications for Renewable Resources  

Science Conference Proceedings (OSTI)

This CD-ROM contains the PowerPoint presentations from the presenters from Industrial Applications of Renewable Resources: A Conference on Sustainable Technologies. Industrial Applications for Renewable Resources Biofuels and Bioproducts and Biodiesel DV

360

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. The bottom line for Texas industry is savings in energy and materials, cost-effective environmental compliance, increased productivity, reduced waste, and enhanced product quality. The state program leverages the programs and tools of the federal Department of Energy's Industries of the Future. At the federal level, there are nine Industries of the Future: refining, chemicals, aluminum, steel, metal casting, glass, mining, agriculture, and forest products. These industries were selected nationally because they supply over 90% of the U.S. economy's material needs and account for 75% of all energy use by U.S. industry. In Texas, three IOF sectors, chemicals, refining and forest products, account for 86% of the energy used by industry in this state.

Ferland, K.

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Empirical essays in industrial organization  

E-Print Network (OSTI)

In this dissertation, I present three empirical essays that encompass topics in industrial organization. The first essay examines the degree of competition and spatial differentiation in the retail industry by exploiting ...

Chiou, Lesley C

2005-01-01T23:59:59.000Z

362

Industry Professional | Open Energy Information  

Open Energy Info (EERE)

Industry Professional Jump to: navigation, search How to GET INVOLVED WITH OpenEI Get involved with OpenEI Programmer.jpg Industry Professional Do you have valuable information...

363

Deaerators in Industrial Steam Systems  

SciTech Connect

This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

364

Research Opportunities  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Research Opportunities. ... NRC Postdoctoral Research Associateships Program; NIST NRC Program Description. ...

2013-04-22T23:59:59.000Z

365

Partnering Highlights - Industrial Partnerships Office  

Lawrence Livermore National Laboratory (LLNL) is participating in six industry projects for the advancement of energy technologies using high ...

366

Multiphase Flow Modeling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Chris Guenther, Director Computational Science Division RUA Spring Meeting, Morgantown, WV March 2013 2 NETL's Multiphase Flow Science Team * The Multiphase Flow Science Team develops physics-based simulation models to conduct applied scientific research. - Development of new theory - Extensive on-site and collaborative V&V efforts and testing - Engages in technology transfer - Applies the models to industrial scale problems. 3 Why is Multiphase Flow Science Needed? * Industry is increasingly relying on multiphase technologies to produce clean and affordable energy with carbon capture. * Unfortunately, the presence of a solid phase reduces the operating capacity of a typical energy device from its original design on average by 40% [1].

367

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

368

Recent developments: Industry briefs  

SciTech Connect

The January 1992 Industry Briefs includes brief articles on: (1) the startup of Chinese and Indian nuclear units, (2) agreements between China and Pakistan for the construction of a nuclear unit, (3) international safeguards agreements, (4) restart of a nuclear unit in Armenia, (5) closure of a German nuclear waste site, (6) restructuring of the Hungarian state-owned utility MVMT, (7) requests for bids for Wolsong Units 3 and 4, (8) signing of the European Energy charter, (9) continued operation of the MAGNOX reactors, and (10) changing Canadian requirements on uranium.

NONE

1992-01-01T23:59:59.000Z

369

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

370

The changing battery industry  

SciTech Connect

This report provides an economic and technological assessment of the electrical battery industry, highlighting major trends. Among those systems considered are lithium-based, sodium-sulfur nickel-zinc, nickel-iron, nickel-hydrogen, zinc-chloride, conductive polymer, and redox cells. Lead-acid, nickel-cadmium, and manganese dioxide-based batteries and direct solar power and fuel cells are discussed in relation to these new techniques. New applications, including electric vehicles, solar power storage, utility load leveling, portable appliances, computer power and memory backup, and medical implants are discussed. Predictions and development scenarios for the next twenty years are provided for the U.S. market.

Not Available

1987-01-01T23:59:59.000Z

371

Recent developments: Industry briefs  

Science Conference Proceedings (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s September 1992 `Recent Developments` section. Specific iems discussed include: (1) merger of Urangesellschaft and Interuran, (2) cessation of uranium mining in Bulgaria, (3) record operation of Limerick-2 and Tokai-2, (4) MRS in Wyoming, (5) low-level waste facilities at Perry, (6) closure of Trojan, (7) restart of Kozloduy-6, (8) agreements between Cogema and Minatom, (9) planning for a large nuclear power plant in Japan moves forward, (10) order of a new reactor at Civaux, (11) relicensing of Yankee Rowe, (12) operation of Bradwell-2, and (13) high-level waste management in Japan.

NONE

1992-09-01T23:59:59.000Z

372

Recent developments: Industry briefs  

Science Conference Proceedings (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s August 2992 `Recent Developments` section. Specific items discussed include: (1) non-proliferation in Argentina and Brazil, (2) a joint-venture uranium leaching project in the USA, (3) life extension for Yankee Rowe, (4) contracts for nuclear plants in the Republic of Korea, (5) cleanup of Wismut, (6) record operation of Three Mile Island-1, Oconee-1, and Cook-1, (7) closure of Kozloduy units, (8) China`s ascension to the non-proliferation treaty, and (9) a centrifuge enrichment facility in Japan.

