National Library of Energy BETA

Sample records for dtw rack bulk

  1. U.S. Oxygenated Gasoline Refiner Sales Volumes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - - 1994-2014 Through Retail Outlets - - - - - - 1994-2014 Sales for Resale, Total - - - - - - 1994-2014 DTW - - - - - - 1994-2014 Rack - - - - - - 1994-2014 Bulk - - - - - -

  2. U.S. Oxygenated, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - - 1994-2014 Through Retail Outlets 1994-2006 Sales for Resale, Average - - - - - - 1994-2014 DTW 1994-2006 Rack 1994-2006 Bulk 1994-2006

  3. Donald R. Rack- Biography

    Broader source: Energy.gov [DOE]

    Don Rack has nearly 30 years' experience in the nuclear industry in both nuclear facility operations and oversight. He served for over 8 years in the U.S. Navy specializing in reactor plant operation, control system maintenance, and radiological controls.

  4. Integrated shipping and installation racking

    DOE Patents [OSTI]

    Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2015-03-17

    The present invention relates to an adjustable racking system for transporting and mounting one or more solar panels to, for example, a rooftop.

  5. Management Racks | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Racks Download original image « Back to galleryItem 7

  6. Rack protection monitor

    DOE Patents [OSTI]

    Orr, Stanley G. (Wheaton, IL)

    2000-01-01

    A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

  7. Rack Protection Monitor

    SciTech Connect (OSTI)

    Orr, Stanley G.

    1998-10-21

    A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

  8. Provision of strength of hydrostation trash racks

    SciTech Connect (OSTI)

    Petrashen', V.I.

    1985-02-01

    Bars of welded trash racks in front of turbines under normal operating conditions are often damaged by transverse cracks, which leads to shutdown of the turbines for repair of the racks and to the loss of production of electric energy. The authors suggest that the racks be made of bars fastened with bolt ties. Cracks are infrequent in the bolt ties demonstrating excellent fatigue resistance.

  9. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) Year Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average 1983 ............................... 98.0 97.0 - - - 89.5 - - - - - - 1984 ............................... 92.2 91.4 - - - 84.2 - - - - - - 1985 ............................... 92.5 91.7 - - -

  10. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) Year Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Total Through Retail Outlets Total a DTW Rack Bulk Total 1983 ............................... 20.0 23.5 - - - 98.3 - - - - - - 1984 ............................... 24.3 27.8 - - - 106.8 - - - - - - 1985 ............................... 26.2 29.9 - - - 119.7 - - - - -

  11. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    16 Energy Information Administration/Petroleum Marketing Annual 2009 Volumes of Petroleum Products Table 39. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) Geographic Area Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Through Retail Outlets Total a DTW Rack Bulk United States January ..................................... 41,519.2 43,169.0 31,921.8

  12. Rack assembly for mounting solar modules

    DOE Patents [OSTI]

    Plaisted, Joshua Reed; West, Brian

    2012-09-04

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  13. Rack assembly for mounting solar modules

    DOE Patents [OSTI]

    Plaisted, Joshua Reed (Oakland, CA); West, Brian (San Francisco, CA)

    2010-12-28

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  14. Furniture Rack Corrosion Coupon Surveillance - 2012 Update

    SciTech Connect (OSTI)

    Mickalonis, J. I.; Murphy, T. R.; Berry, C. J.

    2012-10-01

    Under the L Basin corrosion surveillance program furniture rack coupons immersed for 14 years (FY2009 coupons) and 16 years (FY2011 coupons) were analyzed and the results trended with coupons exposed for shorter times. In addition, a section harvested from an actual furniture rack that was immersed for 14 years was analyzed for pitting in the weld and heat-affected-zone (HAZ) regions. The L Basin operations maintained very good water quality over the entire immersion period for these samples. These results for FY2009 and FY2011 coupons showed that the average pit depths for the 6061 and 6063 base metal are 1 and 2 mils, respectively, while those for the weld and HAZ are 3 and 4 mils, respectively. The results for the weld and HAZ regions are similar to coupons removed during the period of FY2003 to FY2007. These similarities indicate that the pit development occurred quickly followed by slow kinetics of increase in pit depth. For the actual furniture rack sample average pits of 5 and 2 mils were measured for the HAZ and weld, respectively. These results demonstrate that pitting corrosion of the aluminum furniture racks used to support the spent fuel occurs in waters of good quality. The corrosion kinetics or pit depth growth rate is much less that 1 mil/year, and would not impact long-term use of this material system for fuel storage racks in L Basin if good water quality is maintained.

  15. Strength of hydrostation trash rack bars

    SciTech Connect (OSTI)

    Tsvetkov, A.P.

    1985-07-01

    Trash racks are one of the important parts of the mechanical equipment of hydroelectric stations since their breakage causes shutdown of the turbines until they are repaired. Therefore, the provision of trouble-free operation of racks is of importance. The author states that the most vulnerable part of the rack structure is the bars, which can be damaged both from the static load as a result of clogging and from the stresses occurring during vibration of the bars under the effect of the water passing through them. Used for explaining the processes in the case reported here is the Milovich theory, which does not however touch on all the causes and conditions of increase of oscillation amplitude as it is observed in the laboratory.

  16. Racks Of Storage 0 | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Racks Of Storage 0 Download original image « Back to galleryItem 9 of 9« Previous

  17. Improving Data Center Efficiency with Rack or Row Cooling Devices |

    Office of Environmental Management (EM)

    Department of Energy Improving Data Center Efficiency with Rack or Row Cooling Devices Improving Data Center Efficiency with Rack or Row Cooling Devices Brochure describes the results of "Chill-Off 2" comparative testing and improving data center efficiency with rack or row cooling devices. PDF icon dc_chilloff2.pdf More Documents & Publications Top ECMs for Labs and Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case Study:

  18. Fail-safe storage rack for irradiated fuel rod assemblies

    DOE Patents [OSTI]

    Lewis, Donald R. (Pocatello, ID)

    1993-01-01

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  19. Fail-safe storage rack for irradiated fuel rod assemblies

    DOE Patents [OSTI]

    Lewis, D.R.

    1993-03-23

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  20. Project Profile: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System

    Broader source: Energy.gov [DOE]

    A 2010 Rocky Mountain Institute report estimated that structural systems alone cost about $0.95 per watt for rooftop installations. Cascade is developing a plastic-based photovoltaic (PV) racking...

  1. Improving Data Center Efficiency with Rack or Row Cooling Devices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-foors that are used for cooling air distribution. Such under-foor air distribution is not required by the new rack/row-mounted

  2. Innovative Ballasted Flat Roof Solar PV Racking System

    SciTech Connect (OSTI)

    Peek, Richard T.

    2015-01-23

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  3. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) Geographic Area Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average United States January ............................... 132.9 133.1 129.0 124.5 109.5 123.9 142.9 142.8 137.1 130.5 - 132.2 February ............................. 144.3 144.3

  4. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) Geographic Area Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average United States January ............................... 131.7 131.8 127.9 123.2 108.7 121.7 140.4 140.4 135.1 129.6 - 130.5 February .............................

  5. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per Gallon Excluding Taxes) Geographic Area Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average United States January ............................... 136.5 137.2 130.3 127.3 120.9 128.4 150.1 150.2 139.6 137.1 - 138.5 February

  6. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) Geographic Area Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Through Retail Outlets Total a DTW Rack Bulk United States January ..................................... 41,519.2 43,169.0 31,921.8 181,170.4 35,284.7 3,695.7 3,730.6 1,312.7 9,777.3 - February ................................... 41,542.9

  7. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per Day) Geographic Area Month Conventional Reformulated Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Through Retail Outlets Total a DTW Rack Bulk United States January ............................... 30,653.6 32,146.7 7,825.5 154,232.7 34,497.0 18,622.4 18,962.0 31,550.5 53,695.2 2,529.4 February

  8. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices of Petroleum Products Table 28. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) Geographic Area Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average United States January ............................... 132.9 133.1 129.0 124.5 109.5 123.9 142.9 142.8 137.1 130.5 - 132.2 February

  9. Petroleum Marketing Monthly

    Gasoline and Diesel Fuel Update (EIA)

    U.S. refi ner motor gasoline prices by grade and sales type dollars per gallon excluding taxes Year month Regular Midgrade Sales to end users Sales for resale Sales to end users Sales for resale Through retail outlets Average[a] DTW Rack Bulk Average Through retail outlets Average[a] DTW Rack Bulk Average 1985 0.925 0.917 - - - 0.843 - - - - - - 1986 0.624 0.616 - - - 0.522 - - - - - - 1987 0.659 0.650 - - - 0.569 - - - - - - 1988 0.649 0.641 - - - 0.548 - - - - - - 1989 0.720 0.714 - - - 0.618

  10. Hydro trash rack rake built by Riegel Textile (Engineering Materials)

    SciTech Connect (OSTI)

    Rinehart, B.N.

    1981-11-05

    The Fries, Virginia plant of the Riegel Textile Corporation of Ware Shoals, South Carolina, found it necessary to install a trash rack rake for proper operation of their hydro plant. They put the job out for bid, but when they received bids above budget they decided to build their own rack rake. Mr. Sanford Byrd, plant engineer, put together a design that included use of standard off-the-shelf items and readily available structural steel components. The rake was built by the Fries maintenance personnel for only $50,000. The unit operates hydraulically and runs on a set of tracks placed on the intake canal wall. This unit can be adapted to most low-head hydro projects. The information furnished in this package will allow you to build your own trash rack rake.

  11. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) Year Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average 1994 ............................... 76.4 75.8 72.0 56.9 54.3 63.8 87.9 87.3 77.0 62.8 W 72.8 1995 ............................... 74.9 74.4 70.7 60.5 57.3 65.0 83.6 83.3 75.3

  12. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) Year Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Total Through Retail Outlets Total a DTW Rack Bulk Total 1994 ............................... 0.6 0.6 2.1 1.6 0.6 4.3 0.2 0.2 0.7 0.3 W 1.0 1995 ............................... 7.8 8.1 20.7 W W 43.3 3.0 3.1 7.4 3.1 - 10.5 1996

  13. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) Year Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Average a DTW Rack Bulk Average Through Retail Outlets Average a DTW Rack Bulk Average 1994 ............................... 68.7 68.1 63.6 54.5 50.0 55.8 78.4 77.8 69.4 NA NA 62.7 1995 ............................... 71.0 70.4 65.1 57.0 52.5 57.3 80.0 79.4 71.1 61.0

  14. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) Year Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Total Through Retail Outlets Total a DTW Rack Bulk Total 1994 ............................... 29.7 31.2 36.1 113.5 22.8 172.4 7.6 7.8 10.1 14.6 0.1 24.8 1995 ............................... 24.0 25.3 19.4 105.1 26.0 150.5 6.0 6.3 5.1 13.6 0.1 18.7 1996

  15. Petroleum Marketing Monthly

    Gasoline and Diesel Fuel Update (EIA)

    U.S. refi ner reformulated motor gasoline prices by grade and sales type dollars per gallon excluding taxes Year month Regular Midgrade Sales to end users Sales for resale Sales to end users Sales for resale Through retail outlets Average[a] DTW Rack Bulk Average Through retail outlets Average[a] DTW Rack Bulk Average 1994 0.764 0.758 0.720 0.569 0.543 0.638 0.879 0.873 0.770 0.628 W 0.728 1995 0.749 0.744 0.707 0.605 0.573 0.650 0.836 0.833 0.753 0.651 - 0.723 1996 0.834 0.830 0.788 0.698 0.677

  16. Petroleum Marketing Monthly

    Gasoline and Diesel Fuel Update (EIA)

    U.S. refi ner conven onal motor gasoline prices by grade and sales type dollars per gallon excluding taxes Year month Regular Midgrade Sales to end users Sales for resale Sales to end users Sales for resale Through retail outlets Average[a] DTW Rack Bulk Average Through retail outlets Average[a] DTW Rack Bulk Average 1994 0.687 0.681 0.636 0.545 0.500 0.558 0.784 0.778 0.694 NA NA 0.627 1995 0.710 0.704 0.651 0.570 0.525 0.573 0.800 0.794 0.711 0.610 NA 0.637 1996 0.797 0.791 0.743 0.665 0.607

  17. Prices of Refiner Motor Gasoline Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline -

  18. U.S. Sales to End Users Prices for Motor Gasoline

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Gasoline, Average - - - - - - 1983-2015 Regular Gasoline - - - - - - 1983-2015 Midgrade Gasoline - - - - - - 1988-2015 Premium Gasoline - - - - - - 1983-2015 Conventional, Average

  19. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    DOE Patents [OSTI]

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  20. Rotary bulk solids divider

    DOE Patents [OSTI]

    Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  1. Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System

    SciTech Connect (OSTI)

    A. C. Owen; J. D. Bernardin; K. L. Lam

    1998-08-01

    This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

  2. Boraflex panel degradation in spent-fuel storage racks at the South Texas Project

    SciTech Connect (OSTI)

    Hoppes, D.F.

    1996-12-31

    Blackness (neutron absorption) testing was conducted in August 1994 on selected South Texas Project (STP) electric generating station spent-fuel pool (SFP) storage racks as required by the surveillance monitoring program. The tests were performed to determine if gaps had developed in the Boraflex neutron poison material and to determine size and location of any gaps identified. The testing was performed by HOLTEC International using a specially designed logging tool containing a {sup 252}Cf neutron source and four boron trifluoride (BF{sub 3}) thermal neutron detectors.

  3. Energy Performance Testing of Asetek's RackCDU System at NREL's High Performance Computing Data Center

    SciTech Connect (OSTI)

    Sickinger, D.; Van Geet, O.; Ravenscroft, C.

    2014-11-01

    In this study, we report on the first tests of Asetek's RackCDU direct-to-chip liquid cooling system for servers at NREL's ESIF data center. The system was simple to install on the existing servers and integrated directly into the data center's existing hydronics system. The focus of this study was to explore the total cooling energy savings and potential for waste-heat recovery of this warm-water liquid cooling system. RackCDU captured up to 64% of server heat into the liquid stream at an outlet temperature of 89 degrees F, and 48% at outlet temperatures approaching 100 degrees F. This system was designed to capture heat from the CPUs only, indicating a potential for increased heat capture if memory cooling was included. Reduced temperatures inside the servers caused all fans to reduce power to the lowest possible BIOS setting, indicating further energy savings potential if additional fan control is included. Preliminary studies manually reducing fan speed (and even removing fans) validated this potential savings but could not be optimized for these working servers. The Asetek direct-to-chip liquid cooling system has been in operation with users for 16 months with no necessary maintenance and no leaks.

  4. Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification

    Energy Savers [EERE]

    System (DBVS) Review Report | Department of Energy Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System (DBVS) Review Report Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System (DBVS) Review Report Full Document and Summary Versions are available for download PDF icon Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System (DBVS) Review Report PDF icon Summary - Demonstration Bulk Vitrification System (DBVS) for

  5. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  6. Evaluation of cast carbon steel and aluminum for rack insert in MCO Mark 1A fuel basket

    SciTech Connect (OSTI)

    Graves, C.E., Fluor Daniel Hanford

    1997-03-21

    This document evaluates the effects ofusing a cast carbon steel or aluminum instead of 3O4L stainless steel in the construction ofthe fuel rack insert for the Spent Nuclear Fuel MCO Mark IA fuel baskets. The corrosion, structural, and cost effects are examined.

  7. Fiber Bulk Gaseous Carriers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Don Baldwin, Director of Product Development FIBER BULK GASEOUS CARRIERS 26 February 2014, NREL, Golden, CO * Lightweight composite cylinders for the storage and transportation of gas under pressure ̵ Compressed natural gas ̵ Compressed hydrogen gas * Vehicle fuel cylinders ̵ Passenger cars ̵ Buses and ̵ Heavy-duty vehicles * Transport and storage cylinders ̵ Bulk hauling trailers and modules ̵ Ground storage systems HEXAGON COMPOSITES HIGH PRESSURE PRODUCTS * Figures with

  8. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 3. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable liquid-rack cooling system in this study. The scope is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  9. U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Motor Gasoline NA NA NA NA NA NA 1983-2015 by Grade Regular NA NA NA NA NA NA 1983-2015 Midgrade NA NA NA NA NA NA 1988-2015 Premium NA NA NA NA NA NA 1983-2015 by Formulation Conventional NA NA

  10. U.S. Refiner Sales to End Users (Average) Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Conventional, Average 2.161 2.057 1.785 1.759 1.601 1.472 1994-2015 Conventional Regular 2.124 2.018 1.743 1.721 1.562 1.431 1994-2015 Conventional Midgrade 2.325 2.229 1.985 1.923

  11. Explosive bulk charge

    DOE Patents [OSTI]

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  12. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  13. Bulk Data Mover

    Energy Science and Technology Software Center (OSTI)

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections,more » data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/« less

  14. Outmigration of landlocked Atlantic salmon (Salmo salar) smolts and effectiveness of an angled trash rack/fish bypass structure at a small scale hydroelectric facility. [Salmo salar

    SciTech Connect (OSTI)

    Nettles, D.C.; Gloss, S.P.

    1985-01-01

    Modes of downstream passage (penstock, spillway, diversion chute) by Atlantic salmon (Salmo salar) smolts were monitored using radio telemetry to assess the effectiveness of an angled trash rack/fish bypass structure at a small hydroelectric dam on the Boquet River, New York. Telemetry of 170 Atlantic salmon smolts and visual observations of stocked smolts were used to determine aspects of Atlantic salmon outmigration behavior. Smolts initiated mass migrations after river temperatures reached or exceeded 10/sup 0/C. Many radio-tagged smolts interrupted movements upon reaching ponded waters and/or the dam. River flow did not (P > .05) affect the frequency of migratory movements, passages, or rate of movement. Migrations were of approximately 30 days duration. Passages at the dam occurred primarily at night (61%) with diurnal passages (17%) and crepuscular passages (17%) of secondary importance. Timing of 5% of the passages was undetermined. All passages which occurred when angled trash racks were in place were through the bypass or over the spillway. Six (6) passages occurred when trash racks perpendicular to the penstock were in place: 3 of these were penstock passages. The angled trash rack and bypass structure served to reduce entrainment.

  15. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered ...

  16. RAPID/BulkTransmission | Open Energy Information

    Open Energy Info (EERE)

    regulatory processes and requirements by searching our regulatory flowchart library. Learn more about bulk transmission. BulkTransCoverage.png Regulations and permitting...

  17. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  18. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, ...

  19. RAPID/BulkTransmission/Air Quality | Open Energy Information

    Open Energy Info (EERE)

    BulkTransmissionAir Quality < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  20. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History RAPIDBulk Transmission < RAPID(Redirected from RAPIDOverviewBulkTransmission) Redirect page Jump to: navigation, search REDIRECT RAPIDBulkTransmission...