NONE

1991-08-01T23:59:59.000Z

373

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

374

The impact of government policies on industrial evolution : the case of China's automotive industry  

E-Print Network (OSTI)

Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

Luo, Jianxi

2006-01-01T23:59:59.000Z

375

SUMMARY NOTES RESEARCH NEEDS SESSION*  

E-Print Network (OSTI)

Research Institute U.S. Department of Energy, Office of Industrial Programs U.S. Department of Energy, Argonne National Laboratory U.S. Department of Energy, Solar Energy Research Institute U.S. Department of Energy, Community Technology Systems Branch U.S. Environmental Protection Agency, Office of Solid Wastes

Columbia University

376

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Industries Jump to: navigation, search Name Guardian Industries Place Auburn Hills, MI Website http://www.guardian.com/ References Results of NREL Testing (Glass Magazine)[1] Guardian News Archive[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Guardian Industries is a company located in Auburn Hills, MI. References ↑ "Results of NREL Testing (Glass Magazine)" ↑ "Guardian News Archive" Retrieved from "http://en.openei.org/w/index.php?title=Guardian_Industries&oldid=381719" Categories: Clean Energy Organizations

377

Outlook for Industrial Energy Benchmarking  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common understanding of opportunities for energy efficiency improvements and provide additional information to improve the competitiveness of U.S. industry. The EPA's initial benchmarking efforts will focus on industrial power facilities. The key industries of interest include the most energy intensive industries, such as chemical, pulp and paper, and iron and steel manufacturing.

Hartley, Z.

2000-04-01T23:59:59.000Z

378

Energy conservation in the primary aluminum and chlor-alkali industries  

SciTech Connect

The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

1980-10-01T23:59:59.000Z

379

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

380

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary  

SciTech Connect

This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

NONE

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Research Results and Further Opportunities Resulting from Collaboration with Electricity Research Centre, University College Dublin  

Science Conference Proceedings (OSTI)

In 2010, the Electric Power Research Institute (EPRI) research program on Integration of Bulk System Variable Generation (Program 173) funded the Electricity Research Centre (ERC). The ERC is an industry/university research collaboration, funded by 14 industry entities as well as other government funding agencies, based in electrical engineering at University College Dublin with an energy economics branch at Trinity College Dublin. The work performed focuses primarily on renewable generation integration;...

2011-08-30T23:59:59.000Z

382

Federal Energy Management Program: Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Facilities to someone by E-mail Share Federal Energy Management Program: Industrial Facilities on Facebook Tweet about Federal Energy Management Program: Industrial...

383

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Performance for Industrial Refrigeration Systems. M.Sc.the performance of industrial refrigeration systems. SystemIndustrial Technologies Cooling and Storage (Food-4) Refrigeration

2000-01-01T23:59:59.000Z

384

Litigation in Argentina: challenging the tobacco industry.  

E-Print Network (OSTI)

Profits over people: Tobacco Industry Activities to MarketBarnoya J, Glantz S. Tobacco industry success in preventingL. Implications of the tobacco industry documents for public

Flores, M L; Barnoya, J; Mejia, R; Alderete, E; Prez-Stable, E J

2006-01-01T23:59:59.000Z

385

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Efficient Technologies for Industry Ernst Worrell Staff20036, USA ABSTRACT U.S. industry consumes approximately 37%efficient technologies for industry, focusing on over 50

2004-01-01T23:59:59.000Z

386

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS Industrial Users' Program Industry Home | Synchrotron Techniques | Battery Lab | Science Highlights | Industrial Program Coordinator | Publications Battery Lab NSLS users are...

387

Industrial Partnerships - Oak Ridge National Laboratory | ORNL  

Industrial Partnerships Overview. ORNL takes great pride in its work with U.S. industry, both large and small. Each year, the Industrial Partnerships team hosts more ...

388

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

389

Case Study of the California Cement Industry  

E-Print Network (OSTI)

2 compares cement industry electricity and natural gas useTable 2. Cement Industry Electricity and Natural GasFigure 2. Cement Industry End Use Electricity Consumption

Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

2005-01-01T23:59:59.000Z

390

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Name Industrial Energy Audit Guidebook: Guidelines...

391

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the power and transportation industries. For a hydrogen-based energy structure, fossil fuel-based technologies will be required to generate hydrogen for various uses including...

392

Research - CECM  

E-Print Network (OSTI)

Our research is outlined our research proposals below. Samples of completed research may be found under "Sample Papers" and under "Project Highlights" on ...

393

Design of Industrial Process Refrigeration Systems  

E-Print Network (OSTI)

When considering electric driven refrigeration compressors, proper integration with the process may result in reduced power consumption. However, the total utility situation must be considered when evaluating the compressor driver. Conversion from steam drivers to electric drivers may be more economical when considering proper process integration. These questions and various scenarios must be addressed in light of the total process requirements and constraints. During the last few years, Union Carbide has successfully applied ADVENT technology to several complex processes that utilize refrigeration systems. In most cases the design of a complex refrigeration system in isolation (i.e., without considering process integration) generally results in non-optimum refrigeration levels and excessive refrigeration consumption. By applying ADVENT Process Integration Technologv to these non-optimal designs, retrofit projects have emerged that clearly identify how to optimize the existing design with good project economics. This paper presents the results of an ADVENT Process Integration Study for the Electric Power Research Institute (EPRI) of Palo Alto, California. The study objective was to demonstrate process synthesis techniques for retrofit design in two industrial refrigeration intensive processes: an olefins process and a beer brewery process. Study results for each retrofit design are explained along with generalized guidelines for application to other processes. An industry scoping portion of the study is discussed in terms of identifying refrigeration intensive processes. Specific and general conclusions are presented to help facilitate proper industrial refrigeration system design throughout the industry.

Witherell, W. D.

1987-09-01T23:59:59.000Z

394

Industrial Partnership Prosperity Game{trademark}  

Science Conference Proceedings (OSTI)

Prosperity Games TM are an outgrowth and adaptation move/countermove and seminar War Games. Prosperity Games TM are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games TM are unique in that both the game format and the player contributions vary from game to game. This report documents the Industry Partnership Prosperity Game sponsored by the Technology Partnerships and Commercialization Center at Sandia National Laboratories. Players came from the Sandia line organizations, the Sandia business development and technology partnerships organizations, the US Department of Energy, academia, and industry The primary objectives of this game were to: explore ways to increase industry partnerships to meet long-term Sandia goals; improve Sandia business development and marketing strategies and tactics; improve the process by which Sandia develops long-term strategic alliances. The game actions and recommendations of these players provided valuable insights as to what Sandia can do to meet these objectives.

Boyak, K.; Berman, M.; Beck, D.

1998-02-01T23:59:59.000Z

395

Modular Industrial Solar Retrofit fact sheet  

SciTech Connect

The MISR project has two goals. One is to assist industry in developing viable Solar Energy Systems which have high reliability and low cost because they do not require tailored engineering and installation for each industrial site. The collector field, piping and steam generation equipment are pre-engineered to be suitable for a wide range of industrial steam applications. This is the Modular Concept. The second goal is to fabricate, install, and test qualification test systems (representative of full-size MISR designs in all but the size of the collector field) to determine design quality, fabrication and installation correctness, and system cost. This activity allows the designers to produce the first MISR system, experimentally verify its operation and performance before committing to large scale solar installations, thereby avoiding the risks associated with the first system. It provides the potential industrial user with information upon which to base solar energy decisions. Five separate system designs are being developed under the MISR project. Four of the designs are being tested at Sandia National Laboratories at Albuquerque, New Mexico and one is being tested at the Solar energy Research Institute in Golden, Colorado.

1981-12-31T23:59:59.000Z

396

Advanced Photon Source Industrial Liaison Office | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Liaison Office Industrial Liaison Office registration page New to Synchrotron Radiation New to the APS Already a User Advanced Photon Source Industrial Liaison Office APS Welcome to the Advanced Photon Source Welcome to the Advanced Photon Source (APS) at Argonne National Laboratory. We are one of five synchrotron radiation light sources operated as national user facilities by the U.S. Department of Energy's Office of Science. The APS is open to everyone who can utilize extremely bright x-ray photon beams for high-value research. This premier national research facility provides these x-ray beams to more than 5,000 scientists from all 50 United States, the District of Columbia, Puerto Rico, and several foreign countries. These scientists come to the APS from industry, universities,

397

Workforce Trends in the Electric Utility Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trends in the Electric Utility Industry Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. Workforce Trends in the Electric Utility Industry More Documents & Publications Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

398

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

399

Large-Scale Industrial CCS Projects Selected for Continued Testing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4 billion effort to capture carbon dioxide (CO2) from industrial sources for storage or beneficial use. The first phase of research and development (R&D) included $21.6 million in Recovery Act funding and $22.5 million in private funding for a total initial investment of $44.1 million.

400

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issued: February 9, 2012 Issued: February 9, 2012 BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ORDER Case Number: 2011-SW-2912 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Zoe Industries, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated against Respondent pursuant to 10 C.F.R. § 429.122 by Notice of Proposed Civil Penalty, alleging that Respondent distributed in commerce in the United States the Giessdorf eight-jet basic model showerhead, SKU 150043, which failed to meet the applicable standard for water usage. See 10 C.F.R. § 430.32(p). 2. The DOE and Respondent have negotiated the terms of the Compromise Agreement

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ESCO Industry in China  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ESCO Development in ESCO Development in China China-America EE Forum 2011.5.6, S.F Contents Fast development 1 Great potential 2 Opportunities & Challenges 3 Function of EMCA 4 China Energy Conservation project  Officially started in 1998;  It is a key international cooperation project in the field of energy conservation by Chinese government and World Bank/GEF;  The main purpose of the project is to promote Energy Performance Contracting (EPC) mechanism and develop ESCO industry in China Project progress-1 st phase 3 pilot ESCOs: Beijing Liaoning Shandong Phase I EC information Dissemination Center(ECIDC) Project progress-2 nd phase EMCA Phase II I& G New and Potential ESCOs Technical support Financial support Project Progress- 2 nd Phase EMCA---provide practical technical

402

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

403

and Industry Dynamics  

E-Print Network (OSTI)

We assess the long-run dynamic implications of market-based regulation of carbon dioxide emissions in the US Portland cement industry. We consider several alternative policy designs, including mechanisms that use production subsidies to partially offset compliance costs and border tax adjustments to penalize emissions associated with foreign imports. Our results highlight two general countervailing market distortions. First, following Buchanan (1969), reductions in product market surplus and allocative inefficiencies due to market power in the domestic cement market counteract the social benefits of carbon abatement. Second, tradeexposure to unregulated foreign competitors leads to emissions leakage which offsets domestic emissions reductions. Taken together, these forces result in social welfare losses under policy regimes that fully internalize the emissions externality. In contrast, market-based policies that incorporate design features to mitigate the exercise of market power and emissions leakage can deliver welfare gains. 1

Meredith Fowlie; Mar Reguant; Stephen P. Ryan; Meredith Fowlie; Mar Reguant; Stephen P. Ryan

2013-01-01T23:59:59.000Z

404

Industrial Heat Recovery - 1982  

E-Print Network (OSTI)

Two years ago I summarized 20 years of experience on Industrial Heat Recovery for the Energy-source Technology Conference and Exhibition held in New Orleans, Louisiana. At the end of that paper I concluded with brief advice on 'How to specify heat recovery equipment.' The two years which have elapsed since then have convinced me that proper specification assures the most reliable equipment at the lowest price. The most economical specification describes the operating and site data but leaves the design details for the supplier. A true specialist will be able to provide you with the latest technology at the best possible price. This paper explores the impact of specifications on heat recovery equipment and its associated cost.

Csathy, D.

1982-01-01T23:59:59.000Z

405

Comparison of National Programs for Industrial Energy Efficiency: Industry Brief  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to help industrial facilities find the right fit for their own ...

2013-02-25T23:59:59.000Z

406

PNNL: Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Story Research at PNNL Home Featured Highlights Archive Research Directorates Energy & Environment Fundamental & Computational Sciences National Security Facilities...

407

Guest Researchers  

Science Conference Proceedings (OSTI)

... If confidentiality of cooperative research results are desired a Cooperative Research and Development Agreement (CRADA) may be appropriate. ...

2012-07-06T23:59:59.000Z

408

Issues and Future Research Directions  

E-Print Network (OSTI)

RFID technology is currently considered as a key enabler of supply chain transformation. However, very little has been written about the deployment and use of RFID in the dairy industry. Drawing on an extensive literature review and a case example, this exploratory study seeks to present current applications and issues related to RFIDs adoption in the dairy industry and discuss future research directions.