  1. U.S. Conventional Gasoline Refiner Sales Volumes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    31,513.3 29,499.2 25,064.8 17,695.8 14,527.4 13,957.6 1994-2014 Through Retail Outlets 30,027.9 28,155.0 23,844.6 16,295.8 13,104.5 12,461.4 1994-2014 Sales for Resale, Total NA NA NA NA NA NA 1994-2014 DTW 7,779.6 6,896.1 6,171.0 5,810.5 7,114.1 5,090.2 1994-2014 Rack 169,017.4 169,788.6 167,282.9 169,476.7 169,611.0 172,139.9 1994-2014 Bulk 37,689.0 38,803.7 28,116.6 24,109.3 21,158.4 18,920.9

  2. U.S. Conventional, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1.841 2.259 3.008 3.083 2.977 2.778 1994-2014 Through Retail Outlets 1.845 2.264 3.016 3.098 2.997 2.800 1994-2014 Sales for Resale, Average 1.738 2.143 2.841 2.886 2.774 2.587 1994-2014 DTW 1.843 2.270 2.939 3.024 2.825 2.736 1994-2014 Rack 1.750 2.155 2.851 2.887 2.775 2.589 1994-2014 Bulk 1.664 2.069 2.758 2.843 2.755 2.535 1994-2014

  3. U.S. Conventional Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    16,977.4 16,562.5 16,386.9 16,501.2 16,078.7 16,204.5 1994-2015 Through Retail Outlets 16,666.8 16,248.7 16,072.1 16,195.5 15,785.7 15,921.7 1994-2015 Sales for Resale, Total NA NA NA NA NA NA 1994-2015 DTW 4,954.1 4,876.1 4,727.8 4,844.9 4,926.8 4,982.5 1994-2015 Rack 188,246.2 183,862.7 180,810.9 181,265.7 178,184.7 177,996.9 1994-2015 Bulk 15,629.9 17,500.9 21,148.6 16,063.7 18,881.7 21,166.0

  4. U.S. Conventional, Average Refiner Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    161 2.057 1.785 1.759 1.601 1.472 1994-2015 Through Retail Outlets 2.160 2.058 1.786 1.760 1.602 1.472 1994-2015 Sales for Resale, Average 1.975 1.763 1.553 1.513 1.373 1.290 1994-2015 DTW 2.319 2.109 1.812 1.637 1.591 1.532 1994-2015 Rack 1.965 1.759 1.559 1.519 1.372 1.288 1994-2015 Bulk 1.991 1.707 1.449 1.413 1.326 1.254

  5. U.S. Motor Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    26,309.2 26,005.0 25,747.8 25,931.3 25,152.0 25,289.7 1983-2015 Through Retail Outlets 25,961.9 25,652.3 25,393.8 25,584.8 24,822.1 24,975.5 1983-2015 Sales for Resale, Total NA NA NA NA NA NA 1983-2015 DTW 22,720.2 23,215.2 22,958.9 23,071.5 22,730.1 22,944.5 1994-2015 Rack 263,882.7 260,182.8 256,311.7 257,762.4 252,857.4 252,551.2 1994-2015 Bulk 18,512.0 20,695.6 24,422.8 18,974.6 22,596.4 24,410.5

  6. U.S. Reformulated Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    9,331.7 9,442.5 9,360.9 9,430.0 9,073.4 9,085.2 1994-2015 Through Retail Outlets 9,295.1 9,403.6 9,321.7 9,389.3 9,036.4 9,053.7 1994-2015 Sales for Resale, Total NA NA NA NA NA NA 1994-2015 DTW 17,766.1 18,339.1 18,231.1 18,226.6 17,803.3 17,962.0 1994-2015 Rack 75,636.6 76,320.1 75,500.8 76,496.7 74,672.7 74,554.3 1994-2015 Bulk 2,882.1 3,194.7 3,274.1 2,910.9 3,714.7 3,244.5

  7. U.S. Reformulated, Average Refiner Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    660 2.501 2.155 2.007 1.905 1.836 1994-2015 Through Retail Outlets 2.661 2.503 2.157 2.008 1.907 1.837 1994-2015 Sales for Resale, Average 2.283 1.996 1.728 1.651 1.537 1.497 1994-2015 DTW 2.795 2.477 2.128 1.979 1.864 1.854 1994-2015 Rack 2.165 1.886 1.634 1.577 1.459 1.412 1994-2015 Bulk 2.208 1.866 1.645 1.566 1.524 1.456

  8. U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Motor Gasoline 26,309.2 26,005.0 25,747.8 25,931.3 25,152.0 25,289.7 1983-2015 by Grade Regular 21,835.0 21,512.8 21,274.2 21,464.1 20,751.5 20,884.6 1983-2015 Midgrade 1,803.6 1,799.5 1,786.3

  9. bulk power system | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  10. RAPID/BulkTransmission/Transmission Siting & Interconnection...

    Open Energy Info (EERE)

    federal review). Bulk Transmission Transmission Siting & Interconnection in New Mexico New Mexico Statutes (N.M.S.) 62-9-1, 62-9-3(B), and 62-9-3.2 No Location Permit may be...

  11. RAPID/BulkTransmission/Land Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  12. RAPID/BulkTransmission/Exploration | Open Energy Information

    Open Energy Info (EERE)

    search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Bulk Transmission ...

  13. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  14. RAPID/BulkTransmission/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  15. CMI Unique Facility: Bulk Combinatoric Materials Synthesis Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Combinatoric Materials Synthesis Facility The Bulk Combinatoric Materials Synthesis Facility is one of half a dozen unique facilities developed by the Critical Materials...

  16. RAPID/BulkTransmission/General Construction | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionGeneral Construction < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  17. Overview of Fraunhofer IPM Activities in High Temperature Bulk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development ...

  18. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for ...

  19. RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy...

    Open Energy Info (EERE)

    Colorado < RAPID | Overview | BulkTransmission | Siting(Redirected from RAPIDAtlasBulkTransmissionSitingColorado) Redirect page Jump to: navigation, search REDIRECT...

  20. RAPID/BulkTransmission/Water Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionWater Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  1. Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...

    Open Energy Info (EERE)

    for bulk transmission. Date: Tuesday, 29 July, 2014 - 09:30 - 15:30 Location: NREL Education Center Auditorium Golden, Colorado Groups: Federal Bulk Transmission Regulatory...

  2. Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications...

    Office of Scientific and Technical Information (OSTI)

    Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications Citation Details In-Document Search Title: Linux Kernel Co-Scheduling For Bulk Synchronous Parallel ...

  3. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  4. Ensuring a Reliable Bulk Electric System | Department of Energy

    Office of Environmental Management (EM)

    Ensuring a Reliable Bulk Electric System Ensuring a Reliable Bulk Electric System PowerPoint presentation to the Electricity Advisory Committee by David Nevitus, Senior Vice President at the North American Electric Reliability Corporation (NERC) on the reliability of the bulk power system. PDF icon Ensuring a Reliable Bulk Electric System More Documents & Publications North American Electric Reliability Corporation (NERC): Ensuring a Reliable Bulk Electric System Cooling Tower Report,

  5. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  6. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  7. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  8. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    SciTech Connect (OSTI)

    HONEYMAN, J.O.

    2007-02-08

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program.

  9. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  10. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  11. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  12. Improving the bulk data transfer experience

    SciTech Connect (OSTI)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  13. Towards bulk based preconditioning for quantum dotcomputations

    SciTech Connect (OSTI)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  14. The influence of molecular orientation on organic bulk heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28 April 2014 09:03 Work done on ALS...

  15. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow You are accessing a document from...

  16. Achieving large linear elasticity and high strength in bulk nanocompsite

    Office of Scientific and Technical Information (OSTI)

    via synergistic effect (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect Title: Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be

  17. Substantial bulk photovoltaic effect enhancement via nanolayering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times duemore » to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.« less

  18. Commercialization of Bulk Thermoelectric Materials for Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed PDF icon kossakovski.pdf More Documents & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Fact #897:

  19. Correlation Between Structure and Thermoelectric Properties of Bulk High

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Materials for Energy Conversion | Department of Energy Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice

  20. Bulk amorphous steels based on Fe alloys

    DOE Patents [OSTI]

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  1. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan

    2013-04-09

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  2. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  3. Rotary adsorbers for continuous bulk separations

    DOE Patents [OSTI]

    Baker, Frederick S. (Oak Ridge, TN)

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  4. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI); Yang, Fan (Piscataway, NJ)

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  5. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50-1/2 inches high by 24-1/2 inches in outside diameter. With contents the gross weight of the BTSP is 650 lbs. The BTSP is designed for the safe shipment of 150 grams of tritium in a solid or gaseous state. To comply with the federal regulations that govern Type B shipping packages, the BTSP is designed so that it will not lose tritium at a rate greater than the limits stated in 10CFR 71.51 of 10{sup -6} A2 per hour for the 'Normal Conditions of Transport' (NCT) and an A2 in 1 week under 'Hypothetical Accident Conditions' (HAC). Additionally, since the BTSP design incorporates a valve as part of the tritium containment boundary, secondary containment features are incorporated in the CV Lid to protect against gas leakage past the valve as required by 10CFR71.43(e). This secondary containment boundary is designed to provide the same level of containment as the primary containment boundary when subjected to the HAC and NCT criteria.

  6. Thermodynamic properties of bulk and confined water

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ? 225K). The second, T{sup *} ? 315 5K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient ?{sub P}(T, P) in the PT plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  7. Excitonic exchange splitting in bulk semiconductors

    SciTech Connect (OSTI)

    Fu, H.; Wang, L.; Zunger, A.

    1999-02-01

    We present an approach to calculate the excitonic fine-structure splittings due to electron-hole short-range exchange interactions using the local-density approximation pseudopotential method, and apply it to bulk semiconductors CdSe, InP, GaAs, and InAs. Comparing with previous theoretical results, the current calculated splittings agree well with experiments. Furthermore, we provide an approximate relationship between the short-range exchange splitting and the exciton Bohr radius, which can be used to estimate the exchange splitting for other materials. The current calculation indicates that a commonly used formula for exchange splitting in quantum dot is not valid. Finally, we find a very large pressure dependence of the exchange splitting: a factor of 4.5 increase as the lattice constant changes by 3.5{percent}. This increase is mainly due to the decrease of the Bohr radius via the change of electron effective mass. {copyright} {ital 1999} {ital The American Physical Society}

  8. Determination of Bulk Dimensional Variation in Castings

    SciTech Connect (OSTI)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  9. High Heat Flux Thermoelectric Module Using Standard Bulk Material |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions PDF icon crane.pdf More Documents & Publications Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Development of a 100-Watt

  10. Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals

  11. Recent Device Developments with Advanced Bulk Thermoelectric Materials at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RTI | Department of Energy Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners PDF icon venkatasubramanian.pdf More Documents & Publications Nano-structures Thermoelectric Materals - Part 1 Nano-structures Thermoelectric

  12. ARM - Campaign Instrument - ec-convair580-bulk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsec-convair580-bulk Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Environment Canada Convair 580 Bulk Parameters (EC-CONVAIR580-BULK) Instrument Categories Aerosols, Airborne Observations, Cloud Properties Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Primary Measurements Taken The following measurements are those considered

  13. Investigation of Interfacial and Bulk Dissociation of HBr, HCl...

    Office of Scientific and Technical Information (OSTI)

    Investigation of Interfacial and Bulk Dissociation of HBr, HCl, and HNO3 Using Density Functional Theory-Based Molecular Dynamics Simulations Citation Details In-Document Search...

  14. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate

    Broader source: Energy.gov [DOE]

    This project is producing high-efficiency semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates.

  15. RAPID/BulkTransmission/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Access < RAPID | BulkTransmission(Redirected from RAPIDBulkTransmissionLeasing) Jump to: navigation, search RAPID Regulatory and Permitting...

  16. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  17. RAPID/BulkTransmission/Site Considerations | Open Energy Information

    Open Energy Info (EERE)

    and comparison for Bulk Transmission Site Considerations across various states. To learn more detailed information about Site Considerations in a state, click on the...

  18. Strategies for High Thermoelectric zT in Bulk Materials

    Broader source: Energy.gov [DOE]

    Zintl principle in chemistry, complex electronic band structures, and incorporation of nanometer sized particles were used to explore, optimize and improve bulk thermoelectric materials

  19. Category:Bulk Transmission Regulatory Roadmap Sections | Open...

    Open Energy Info (EERE)

    Login | Sign Up Search Category Edit History Category:Bulk Transmission Regulatory Roadmap Sections Jump to: navigation, search GRR-logo.png Looking for the RAPIDRoadmap?...

  20. RAPID/BulkTransmission/Federal | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Regulatory Information Overviews Search for other...

  1. RAPID/BulkTransmission/Environment | Open Energy Information

    Open Energy Info (EERE)

    Policy Act (HEPA) Hawaii Department of Health Office of Environmental Quality Control Bulk Transmission Environment in Idaho Varies by local municipality Varies by...

  2. RAPID/BulkTransmission/Colorado | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Colorado. In addition, WECC provides...

  3. RAPID/BulkTransmission/Idaho | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Idaho. In addition, WECC provides an...

  4. RAPID/BulkTransmission/Washington | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Washington. In addition, WECC provides...

  5. RAPID/BulkTransmission/Nevada | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Nevada. WECC also provides an...

  6. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Arizona. WECC also provides an...

  7. RAPID/BulkTransmission/Oregon | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Oregon. WECC also provides an environment...

  8. The Best of Both Worlds: Bulk Diamond Properties Realized at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a level of crystallographic and electronic ordering in purified HPHT nanodiamonds that matches fundamental properties of bulk diamond to the nanoscale while retaining its...

  9. Federal Bulk Transmission Regulatory Roadmapping | OpenEI Community

    Open Energy Info (EERE)

    Federal Bulk Transmission Regulatory Roadmapping Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll...

  10. RAPID/BulkTransmission/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Hawaii. Use the Edit with form button to editupdate. Planning Organizations not provided Hawaii Owners not provided Current Projects not...

  11. RAPID/BulkTransmission/Alaska | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Alaska. Use the Edit with form button to editupdate. Planning Organizations not provided Alaska Owners not provided Current Projects not...

  12. RAPID/BulkTransmission/Texas | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Texas. Use the Edit with form button to editupdate. Planning Organizations not provided Texas Owners not provided Current Projects not...

  13. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Citation Details In-Document Search Title: Lithium...

  14. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Conference: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion...

  15. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    The boundary entropy log(g) can therefore increase during appropriate bulk flows. This is demonstrated explicitly in flows between minimal models. We discuss the applications of ...

  16. RAPID/BulkTransmission/About | Open Energy Information

    Open Energy Info (EERE)

    Current Topics in Bulk Transmission West-Wide Energy Corridor Programmatic Environmental Impact Statement The West-Wide Energy Corridor Programmatic Environmental Impact Statement...

  17. Bulk Vitrification Castable Refractory Block Protection Study

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the penetration of molten salt. Out of several refractory tile candidates, only greystone and fused-cast alumina-zirconia-silica (AZS) refractory remained intact and well bonded to the CRB after firing to 1000 C. The deformation of the refractory-tile composite was avoided by prefiring the greystone tile to 800 C. Condensed vapors did not penetrate the tiles, but Re salts condensed on their surface. Refractory corrosion tests indicated that a 0.25-inch-thick greystone tile would not corrode during a BV melt. Tiles can reduce both vapor penetration and molten salt penetration, but vapor deposition above the melt line will occur even on tiles. The Tc/Re transport scenario was outlined as follows. At temperatures below 700 C, molten ionic salt (MIS) that includes all the Tc/Re penetrates, by capillarity, from the feed into the CRB open porosity. At approximately 750 C, the MIS decomposes through the loss of NOx, leaving mainly sulfate and chloride salts. The Na2O formed in the decomposition of the nitrates reacts with insoluble grains in the feed and with the aluminosilicates in the CRB to form more viscous liquids that reduce further liquid penetration into the CRB. At 800 to 1000 C, a continuous glass phase traps the remains of the MIS in the form of inclusions in the bulk glass melt. At 1000 to 1200 C, the salt inclusions in the glass slowly dissolve but also rise to the surface. The Tc/Re salts also evaporate from the free surface of the glass melt that is rapidly renewed by convective currents. The vapors condense on cooler surfaces in the upper portion of the CRB, the box lid, and the off-gas system.

  18. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  19. Bulk Hauling Equipment for CHG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Hauling Equipment for CHG Bulk Hauling Equipment for CHG This presentation by Don Baldwin of Hexagon Composites was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_8_baldwin.pdf More Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance Hydrogen Delivery Roadmap US DRIVE Hydrogen Delivery Technical Team Roadmap

  20. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A. (Clinton, TN); Montgomery, Frederick C. (Oak Ridge, TN); Baker, Frederick S. (Oak Ridge, TN)

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  1. Bulk viscosity of anisotropically expanding hot QCD plasma

    SciTech Connect (OSTI)

    Chandra, Vinod

    2011-11-01

    The bulk viscosity, {zeta} and its ratio with the shear viscosity, {zeta}/{eta} have been studied in an anisotropically expanding pure glue plasma in the presence of turbulent color fields. It has been shown that the anisotropy in the momentum distribution function of gluons, which has been determined from a linearized transport equation eventually leads to the bulk viscosity. For the isotropic (equilibrium) state, a recently proposed quasiparticle model of pure SU(3) lattice QCD equation of state has been employed where the interactions are encoded in the effective fugacity. It has been argued that the interactions present in the equation of state, significantly contribute to the bulk viscosity. Its ratio with the shear viscosity is significant even at 1.5T{sub c}. Thus, one needs to take in account the effects of the bulk viscosity while studying the hydrodynamic expansion of quark-gluon plasma in the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  2. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates. Peak internal quantum efficiency (IQE) values of greater than 80% are achieved over a wide wavelength range...

  3. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1252016 6:37:20 PM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1"...

  4. Bulk Energy Storage Webinar Rescheduled for February 9, 2012...

    Broader source: Energy.gov (indexed) [DOE]

    webinar, Lessons from Iowa: The Economic, Market, and Organizational Issues in Making Bulk Energy Storage Work, on Thursday, February 9, 2012 at 1 p.m. ET. Presenters include Dr. ...