S. F. Wamba; Alison Wicks; Samuel Fosso Wamba, Ph.D.; Alison Wicks Ph. D

2010-01-01T23:59:59.000Z

409

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

410

Tobacco Industry Political Activity in Colorado 1979-1995  

E-Print Network (OSTI)

7 TOBACCO INDUSTRY POLITICALcontrol. * Increased tobacco industry political spending atlocal communities. * The tobacco industry seeks preemptive

Monardi, Fred M. Ph.D.; O'Neill, Amanda; Glantz, Stanton A. Ph.D.

1996-01-01T23:59:59.000Z

411

Public-policy responsibilities in a restructured electricity industry  

SciTech Connect

In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

Tonn, B.; Hirst, E.; Bauer, D.

1995-06-01T23:59:59.000Z

412

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

413

User Facilities for Industry 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

414

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

415

Optimizing Industry Water Use: Evaluation of the Use of Water Stewardship Tools by Great Lakes Basin Industries  

Science Conference Proceedings (OSTI)

This document reports on a research study funded by Electric Power Research Institute (EPRI), the Great Lakes Protection Fund (GLPF), the National Council for Air and Stream Improvement (NCASI), and the Council of Great Lakes Industries (CGLI). The objective of the research was to understand and compare, with the assistance of case study applications, water resource stewardship assessment tools that have been proposed by different organizations. The report concludes that tools used to assess global water...

2012-06-13T23:59:59.000Z

416

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

417

Midstate Electric Cooperative - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial...

418

Industrial Energy Efficiency:Policy, Initiatives, & Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency:Policy, Initiatives, & Opportunities Industrial Energy Efficiency:Policy, Initiatives, & Opportunities presentation Industrial Energy Efficiency:Policy, Initiatives, &...

419

NIST Medical-Industrial Radiation Facility  

Science Conference Proceedings (OSTI)

Medical-Industrial Radiation Facility. ... Radiation hardness testing; Electron-beam sterilization; Beam diagnostics; Industrial CT scanning. ...

420

Carbon Emissions: Food Industry - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The wet corn milling industry emits almost a sixth of the energy-related carbon in the food industry. ...

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Exhibitor: SAINT GOBAIN INDUSTRIAL CERAMICS NORTON ...  

Science Conference Proceedings (OSTI)

SAINT GOBAIN INDUSTRIAL CERAMICS NORTON PRIMARY METALS ... Norton refractory products for the copper industry include shaft furnace liners, bricks,...

422

Barron Electric Cooperative - Commercial, Industrial, and Agricultural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program...

423

PowerSystemsSimulation NSERC Industrial Research Chair in  

E-Print Network (OSTI)

MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND POWER PLANT U Sourced Converters (VSC), Electro-magnetic Transients Simulations, HVDC Transmission. Abstract This paper. For distant offshore wind power plants, high voltage dc (HVDC) transmission becomes favourable Lpi q

Chaudhary, Sanjay

424

NREL: Wind Research - NWTC and Industry Partners Design a Leading...  

NLE Websites -- All DOE Office Websites (Extended Search)

and a high-efficiency power converter. Illustration by Josh Bauer, NREL The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), along with...

425

2007-2008 Industrial & Economic Development Research (IEDR) Grant Recipients  

E-Print Network (OSTI)

for Rehabilitation and Fitness Robert Hamers Chemistry Carbon Nanofiber Supercapacitors and Supercapacitor

Liblit, Ben

426

Changes related to "ConSol (Building Industry Research Alliance...  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

427

Praise and suggestions for fusion research from a utility industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Select and View High Resolution Images to Download Learn More Engineering Fusion energy Fusion reactor design Inertial confinement fusion Nuclear energy Plasma physics Tokamaks...

428

Scientists, engineers, and computer science; industry and research groups  

Science Conference Proceedings (OSTI)

The Communications Web site, http://cacm.acm.org, features more than a dozen bloggers in the BLOG@CACM community. In each issue of Communications, we'll publish selected posts or excerpts.twitterFollow us on Twitter ...

Mark Guzdial; Greg Linden

2011-03-01T23:59:59.000Z

429

Industry Interactive Procurement System (IIPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Interactive Industry Interactive Industry Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of Energy IIPS Functions Issue synopses, solicitations and related documents via the Internet Receive and Respond to Solicitation Specific Questions Receive proposal, bid or application information electronically Provide access to proposal information to authorized personnel through a web browser Conduct negotiations or obtain clarifications Issue award documents IIPS Security Security Plan in place and approved by DOE's Chief Information Officer System security tested by DOE's Computer Incident Advisory Capability team Security measures include: - Encryption on the IIPS server

430

Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

431

Technology Commercialization Showcase 2008: Industrial ...  

Source: McKinsey & Company, 2007. Industry represents 38% of the total global opportunity to reduce energy demand: 6 Agenda Market Overview ...

432

AMO Industrial Distributed Energy: Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficiency by 2020. The Industrial Energy EfficiencyCombined Heat & Power Working Group is developing a number of resources. News Energy Department Invests in...

433

Industrial SPP / Partner Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Cascade Energy Engineering 5257 NE MLK Jr. Blvd, Suite 301 Portland, OR 97211 Business: Industrial Energy Efficiency Dan Brown, Vice President Phone: 503-287-8488 Email:...

434

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for the Petroleum and Coal Products Industry, 1994. Petroleum refining is by far the largest component of the petroleum and ...

435

Greenline Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Place San Rafael, California Zip 94901 Product Small to medium scale biodiesel plants designer and producer. They also run a biodiesel plant in Vallejo,...

436

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

India Zip 416 109 Sector Wind energy Product Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries. References...

437

DMI Industries | Open Energy Information  

Open Energy Info (EERE)

OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References DMI Industries1 LinkedIn Connections CrunchBase Profile No...