  5. The influence of molecular orientation on organic bulk heterojunction solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells The influence of molecular orientation on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28 April 2014 09:03 Work done on ALS Beamlines 11.0.1.2, 7.3.3, and 5.3.2.2. reveals that preferential orientation of polymer chains with respect to the fullerene domain leads to a high photovoltaic performance. Featured on the cover of Nature Photonics 8. Article link

  6. Intrinsic carrier multiplication efficiency in bulk Si crystals evaluated

    Office of Scientific and Technical Information (OSTI)

    by optical-pump/terahertz-probe spectroscopy (Journal Article) | SciTech Connect Intrinsic carrier multiplication efficiency in bulk Si crystals evaluated by optical-pump/terahertz-probe spectroscopy Citation Details In-Document Search Title: Intrinsic carrier multiplication efficiency in bulk Si crystals evaluated by optical-pump/terahertz-probe spectroscopy We estimated the carrier multiplication efficiency in the most common solar-cell material, Si, by using optical-pump/terahertz-probe

  7. Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications Citation Details In-Document Search Title: Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications This paper describes a kernel scheduling algorithm that is based on co-scheduling principles and that is intended for parallel applications running on 1000 cores or more where inter-node scalability is key. Experimental results for a Linux implementation on a Cray XT5 machine are

  8. Linux Kernel Co-Scheduling and Bulk Synchronous Parallelism (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Linux Kernel Co-Scheduling and Bulk Synchronous Parallelism Citation Details In-Document Search Title: Linux Kernel Co-Scheduling and Bulk Synchronous Parallelism This paper describes a kernel scheduling algorithm that is based on coscheduling principles and that is intended for parallel applications running on 1000 cores or more. Experimental results for a Linux implementation on a Cray XT5 machine are presented. The results indicate that Linux is a suitable

  9. Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Device Development | Department of Energy Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology. PDF icon konig.pdf More

  10. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    SciTech Connect (OSTI)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  11. Enhancing covalent mechanochemistry in bulk polymers using electrospun ABA

    Office of Scientific and Technical Information (OSTI)

    triblock copolymers (Journal Article) | SciTech Connect Enhancing covalent mechanochemistry in bulk polymers using electrospun ABA triblock copolymers Citation Details In-Document Search Title: Enhancing covalent mechanochemistry in bulk polymers using electrospun ABA triblock copolymers Authors: Black Ramirez, A.L. ; Schmitt, A.K. ; Mahanthappa, M.K. ; Craig, S.L. [1] ; Duke) [2] + Show Author Affiliations (UW) ( Publication Date: 2016-01-20 OSTI Identifier: 1235465 Resource Type: Journal

  12. Bulk Electronic Structure of Quasicrystals (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Bulk Electronic Structure of Quasicrystals « Prev Next » Title: Bulk Electronic Structure of Quasicrystals Authors: Nayak, J. ; Maniraj, M. ; Rai, Abhishek ; Singh, Sanjay ; Rajput, Parasmani ; Gloskovskii, A. ; Zegenhagen, J. ; Schlagel, D. L. ; Lograsso, T. A. ; Horn, K. ; Barman, S. R. Publication Date: 2012-11-20 OSTI Identifier: 1101813 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 109; Journal Issue: 21;

  13. Bulk Electronic Structure of Quasicrystals (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Bulk Electronic Structure of Quasicrystals Citation Details In-Document Search Title: Bulk Electronic Structure of Quasicrystals Authors: Nayak, J. ; Maniraj, M. ; Rai, Abhishek ; Singh, Sanjay ; Rajput, Parasmani ; Gloskovskii, A. ; Zegenhagen, J. ; Schlagel, D. L. ; Lograsso, T. A. ; Horn, K. ; Barman, S. R. Publication Date: 2012-11-20 OSTI Identifier: 1101813 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal

  14. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Waste Heat Recovery | Department of Energy High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Proposed two-stage TEG system with half-heusler as the first stage, and Bi2Te3 as the low temperature stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle PDF icon caylor.pdf More Documents &

  15. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Automotive Waste Heat Recovery | Department of Energy High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace082_caylor_2012_o.pdf More Documents & Publications Nanostructured High

  16. Reliability of Transport Properties for Bulk Thermoelectrics | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy of Transport Properties for Bulk Thermoelectrics Reliability of Transport Properties for Bulk Thermoelectrics Presents international round-robin study to ensure quality of transport data and figure of merit of thermoelectric materials PDF icon deer12_wang_2.pdf More Documents & Publications International Round-Robin on Transport Properties of Bismuth Telluride Thermoelectric Mechanical Reliability Standardization of Transport Properties Measurements: Internal Energy Agency

  17. Development of a Wet Logistics System for Bulk Corn Stover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1000: Development of a Wet Logistics System for Bulk Corn Stover March 25, 2015 Lynn M. Wendt, William A. Smith, Austin Murphy, and Ian J. Bonner Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Technology Area Review: Feedstock Supply and Logistics 2 | Bioenergy Technologies Office Overall Project Goal Project Objective * Design a high-moisture, bulk feedstock logistics system that - Reduces the risk of catastrophic

  18. THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY Citation Details In-Document Search Title: THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY Authors: Yakabe, H.M. ; Neilson, H. Publication Date: 1965-02-01 OSTI Identifier: 4654936 Resource Type: Journal Article Resource Relation: Journal Name: J. Assoc. Offic. Agr. Chemists; Journal Volume: Vol: 48; Other Information: Orig. Receipt Date: 31-DEC-65 Research Org: Div. of

  19. Thermoelectric Bulk Materials from the Explosive Consolidation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanopowders | Department of Energy Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material PDF icon nemir.pdf More Documents & Publications The Bottom-Up Approach forThermoelectric Nanocomposites, plusƒ Enhancing the Figure-of-Merit in Half-Heuslers for Vehicle Waste

  20. Waste Form Qualification Compliance Strategy for Bulk Vitrification

    SciTech Connect (OSTI)

    Bagaasen, Larry M.; Westsik, Joseph H.; Brouns, Thomas M.

    2005-01-03

    The Bulk Vitrification System is being pursued to assist in immobilizing the low-activity tank waste from the 53 million gallons of radioactive waste in the 177 underground storage tanks on the Hanford Site. To demonstrate the effectiveness of the bulk vitrification process, a research and development facility known as the Demonstration Bulk Vitrification System (DBVS) is being built to demonstrate the technology. Specific performance requirements for the final packaged bulk vitrification waste form have been identified. In addition to the specific product-performance requirements, performance targets/goals have been identified that are necessary to qualify the waste form but do not lend themselves to specifications that are easily verified through short-term testing. Collectively, these form the product requirements for the DBVS. This waste-form qualification (WFQ) strategy document outlines the general strategies for achieving and demonstrating compliance with the BVS product requirements. The specific objectives of the WFQ activities are discussed, the bulk vitrification process and product control strategy is outlined, and the test strategy to meet the WFQ objectives is described. The DBVS product performance targets/goals and strategies to address those targets/goals are described. The DBVS product-performance requirements are compared to the Waste Treatment and Immobilization Plant immobilized low-activity waste product specifications. The strategies for demonstrating compliance with the bulk vitrification product requirements are presented.

  1. http://water.usgs.gov/GIS/metadata/usgswrd/XML/nv_dtw750nv_l...

    National Nuclear Security Administration (NNSA)

    Susan G. Buto Originator: Sienna Smith-Sager PublicationDate: 2006 Title: ... Reference Cited Lopes, T.J., Buto, S.G., Smith, J.L., and Welborn, T.L., 2006, Water-table ...

  2. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

  3. Palladium diffusion into bulk copper via the (100) surface.

    SciTech Connect (OSTI)

    Bussmann, Ezra; Pohl, Karsten; Sun, Jiebing; Kellogg, Gary Lee

    2009-01-01

    Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 x 2)-Pd surface alloy during annealing (T > 240 C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 {+-} 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu{sub 3}Pd L 1{sub 2} bulk alloy phase.

  4. Preparation of bulk superhard B-C-N nanocomposite compact

    DOE Patents [OSTI]

    Zhao, Yusheng; He, Duanwei

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  5. Properties of Bulk Sintered Silver As a Function of Porosity

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Vuono, Daniel J; Wang, Hsin; Ferber, Mattison K; Liang, Zhenxian

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity, thermal conductivity, elastic modulus, Poisson's ratio, and yield stress all depended on the porosity content in bulk-sintered silver. The only investigated property that was independent of porosity in that range was coefficient of thermal expansion.

  6. On-Site and Bulk Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » On-Site and Bulk Hydrogen Storage On-Site and Bulk Hydrogen Storage On-site hydrogen storage is used at central hydrogen production facilities, transport terminals, and end-use locations. Storage options today include insulated liquid tanks and gaseous storage tanks. The four types of common high pressure gaseous storage vessels are shown in the table. Type I All-metal cylinder Type II Load-bearing metal liner hoop wrapped with resin-impregnated continuous filament Type III

  7. Synthesis of bulk superhard semiconducting B-C material

    SciTech Connect (OSTI)

    Solozhenko, Vladimir L.; Dubrovinskaia, Natalia A.; Dubrovinsky, Leonid S.

    2004-08-30

    A bulk composite superhard material was synthesized from graphitelike BC{sub 3} at 20 GPa and 2300 K using a multianvil press. The material consists of intergrown boron carbide B{sub 4}C and B-doped diamond with 1.8 at.%B. The material exhibits semiconducting behavior and extreme hardness comparable with that of single-crystal diamond.

  8. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect (OSTI)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)materials that can be used without conventional liquid-helium cooling to 4.2?K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3?T at 20?K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  9. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall mission as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other supplemental treatment alternatives as provided in M-62-08.

  10. U.S. Refiner Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Gasoline, All Grades Sales to End Users (Average) 1.888 2.301 3.050 3.154 3.049 2.855 1978-2014 Through Retail Outlets 1.892 2.306 3.058 3.168 3.068 2.876 1978-2014 Other End Users 1.779 2.174 2.858 2.916 2.800 2.610 1978-2014 Sales for Resale (Average) 1.767 2.165 2.867 2.929 2.812 2.618 1978-2014 DTW 1.899 2.293 2.990 3.117 2.942 2.800 1994-2014 Rack 1.761 2.162 2.864 2.916 2.801 2.606 1994-2014 Bulk 1.675 2.078 2.769 2.861 2.774 2.548 1994-2014

  11. U.S. Refiner Gasoline Prices by Grade and Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Gasoline, All Grades Sales to End Users (Average) 2.338 2.218 1.920 1.849 1.711 1.603 1983-2015 Through Retail Outlets 2.340 2.221 1.922 1.851 1.713 1.604 1983-2015 Other End Users 2.207 1.992 1.737 1.662 1.577 1.520 1983-2015 Sales for Resale (Average) 2.072 1.838 1.609 1.558 1.426 1.356 1983-2015 DTW 2.691 2.400 2.063 1.907 1.805 1.784 1994-2015 Rack 2.023 1.796 1.581 1.536 1.398 1.325 1994-2015 Bulk 2.025 1.731 1.475 1.437 1.359 1.281

  12. Analysis of 1w Bulk Laser Damage in KDP

    SciTech Connect (OSTI)

    Cross, D A; Carr, C W

    2011-04-11

    The influence of laser parameters on laser-induced damage in the bulk of KDP is difficult to determine because the damage manifests as discrete sites a few microns in diameter distributed throughout a relatively large volume of material. Here, they present a method to directly measure the size and location of many thousands of such sites and correlate them to the laser conditions which produced them. This technique is used to characterize the effects of pulse duration on damage initiated by 1053 nm light in the bulk of KDP crystals. They find that the density of damage sites produced by 1053 nm light is less sensitive to pulse duration than was previously reported for 526 nm and 351 nm light. In addition, the effect of pulse duration on the size of the damage sites produced appears insensitive to wavelength.

  13. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOE Patents [OSTI]

    Shtein, Max (Ann Arbor, MI); Yang, Fan (Princeton, NJ); Forrest, Stephen R. (Princeton, NJ)

    2008-10-14

    A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.

  14. High-Quality, Low-Cost Bulk Gallium Nitride Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Quality, Low- Cost Bulk Gallium Nitride Substrates Electrochemical Solution Growth: A Scalable Semiconductor Manufacturing Process The ever-growing demand in the past decade for more energy effcient solid-state lighting and electrical power conversion is leading to a higher demand for wide bandgap semiconductor-based devices, such as gallium nitride (GaN), over traditional silicon (Si)-based devices. High cost and limited availability, how- ever, have hindered the adoption of GaN substrates

  15. Dynamics of dendritic polymers in the bulk and under confinement

    SciTech Connect (OSTI)

    Chrissopoulou, K.; Fotiadou, S.; Androulaki, K.; Anastasiadis, S. H.; Tanis, I.; Karatasos, K.; Prevosto, D.; Labardi, M.; Frick, B.

    2014-05-15

    The structure and dynamics of a hyperbranched polyesteramide (Hybrane S 1200) polymer and its nanocomposites with natural montmorillonite (Na{sup +}-MMT) are investigated by XRD, DSC, QENS, DS and Molecular Dynamics (MD) simulation. In bulk, the energy-resolved elastically scattered intensity from the polymer exhibits two relaxation steps, one attributed to sub-T{sub g} motions and one observed at temperatures above the glass transition, T{sub g}. The QENS spectra measured over the complete temperature range are consistent with the elastic measurements and can be correlated to the results emerging from the detailed description afforded by the atomistic simulations, which predict the existence of three relaxation processes. Moreover, dielectric spectroscopy shows the sub- T{sub g} beta process as well as the segmental relaxation. For the nanocomposites, XRD reveals an intercalated structure for all hybrids with distinct interlayer distances due to polymer chains residing within the galleries of the Na{sup +}-MMT. The polymer chains confined within the galleries show similarities in the behavior with that of the polymer in the bulk for temperatures below the bulk polymer T{sub g}, whereas they exhibit frozen dynamics under confinement at temperatures higher than that.

  16. Recent progress in the morphology of bulk heterojunction photovoltaics

    SciTech Connect (OSTI)

    Brady, Michael A.; Su, Gregory M.; Chabinyc, Michael L.

    2011-10-06

    A review of current research in the characterization of the morphology of semiconducting polymer:fullerene bulk heterojunctions (BHJs) is presented. BHJs are complex blends of polymers and fullerenes with nanostructures that are highly dependent on materials, processing conditions, and post-treatments to films. Recent work on the study of the morphology of BHJs is surveyed. Emphasis is placed on emerging work on BHJs of poly(3-hexylthiophene), P3HT, and [6,6]-phenyl-C61-butyric acid methyl ester, PCBM, along with BHJs of donoracceptor polymers that have high power conversion efficiency.

  17. Radiative cooling of bulk silicon by incoherent light pump

    SciTech Connect (OSTI)

    Malyutenko, V. K. Bogatyrenko, V. V.; Malyutenko, O. Yu.

    2013-12-23

    In contrast to radiative cooling by light up conversion caused exclusively by a low-entropy laser pump and employing thermally assisted fluorescence/luminescence as a power out, we demonstrate light down conversion cooling by incoherent pumps, 0.470.94??m light emitting diodes, and employing thermal emission (TE) as a power out. We demonstrate ?3.5?K bulk cooling of Si at 450?K because overall energy of multiple below bandgap TE photons exceeds the energy of a single above bandgap pump photon. We show that using large entropy TE as power out helps avoid careful tuning of an incoherent pump wavelength and cool indirect-bandgap semiconductors.

  18. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect (OSTI)

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  19. Neutron interaction and their transport with bulk materials

    SciTech Connect (OSTI)

    Rani, Esther Kalpana; Radhika, K.

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  20. Comment on ""bulk-plasmon contribution to the work function of...

    Office of Scientific and Technical Information (OSTI)

    Comment on ""bulk-plasmon contribution to the work function of metals Citation Details In-Document Search Title: Comment on ""bulk-plasmon contribution to the work function of...

  1. Development of a Bulk-Format System to Harvest, Handle, Store...

    Broader source: Energy.gov (indexed) [DOE]

    a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage generaprojectabstract1.pdf More Documents & Publications Development of a Bulk-Format System to Harvest,...

  2. File:08COaBulkTransmissionSitingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:08COaBulkTransmissionSitingProcess.pdf Size of this preview: 463 599...

  3. Strategies for High Thermoelectric zT in Bulk Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Thermoelectric zT in Bulk Materials Strategies for High Thermoelectric zT in Bulk Materials Zintl principle in chemistry, complex electronic band structures, and incorporation of nanometer sized particles were used to explore, optimize and improve bulk thermoelectric materials PDF icon snyder.pdf More Documents & Publications Strategies for High Thermoelectric zT in Bulk Materials Glass-like thermal conductivity in high efficiency thermoelectric materials Thermoelectric

  4. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect (OSTI)

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ? 135 ?m) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ? 1.5 ?m) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ? 470 MPa that was accompanied by limited ductility (? 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: Bulk multi-modal Ni was processed by SPS from a powder blend. Ultrafine-grained matrix or rim observed around spherical microcrystalline entities Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. Debonding was found at the matrix/microcrystalline entity interfaces. In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  5. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOE Patents [OSTI]

    Shtein, Max (Princeton, NJ); Yang, Fan (Princeton, NJ); Forrest, Stephen R. (Princeton, NJ)

    2008-09-02

    A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode. As a further example, when the first layer is an electron acceptor layer, the first electrode is a cathode, the second layer is an electron donor layer, and the second electrode is an anode.

  6. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc salt in the castable refractory block and it is released over the same time period as the salt. Therefore, to limit the impact of precipitated Fe on the release of 99Tc, both the amount of precipitated Fe in the BV glass and the diameter of these particles should be minimized.

  7. EIA Open Data - Bulk - U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk download facility The bulk download facility provides the entire contents of each major API data set in a single ZIP file. A small JSON formatted manifest file lists the bulk files and the update date of each file. The manifest is generally updated daily and can be downloaded from http://api.eia.gov/bulk/manifest.txt. The manifest contains information about the bulk files, including all required common core attributes: identifier data_set last_updated modified category_id title description

  8. Coherent rho 0 photoproduction in bulk matter at high energies

    SciTech Connect (OSTI)

    Couderc, Elsa; Klein, Spencer

    2009-01-09

    The momentum transfer {Delta}k required for a photon to scatter from a target and emerge as a {rho}{sup 0} decreases as the photon energy k rises. For k > 3 x 10{sup 14} eV, {Delta}k is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a {rho}{sup 0}, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above 10{sup 23} eV, coherent conversion is the dominant process; photons interact predominantly as {rho}{sup 0}. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.

  9. Interaction of graphene quantum dots with bulk semiconductor surfaces

    SciTech Connect (OSTI)

    Mohapatra, P. K.; Singh, B. P.; Kushavah, Dushyant; Mohapatra, J.

    2015-05-15

    Highly luminescent graphene quantum dots (GQDs) are synthesized through thermolysis of glucose. The average lateral size of the synthesized GQDs is found to be ?5 nm. The occurrence of D and G band at 1345 and 1580 cm{sup ?1} in Raman spectrum confirms the presence of graphene layers. GQDs are mostly consisting of 3 to 4 graphene layers as confirmed from the AFM measurements. Photoluminescence (PL) measurement shows a distinct broadening of the spectrum when GQDs are on the semiconducting bulk surface compared to GQDs in water. The time resolved PL measurement shows a significant shortening in PL lifetime due to the substrate interaction on GQDs compared to the GQDs in solution phase.

  10. FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Jordan, J.

    2010-06-02

    The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.

  11. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOE Patents [OSTI]

    Luo, P.

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.

  12. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOE Patents [OSTI]

    Luo, Ping (2843A Forest Ave., Berkeley, CA 94705)

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.

  13. Tuned critical avalanche scaling in bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; Wraith, Matthew; Qiao, Junwei; Zhang, Yong; Liaw, Peter K.; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters,more » such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.« less

  14. International Round-Robin Testing of Bulk Thermoelectrics

    SciTech Connect (OSTI)

    Wang, Hsin; Porter, Wallace D; Bottner, Harold; Konig, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolett, Alex; Smith, Charlene; Harris, Fred; Sharp, Jeff; Lo, Jason; Keinke, Holger; Kiss, Laszlo I.

    2011-11-01

    Two international round-robin studies were conducted on transport properties measurements of bulk thermoelectric materials. The study discovered current measurement problems. In order to get ZT of a material four separate transport measurements must be taken. The round-robin study showed that among the four properties Seebeck coefficient is the one can be measured consistently. Electrical resistivity has +4-9% scatter. Thermal diffusivity has similar +5-10% scatter. The reliability of the above three properties can be improved by standardizing test procedures and enforcing system calibrations. The worst problem was found in specific heat measurements using DSC. The probability of making measurement error is great due to the fact three separate runs must be taken to determine Cp and the baseline shift is always an issue for commercial DSC. It is suggest the Dulong Petit limit be always used as a guide line for Cp. Procedures have been developed to eliminate operator and system errors. The IEA-AMT annex is developing standard procedures for transport properties testing.