438

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place Monroe, Michigan Zip 48161 Sector Wind energy Product Michigan-based wind turbine tower manufacturer. References Ventower Industries1 LinkedIn Connections CrunchBase...

439

Industry and Related Associations - TMS  

Science Conference Proceedings (OSTI)

The web site of IPC: Association Connecting Electronics Industries, 0, 883, Christina Raabe Eck, 2/12/2007 12:48 PM by Todd Osman. New Messages, Rating...

440

Tech Transfer - Industrial Partnerships Office  

LLNL-industry consortium advances high performance computing. A prototype computer system is demonstrating the use of flash memory in supercomputing.

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

sponsored avoided cost studies, energy efficiency programat various costs is with energy efficiency supply curves.Energy Efficiency in Industry Table 4 summarizes the benefit-cost

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

442

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Eolica Industrial Place Sao Paulo, Sao Paulo, Brazil Zip 01020-901 Sector Wind energy Product Brazil based wind turbine steel towers and...

443

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

444

Industrial Relations | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and introduce technologies to the private sector. How Industry Can Work with Argonne Argonne has many types of contractual agreements to meet the needs and interests of...

445

Industries in focus | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

446

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

447

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013...

448

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

449

NREL: Wind Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

450

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

451

NREL: Photovoltaics Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine. Research within these facilities focuses on targeted areas of interest that require specific tools, techniques, or unique capabilities. Our two main dedicated-use facilities are the following: Outdoor Test Facility (OTF) OTF researchers study and evaluate advanced or emerging PV technologies

452

BNL | Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven's Research Facilities Brookhaven's Research Facilities Tools of Discovery Brookhaven National Lab excels at the design, construction, and operation of large-scale, cutting-edge research facilities-some available nowhere else in the world. Each year, thousands of scientists from laboratories, universities, and industries around the world use these facilities to delve into the basic mysteries of physics, chemistry, biology, materials science, energy, and the environment-and develop innovative applications that arise, sometimes at the intersections of these disciplines. construction Brookhaven Lab is noted for the design, construction and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide. RHIC tunnel Relativistic Heavy Ion Collider

453

Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development The Environmental Energy Technologies Division performs analysis, research, and development leading to better energy technologies and reduction of adverse energy-related environmental impacts. The Division carries out research on batteries and fuel cells, electricity grid technologies, energy-efficient building technologies; energy analysis; environmental impacts of energy use, including on air quality and climate, indoor environmental quality, and sensors and materials for energy applications. Batteries and Fuel Cells Advanced energy technologies for low-cost rechargeable advanced electrochemical batteries and fuel cells for automotive and stationary applications. Buildings Energy Efficiency Working with industry to develop technologies for buildings that increase energy efficiency, and improve the comfort, health and safety of building occupants.

454

Operations Research Analysts  

U.S. Energy Information Administration (EIA) Indexed Site

Operations Research Analysts Operations Research Analysts The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Operations Research Analyst, whose work is associated with the development and main- tenance of energy modeling systems. Responsibilities: Operations Research Analysts perform or participate in one or more of the following important functions: * Develop, design, perform, and document a broad range of analyses and studies involving current and projected energy pricing, production, supply, and distribution, and consumption * Using computer programming skills and knowledge of energy industries and markets, designs and develops math-

455

Industrial Wastewater Minimization in the Chemicals and Petroleum Industries Industry Technology Commentary  

Science Conference Proceedings (OSTI)

Although water is employed in all major industries, the chemicals and petroleum industries stand out as relying on a vast amount of water for their production needs. In the petroleum industry, more than half of the water is used for cooling, followed by boiler feed (roughly one-third), and then process and other uses. In the chemicals industry, the majority of water is used for cooling, followed by process applications, and then boiler and other uses. Both of these market segments have made great strides...

2011-03-31T23:59:59.000Z

456

DOE Allocates NERSC Supercomputing Resources to Research Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to help researchers advance scientific knowledge and understanding and thereby to provide insight into major scientific and industrial issues." In addition to the projects at...

457

Industrial and agricultural process heat information user study  

DOE Green Energy (OSTI)

The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-03-01T23:59:59.000Z

458

Industrial Engineering Department Graduate Handbook  

E-Print Network (OSTI)

Handbook Page 4 Engineering Graduate Program if: (1) his/her undergraduate degree lacks fundamental by the student and the I.E. Graduate Advisor. #12;IE Department Graduate Handbook Page 5 4.2 Fundamental SystemsIndustrial Engineering Department Graduate Handbook Master of Science in Industrial Engineering

Rock, Chris

459

Ceramic Industries, Non-ferrous  

E-Print Network (OSTI)

Refractory applications for the steel, non-ferrous and cement industry Refractory applications for the ceramic, petrochemical and other industry Raw materials for refractories Users points of view Quality and Environment Processes, equipment and controls Development of refractory products

Refractories For Iron; Hydrocarbon Waste Incineration Pulp

2005-01-01T23:59:59.000Z

460

Uranium industry annual 1993  

SciTech Connect

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

AVLIS industrial access program  

Science Conference Proceedings (OSTI)

This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

Not Available

1984-11-15T23:59:59.000Z

462

Electronics Industry: Markets & Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronics Industry: Markets & Issues Electronics Industry: Markets & Issues Speaker(s): William M. Smith Date: March 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Electronics represents a unique opportunity to get in on the beginning of an incredible growth spurt, for an already huge industry; $400 billion/year in the U.S. now, moving up by 10%-20% per year in several sectors. This is quite unlike many other U.S. industrial sectors, which often involve mature businesses requiring assistance to stay afloat. The potential for forming business partnerships with electronics firms to deal with issues in energy efficiency, water availability/quality, air quality, productivity/yield, HVAC, power quality, wastewater, air emissions, etc., is staggering. The industrys oligopic nature provides serious opportunities

463

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative on-demand industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical static design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

464

Research Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer & Radiation Radiochemistry & Instrumentation Genome Dynamics BioenergyGTL Technology Centers Resources Research Research in the Life Sciences Division contributes to...