  15. Magnetic and magnetocaloric properties of bulk dysprosium chromite

    SciTech Connect (OSTI)

    McDannald, A.; Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269 ; Kuna, L.; Jain, M.; Department of Physics, University of Connecticut, Storrs, Connecticut 06269

    2013-09-21

    In this work, a polycrystalline bulk DyCrO{sub 3} sample was prepared by a solution route and the structural and magnetic properties were investigated. The phase purity and ionic valence state of the DyCrO{sub 3} sample were determined by x-ray diffraction/Raman spectroscopy and x-ray photoelectron spectroscopy, respectively. The AC and DC magnetization measurements revealed the onset of antiferromagnetic order at 146 K with an effective moment of 8.88 μ{sub B}. Isothermal magnetization measurements of this material are presented for the first time, showing a peak in the coercive field at 80 K that is explained by the competition between the paramagnetic Dy{sup 3+} and Cr{sup 3+} sublattices. DyCrO{sub 3} was found to display a large magnetocaloric effect (8.4 J/kg K) and relative cooling power (217 J/kg) at 4 T applied field, which renders DyCrO{sub 3} useful for magnetic refrigeration between 5 K and 30 K.

  16. A new class of high ZT doped bulk nanothermoelectrics through bottom-up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    synthesis | Department of Energy new class of high ZT doped bulk nanothermoelectrics through bottom-up synthesis A new class of high ZT doped bulk nanothermoelectrics through bottom-up synthesis Reports on synthesis of large quantities of p- and n-type nanocrystals then sintered into bulk samples with high power factors and low thermal conductivity through impurity doping and nanostructuring PDF icon ramanath.pdf More Documents & Publications Nano-structures Thermoelectric Materals -

  17. Bulk Fuel Procurement Process & Alternative Drop-in Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bulk Fuel Procurement Process & Alternative Drop-in Fuel Bulk Fuel Procurement Process & Alternative Drop-in Fuel Jeanne Binder, DLA Energy, presentation on Bulk Fuel Procurement Process & Alternative Drop-in Fuel at the Advanced Biofuels Industry Roundtable. PDF icon 7_binder_roundtable.pdf More Documents & Publications DLA Energy: Your Supplemental Energy Contracting Venue Advanced Drop-In Biofuels Initiative Agenda FUPWG Spring 2015 Agenda and Presentations

  18. Unpaired Majorana modes in Josephson-Junction Arrays with gapless bulk excitations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pino, M.; Tsvelik, A.; Ioffe, L. B.

    2015-11-06

    In this study, the search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L~10.

  19. The Role of Surface Chemistry and Bulk Properties on the Cycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Role of Surface Chemistry and Bulk Properties on the Cycling and Rate Capability of Lithium Positive Electrode Materials The Role of Surface Chemistry on the Cycling and ...

  20. Raman vibrational spectra of bulk to monolayer Re S 2 with lower...

    Office of Scientific and Technical Information (OSTI)

    Title: Raman vibrational spectra of bulk to monolayer Re S 2 with lower symmetry Authors: Feng, Yanqing ; Zhou, Wei ; Wang, Yaojia ; Zhou, Jian ; Liu, Erfu ; Fu, Yajun ; Ni, ...

  1. The impact of gas bulk rotation on the Ly? line

    SciTech Connect (OSTI)

    Garavito-Camargo, Juan N.; Forero-Romero, Jaime E.; Dijkstra, Mark E-mail: je.forero@uniandes.edu.co

    2014-11-10

    We present results of radiative transfer calculations to measure the impact of gas bulk rotation on the morphology of the Ly? emission line in distant galaxies. We model a galaxy as a sphere with an homogeneous mixture of dust and hydrogen at a constant temperature. These spheres undergo solid-body rotation with maximum velocities in the range 0-300 km s{sup 1} and neutral hydrogen optical depths in the range ?{sub H} = 10{sup 5}-10{sup 7}. We consider two types of source distributions in the sphere: central and homogeneous. Our main result is that rotation introduces a dependence of the line morphology with viewing angle and rotational velocity. Observations with a line of sight parallel to the rotation axis yield line morphologies similar to the static case. For lines of sight perpendicular to the rotation axis, both the intensity at the line center and the line width increase with rotational velocity. Along the same line of sight, the line becomes single peaked at rotational velocities close to half the line width in the static case. Notably, we find that rotation does not induce any spatial anisotropy in the integrated line flux, the escape fraction or the average number of scatterings. This is because Lyman scattering through a rotating solid-body proceeds identically to the static case. The only difference is the Doppler shift from the different regions in the sphere that move with respect to the observer. This allows us to derive an analytic approximation for the viewing-angle dependence of the emerging spectrum, as a function of rotational velocity.

  2. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    SciTech Connect (OSTI)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher density of nanometer sized carbides on the boundaries. This project will focus on void swelling but advances in processing of austenitic steels are likely to also improve the radiation response of the mechanical properties.

  3. Bulk and surface controlled diffusion of fission gas atoms

    SciTech Connect (OSTI)

    Andersson, Anders D.

    2012-08-09

    Fission gas retention and release impact nuclear fuel performance by, e.g., causing fuel swelling leading to mechanical interaction with the clad, increasing the plenum pressure and reducing the gap thermal conductivity. All of these processes are important to understand in order to optimize operating conditions of nuclear reactors and to simulate accident scenarios. Most fission gases have low solubility in the fuel matrix, which is especially pronounced for large fission gas atoms such as Xe and Kr, and as a result there is a significant driving force for segregation of gas atoms to extended defects such as grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. Several empirical or semi-empirical models have been developed for fission gas release in nuclear fuels, e.g. [1-6]. One of the most commonly used models in fuel performance codes was published by Massih and Forsberg [3,4,6]. This model is similar to the early Booth model [1] in that it applies an equivalent sphere to separate bulk UO{sub 2} from grain boundaries represented by the sphere circumference. Compared to the Booth model, it also captures trapping at grain boundaries, fission gas resolution and it describes release from the boundary by applying timedependent boundary conditions to the circumference. In this work we focus on the step where fission gas atoms diffuse from the grain interior to the grain boundaries. The original Massih-Forsberg model describes this process by applying an effective diffusivity divided into three temperature regimes. In this report we present results from density functional theory calculations (DFT) that are relevant for the high (D{sub 3}) and intermediate (D{sub 2}) temperature diffusivities of fission gases. The results are validated by making a quantitative comparison to Turnbull's [8-10] and Matzke's data [12]. For the intrinsic or high temperature regime we report activation energies for both Xe and Kr diffusion in UO{sub 2{+-}x}, which compare favorably to available experiments. This is an extension of previous work [13]. In particular, it applies improved chemistry models for the UO{sub 2{+-}x} nonstoichiometry and its impact on the fission gas activation energies. The derivation of these models follows the approach that used in our recent study of uranium vacancy diffusion in UO{sub 2} [14]. Also, based on the calculated DFT data we analyze vacancy enhanced diffusion mechanisms in the intermediate temperature regime. In addition to vacancy enhanced diffusion we investigate species transport on the (111) UO{sub 2} surface. This is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation, for which surface diffusion could be the rate-limiting transport step. Diffusion of such bubbles constitutes an alternative mechanism for mass transport in these materials.

  4. Bulk superhard B-C-N nanocomposite compact and method for preparing thereof

    DOE Patents [OSTI]

    Zhao, Yusheng; He, Duanwei

    2004-07-06

    Bulk, superhard, B-C-N nanocomposite compact and method for preparing thereof. The bulk, superhard, nanocomposite compact is a well-sintered compact and includes nanocrystalline grains of at least one high-pressure phase of B-C-N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compact has a Vicker's hardness of about 41-68 GPa. It is prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture, and sintering the encapsulated ball-milled mixture at a pressure of about 5-25 GPa and at a temperature of about 1000-2500 K.

  5. Radius stabilization and dark matter with a bulk Higgs in warped extra dimension

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahmed, A.; Grzadkowski, B.; Gunion, J. F.; Jiang, Y.

    2015-01-01

    In this study, we employ an SU(2) bulk Higgs doublet as the stabilization field in the Randall–Sundrum model with appropriate bulk and brane-localized potentials. The gauge hierarchy problem can be solved for an exponentially IR-localized Higgs background field with mild values of fundamental parameters of the 5D theory. We consider an IR–UV–IR background geometry with the 5D SM fields in the bulk such that all the fields have even and odd towers of KK-modes. The zero-mode 4D effective theory contains all the SM fields plus a stable scalar, which serves as a dark matter candidate.

  6. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE ELECTROCHEMICAL SOLUTION GROWTH METHOD

    Broader source: Energy.gov [DOE]

    To develop ESG into a viable bulk growth process for GaN that is more scalable to large-area wafer manufacturing and able to produce cost-effective, high-quality bulk GaN substrates.

  7. All bulk and boundary unitary cubic curvature theories in three dimensions

    SciTech Connect (OSTI)

    Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram

    2011-01-15

    We construct all the bulk and boundary unitary cubic curvature parity invariant gravity theories in three dimensions in (anti)-de Sitter spaces. For bulk unitarity, our construction is based on the principle that the free theory of the cubic curvature theory reduces to one of the three known unitary theories which are the cosmological Einstein-Hilbert theory, the quadratic theory of the scalar curvature, or the new massive gravity (NMG). Bulk and boundary unitarity in NMG is in conflict; therefore, cubic theories that are unitary both in the bulk and on the boundary have free theories that reduce to the other two alternatives. We also study the unitarity of the Born-Infeld extensions of NMG to all orders in curvature.

  8. Bulk glass formation in the Pd{endash}Ni{endash}P system

    SciTech Connect (OSTI)

    He, Y.; Schwarz, R.B.; Archuleta, J.I. [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1996-09-01

    Bulk amorphous Pd{endash}Ni{endash}P rods with diameters ranging from 10 to 25 mm were prepared by a fluxing technique over a wide composition range. For most bulk glassy alloys studied, the difference between the glass transition temperature and the crystallization temperature, {ital T}{sub {ital x}}{minus}{ital T}{sub {ital g}}, is larger than 90 K. Of all the alloy compositions examined, Pd{sub 40}Ni{sub 40}P{sub 20} has the highest glass formability, and 300-g bulk amorphous cylinders, 25 mm in diameter and 50 mm in length, were easily and repeatedly formed. This size, however, is not an upper limit. The elastic properties of these bulk amorphous alloys were determined by a resonant ultrasound spectroscopy technique.

  9. The effect of confinement on the crystalline microstructure of polymer: fullerene bulk heterojunctions

    SciTech Connect (OSTI)

    Ashraf, A.; Dissanayake, D. M. N. M.; Eisaman, M. D.

    2015-07-01

    We investigate the effect of confinement on the coherence length and the crystalline microstructure of the polymer component of polymer: fullerene bulk heterojunction thin films using grazing incidence wide angle x-ray scattering. We find that the polymer crystallite size decreases and the alignment of the molecules along the surface normal increases, as the thin-film thickness is reduced from 920nm to < 20nm and approaches the thin-film confinement regime. Furthermore, we find that the polymer crystallite size near the surface (air interface) is lower than the crystallite size in the bulk or the bottom (substrate interface) of bulk heterojunction films thicker than the confinement regime. Variation in polymer crystallite size can cause changes in charge carrier mobility and recombination rates, which in turn affect the performance of bulk heterojunction thin film devices such as photovoltaics and photodetectors

  10. Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion

    Broader source: Energy.gov [DOE]

    Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

  11. The Role of Surface Chemistry and Bulk Properties on the Cycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications The Role of Surface Chemistry and Bulk Properties on the ... Energy Storage R&D The Role of Surface Chemistry on the Cycling and Rate Capability of ...

  12. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

  13. The effect of confinement on the crystalline microstructure of polymer: fullerene bulk heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ashraf, A.; Dissanayake, D. M. N. M.; Eisaman, M. D.

    2015-07-01

    We investigate the effect of confinement on the coherence length and the crystalline microstructure of the polymer component of polymer: fullerene bulk heterojunction thin films using grazing incidence wide angle x-ray scattering. We find that the polymer crystallite size decreases and the alignment of the molecules along the surface normal increases, as the thin-film thickness is reduced from 920nm to < 20nm and approaches the thin-film confinement regime. Furthermore, we find that the polymer crystallite size near the surface (air interface) is lower than the crystallite size in the bulk or the bottom (substrate interface) of bulk heterojunction films thickermore » than the confinement regime. Variation in polymer crystallite size can cause changes in charge carrier mobility and recombination rates, which in turn affect the performance of bulk heterojunction thin film devices such as photovoltaics and photodetectors« less

  14. In-situ study of crystallization kinetics in ternary bulk metallic glass

    Office of Scientific and Technical Information (OSTI)

    alloys with different glass forming abilities (Journal Article) | DOE PAGES In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities « Prev Next » Title: In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities Authors: Lan, Si [1] ; Wei, Xiaoya [1] ; Zhou, Jie [2] ; Lu, Zhaoping [2] ; Wu, Xuelian [1] ; Feygenson, Mikhail [3] ; Neuefeind, Jörg [3] ; Wang, Xun-Li [1]

  15. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First

    Office of Scientific and Technical Information (OSTI)

    Principles Molecular Dynamics (Conference) | SciTech Connect Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles Molecular Dynamics Authors: Ong, M T ; Lordi, V ; Draeger, E W ; Pask, J E Publication Date: 2014-11-05 OSTI Identifier: 1178391 Report Number(s): LLNL-PROC-663811 DOE Contract Number:

  16. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First

    Office of Scientific and Technical Information (OSTI)

    Principles and Classical Reactive Molecular Dynamics (Journal Article) | SciTech Connect Journal Article: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Authors: Ong, M T ; Verners, O ; Draeger, E W ; van Duin, A ; Lordi, V ; Pask, J E

  17. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First

    Office of Scientific and Technical Information (OSTI)

    Principles and Classical Reactive Molecular Dynamics (Journal Article) | SciTech Connect Journal Article: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics × You are accessing a document from the Department of Energy's (DOE) SciTech Connect.

  18. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Broader source: Energy.gov (indexed) [DOE]

    Seacrist, Senior Fellow - Emerging Technologies R&D, SunEdison Semiconductor (formerly MEMC) U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop electrochemical solution growth (ESG) of gallium nitride (GaN) into a technology capable of producing large area bulk GaN substrates  Bulk GaN enables homoepitaxial growth

  19. Surface magnetism of Gd(0001): Evidence of ferromagnetic coupling to bulk

    SciTech Connect (OSTI)

    Mulhollan, G.A.; Garrison, K.; Erskine, J.L. )

    1992-11-30

    Previous polarized electron experiments and recent {ital ab} {ital initio} calculations suggest that the surface layer magnetic moments of Gd(0001) are antiferromagnetically coupled to the bulk magnetic moments. Spin-polarized photoemission data are presented which show that the spin polarization of the magnetic surface state and the surface 4{ital f} states of Gd(0001) are coupled ferromagnetically to the bulk magnetic moment.

  20. The Role of Additive in Diketopyrrolopyrrole-based Small Molecular Bulk

    Office of Scientific and Technical Information (OSTI)

    Heterojunction Solar Cells (Journal Article) | SciTech Connect Journal Article: The Role of Additive in Diketopyrrolopyrrole-based Small Molecular Bulk Heterojunction Solar Cells Citation Details In-Document Search Title: The Role of Additive in Diketopyrrolopyrrole-based Small Molecular Bulk Heterojunction Solar Cells Authors: Wang, Hongyu ; Liu, Feng ; Bu, Laju ; Gao, Jun ; Wang, Cheng ; Wei, Wei ; Russell, Thomas P. Publication Date: 2013-08-29 OSTI Identifier: 1160446 DOE Contract

  1. Thermal Conductivity Measurements of Bulk Thermoelectric Materials (Prop. 2004-067)

    SciTech Connect (OSTI)

    Wang, Hsin; Porter, Wallace D; Sharp, J

    2006-01-01

    Thermal conductivity is an important material property of the bulk thermoelectrics. To improve ZT a reduced thermal conductivity is always desired. However, there is no standard material for thermoelectrics and the test results, even on the same material, often show significant scatter. The scatter in thermal conductivity made reported ZT values uncertain and sometime unrepeatable. One of the reasons for the uncertainty is due to the microstructure differences resulting from sintering, heat treatment and other processing parameters. They selected commonly used bulk thermoelectric materials and conducted thermal conductivity measurements using the laser flash diffusivity and differential scanning calorimeter (DSC) systems. Thermal conductivity was measured as a function of temperature of temperature from room temperature to 500 K and back to room temperature. The effect of thermal cycling on the bulk thermoelectric was studied. Comnbined with measurements on electrical resistivity and Seebeck coefficient, they show the use of a ZT map in selecting thermoelectrics. The commercial bulk material showed very good consistency and reliability compared to other bulk materials. The goal is to develop a thermal transport properties database for the bulk thermoelectrics and make the information available to the research community and industry.

  2. Evaluation of bulk paint worker exposure to solvents at household hazardous waste collection events

    SciTech Connect (OSTI)

    Cameron, M.

    1995-09-01

    In fiscal year 93/94, over 250 governmental agencies were involved in the collection of household hazardous wastes in the State of California. During that time, over 3,237,000 lbs. of oil based paint were collected in 9,640 drums. Most of this was in lab pack drums, which can only hold up to 20 one gallon cans. Cost for disposal of such drums is approximately $1000. In contrast, during the same year, 1,228,000 lbs. of flammable liquid were collected in 2,098 drums in bulk form. Incineration of bulked flammable liquids is approximately $135 per drum. Clearly, it is most cost effective to bulk flammable liquids at household hazardous waste events. Currently, this is the procedure used at most Temporary Household Hazardous Waste Collection Facilities (THHWCFs). THHWCFs are regulated by the Department of Toxic Substances Control (DTSC) under the new Permit-by Rule Regulations. These regulations specify certain requirements regarding traffic flow, emergency response notifications and prevention of exposure to the public. The regulations require that THHWCF operators bulk wastes only when the public is not present. [22 CCR, section 67450.4 (e) (2) (A)].Santa Clara County Environmental Health Department sponsors local THHWCF`s and does it`s own bulking. In order to save time and money, a variance from the regulation was requested and an employee monitoring program was initiated to determine actual exposure to workers. Results are presented.

  3. Linking structure to fragility in bulk metallic glass-forming liquids

    SciTech Connect (OSTI)

    Wei, Shuai E-mail: m.stolpe@mx.uni-saarland.de; Stolpe, Moritz E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  4. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  5. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday, 03 April 2013 13:32 Spin-coating is extensively used in the lab-based manufacturing of organic solar cells, including most of the record-setting cells. Aram Amassian and co-workers report in this study the first direct observation of photoactive layer formation as it occurs during spin-coating. The

  6. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Nichols, Greg J. (Burnt Hills, NY)

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVbulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

  7. Role of phase instabilities in the early response of bulk fused silica

    Office of Scientific and Technical Information (OSTI)

    during laser-induced breakdown (Journal Article) | SciTech Connect Role of phase instabilities in the early response of bulk fused silica during laser-induced breakdown Citation Details In-Document Search Title: Role of phase instabilities in the early response of bulk fused silica during laser-induced breakdown Authors: DeMange, P. ; Negres, R. A. ; Raman, R. N. ; Colvin, J. D. ; Demos, S. G. Publication Date: 2011-08-17 OSTI Identifier: 1100571 Type: Publisher's Accepted Manuscript Journal

  8. Understanding Bulk Power Reliability: The Importance of Good Data and A Critical Review of Existing Sources

    SciTech Connect (OSTI)

    Fisher, Emily; Eto, Joseph H.; LaCommare, Kristina Hamachi

    2011-10-19

    Bulk power system reliability is of critical importance to the electricity sector. Complete and accurate information on events affecting the bulk power system is essential for assessing trends and efforts to maintain or improve reliability. Yet, current sources of this information were not designed with these uses in mind. They were designed, instead, to support real-time emergency notification to industry and government first-responders. This paper reviews information currently collected by both industry and government sources for this purpose and assesses factors that might affect their usefulness in supporting the academic literature that has relied upon them to draw conclusions about the reliability of the US electric power system.

  9. High-Quality, Low-Cost Bulk Gallium Nitride Substrates | Department of

    Office of Environmental Management (EM)

    Energy High-Quality, Low-Cost Bulk Gallium Nitride Substrates High-Quality, Low-Cost Bulk Gallium Nitride Substrates MEMC Electronic Materials, Inc. - St. Peters, MO Efficient manufacturing of gallium nitride (GaN) could reduce the cost of and improve the output for light-emitting diodes, solid-state lighting, laser displays, and other power electronics. Use of GaN-a semi-conductor material-holds the potential to reduce lighting energy use by 75%, electric drive motor energy use for consumer

  10. Method of aeration disinfecting and drying grain in bulk and pretreating seeds and a transverse blow silo grain dryer therefor

    DOE Patents [OSTI]

    Danchenko, Vitaliy G. (Dnipropetrovsk, UA); Noyes, Ronald T. (Stillwater, OK); Potapovych, Larysa P. (Dnipropetrovsk, UA)

    2012-02-28

    Aeration drying and disinfecting grain crops in bulk and pretreating seeds includes passing through a bulk of grain crops and seeds disinfecting and drying agents including an ozone and air mixture and surrounding air, subdividing the disinfecting and drying agents into a plurality of streams spaced from one another in a vertical direction, and passing the streams at different heights through levels located at corresponding heights of the bulk of grain crops and seeds transversely in a substantially horizontal direction.

  11. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    SciTech Connect (OSTI)

    Li, Keyan; Kang, Congying [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1?x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1?x}O and Cd{sub x}Zn{sub 1?x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1?x}O and Ca{sub x}Zn{sub 1?x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereas the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.

  12. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  13. Decoupling Bulk and Surface Contributions in Water- Splitting Photocatalysts by In Situ Ultrafast Spectroscopy

    SciTech Connect (OSTI)

    Appavoo, Kannatassen; Mingzhao, Liu; Black, Charles T.; Sfeir, Matthew Y.

    2015-05-10

    By performing ultrafast emission spectroscopy in an operating, bias-controlled photoelectrochemical cell, we distinguish between bulk (charge transport) and surface (chemical reaction) recombination processes in a nanostructured photocatalyst and correlate its electronic properties directly with its incident-photon-to-current efficiency.

  14. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOE Patents [OSTI]

    Jothimurugesan, Kandaswamy; Goodwin, Jr., James G.; Gangwal, Santosh K.

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  15. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    SciTech Connect (OSTI)

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  16. Guided evolution of bulk metallic glass nanostructures: A platform for designing three-dimensional electrocatalytic surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; Ryu, Won -Hee; Gittleson, Forrest S.; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; et al

    2015-12-22

    Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.

  17. Silicon surface and bulk defect passivation by low temperature PECVD oxides and nitrides

    SciTech Connect (OSTI)

    Chen, Z.; Rohatgi, A.; Ruby, D.

    1995-01-01

    The effectiveness of PECVD passivation of surface and bulk defects in Si, as well as phosphorous diffused emitters, Is investigated and quantified. Significant hydrogen incorporation coupled with high positive charge density in the PECVD SiN layer is found to play an important role in bulk and surface passivation. It is shown that photo-assisted anneal in a forming gas ambient after PECVD depositions significantly improves the passivation of emitter and bulk defects. PECVD passivation of phosphorous doped emitters and boron doped bare Si surfaces is found to be a strong function of doping concentration. Surface recombination velocity of less than 200 cm/s for 0.2 Ohm-cm and less than 1 cm/s for high resistivity substrates ({approximately} Ohm-cm) were achieved. PECVD passivation improved bulk lifetime in the range of 30% to 70% in multicrystalline Si materials. However, the degree of the passivation was found to be highly material specific. Depending upon the passivation scheme, emitter saturation current density (J{sub oe}) can be reduced by a factor of 3 to 9. Finally, the stability of PECVD oxide/nitride passivation under prolonged UV exposure is established.

  18. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect (OSTI)

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  19. WHAT GOVERNS THE BULK VELOCITY OF THE JET COMPONENTS IN ACTIVE GALACTIC NUCLEI?

    SciTech Connect (OSTI)

    Chai Bo; Cao Xinwu; Gu Minfeng E-mail: cxw@shao.ac.cn

    2012-11-10

    We use a sample of radio-loud active galactic nuclei (AGNs) with measured black hole masses to explore the jet formation mechanisms in these sources. Based on Koenigl's inhomogeneous jet model, the jet parameters, such as the bulk motion Lorentz factor, magnetic field strength, and electron density in the jet, can be estimated with the very long baseline interferometry and X-ray data.. We find a significant correlation between black hole mass and the bulk Lorentz factor of the jet components for this sample, while no significant correlation is present between the bulk Lorentz factor and the Eddington ratio. The massive black holes will be spun up through accretion, as the black holes acquire mass and angular momentum simultaneously through accretion. Recent investigation indeed suggested that most supermassive black holes in elliptical galaxies have on average higher spins than the black holes in spiral galaxies, where random, small accretion episodes (e.g., tidally disrupted stars, accretion of molecular clouds) might have played a more important role. If this is true, then the correlation between black hole mass and the bulk Lorentz factor of the jet components found in this work implies that the motion velocity of the jet components is probably governed by the black hole spin. No correlation is found between the magnetic field strength at 10R {sub S} (R {sub S} = 2GM/c {sup 2} is the Schwarzschild radius) in the jets and the bulk Lorentz factor of the jet components for this sample. This is consistent with the black hole spin scenario, i.e., the faster moving jets are magnetically accelerated by the magnetic fields threading the horizon of more rapidly rotating black holes. The results imply that the Blandford-Znajek mechanism may dominate over the Blandford-Payne mechanism for the jet acceleration, at least in these radio-loud AGNs.

  20. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  1. High-Performance All Air-Processed Polymer-Fullerene Bulk Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Black, C.T.; Nam, C.-Y.; Su, D.

    2009-10-23

    High photovoltaic device performance is demonstrated in ambient-air-processed bulk heterojunction solar cells having an active blend layer of organic poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), with power conversion efficiencies as high as 4.1%, which is comparable to state-of-the-art bulk heterojunction devices fabricated in air-free environments. High-resolution transmission electron microscopy is combined with detailed analysis of electronic carrier transport in order to quantitatively understand the effects of oxygen exposure and different thermal treatments on electronic conduction through the highly nanostructured active blend network. Improvement in photovoltaic device performance by suitable post-fabrication thermal processing results from the reduced oxygen charge trap density in the active blend layer and is consistent with a corresponding slight increase in thickness of an {approx}4 nm aluminum oxide hole-blocking layer present at the electron-collecting contact interface.

  2. CALCULATION OF DEMONSTRATION BULK VITRIFICATION SYSTEM MELTER INLEAKAGE AND OFF-GAS GENERATION RATE

    SciTech Connect (OSTI)

    MAY TH

    2008-04-16

    The River Protection Project (RPP) mission is to safely store, retrieve, treat, immobilize, and dispose of the Hanford Site tank waste. The Demonstration Bulk Vitrification System (DBVS) is a research and development project whose objective is to demonstrate the suitability of Bulk Vitrification treatment technology waste form for disposing of low-activity waste from the Tank Farms. The objective of this calculation is to determine the DBVS melter inleakage and off-gas generation rate based on full scale testing data from 38D. This calculation estimates the DBVS melter in leakage and gas generation rate based on test data. Inleakage is estimated before the melt was initiated, at one point during the melt, and at the end of the melt. Maximum gas generation rate is also estimated.

  3. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOE Patents [OSTI]

    Manthiram, Arumugam (Austin, TX); Wu, Yan (Austin, TX)

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  4. Intense femtosecond photoexcitation of bulk and monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Paradisanos, I.; Fotakis, C.; Kymakis, E.; Kioseoglou, G.; Stratakis, E.

    2014-07-28

    The effect of femtosecond laser irradiation on bulk and single-layer MoS{sub 2} on silicon oxide is studied. Optical, field emission scanning electron microscopy and Raman microscopy were used to quantify the damage. The intensity of A{sub 1g} and E{sub 2g}{sup 1} vibrational modes was recorded as a function of the number of irradiation pulses. The observed behavior was attributed to laser-induced bond breaking and subsequent atoms removal due to electronic excitations. The single-pulse optical damage threshold was determined for the monolayer and bulk under 800?nm and 1030?nm pulsed laser irradiation, and the role of two-photon versus one photon absorption effects is discussed.

  5. Summary - Demonstration Bulk Vitrification System (DBVS) for Low-Actvity Waste at Hanford

    Office of Environmental Management (EM)

    DBVS ETR Report Date: September 2006 ETR-3 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe retrieval, treatment and disposal of 53 million gallons of Hanford radioactive waste. The Waste Treatment Plant (WTP) is being designed to treat and vitrify the High Level

  6. Effect of Viscosity on the Microformability of Bulk Amorphous Alloy in Supercooled Liquid Region

    SciTech Connect (OSTI)

    Cheng Ming; Zhang Shihong; Wang Ruixue

    2010-06-15

    Previously published results have shown that viscosity greatly influences on the deformation behavior of the bulk amorphous alloy in supercooled liquid region during microforming process. And viscosity is proved to be a component of the evaluation index which indicating microformability. Based on the fluid flow theory and assumptions, bulk amorphous alloy can be regarded as the viscous materials with a certain viscosity. It is helpful to understand how the viscosity plays an important role in viscous materials with various viscosities by numerical simulation on the process. Analysis is carried out by linear state equation in FEM with other three materials, water, lubricant oil and polymer melt, whose viscosities are different obviously. The depths of the materials flow into the U-shaped groove during the microimprinting process are compared in this paper. The result shows that the deformation is quite different when surface tension effect is not considered in the case. With the lowest viscosity, water can reach the bottom of micro groove in a very short time. Lubricant oil and polymer melt slower than it. Moreover bulk amorphous alloys in supercooled liquid state just flow into the groove slightly. Among the alloys of different systems including Pd-, Mg- and Zr-based alloy, Pd-based alloy ranks largest in the depth. Mg-based alloy is the second. And Zr-based alloy is the third. Further more the rank order of the viscosities of the alloys is Pd-, Mg- and Zr-based. It agrees well with the results of calculation. Therefore viscosity plays an important role in the microforming of the bulk amorphous alloy in the supercooled liquid state.

  7. Spinodal Decomposition and Nucleation and Growth as a Means to Bulk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectrics: Enhanced Perfomance in Pb1-xSnxTe-PbS | Energy Frontier Research Centers Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics: Enhanced Perfomance in Pb1-xSnxTe-PbS Home Author: J. Androulakis, C. Uher, T. Hogan, M. G. Kanatzidis, et.al Year: 2007 Abstract: URL: Link to article - FTIR spectroscopy and Thermal Analysis labs Document: Download Document (PDF) - 6962.01kb

  8. The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Stanford Synchrotron Radiation Lightsource The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale Friday, August 9, 2013 - 10:30am SLAC, Conference Room 137-322 Presented by Abraham Wolcott, Department of Chemistry, Columbia University High-pressure, high-temperature (HPHT) nanodiamonds with nitrogen vacancy centers represent a unique class of fluorophores due to their long-lived electron spin properties, all-carbon matrix, and long-term photostability. While this class

  9. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOE Patents [OSTI]

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  10. Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

    2007-06-25

    PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110C at adiabatic conditions. Additional testing is recommended.

  11. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  12. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abstract Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High- Tonnage Low-Moisture Switchgrass Feedstock Genera Energy (Lead), University of Tennessee, Laidig Systems, Inc., Marathon Equipment, Dupont-Danisco Cellulosic Ethanol, Deere & Company, Idaho National Lab, Oak Ridge National Lab Prepared by Alvin Womac, Biosystems Engineering, Univ. Tenn. A high-tonnage feedstock supply system was developed using agricultural, transportation, and industrial technologies

  13. Method of altering the effective bulk density of solid material and the resulting product

    DOE Patents [OSTI]

    Kool, Lawrence B. (Ann Arbor, MI); Nolen, Robert L. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI)

    1983-01-01

    A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.

  14. The Role of Surface Chemistry and Bulk Properties on the Cycling and Rate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capability of Lithium Positive Electrode Materials | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es084_shaohorn_2011_o.pdf More Documents & Publications The Role of Surface Chemistry and Bulk Properties on the Cycling and Rate Capability of Lithium Positive Electrode Materials FY 2011 Annual Progress Report for Energy Storage R&D The Role of Surface Chemistry on the Cycling and Rate

  15. The Role of Surface Chemistry and Bulk Properties on the Cycling and Rate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capability of Lithium Positive Electrode Materials | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es084_shaohorn_2010_p.pdf More Documents & Publications The Role of Surface Chemistry and Bulk Properties on the Cycling and Rate Capability of Lithium Positive Electrode Materials The Role of Surface Chemistry on the Cycling and Rate Capability of Lithium Positive Electrode

  16. Control Center and Data Management Improvements Modernize Bulk Power Operations in Georgia

    Office of Environmental Management (EM)

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Georgia System Operations Corporation's (GSOC) Smart Grid Investment Grant (SGIG) project modernized bulk

  17. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; et al

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  18. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    SciTech Connect (OSTI)

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh -Lin; Ng, Fay; Zhu, X. -Y.; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donoracceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.

  19. Effect of mechanical strain on electronic properties of bulk MoS{sub 2}

    SciTech Connect (OSTI)

    Kumar, Sandeep Kumar, Jagdish Sastri, O. S. K. S.

    2015-05-15

    Ab-initio density functional theory based calculations of electronic properties of bulk and monolayer Molybdenum di-Sulfide (MoS{sub 2}) have been performed using all electron Full Potential Linearised Augmentad Plane Wave (FPLAPW) method using Elk code. We have used Generalised Gradient Approximation (GGA) for exchange and correlation functionals and performed calculaitons of Lattice parameters, Density Of States (DOS) and Band Structure (BS). Band structure calculations revealed that bulk MoS{sub 2} has indirect band gap of 0.97 eV and mono-layer MoS{sub 2} has direct band gap which has increased to 1.71 eV. These are in better agreement with experimental values as compared with the other calculations using pseudo-potential code. The effect of mechanical strain on the electronic properties of bulk MoS{sub 2} has also been studied. For the different values of compressive strain (varying from 2% to 8% in steps of 2%) along the c-axis, the corresponding DOS and BS are obtained. We observed that the band gap decreases by about 15% for every 2% increase in strain along the c-axis.

  20. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

  1. Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals

    SciTech Connect (OSTI)

    Luan, Qingbin; Ni, Zhenyi; Zhu, Tiejun; Yang, Deren; Pi, Xiaodong; Koura, Setsuko

    2014-12-15

    Technologically important low-resistivity bulk Si has been usually produced by the traditional Czochralski growth method. We now explore a novel method to obtain low-resistivity bulk Si by hot-pressing B- and P-hyperdoped Si nanocrystals (NCs). In this work bulk Si with the resistivity as low as ∼ 0.8 (40) mΩ•cm has been produced by hot pressing P (B)-hyperdoped Si NCs. The dopant type is found to make a difference for the sintering of Si NCs during the hot pressing. Bulk Si hot-pressed from P-hyperdoped Si NCs is more compact than that hot-pressed from B-hyperdoped Si NCs when the hot-pressing temperature is the same. This leads to the fact that P is more effectively activated to produce free carriers than B in the hot-pressed bulk Si. Compared with the dopant concentration, the hot-pressing temperature more significantly affects the structural and electrical properties of hot-pressed bulk Si. With the increase of the hot-pressing temperature the density of hot-pressed bulk Si increases. The highest carrier concentration (lowest resistivity) of bulk Si hot-pressed from B- or P-hyperdoped Si NCs is obtained at the highest hot-pressing temperature of 1050 °C. The mobility of carriers in the hot-pressed bulk Si is low (≤  ∼ 30 cm{sup -2}V{sup -1}s{sup -1}) mainly due to the scattering of carriers induced by structural defects such as pores.

  2. Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals

    SciTech Connect (OSTI)

    Boes, Andreas, E-mail: s3363819@student.rmit.edu.au; Steigerwald, Hendrik; Sivan, Vijay; Mitchell, Arnan [School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3001 (Australia); ARC Center for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), RMIT University, Melbourne, Victoria 3001 (Australia); Yudistira, Didit [School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3001 (Australia); Wade, Scott [Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Mailis, Sakellaris [Optoelectronics Research Centre, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Soergel, Elisabeth [Institute of Physics, University of Bonn, Wegelerstr. 8, 53115 Bonn (Germany)

    2014-09-01

    We report the realization of high-resolution bulk domains achieved using a shallow, structured, domain inverted surface template obtained by UV laser-induced poling inhibition in MgO-doped lithium niobate. The quality of the obtained bulk domains is compared to those of the template and their application for second harmonic generation is demonstrated. The present method enables domain structures with a period length as small as 3??m to be achieved. Furthermore, we propose a potential physical mechanism that leads to the transformation of the surface template into bulk domains.

  3. Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities

    SciTech Connect (OSTI)

    Zhao, Xin; Reece, Charles; Palczewski, Ari; Ciovati, Gianluigi; Krishnan, Mahadevan; James, Colt; Irfan, Irfan

    2013-09-01

    This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via a cathodic arc Nb plasma ions source, an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Literally, a top-surface layer of Nb films which sustains SRF function, always grows up in homo-epitaxy mode, on top of a Nb nucleation layer. Homo-epitaxy growth of Nb must be the final stage (a crystal thickening process) of any coatings of Nb film on alternative cavity structure materials. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavities were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film could be as same as the pre-coated bulk Nb surface (which received a chemically-buffered polishing plus a light electro-polishing); but quality factor of two tested cavities dropped quickly. We are investigating if the severe Q-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.

  4. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect (OSTI)

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schrder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q?=?2.51??10{sup 6}) photonic crystal cavities with low mode volume (V{sub m}?=?1.062??(?/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05?dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q?=?3??10{sup 3}.