465

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective Diameter in Ice Clouds and Its Application to Terrestrial Radiation Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research:...

466

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

467

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Summaries Modeling the Sensitivity of Convection to Tropospheric Humidity Download a printable PDF Submitter: Del Genio, A. D., NASA Area of Research: General...

468

Research Library  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL Research Library: delivering essential knowledge services for national security sciences since 1947 About the Research Library The Basics Mission We deliver agile, responsive...

469

Research Gallery  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Gallery Research Gallery Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element Research Gallery Science serving society The Laboratory conducts leading-edge research in many areas of science and technology to help solve national problems related to energy, the environment, infrastructure, and health. Basic research conducted here enhances national defense and economic security. Exhibits you'll find in this gallery: Understanding Radiation LANSCE: Los Alamos Neutron Science Center Space Science Research Viewspace Environmental Monitoring and Research Nanotechnology: The Science of the Small Algae to Biofuels: Squeezing Power from Pond Scum Living with Wildfire: A Shared Community Experience

470

EPIC Industry Manual for Printed Circuit Boards  

Science Conference Proceedings (OSTI)

The EPRI Partnership for Industrial Competitiveness (EPIC) focuses on identifying opportunities for improving the industrial efficiency of selected industries that are customers of participating utilities. The goal is to examine opportunities to improve the efficiency and productivity and reduce environmental impacts of any particular industrial customer. EPIC's industry manuals are intended to provide broad coverage within a candidate industry, with different sectors of the industry linked by focusing o...

2000-11-17T23:59:59.000Z

471

Proceedings of the DOE/Industry Sensor Working Group meeting, Austin, Texas  

Science Conference Proceedings (OSTI)

This paper report contains topics presented at a sensor workshop group meeting. The topics describe measuring instruments of use in the pulp and paper industry. Topics include: measurement of solids fraction; process instrumentation research for the pulp paper industry; real-time non-contact optical surface motion monitor; on-machine sensors to measure paper mechanical properties; hierarchical intelligent control of industrial processes -- an in-parallel lime kiln application; proposal for research on lignin concentration measurement in pulping liquors; and advanced polymeric sensor materials for industrial drying.

Not Available

1988-11-01T23:59:59.000Z

472

Emerging Industrial Process Heating Technologies:An Update on Electrotechnologies, Applications, and Case Studies  

Science Conference Proceedings (OSTI)

In this technical update, emerging technologies as well as applications of electrotechnologies in industrial process heating are discussed. This technical update is a continuation of the Electric Power Research Institutes (EPRIs) research from the previous years and adds new state-of-the-art process heating technologies to the list. The main focus of the research is given to energy-intensive industrial sectors such as primary metals and metal treatment. Successful implementation of the ...

2013-12-07T23:59:59.000Z

473

A research doctorate for computing professionals  

Science Conference Proceedings (OSTI)

Looking back on the first decade of the Doctor of Professional Studies in Computing---an ambitious doctoral track for people who want to do research in an industrial setting.

Fred Grossman; Charles Tappert; Joe Bergin; Susan M. Merritt

2011-04-01T23:59:59.000Z

474

Gas Research Institute wetland research program  

SciTech Connect

As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry`s impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables.

Wilkey, P.L.; Zimmerman, R.E. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Inst., Chicago, IL (United States)

1992-12-01T23:59:59.000Z

475

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

PartTec PartTec ORNL, PartTec Inc. Licensing Agreement ORNL and PartTec sign licensing agreement (Front) ORNL Deputy Director for Science & Technology Thomas Zacharia and PartTec CEO Herschel Workman. (Back) Bruce Hannan (SNS), PartTec production manager Craig Kline, Rick Riedel (SNS), Jason Hodges (SNS) and Ron Cooper (SNS). The SNS guys were on the development team. Representatives from Oak Ridge National Laboratory and PartTec, an Indiana-based firm, formally signed a licensing agreement Thursday, Aug. 12, to market an advanced neutron detector system developed for the Spallation Neutron Source. The Shifting Scintillator Neutron Detector can determine the time and position of captured neutrons, which enables researchers to obtain very accurate time-of-flight measurements.

476

The industrial ecology of the iron casting industry  

E-Print Network (OSTI)

Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

Jones, Alissa J. (Alissa Jean)

2007-01-01T23:59:59.000Z

477

Profile of the chemicals industry in California: California industries of the future program  

E-Print Network (OSTI)

of the U.S. Chemical Industry. Berkeley, CA: Lawrence2004. Profile of the Petroleum Refining Industry inCalifornia - California Industries of the Future Program.

Galitsky, Christina; Worrell, Ernst

2004-01-01T23:59:59.000Z

478

Industry Structure Dynamics and the Nature of Technology in The Hearing Instrument Industry  

E-Print Network (OSTI)

Patterns of innovation in industry. Technology Review. Vol.alignment equipment industry. RAND Journal of Economics,in the hearing instrument industry. CISTEMA Working Paper,

Lotz, Peter

1998-01-01T23:59:59.000Z

479

The Impacts of IT on Firm and Industry Stucture: The Personal Computer Industry  

E-Print Network (OSTI)

company reports and industry averages, ,to Rapid Change in the PC Industry, California ManagementImpacts of IT on Firm and Industry Structure: The Personal

Dedrick, Jason; Kraemer, Kenneth L

2005-01-01T23:59:59.000Z

480

Profile of the chemicals industry in California: California industries of the future program  

E-Print Network (OSTI)

The industry consumes 8% of the electricity and 5% of theon electricity and gas use for the chemicals industry fromelectricity and natural gas users in the chemicals industry

Galitsky, Christina; Worrell, Ernst

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ducker research industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NETL: Gasification - Systems and Industry Analyses  

NLE Websites -- All DOE Office Websites (Extended Search)