  5. Radiation detector using a bulk high T[sub c] superconductor

    DOE Patents [OSTI]

    Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.

    1993-12-07

    A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.

  6. Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Schweiger, Michael J.; Evans, Michael B.; Smith, Benjamin T.; Arrigoni, Benjamin M.; Kim, Dong-Sang; Rodriguez, Carmen P.; Yokuda, Satoru T.; Matyas, Josef; Buchmiller, William C.; Gallegos, Autumn B.; Fluegel, Alexander

    2007-08-06

    Bulk vitrification (BV) is a process that heats a feed material that consists of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. This study supports the BV design and operations by exploring various methods aimed at reducing the quantities of soluble Tc in the castable refractory block portion of the refractory lining, which limits the effectiveness of the final waste form.

  7. The use of bulk states to accelerate the band edge statecalculation of a semiconductor quantum dot

    SciTech Connect (OSTI)

    Vomel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques,Osni A.; Dongarra, Jack J.

    2006-05-10

    We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations.

  8. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect (OSTI)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.810{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  9. Analysis of Soluble Re Concentrations in Refractory from Bulk Vitrification Full-Scale Test 38B

    SciTech Connect (OSTI)

    Cooley, Scott K.; Pierce, Eric M.; Bagaasen, Larry M.; Schweiger, Michael J.

    2006-06-30

    The capacity of the waste treatment plant (WTP) being built at the Hanford Site is not sufficient to process all of the tank waste accumulated from more than 40 years of nuclear materials production. Bulk vitrification can accelerate tank waste treatment by providing some supplemental low-activity waste (LAW) treatment capacity. Bulk vitrification combines LAW and glass-forming chemicals in a large metal container and melts the contents using electrical resistance heating. A castable refractory block (CRB) is used along with sand to insulate the container from the heat generated while melting the contents into a glass waste form. This report describes engineering-scale (ES) and full-scale (FS) tests that have been conducted. Several ES tests showed that a small fraction of soluble Tc moves in the CRB and results in a groundwater peak different than WTP glass. The total soluble Tc-99 fraction in the FS CRB is expected to be different than that determined in the ES tests, but until FS test results are available, the best-estimate soluble Tc-99 fraction from the ES tests has been used as a conservative estimate. The first FS test results are from cold simulant tests that have been spiked with Re. An estimated scale-up factor extrapolates the Tc-99 data collected at the ES to the FS bulk vitrification waste package. Test FS-38A tested the refractory design and did not have a Re spike. Samples were taken and analyzed to help determine Re CRB background concentrations using a Re-spiked, six-tank composite simulant mixed with soil and glass formers to produce the waste feed. Although this feed is not physically the same as the Demonstration Bulk Vitrification System feed , the chemical make-up is the same. Extensive sampling of the CRB was planned, but difficulties with the test prevented completion of a full box. An abbreviated plan is described that looks at duplicate samples taken from refractory archive sections, a lower wall sample, and two base samples to gain early information about Re and projected Tc-99 levels in the FS box.

  10. Oven rack having integral lubricious, dry porcelain surface

    SciTech Connect (OSTI)

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun

    2014-06-03

    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  11. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5: Data report

    SciTech Connect (OSTI)

    Boyd, P.J.; Noel, J.S.; Martin, R.J. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    Experimental results are presented for bulk and mechanical properties measurements on specimens of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5, at Yucca Mountain, Nevada. Measurements have been performed on three thermal/mechanical units, PTn, TSwl, and TSw2. On each specimen the following bulk properties have been reported: dry bulk density, saturated bulk density, average grain density, and porosity. Unconfined compression to failure, confined compression to failure, and indirect tensile strength tests were performed on selected specimens recovered from the boreholes. In addition, compressional and shear wave velocities were measured on specimens designated for unconfined compression and confined compression experiments. Measurements were conducted at room temperature on nominally water-saturated specimens. The nominal rate for the fracture experiments was 10{sup -5}s{sup -1}.

  12. Dr. Googin and his early days at Y-12, part 8 -- Googin made improvements in the Bulk Treatment process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 - Googin made improvements in the Bulk Treatment process We last saw John Googin learning from the University of Tennessee library what he needed to know regarding inorganic chemistry. He wanted to make improvements in the Bulk Treatment process of pre- paring uranium as feed material for the Y-12 calutrons. Using the information from the Mellor's Handbook of Inorganic Chemistry he proceeded to do just that. His first "assault" on the chemical process, as he called it in his

  13. In situ current voltage measurements for optimization of a novel fullerene acceptor in bulk heterojunction photovoltaics

    SciTech Connect (OSTI)

    Shuttle, Christopher G.; Treat, Neil D.; Fan, Jian; Varotto, Alessandro; Hawker, Craig J.; Wudl, Fred; Chabinyc, Michael L.

    2011-10-31

    The evaluation of the power conversion efficiency (PCE) of new materials for organic bulk heterojunction (BHJ) photovoltaics is difficult due to the large number of processing parameters possible. An efficient procedure to determine the optimum conditions for thermal treatment of polymer-based bulk heterojunction photovoltaic devices using in situ current-voltage measurements is presented. The performance of a new fullerene derivative, 1,9-dihydro-64,65-dihexyloxy-1,9-(methano[1,2] benzomethano)fullerene[60], in BHJ photovolatics with poly(3-hexylthiophene) (P3HT) was evaluated using this methodology. The device characteristics of BHJs obtained from the in situ method were found to be in good agreement with those from BHJs annealed using a conventional process. This fullerene has similar performance to 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methano fullerene in BHJs with P3HT after thermal annealing. For devices with thickness of 70 nm, the short circuit current was 6.24 mA/cm with a fill factor of 0.53 and open circuit voltage of 0.65 V. The changes in the current-voltage measurements during thermal annealing suggest that the ordering process in P3HT dominates the improvement in power conversion efficiency.

  14. Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Jothimurugesan, Kandaswami (Baton Rouge, LA)

    1990-01-01

    A simple and effective method for producing bulk single and mixed oxide absorbents and catalysts is disclosed. The method yields bulk single oxide and mixed oxide absorbent and catalyst materials which combine a high macroporosity with relatively high surface area and good mechanical strength. The materials are prepared in a pellet form using as starting compounds, calcined powders of the desired composition and physical properties these powders are crushed to broad particle size distribution, and, optionally may be combined with an inorganic clay binder. The necessary amount of water is added to form a paste which is extruded, dried and heat treated to yield and desired extrudate strength. The physical properties of the extruded materials (density, macroporosity and surface area) are substantially the same as the constituent powder is the temperature of the heat treatment of the extrudates is approximately the same as the calcination temperature of the powder. If the former is substantially higher than the latter, the surface area decreases, but the macroporosity of the extrusions remains essentially constant.

  15. Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; Lee, Wen -Jay; Scheel, Mario; Chuang, Chih -Pin; Liaw, Peter K.; Lo, Yu -Chieh; Zhang, Yong; Di Michiel, Marco

    2014-03-18

    In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulkmore » metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.« less

  16. Bulk crystal growth of antimonide based III-V compounds for thermophotovoltaics applications

    SciTech Connect (OSTI)

    Dutta, P.S.; Ostrogorsky, A.G.; Gutmann, R.J.

    1998-10-01

    In this paper, the bulk growth of crack-free GaInSb and single phase GaInAsSb alloys are presented. A new class of III-V quasi-binary [A{sub III}B{sub V}]{sub 12{minus}x}[C{sub III}D{sub V}]{sub x} semiconductor alloys has been synthesized and bulk crystals grown from the melt for the first time. The present investigation is focused on the quasi-binary alloy (GaSb){sub 1{minus}x}(InAs){sub x} (0 < x < 0.05) due to its importance for thermophotovoltaic applications. The structural properties of this melt-grown quasi-binary alloy are found to be significantly different from the conventional quaternary compound Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} with composition x = y. Synthesis and growth procedures are discussed. For the growth of ternary alloys, it was demonstrated that forced convection or mixing in the melt during directional solidification of In{sub x}Ga{sub 1{minus}x}Sb (0 < x < 0.1) significantly reduces cracks in the crystals.

  17. Brane gravity, massless bulk scalar, and self-tuning of the cosmological constant

    SciTech Connect (OSTI)

    Kim, Jihn E.; Kyae, Bumseok; Shafi, Qaisar

    2004-09-15

    We show that a self-tuning mechanism of the cosmological constant could work in 5D noncompact space-time with a Z{sub 2} symmetry in the presence of a massless scalar field. The standard model matter fields live only on the 4D brane. The change of vacuum energy on the brane (brane cosmological constant) by, for instance, electroweak and QCD phase transitions, just gives rise to dynamical shifts of the profiles of the background metric and the scalar field in the extra dimension, keeping 4D space-time flat without any fine-tuning. To avoid naked singularities in the bulk, the brane cosmological constant should be negative. We introduce an additional brane-localized 4D Einstein-Hilbert term so as to provide the observed 4D gravity with the noncompact extra dimension. With a general form of the brane-localized gravity term allowed by the symmetries, the low energy Einstein gravity is successfully reproduced on the brane at long distances. We show this phenomenon explicitly for the case of vanishing bulk cosmological constant.

  18. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    SciTech Connect (OSTI)

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  19. Nonlinear optical properties of bulk cuprous oxide using single beam Z-scan at 790?nm

    SciTech Connect (OSTI)

    Serna, J.; Rueda, E.; Garca, H.

    2014-11-10

    The two-photon absorption (TPA) coefficient ? and the nonlinear index of refraction n{sub 2} for bulk cuprous oxide (Cu{sub 2}O) direct gap semiconductor single crystal have been measured by using a balance-detection Z-scan single beam technique, with an excellent signal to noise ratio. Both coefficients were measured at 790?nm using a 65 fs laser pulse at a repetition rate of 90.9?MHz, generated by a Ti:Sapphire laser oscillator. The experimental values for ? were explained by using a model that includes allowed-allowed, forbidden-allowed, and forbidden-forbidden transitions. It was found that the forbidden-forbidden transition is the dominant mechanism, which is consistent with the band structure of Cu{sub 2}O. The low value for ? found in bulk, as compared with respect to thin film, is explained in terms of the structural change in thin films that result in opposite parities of the conduction and valence band. The n{sub 2} is also theoretically calculated by using the TPA dispersion curve and the Kramers-Kronig relations for nonlinear optics.

  20. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Motor Gasoline Prices by Formulation, Grade, Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Conventional Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail

  1. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Refiner Motor Gasoline Prices by Formulation, Grade, Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Conventional Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to

  2. Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots

    SciTech Connect (OSTI)

    Yeltik, Aydan; Guzelturk, Burak; Akhavan, Shahab; Ludwig Hernandez-Martinez, Pedro; Volkan Demir, Hilmi

    2013-12-23

    We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs.

  3. Unique properties of CuZrAl bulk metallic glasses induced by microalloying

    SciTech Connect (OSTI)

    Huang, B.; Bai, H. Y.; Wang, W. H.

    2011-12-15

    We studied the glass forming abilities (GFA), mechanical, and physical properties of (CuZr){sub 92.5}Al{sub 7}X{sub 0.5} (X = La, Sm, Ce, Gd, Ho, Y, and Co) bulk metallic glasses (BMGs). We find that the GFA, mechanical, and physical properties can be markedly changed and modulated by the minor rare earth addition. The Kondo screening effect is found to exist in (CuZr){sub 92.5}Al{sub 7}Ce{sub 0.5} BMG at low temperatures and the Schottky effect exists in all the rare earth element doped BMGs. Our results indicate that the minor addition is an effective way for modulating and getting desirable properties of the BMGs. The mechanisms of the effects of the addition are discussed. The results have implications for the exploration of metallic glasses and for improving the mechanical and low temperature physical properties of BMGs.

  4. H-point exciton transitions in bulk MoS{sub 2}

    SciTech Connect (OSTI)

    Saigal, Nihit; Ghosh, Sandip

    2015-05-04

    Reflectance and photoreflectance spectrum of bulk MoS{sub 2} around its direct bandgap energy have been measured at 12?K. Apart from spectral features due to the A and B ground state exciton transitions at the K-point of the Brillouin zone, one observes additional features at nearby energies. Through lineshape analysis the character of two prominent additional features are shown to be quite different from that of A and B. By comparing with reported electronic band structure calculations, these two additional features are identified as ground state exciton transitions at the H-point of the Brillouin zone involving two spin-orbit split valance bands. The excitonic energy gap at the H-point is 1.965?eV with a valance bands splitting of 185?meV. While at the K-point, the corresponding values are 1.920?eV and 205?meV, respectively.

  5. Change of variables as a method to study general ?-models: Bulk universality

    SciTech Connect (OSTI)

    Shcherbina, M.

    2014-04-15

    We consider ? matrix models with real analytic potentials. Assuming that the corresponding equilibrium density ? has a one-interval support (without loss of generality ? = [?2, 2]), we study the transformation of the correlation functions after the change of variables ?{sub i} ? ?(?{sub i}) with ?(?) chosen from the equation ?{sup ?}(?)?(?(?)) = ?{sub sc}(?), where ?{sub sc}(?) is the standard semicircle density. This gives us the deformed ?-model which has an additional interaction term. Standard transformation with the Gaussian integral allows us to show that the deformed ?-model may be reduced to the standard Gaussian ?-model with a small perturbation n{sup ?1}h(?). This reduces most of the problems of local and global regimes for ?-models to the corresponding problems for the Gaussian ?-model with a small perturbation. In the present paper, we prove the bulk universality of local eigenvalue statistics for both one-cut and multi-cut cases.

  6. Combustion of Bulk 84% Fe/16% KCIO{sub 4} heat powder

    SciTech Connect (OSTI)

    Nissen, M.; Guidotti, R.A.; Berry, B.

    1996-05-01

    Fe/KClO{sub 4} pyrotechnic mixtures are used in thermal batteries to provide the heat necessary to bring the battery stack to operating temperatures of 550 to 600 C. This heat source is normally used as discs pressed from bulk powder. To evaluate the consequences associated with unexpected ignition of large amounts of heat powder, combustion of 84% Fe/16% KClO{sub 4} heat powders was conducted for various scenarios under controlled conditions and the response documented. Increasing amounts of heat powder--up to 8 lbs--were ignited in both unconfined and confined (sealed) containers in a remote area. The containers were thermocoupled and the resulting burning filmed with a standard video camera, high-speed (1,000 frames/s) film and video cameras, and an infrared video camera. A 20- minute video of the burning under the various conditions is presented.

  7. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    SciTech Connect (OSTI)

    Wang, Kai; Yi, Chao; Liu, Chang; Hu, Xiaowen; Chuang, Steven; Gong, Xiong

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated with MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.

  8. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  9. Scaling trends in SET pulse widths in Sub-100 nm bulk CMOS processes.

    SciTech Connect (OSTI)

    Narasimham, Balaji; Ahlbin, Jonathan R.; Schrimpf, Ronald D.; Gadlage, Matthew J.; Massengill, Lloyd W.; Vizkelethy, Gyorgy; Reed, Robert A.; Bhuva, Bharat L.

    2010-07-01

    Digital single-event transient (SET) measurements in a bulk 65-nm process are compared to transients measured in 130-nm and 90-nm processes. The measured SET widths are shorter in a 65-nm test circuit than SETs measured in similar 90-nm and 130-nm circuits, but, when the factors affecting the SET width measurements (in particular pulse broadening and the parasitic bipolar effect) are considered, the actual SET width trends are found to be more complex. The differences in the SET widths between test circuits can be attributed in part to differences in n-well contact area. These results help explain some of the inconsistencies in SET measurements presented by various researchers over the past few years.

  10. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOE Patents [OSTI]

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  11. Method of casting articles of a bulk-solidifying amorphous alloy

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.; Peker, A.

    1998-08-25

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.

  12. Numerical design of SiC bulk crystal growth for electronic applications

    SciTech Connect (OSTI)

    Wejrzanowski, T.; Grybczuk, M.; Kurzydlowski, K. J.; Tymicki, E.

    2014-10-06

    Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.

  13. Radiation detector using a bulk high T.sub.c superconductor

    DOE Patents [OSTI]

    Artuso, Joseph F. (Santa Barbara, CA); Franks, Larry A. (Santa Barbara, CA); Hull, Kenneth L. (Ventura, CA); Symko, Orest G. (Salt Lake City, UT)

    1993-01-01

    A radiation detector (10) is provided, wherein a bulk high T.sub.c superconducting sample (11) is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil (12) which is coupled by an input coil (15) to an rf SQUID (16).

  14. Method of casting articles of a bulk-solidifying amorphous alloy

    DOE Patents [OSTI]

    Lin, Xianghong (Laguna Niguel, CA); Johnson, William L. (Pasadena, CA); Peker, Atakan (Aliso Viejo, CA)

    1998-01-01

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.

  15. Short time proton dynamics in bulk ice and in porous anode solid oxide fuel cell materials

    SciTech Connect (OSTI)

    Basoli, Francesco; Senesi, Roberto; Kolesnikov, Alexander I; Licoccia, Silvia

    2014-01-01

    Oxygen reduction and incorporation into solid electrolytes and the reverse reaction of oxygen evolution play a cru-cial role in Solid Oxide Fuel Cell (SOFC) applications. However a detailed un derstanding of the kinetics of the cor-responding reactions, i.e. on reaction mechanisms, rate limiting steps, reaction paths, electrocatalytic role of materials, is still missing. These include a thorough characterization of the binding potentials experienced by protons in the lattice. We report results of Inelastic Neutron Scattering (INS) measurements of the vibrational state of the protons in Ni- YSZ highly porous composites (75% to 90% ), a ceramic-metal material showing a high electrical conductivity and ther mal stability, which is known to be most effectively used as anodes for solid ox ide fuel cells. The results are compared with INS and Deep Inelastic Neutron Scattering (DINS) experiments on the proton binding states in bulk ice.

  16. Further development and testing of a second-order bulk boundary layer model. Master's thesis

    SciTech Connect (OSTI)

    Krasner, R.D.

    1993-05-03

    A one-layer bulk boundary layer model is developed. The model predicts the mixed layer values of the potential temperature, mixing ratio, and u- and v-momentum. The model also predicts the depth of the boundary layer and the vertically integrated turbulence kinetic energy (TKE). The TKE is determined using a second-order closure that relates the rate of dissipation to the TKE. The fractional area covered by rising motion sigma and the entrainment rate (E) are diagnostically determined. The model is used to study the clear convective boundary layer (CBL) using data from the Wangara, Australia boundary layer experiment. The Wangara data is also used as an observation base to validate model results. A further study is accomplished by simulating the planetary boundary layer (PBL) over an ocean surface. This study is designed to find the steady-state solutions of the prognostic variable.

  17. Bulk viscosity in a hyperonic star and r-mode instability

    SciTech Connect (OSTI)

    Jha, T. K.; Mishra, H.; Sreekanth, V.

    2010-08-15

    We consider a rotating neutron star with the presence of hyperons in its core. We use an equation of state in an effective chiral model within the relativistic mean-field approximation. We calculate the hyperonic bulk viscosity coefficient caused by nonleptonic weak interactions. By estimating the damping time scales of the dissipative processes, we investigate its role in the suppression of gravitationally driven instabilities in the r mode. We observe that r-mode instability remains very significant for hyperon core temperatures of around 10{sup 8} K, which results in a comparatively larger instability window. We find that such instability can reduce the angular velocity of the rapidly rotating star considerably up to {approx}0.04{Omega}{sub K}, with {Omega}{sub K} as the Keplerian angular velocity.