E&P Technologies Gas Hydrates T&D and Refining Contacts E&P Technologies Gas Hydrates T&D and Refining Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification Turbines Fuel Cells FutureGen Advanced Research Contacts Industrial Capture & Storage Carbon Sequestration Program Overview Core R&D Infrastructure Global Collaborations FAQs Reference Shelf Contacts Hydrogen & Clean Fuels Hydrogen-from-Coal RD&D Contacts ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES NETL-RUA About NETL-RUA Research Technology Transfer Business Development Education News & Events Contacts Members Only Access TECHNOLOGY TRANSFER Available Technologies How to Partner Outreach Contacts SOLICITATIONS & BUSINESS Solicitations & Funding Opps. Related Links & Forms CDP/Financial Asst. Resources Unsolicited Proposals Available NETL Property Business Alert Notification IRS Tax Credit Program NETL Business Contacts

482

EPA recognizes industry leaders for beneficial use  

Science Conference Proceedings (OSTI)

The EPA's Coal Combustion Products Partnership C{sup 2}P{sup 2})recognized industry leaders in beneficial use during the second annual C{sup 2}P{sup 2} awards ceremony held 23 October 2006 in Atlanta, Georgia. The C{sup 2}P{sup 2} program is led by the EPA with the ACAA, DOE, FHWA, USDA - Agricultural Research Services (ARS), and Utilities Solid Waste Activities Group (USWAG). The award for overall achievement went to Great River Energy of Underwood, ND who partnered with more than 10 public and private organizations to develop an extensive market for fly ash from Coal Creek Station, the world's largest lignite-fired plant. Other awards were given for environmental achievement, innovation, partnership, research and communications and outreach. 9 photos.

Goss, D. [American Coal Ash Association (United States)

2007-07-01T23:59:59.000Z

483

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

484

Analysis of industrial load management  

SciTech Connect

Industrial Load Management, ILM, has increased the possibilities of changing load profiles and raising load factors. This paper reports on load profile measurements and feasible load management applications that could be implemented in industry e.g. bivalent systems for heating of premises and processes, load priority systems, energy storage and rescheduling processes or parts of processes due to differential electricity rates. Industrial load variations on hourly, daily and seasonal basis are treated as well as the impact by load management on load curves e g peak clipping, valley filling and increased off-peak electricity usage.

Bjork, C.O.; Karlsson, B.G.

1986-04-01T23:59:59.000Z

485

Industrial Carbon Management Initiative (ICMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

486

INDUSTRIAL SAFETY & HEALTH (ISH)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HEALTH (ISH) HEALTH (ISH) OBJECTIVE ISH.1 A comprehensive industrial safety & health program has been implemented to address applicable safety requirements at the TA 55 SST Facility. (Core Requirements 1, 3, and 4) Criteria * Procedures are implemented to address applicable industrial & health safety issues. * An adequate number of trained personnel are available to support SST facility regarding industrial safety & health concerns. * Portable fire extinguishers are appropriate for the class of fire they are expected to fight and are located within the proper distance. * Cranes, hooks, slings, and other rigging are plainly marked as to their capacity and inspected prior to use. * Forklifts and other powered lifting devices are adequately inspected.

487

Investor clienteles and industry factor-price exposure  

E-Print Network (OSTI)

The authors thank The Global Association of Risk Professionals (GARP) for funding. We are especially grateful to Brian Bushee for providing his data on institutional ownership classifications. We thank Paul Zarowin and seminar participants at New York University, the London Business School, INSEAD, the University of Rochester, and Southern Methodist University for helpful suggestions on an earlier version of the paper, and David Barker, Matt Billett, Brian Bushee, Eric Lie, Anand Vijh, and seminar participants at the University of Iowa for comments on this version. Minton acknowledges financial support from the Dice Center for Research in Financial Economics. Investor clienteles and industry factor-price exposure We find robust evidence of investor clienteles for industry factor-price exposure: Investor interest, measured using share turnover and the number of institutions that hold a firms stock, is positively associated with stocks industry exposure, and institutional investors systematically overweight (underweight) high (low) industry exposure stocks in their portfolios. Clientele effects are most pronounced in industries in which return correlation with the aggregate market is low, where the benefits from learning about industry risk and from substituting investment in high-exposure stocks for investment in the industry assets are greatest. Clientele effects are

Phil Davies; Bernadette A. Minton; Catherine Schrand

2010-01-01T23:59:59.000Z

488

Industrial operations and maintenance energy measures: A review  

SciTech Connect

Industry consumes a significant percentage of the total electric energy consumption both nationally and in the Pacific Northwest. However, industrial demand-side management (DSM) activities in this sector are underdeveloped and typically concentrate on new technologies and new equipment. An overlooked opportunity for electric resource development is through operations and maintenance (O and M) activities. The purpose of this project is to determine the industrial DSM potential that may be achieved through O and M practices both in the US and the Pacific Northwest. The overall goal of the project is to identify, quantify, confirm, and develop conservation resources that can be achieved from the industrial sector through O and M practices and energy measures. The results of the study identify a significant electric resource potential available through improved O and M activities in industry. Several O and M type energy-saving measures that increase efficiencies and reduce loads are identified and estimates of potential energy savings associated with each measure are presented. Systems identified with the most potential include compressed-air systems; motors and motor drives; lighting; heating, ventilating and air conditioning (HVAC); and control systems. The results of the research show that industrial electric energy consumption can be notably reduced by implementing key O and M type energy measures. Specifically, the results of industrial energy audits, case studies, and other published sources indicate that reductions in energy consumption from improved O and M activities can average between 8% and 12.5%.

Parker, S.A.; Gaustad, K.L.; Winiarski, D.W.