  18. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    SciTech Connect (OSTI)

    Womac, Alvin; Groothuis, Mitch; Westover, Tyler; Phanphanich, Manunya; Webb, Erin; Sokhansanj, Shahab; Turhollow, Anthony

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  19. Quantitative comparison of organic photovoltaic bulk heterojunction photostability under laser illumination

    SciTech Connect (OSTI)

    Lesoine, Michael D.; Bobbitt, Jonathan M.; Carr, John A.; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A.

    2014-11-20

    The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peaks full width at half-maximum and location as a function of illumination time and laser power densities from 2.5 103 to 2.5 105 W cm2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 105 Wcm2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Furthermore, photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.

  20. Quantitative comparison of organic photovoltaic bulk heterojunction photostability under laser illumination

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lesoine, Michael D.; Bobbitt, Jonathan M.; Carr, John A.; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A.

    2014-11-20

    The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination time and laser powermore » densities from 2.5 × 103 to 2.5 × 105 W cm–2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 × 105 Wcm–2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Furthermore, photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.« less

  1. Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2 leakage

    SciTech Connect (OSTI)

    Zhou X.; Wielopolski L.; Lakkaraju, V. R.; Apple, M.; Dobeck, L. M.; Gullickson, K.; Shaw, J. A.; Cunningham, A. B.; Spangler, L. H.

    2012-03-01

    Experimental observations of signature changes of bulk soil electrical conductivity (EC) due to CO{sub 2} leakage were carried out at a field site at Bozeman, Montana, to investigate the change of soil geophysical properties in response to possible leakage of geologically sequestered CO{sub 2}. The dynamic evolution of bulk soil EC was measured during an engineered surface leakage of CO{sub 2} through in situ continuous monitoring of bulk soil EC, soil moisture, soil temperature, rainfall rate, and soil CO{sub 2} concentration to investigate the response of soil bulk EC signature to CO{sub 2} leakage. Observations show that: (1) high soil CO{sub 2} concentration due to CO{sub 2} leakage enhances the dependence of bulk soil EC on soil moisture. The bulk soil EC is a linear multivariate function of soil moisture and soil temperature, the coefficient for soil moisture increased from 2.111 dS for the non-leaking phase to 4.589 dS for the CO{sub 2} leaking phase; and the coefficient for temperature increased from 0.003 dS/C for the non-leaking phase to 0.008 dS/C for the CO{sub 2} leaking phase. The dependence of bulk soil EC on soil temperature is generally weak, but leaked CO{sub 2} enhances the dependence, (2) after the CO{sub 2} release, the relationship between soil bulk EC and soil CO{sub 2} concentration observes three distinct CO{sub 2} decay modes. Rainfall events result in sudden changes of soil moisture and are believed to be the driving forcing for these decay modes, and (3) within each mode, increasing soil CO{sub 2} concentration results in higher bulk soil EC. Comparing the first 2 decay modes, it is found that the dependence of soil EC on soil CO{sub 2} concentration is weaker for the first decay mode than the second decay mode.

  2. Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion

    SciTech Connect (OSTI)

    Beard, Matthew C.; Midgett, Aaron G.; Hanna, Mark C.; Luther, Joseph M.; Hughes, Barbara K.; Nozik, Arthur J.

    2010-07-26

    Multiple exciton generation (MEG) in quantum dots (QDs) and impact ionization (II) in bulk semiconductors are processes that describe producing more than one electron-hole pair per absorbed photon. We derive expressions for the proper way to compare MEG in QDs with II in bulk semiconductors and argue that there are important differences in the photophysics between bulk semiconductors and QDs. Our analysis demonstrates that the fundamental unit of energy required to produce each electron-hole pair in a given QD is the band gap energy. We find that the efficiency of the multiplication process increases by at least 2 in PbSe QDs compared to bulk PbSe, while the competition between cooling and multiplication favors multiplication by a factor of 3 in QDs. We also demonstrate that power conversion efficiencies in QD solar cells exhibiting MEG can greatly exceed conversion efficiencies of their bulk counterparts, especially if the MEG threshold energy can be reduced toward twice the QD band gap energy, which requires a further increase in the MEG efficiency. Finally, we discuss the research challenges associated with achieving the maximum benefit of MEG in solar energy conversion since we show the threshold and efficiency are mathematically related.

  3. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  4. Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas

    SciTech Connect (OSTI)

    Liu Yongxin; Zhang Quanzhi; Liu Jia; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bogaerts, Annemie [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

    2012-09-10

    The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen and argon has been studied by different experimental methods. In comparison with the electropositive argon discharge, the BRH in an electronegative discharge occurs at larger electrode gaps. Kinetic particle simulations reveal that in the oxygen discharge, the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonant electrons when traversing the bulk, resulting in a suppressed BRH. This effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative.

  5. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products"

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products",13,"Monthly","12/2015","1/15/1993" ,"Release

  6. Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts

    SciTech Connect (OSTI)

    Phivilay, Somphonh; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    The most active photocatalyst system for water splitting under UV irradiation (270 nm) is the promoted 0.2%NiO/NaTaO3:2%La photocatalyst with optimized photonic efficiency (P.E.) of 56%, but fundamental issues about the nature of the surface catalytic active sites and their involvement in the photocatalytic process still need to be clarified. This is the first study to apply cutting edge surface spectroscopic analyses to determine the surface nature of tantalum mixed oxide photocatalysts. Surface analysis with HR-XPS (1-3nm) and HS-LEIS (0.3nm) spectroscopy indicates that the NiO and La2O3 promoters are concentrated in the surface region of the bulk NaTaO3 phase. The La2O3 is concentrated on the NaTaO3 outermost surface layers while NiO is distributed throughout the NaTaO3 surface region (1-3nm). Raman and UV-vis spectroscopy revealed that the bulk molecular and electronic structures, respectively, of NaTaO3 were not modified by the addition of the La2O3 and NiO promoters, with La2O3 resulting in a slightly more ordered structure. Photoluminescence (PL) spectroscopy reveals that the addition of La2O3 and NiO produces a greater number of electron traps resulting in the suppression of the recombination of excited electrons/holes. In contrast to earlier reports, the La2O3 is only a textural promoter (increasing the BET surface area ~7x by stabilizing smaller NaTaO3 particles), but causes a ~3x decrease in the specific photocatalytic TORs ( mol H2/m2/h) rate because surface La2O3 blocks exposed catalytic active NaTaO3 sites. The NiO promoter was found to be a potent electronic promoter that enhances the NaTaO3 surface normalized TORs by a factor of ~10-50 and TOF by a factor of ~10. The level of NiO promotion is the same in the absence and presence of La2O3 demonstrating that there is no promotional synergistic interaction between the NiO and La2O3 promoters. This study demonstrates the important contributions of the photocatalyst surface properties to the fundamental molecular/electronic structure-photoactivity relationships of promoted NaTaO3 photocatalysts that were previously not appreciated in the literature.

  7. On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure

    SciTech Connect (OSTI)

    Bhole, Kiran Gandhi, Prasanna; Kundu, T.

    2014-07-28

    Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrdinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profile of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.

  8. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect (OSTI)

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  9. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    SciTech Connect (OSTI)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS? space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H ? ?? decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H ? ?? rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. We perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.

  10. Bulk amorphous Pd{endash}Ni{endash}Fe{endash}P alloys: Preparation and characterization

    SciTech Connect (OSTI)

    Shen, T.D.; He, Y.; Schwarz, R.B. [Materials Science and Technology Division, MS K765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-05-01

    Bulk amorphous alloys of Pd{sub x}Ni{sub y}Fe{sub 80{minus}x{minus}y}P{sub 20} (25{le}x{le}60, 20{le}y{le}55, x+y{ge}60) were prepared by a flux-melting and water-quenching method. Seven-mm diameter glassy rods of Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} (0{le}x{le}20) were studied in greater detail. For these alloys, the difference between the crystallization and glass transition temperatures ranges from 102 K for x=0 to 53 K for x=20. In this composition range, the reduced glass transition temperature, T{sub rg}, ranges from 0.66 to 0.57. The change in density upon crystallization ranges from 0.24{plus_minus}0.04{percent} for x=0 to 1.33{plus_minus}0.24{percent} for x=10. The partial molar volume of Fe in amorphous Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} alloys is significantly larger than the molar volume of (metastable) fcc Fe. This, as well as a comparison with the molar volumes of crystalline compounds, suggests chemically selective Fe{endash}Pd bonding in these glasses. {copyright} {ital 1999 Materials Research Society.}

  11. Investigation of Tc Migration Mechanism During Bulk Vitrification Process Using Re Surrogate

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Bagaasen, Larry M.; Crum, Jarrod V.; Fluegel, Alex; Gallegos, Autumn B.; Martinez, Baudelio; Matyas, Josef; Meyer, Perry A.; Paulsen, Dan; Riley, Brian J.; Schweiger, Michael J.; Stewart, Charles W.; Swoboda, Robert G.; Yeager, John D.

    2006-12-04

    As a part of Bulk vitrification (BV) performance enhancement tasks, Laboratory scoping tests were performed in FY 2004-2005 to explore possible ways to reduce the amount of soluble Tc in the BV waste package. Theses scoping tests helped identify which mechanisms play an important role in the migration of Tc in the BV process (Hrma et al. 2005 and Kim et al. 2005). Based on the results from these scoping tests, additional tests were identified that will improve the understanding of Tc migration and to clearly identify the dominant mechanisms. The additional activities identified from previous studies were evaluated and prioritized for planning for Tasks 29 and 30 conducted in FY2006. Task 29 focused on the improved understanding of Tc migration mechanisms, and Task 30 focused on identifying the potential process changes that might reduce Tc/Re migration into the castable refractory block (CRB). This report summarizes the results from the laboratory- and crucible-scale tests in the lab for improved Tc migration mechanism understanding utilizing Re as a surrogate performed in Task 29.

  12. Polydimethylsiloxane as a Macromolecular Additive for Enhanced Performance of Molecular Bulk Heterojunction Organic Solar Cells

    SciTech Connect (OSTI)

    Graham, Kenneth R.; Mei, Jianguo; Stalder, Romain; Shim, Jae Won; Cheun, Hyeunseok; Steffy, Fred; So, Franky; Kippelen, Bernard; Reynolds, John R.

    2011-03-15

    The effect of the macromolecular additive, polydimethylsiloxane (PDMS), on the performance of solution processed molecular bulk heterojunction solar cells is investigated, and the addition of PDMS is shown to improve device power conversion efficiency by ~70% and significantly reduce cell-to-cell variation, from a power conversion efficiency of 1.25 0.37% with no PDMS to 2.16 0.09% upon the addition of 0.1 mg/mL PDMS to the casting solution. The cells are based on a thiophene and isoindigo containing oligomer as the electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) as the electron acceptor. PDMS is shown to have a strong influence on film morphology, with a significant decrease in film roughness and feature size observed. The morphology change leads to improved performance parameters, most notably an increase in the short circuit current density from 4.3 to 6.8 mA/cm2 upon addition of 0.1 mg/mL PDMS. The use of PDMS is of particular interest, as this additive appears frequently as a lubricant in plastic syringes commonly used in device fabrication; therefore, PDMS may unintentionally be incorporated into device active layers.

  13. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    SciTech Connect (OSTI)

    Gupta, Vinay; Department of Physics, University of California, Santa Barbara, California 93106 ; Upreti, Tanvi; Chand, Suresh

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7?-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b?]dithiophene-2,6-diyl) bis(6-fluoro-4-(5?-hexyl-[2,2?-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc})?=?5.45?mA/cm{sup 2}, open circuit voltage (V{sub oc})?=?0.727?V, and fill factor (FF)?=?51%, and a power conversion efficiency?=?2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  14. Doped Interlayers for Improved Selectivity in Bulk Herterojunction Organic Photovoltaic Devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mauger, Scott A.; Glasser, Melodie P.; Tremolet de Villers, Bertrand J.; Duong, Vincent V.; Ayzner, Alexander L.; Olson, Dana C.

    2016-01-21

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is less selective for holes in inverted-architecture organic photovoltaic (OPV) than it is in a conventional-architecture OPV device due differences between the interfacial-PSS concentration at the top and bottom of the PEDOT:PSS layer. In this work, thin layers of polysulfonic acids are inserted between the P3HT:ICBA bulk heterojunction (BHJ) active layer and PEDOT:PSS to create a higher concentration of acid at this interface and, therefore, mimic the distribution of materials present in a conventional device. Upon thermal annealing, this acid layer oxidizes P3HT, creating a thin p-type interlayer of P3HT+/acid- on top of the BHJ. Using x-raymore » absorption spectroscopy, Kelvin probe and ellipsometry measurements, this P3HT+/acid- layer is shown to be insoluble in water, indicating it remains intact during the subsequent deposition of PEDOT:PSS. Current density - voltage measurements show this doped interlayer reduces injected dark current while increasing both open-circuit voltage and fill factor through the creation of a more hole selective BHJ-PEDOT:PSS interface.« less

  15. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Kai; Yi, Chao; Liu, Chang; Hu, Xiaowen; Chuang, Steven; Gong, Xiong

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less

  16. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS? space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H ? ?? decay rate and show that they are finite (at one-loop order) as a consequencemoreof gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H ? ?? rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. We perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.less

  17. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    SciTech Connect (OSTI)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 ?m in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  18. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOE Patents [OSTI]

    Kim, Choong Paul (Northridge, CA); Hays, Charles C. (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    2007-07-17

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  19. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOE Patents [OSTI]

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  20. ES-3100: A New Generation Shipping Container for Bulk Highly Enriched Uranium and Other Fissile Materials

    SciTech Connect (OSTI)

    Arbital, J.G.; Byington, G.A.; Tousley, D.R.

    2004-07-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) is shipping bulk quantities of surplus fissile materials, primarily highly enriched uranium (HEU), over the next 15 to 20 years for disposition purposes. The U.S. Department of Transportation (DOT) specification 6M container is the package of choice for most of these shipments. However, the 6M does not conform to the Type B packaging requirements in the ''Code of Federal Regulations'' (10CFR71) and, for that reason, is being phased out for use in the secure transportation system of DOE. BWXT Y-12 is currently developing a package to replace the DOT 6M container for HEU disposition shipping campaigns. The new package is based on state-of-the-art, proven, and patented insulation technologies that have been successfully applied in the design of other packages. The new package, designated the ES-3100, will have a 50% greater capacity for HEU than the 6M and will be easier to use. Engineering analysis on the new package includes detailed dynamic impact finite element analysis (FEA). This analysis gives the ES-3100 a high probability of complying with regulatory requirements.

  1. Roles of nanoclusters in shear banding and plastic deformation of bulk metallic glasses

    SciTech Connect (OSTI)

    Nieh, T.G.

    2012-07-31

    During the course of this research we published 33 papers in various physics/material journals. We select four representing papers in this report and their results are summarized as follows. I. To study shear banding process, it is pertinent to know the intrinsic shear strain rate within a propagating shear band. To this aim, we used nanoindentation technique to probe the mechanical response of a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass in locality and found notable pop-in events associated with shear band emission. Using a free volume model and under the situation when temperature and stress/hardness are fixed result in an equation, which predicts that hardness serration caused by pop-in decreases exponentially with the strain rate. Our data are in good agreement with the prediction. The result also predicts that, when strain rate is higher than a critical strain rate of 1700 s^-1, there will be no hardness serration, thereby no pop-in. In other words, multiple shear bandings will take place and material will flow homogeneously. The critical strain rate of 1700 s^-1 can be treated as the intrinsic strain rate within a shear band. We subsequently carried out a simulation study and showed that, if the imposed strain rate was over , the shear band spacing would become so small that the entire sample would virtually behave like one major shear band. Using the datum strain rate =1700 s^-1 and based on a shear band nucleation model proposed by us, the size of a shear-band nucleus in Au-BMG was estimated to be 3 ???? 10^6 atoms, or a sphere of ~30 nm in diameter. II. Inspired by the peculiar result published in a Science article ?¢????Super Plastic Bulk Metallic Glasses at Room Temperature?¢???, we synthesized the Zr-based bulk metallic glass with a composition identical to that in the paper (Zr64.13Cu15.75Ni10.12Al10) and, subsequently, tested in compression at the same slow strain rate (~10^-4 s^-1). We found that the dominant deformation mode is always single shear. The stress-strain curve exhibited serrated pattern in the plastic region, which conventionally has been attributed to individual shear band propagation. The scanning electron micrographs taken from the deformed sample surface revealed regularly spaced striations. Analysis indicates that the observed stress-strain serrations are intimately related to the striations on the shear surface, suggesting the serrations were actually caused slip-and-stick shear along the principal shear plane. We further use video camera to conduct in situ compression experiments to unambiguously confirm the one-to-one temporal and spatial correspondence between the intermittent sliding and flow serration. This preferential shear band formation along the principal shear plane is, in fact, a natural consequence of Mode II crack, independent of strain softening or hardening, usually claimed in the literature. III. Flow serration in compression of metallic glasses is caused by the formation and propagation of localized shear bands. These shear bands propagate at an extremely high speed, so high that a load cell and load frame were unable to capture the details of the dynamic event. To subdue this problem, we conducted uniaxial compression on Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass using a high-speed camera to capture the sample image and also high-sensitivity strain gauges attached to the test samples to directly measure the strain. The displacement-time curves obtained from the test and a magnified version of the displacement burst reveals clearly a three-step (acceleration, steady-state, and deceleration) process during shear band propagation. The fastest propagating speed occurring at the steady state is calculated as 8????10^2 ???µm/s. This speed is about 1,000 times faster than the crosshead speed. This explains the gradual disappearance of flow serration at higher strain rates previously reported during compression of

  2. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    SciTech Connect (OSTI)

    Hall, A.; Han, T. Y.

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu?O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl?, NaOH, SDS surfactant, and NH?OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH?OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH?OH-HCl concentration were also studied to control the etching effects of the final product.

  3. Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization

    SciTech Connect (OSTI)

    Vukoje, Ivana D.; Vodnik, Vesna V.; Dunuzovi?, Jasna V.; Dunuzovi?, Enis S.; Marinovi?-Cincovi?, Milena T.; Jeremi?, Katarina; Nedeljkovi?, Jovan M.

    2014-01-01

    Graphical abstract: - Highlights: Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. The glass transition temperature decreased in nanocomposites with respect to the pure polymer. Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 1.5 nm were well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.