1994-12-01T23:59:59.000Z

489

Cogeneration: The Need for Utility-Industry Cooperation  

E-Print Network (OSTI)

Cogeneration is receiving increasing attention because of its potential for efficient utilization of energy. Many recent cogeneration studies, however, have concentrated on the benefits and costs of cogeneration to industry, giving little consideration to utility roles and perspectives. This paper provides an overview of a project sponsored by the Electric Power Research Institute to evaluate industrial cogeneration applications, taking into account utility interactions and impacts. Recent changes in federal legislation, particularly the enactment of the Public Utility Regulatory Policies Act (PURPA), have attempted to remove many of the institutional barriers which in the past made industry hesitant to invest in cogeneration. However, to implement the most attractive cogeneration systems industry must consider the changing economics of utility power generation. Also, despite the attractiveness of cogeneration, many industrial managers are reluctant to invest scarce capital in an area which they do not consider a natural extension of their business. At the same time, many utilities facing slower load growth and economic/environmental /institutional constraints on capacity expansion are willing to consider cogeneration as an option. Cogeneration projects can be highly complementary to the traditional utility business and possibly offer an attractive profit potential. Also, utilities can offer industry the needed expertise to implement and operate cogeneration systems. Considerable benefits may therefore be derived from cooperative cogeneration ventures among utilities and industrial firms. Many different organizational and financial arrangements can be structured, including third party financing. The, paper will briefly discuss the need for and benefits of cooperative efforts and provide illustrative examples of different institutional arrangements.

Limaye, D. R.

1982-01-01T23:59:59.000Z

490

Connecting with the Auto Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecting with the Auto Industry Connecting with the Auto Industry Connecting with the Auto Industry August 9, 2010 - 3:20pm Addthis Former Under Secretary Koonin Former Under Secretary Koonin Director - NYU's Center for Urban Science & Progress and Former Under Secretary for Science Last week I attended the Center for Automotive Research's annual Management Briefing Seminars in Traverse City, Michigan. This event has drawn stakeholders from across the automotive industry for decades. Last year was understandably solemn, but this year optimism was rampant. While there, I keynoted a panel on vehicle electrification: "Full-Scale Deployment: Making the Business Case." Robert Bienenfeld of Honda, Brad Markell of United Auto Workers, Adam Drobot of 2M Companies Inc, and Philip

491

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Industry Partnership Projects to Increase 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and eventually lead to a day when our children and grandchildren will call the

492

Industry Participation Sought for Design of Next Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Participation Sought for Design of Next Generation Nuclear Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled nuclear reactor prototype with the capability to produce process heat, electricity and/or hydrogen. The very high temperature reactor is based on research and development activities supported by DOE's Generation IV nuclear energy systems initiative.

493

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $14 Million Industry Partnership Projects to Increase DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and

494

DOE Industrial Technologies Program Overview of Nanomanufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Technologies Program Industrial Technologies Program Overview of Nanomanufacturing Initiative Ron Ott March 26, 2009 Nanotechnology: The purposeful engineering of matter at scales of less than 100 nanometers to achieve size- dependent properties and functions. (Lux Research) Today's Outline * ITP R&D Program * ITP Nanomanufacturing Initiative * Nanomanufacturing Project examples * Questions Industrial Technologies Program (ITP): Mission Improve our nation's energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy * Consumes more energy than any other sector of the economy (~32 quads) * Responsible for ~1,660 MMTCO 2 /year from energy consumption * Manufacturing makes the highest contribution to U.S. GDP (12%) * Produces nearly 1/4th of world

495

SLIDESHOW: Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: Solar Industry At Work SLIDESHOW: Solar Industry At Work SLIDESHOW: Solar Industry At Work June 4, 2012 - 9:37am Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a

496

About ENERGY STAR for commercial and industrial buildings | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR for commercial and industrial buildings ENERGY STAR for commercial and industrial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings

497

Building the Next Generation of Automotive Industry Leaders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders December 7, 2010 - 4:23pm Addthis Zach Heir , a recent hire in the electric vehicle field Zach Heir , a recent hire in the electric vehicle field Dennis A. Smith Director, National Clean Cities It's no secret that when it comes to advanced vehicle technologies, the Department of Energy is kicking into high gear. We're investing more than $12 billion in grants and loans for research, development and deployment of advanced technology vehicles. These investments are helping to create a clean energy workforce. If we want to continue a leadership role in the global automotive industry, it is crucial that we take the long view and invest heavily in the next generation of innovators and critical thinkers

498

Wastewater treatment in the oil-shale industry  

SciTech Connect

Because of the stringent state and federal standards governing the discharge of wastes into local waters and the limited water supplies in this area, an oil shale industry will probably reuse process effluents to the maximum extent possible and evaporate the residuals. Therefore, discharge of effluents into surface and ground waters may not be necessary. This paper reviews the subject of wastewater treatment for an oil shale industry and identifies key issues and research priorities that must be resolved before a large-scale commercial industry can be developed. It focuses on treatment of the waters unique to an oil shale industry: retort water, gas condensate, and mine water. Each presents a unique set of challenges.

Fox, J.P.; Phillips, T.E.

1980-08-01T23:59:59.000Z

499

Industrial process heat case studies. [PROSYS/ECONMAT code  

DOE Green Energy (OSTI)

Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

Hooker, D.W.; May, E.K.; West, R.E.

1980-05-01T23:59:59.000Z

500

Case Studies of Industrial Cogeneration in the U. S.  

E-Print Network (OSTI)

This paper describes the results of a survey and evaluation of plant-specific information on industrial cogeneration. The study was performed as part of a project sponsored by the Electric Power Research Institute to evaluate Dual Energy Use Systems (DEUS). The purpose of this project was to evaluate site specific data on DEUS from the utility perspective, identify promising candidates, and define R&D opportunities. The first major task in this DEUS project was a survey of industrial cogeneration sites to identify the technoeconomic and institutional factors affecting the success of cogeneration systems in industry. Sites were selected based on a mix of industry types, geographic location, type of cogeneration system, generating capacity, age of plant and other characteristics. Site-specific surveys were conducted and supplemented by information from secondary sources such as FERC and DOE statistical data systems. This paper presents information on 17 cogeneration facilities. Also presented is information on the perspectives of the relevant utilities.

Limaye, D. R.; Isser, S.; Hinkle, B.; Hough, T.

1980-01-01T23:59:59.000Z