  4. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ?50 fs, 800?nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (?90%) of small nanoparticles, and a residual part (?10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  5. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  6. Passivation Dynamics in the Anisotropic Deposition and Stripping of Bulk Magnesium Electrodes During Electrochemical Cycling

    SciTech Connect (OSTI)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 ?m in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  7. Kaluza-Klein masses of bulk fields with general boundary conditions in AdS{sub 5} space

    SciTech Connect (OSTI)

    Chang, Sanghyeon; Park, Seong Chan; Song, Jeonghyeon

    2005-05-15

    Recently bulk Randall-Sundrum theories with the gauge group SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} have drawn a lot of interest as an alternative to the electroweak symmetry breaking mechanism. These models are in better agreement with electroweak precision data since custodial isospin symmetry on the IR-brane is protected by the extended bulk gauge symmetry. We comprehensively study, in the S{sup 1}/Z{sub 2}xZ{sub 2}{sup '} orbifold, the bulk gauge and fermion fields with the general boundary conditions as well as the bulk and localized mass terms. Master equations to determine the Kaluza-Klein (KK) mass spectra are derived without any approximation, which is an important basic step for various phenomenologies at high energy colliders. The correspondence between orbifold boundary conditions and localized mass terms is demonstrated not only in the gauge sector but also in the fermion sector. As the localized mass increases, the first KK fermion mass is shown to decrease while the first KK gauge boson mass is shown to increase. The degree of gauge coupling universality violation is computed to be small in most parameter space, and its correlation with the mass difference between the top quark and light quark KK mode is also studied.

  8. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; et al

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  9. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    SciTech Connect (OSTI)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.

  10. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequencemore » of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.« less

  11. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect (OSTI)

    Cousineau, Emily; Bennion, Kevin; Devoto, Douglas; Naramanchi, Sreekant

    2015-07-06

    Thermal management for electric motors is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric-drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform. As thermal management improves, there will be a direct trade-off among motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. During the development of thermal finite element analysis models and computational fluid dynamics models for electric motors, it was found that there was a lack of open literature detailing the thermal properties of key materials common in electric motors that are significant in terms of heat removal. The lack of available literature, coupled with the strong interest from industry in the passive-stack thermal measurement results, led to experiments to characterize the thermal contact resistance between motor laminations. We examined four lamination materials, including the commonly used 26 gauge and 29 gauge M19 materials, the HF10 and Arnon 7 materials. These latter two materials are thinner and reduce eddy currents responsible for core losses. We measured the thermal conductivity of the lamination materials and the thermal contact resistance between laminations in a stack, as well as investigated factors affecting contact resistance between laminations such as the contact pressure and surface finish. Lamination property data will be provided and we also develop a model to estimate the through-stack thermal conductivity for materials beyond those that were directly tested in this work. For example, at a clamping pressure of 138 kPa, the 29 gauge M19 material has a through-stack thermal conductivity of 1.68 W/m-K, and the contact resistance between laminations was measured to be 193 mm^2-K/W. The measured bulk thermal conductivity for the M19 29 gauge material is 21.0 W/m-K. Density and specific heat were measured to be 7450 kg/m^3 and 463 J/kg-K, respectively. These results are helping, and will continue to help engineers and researchers in the design and development of motors.

  12. Coincidence of collective relaxation anomaly and specific heat peak in a bulk metallic glass-forming liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Podlesynak, Andrey; Ehlers, Georg; Mills, Rebecca; O'Keeffe, Stephanie; Stevick, Joseph; Kempton, James; Jelbert, Glenton; Dmowski, Wojciech; Lokshin, Konstantin; et al

    2015-07-21

    The study of multicomponent metallic liquids' relaxational behavior is still the key to understanding and improving the glass-forming abilities of bulk metallic glasses. Here, we report measurements of the collective relaxation times in a melted bulk metallic glass (LM601Zr51Cu36Ni4Al9) in the kinetic regime (Q: 1.5–4.0Å–1) using quasielastic neutron scattering. The results reveal an unusual slope change in the Angell plots of this metallic liquid's collective relaxation time around 950°C, beyond the material's melting point. Measurement of specific heat capacity also reveals a peak around the same temperature. Adams-Gibbs theory is used to rationalize the coincidence, which motivates more careful experimentalmore » and computational studies of the metallic liquids in the future.« less

  13. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; et al

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding ofmore » complex energy landscapes that may not be readily determined by macroscopic approaches.« less

  14. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).

  15. Heavy duty insulator assemblies for 500-kV bulk power transmission line with large diameter octagonalbundled conductor

    SciTech Connect (OSTI)

    Tsujimoto, K.; Hayase, I.; Hirai, J.; Inove, M.; Naito, K.; Yukino, T.

    1982-11-01

    This paper describes the design procedure and the results of field tests on mechanical performances of insulator assemblies newly developed to support octagonal-bundled conductors for 500-kV bulk power transmission. Taking account of conductor-motion-induced peak tensile load, fatigue, torsional torque and others, a successful design has been achieved in two prototype assemblies for such heavy mechanical duties as encountered during conductor galloping or swing. This has been proved throughout three years of the field tests.

  16. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  17. Thermal conductivity of bulk and nanowire Mg₂SixSn1–x alloys from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Wu; Lindsay, L.; Broido, D. A.; Stewart, Derek A.; Mingo, Natalio

    2012-11-29

    The lattice thermal conductivity (κ) of the thermoelectric materials, Mg₂Si, Mg₂Sn, and their alloys, are calculated for bulk and nanowires, without adjustable parameters. We find good agreement with bulk experimental results. For large nanowire diameters, size effects are stronger for the alloy than for the pure compounds. For example, in 200 nm diameter nanowires κ is lower than its bulk value by 30%, 20%, and 20% for Mg₂Si₀.₆Sn₀.₄, Mg₂Si, and Mg₂Sn, respectively. For nanowires less than 20 nm thick, the relative decrease surpasses 50%, and it becomes larger in the pure compounds than in the alloy. At room temperature, κmore » of Mg₂SixSn1–x is less sensitive to nanostructuring size effects than SixGe1–x, but more sensitive than PbTexSe1–x. This suggests that further improvement of Mg₂SixSn1–x as a nontoxic thermoelectric may be possible.« less

  18. Method to Reduce Molten Salt Penetration into Bulk Vitrification Refractory Materials

    SciTech Connect (OSTI)

    Bagaasen, L.M.; Hrma, P.R.; Kim, D.S.; Schweiger, M.J.; Matyas, J.; Rodriguez, C.P. [Pacific Northwest National Laboratory, Richland WA (United States); Witwer, K.S. [AMEC Nuclear Holdings Ltd., GeoMelt Division, Richland, WA (United States)

    2008-07-01

    Bulk vitrification (BV) is a process that heats a feed material consisting of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. However, the castable refractory block (CRB) portion of the refractory lining has sufficient porosity to allow the low-viscosity molten ionic salt (MIS), which contains technetium (Tc) in a soluble form, to penetrate the CRB. This limits the effectiveness of the final waste form. This paper describes tests conducted to develop a method aimed at reducing the quantities of soluble Tc in the CRB. Tests showed that MIS formed in significant quantities at temperatures above 300 deg. C, remained stable until roughly 550 deg. C where it began to thermally decompose, and was completely decomposed by 800 deg. C. The estimated volume fraction of MIS in the feed was greater than 40%, and the CRB material contained 11 to 15% open porosity, a combination allowing a large quantity of MIS to migrate through the feed and penetrate the open porosity of the CRB. If the MIS is decomposed at temperatures below 300 deg. C or can be contained in the feed until it fully decomposes by 800 deg. C, MIS migration into the CRB can be avoided. Laboratory and crucible-scale experiments showed that a variety of methods, individually or in combination, can decrease MIS penetration into the CRB. Modifying the CRB to block MIS penetration was not deemed practical as a method to prevent the large quantities of MIS penetration seen in the full-scale tests, but it may be useful to reduce the impacts of lower levels of MIS penetration. Modifying the BV feed materials to better contain the MIS proved to be more successful. A series of qualitative and quantitative crucible tests were developed that allowed screening of feed modifications that might be used to reduce MIS penetration. These tests showed that increasing the specific surface area of the soil (used as the primary glass-forming solid in the baseline process) by grinding stopped MIS penetration nearly entirely for feeds that contained waste simulants with lower quantities of nitrate salts. Grinding soil significantly reduced MIS penetration in feeds with higher nitrate quantities, but it was necessary to add carbohydrates (sucrose or cellulose) to destroy a portion of the nitrate at low temperatures to reach the same low levels of MIS penetration seen for the lower nitrate feeds. Developing feeds to reduce MIS penetration in full-scale BV applications resulted in two additional refinements. Soil-grinding to the necessary levels proved to be difficult and expensive, so the fine soil was replaced with readily available fine-grained glass-forming minerals. Cellulose was shown to have less impact on dryer operation than sucrose and was chosen as the carbohydrate source to use in subsequent engineering- and full-scale tests. (authors)

  19. Progress Report on the Laboratory Testing of the Bulk Vitrification Cast Refractory

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B PETER.; Bagaasen, Larry M.; Wellman, Dawn M.; Crum, J V.; Geiszler, Keith N.; Baum, Steven R.

    2004-11-15

    The Hanford Site in southeastern Washington State has been used extensively to produce nuclear materials for the U. S. strategic defense arsenal by the U. S. Department of Energy (DOE). A large inventory of radioactive and mixed waste has accumulated in 177 single- and double-shell tanks. Liquid waste recovered from the tanks will be pre-treated to separate the low-activity fraction from the high-level and transuranic wastes. Currently, the DOE Office of River Protection (ORP) is evaluating several options for immobilization of low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. A significant portion of the waste will be converted into immobilized low-activity waste (ILAW) glass with a conventional Joule-heated ceramic melter. In addition to ILAW glass, supplemental treatment technologies are under consideration by the DOE to treat a portion of the low activity waste. The reason for using this alternative treatment technology is to accelerate the overall cleanup mission at the Hanford site. The ORP selected Bulk Vitrification (BV) for further development and testing. Work in FY03 on engineered and large scale tests of the BV process suggested that approximately 0.3 to as much as 3 wt% of the waste stream 99Tc inventory would end up in a soluble form deposited in a vesicular layer located at the top of the BV melt and in the sand used as an insulator after vitrification. In the FY03 risk assessment (RA) (Mann et al., 2003), the soluble Tc salt in the BV waste packages creates a 99Tc concentration peak at early times in the groundwater extracted from a 100-meter down-gradient well. This peak differs from the presently predicted baseline WTP glass performance, which shows an asymptotic rise to a constant release rate. Because of the desire by regulatory agencies to achieve essentially equivalent performance to WTP glass with supplemental treatment technologies, the BV process was modified in FY04 in an attempt to minimize deposition of soluble 99Tc salts by including a castable refractory block (CRB) in place of a portion of the refractory sand layer and using a bottom-up melting technique to eliminate the vesicular glass layer at the top. However, the refractory block is still porous and there is the potential for leachable 99Tc to deposit in the pores of the CRB. The purpose of this progress report is to document the status of a laboratory testing program being conducted at Pacific Northwest National Laboratory (PNNL) for CH2M Hill Hanford Group in support of the LAW Supplemental Treatment Technologies Demonstration project. The objective of these tests was to provide an initial estimate of the leachable fraction of key contaminants of concern (Cs, Re [chemical analogue for 99Tc], and 99Tc) that could condense within the BV CRB. This information will be used to guide development of additional modifications to the BV process to further reduce the soluble 99Tc levels in the BV waste package.

  20. DEVELOPMENT OF THE BULK VITRIFICATION TREATMENT PROCESS FOR THE LOW ACTIVITY FRACTION OF HANFORD SINGLE SHELL TANK WASTES

    SciTech Connect (OSTI)

    Thompson, L.E.; Lowery, P.S.; Arrowsmith, H.W.; Snyder, T.; McElroy, J.L.

    2003-02-27

    AMEC Earth & Environmental, Inc. and RWE NUKEM Corporation have teamed to develop and apply a waste pre-treatment and bulk vitrification process for low activity waste (LAW) from Hanford Single Shell Tanks (SSTs). The pretreatment and bulk vitrification process utilizes technologies that have been successfully deployed to remediate both radioactive and chemically hazardous wastes at nuclear power plants, DOE sites, and commercial waste sites in the US and abroad. The process represents an integrated systems approach. The proposed AMEC/NUKEM process follow the extraction and initial segregation activities applied to the tank wastes carried out by others. The first stage of the process will utilize NUKEM's concentrate dryer (CD) system to concentrate the liquid waste stream. The concentrate will then be mixed with soil or glass formers and loaded into refractory-lined steel containers for bulk vitrification treatment using AMEC's In-Container Vitrification (ICV) process. Following the vitrification step, a lid will be placed on the container of cooled, solidified vitrified waste, and the container transported to the disposal site. The container serves as the melter vessel, the transport container and the disposal container. AMEC and NUKEM participated in the Mission Acceleration Initiative Workshop held in Richland, Washington in April 2000 [1]. An objective of the workshop was to identify selected technologies that could be combined into viable treatment options for treatment of the LAW fraction from selected Hanford waste tanks. AMEC's ICV process combined with NUKEM's CD system and other remote operating capabilities were presented as an integrated solution. The Team's proposed process received some of the highest ratings from the Workshop's review panel. The proposed approach compliments the Hanford Waste Treatment Plant (WTP) by reducing the amount of waste that the WTP would have to process. When combined with the capabilities of the WTP, the proposed approach will accelerate the tank waste remediation program plan and facilitate meeting the regulatory requirements for the remediation of the Hanford tank wastes. Consequently, the DOE Office of River Protection and CH2MHill Hanford Group identified bulk vitrification as one of the technologies to be investigated in FY03 through a demonstration program [2]. In October 2002, CH2MHill issued a request for proposal for the process development testing, engineering and data package for a non-radioactive (cold) pilot bulk vitrification process, and pre-conceptual engineering of a production bulk vitrification system. With AMEC in the lead, AMEC and NUKEM responded with a proposal. Pacific Northwest National Laboratory (PNNL) will support the proposed project as a key subcontractor by providing equipment, facilities, and personnel to support small-scale testing, including the testing on samples of actual tank wastes. This paper will provide an overview of the pre-treatment and bulk vitrification process, summarize the technical benefits the approach offers, and describe the demonstration program that has been developed for the project.

  1. DESIGN OF THE DEMOSNTRATION BULK VITRIFICATION SYSTEM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect (OSTI)

    VAN BEEK JE

    2008-02-14

    In June 2004, the Demonstration Bulk Vitrification System (DBVS) was initiated with the intent to design, construct, and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford Tank 241-S-109. The DBVS facility uses In-Container Vitrification{trademark} (ICV{trademark}) at the core of the treatment process. The basic process steps combine liquid low-activity waste (LAW) and glassformers; dry the mixture; and then vitrify the mixture in a batch feed-while-melt process in a refractory lined steel container. Off-gases are processed through a state-of-the-art air pollution control system including sintered-metal filtration, thermal oxidation, acid gas scrubbing, and high-efficiency particulate air (HEPA) and high-efficiency gas adsorber (HEGA) filtration. Testing has focused on development and validation of the waste dryer, ICV, and sintered-metal filters (SMFs) equipment, operations enhancements, and glass formulation. With a parallel testing and design process, testing has allowed improvements to the DBVS equipment configuration and operating methodology, since its original inception. Design improvements include optimization of refractory panels in the ICV, simplifying glassformer addition equipment, increasing the number of waste feed chutes to the ICV, and adding capability for remote clean-out of piping, In addition, the U.S. Department of Energy (DOE) has provided an independent review of the entire DBVS process. While the review did not find any fatal flaws, some technical issues were identified that required a re-evaluation of the DBVS design and subsequent changes to the design. A 100 percent design package for the pilot plant will be completed and submitted to DOE for review in early 2008 that incorporates process improvements substantiated through testing and reviews. This paper provides a description of the bulk vitrification process and a discussion of major equipment design changes that have occurred based on full-scale testing over the past two years and DOE reviews.

  2. Bulk and surface half-metallicity: The case of D0{sub 3}-type Mn{sub 3}Ge

    SciTech Connect (OSTI)

    Liu, Hao; Gao, G. Y. Hu, Lei; Ni, Yun; Zu, Fengxia; Zhu, Sicong; Wang, Shuling; Yao, K. L.

    2014-01-21

    Motivated by the experimental realization of D0{sub 22}-type Mn{sub 3}Ge (001) films [Kurt et al. Appl. Phys. Lett. 101, 132410 (2012)] and the structural stability of D0{sub 3}-type Heusler alloy Mn{sub 3}Ge [Zhang et al. J. Phys.: Condens. Matter 25, 206006 (2013)], we use the first-principles calculations based on the full potential linearized augmented plane-wave method to investigate the electronic and magnetic properties of D0{sub 3}-type Heusler alloy Mn{sub 3}Ge and its (001) surface. We show that bulk D0{sub 3}-Mn{sub 3}Ge is a half-metallic ferromagnet with the minority-spin energy gap of 0.52 eV and the magnetic moment of 1.00 μ{sub B} per formula unit. The bulk half-metallicity is preserved at the pure Mn-terminated (001) surface due to the large exchange split, but the MnGe-terminated (001) surface destroys the bulk half-metallicity. We also reveal that the surface stabilities are comparable between the D0{sub 3}-Mn{sub 3}Ge (001) and the experimental D0{sub 22}-Mn{sub 3}Ge (001), which indicates the feasibility to grow the Mn{sub 3}Ge (001) films with D0{sub 3} phase other than D0{sub 22} one. The surface half-metallicity and stability make D0{sub 3}-Mn{sub 3}Ge a promising candidate for spintronic applications.

  3. Fundamental Bulk/Surface Structure Photoactivity Relationships of Supported (Rh2-yCryO3)/GaN Photocatalysts

    SciTech Connect (OSTI)

    Phivilay, Somphonh; Roberts, Charles; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    ABSTRACT. The supported (Rh2-yCryO3)/GaN photocatalyst was examined as a model nitride photocatalyst system to assist in the development of fundamental structure photoactivity relationships for UV activated water splitting. Surface characterization of the outermost surface layers by High Sensitivity-LEIS and High Resolution-XPS revealed for the first time that the GaN support consists of a GaOx outermost surface layer and a thin film of GaOxNy in the surface region. HR-XPS also demonstrates that the supported (Rh2-yCryO3) mixed oxide nanoparticles (NPs) exclusively consist of Cr+3 and Rh+3 cations and are surface enriched for the supported (Rh2-yCryO3)/GaN photocatalyst. Bulk analysis by Raman and UV-vis spectroscopy show that the bulk molecular and electronic structures, respectively, of the GaN support are not perturbed by the deposition of the (Rh2-yCryO3) mixed oxide NPs. The function of the GaN bulk lattice is to generate photoexcited electrons/holes, with the electrons harnessed by the surface Rh+3 sites for evolution of H2 and the holes trapped at the Ga oxide/oxynitride surface sites for splitting of water and evolving O2. These new structure-photoactivity relationships for supported (Rh2-yCryO3)/GaN also extend to the best performing visible light activated supported (Rh2-yCryO3)/(Ga1-xZnx)(N1-xOx) photocatalyst.

  4. The use of bulk states to accelerate the band edge state calculation of a semiconductor quantum dot

    SciTech Connect (OSTI)

    Voemel, Christof . E-mail: voemel@eecs.berkeley.edu; Tomov, Stanimire Z. . E-mail: tomov@cs.utk.edu; Wang, Lin-Wang . E-mail: LWWang@lbl.gov; Marques, Osni A. . E-mail: OAMarques@lbl.gov; Dongarra, Jack J. . E-mail: dongarra@cs.utk.edu

    2007-05-01

    We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations.

  5. The effect of layout topology on single-event transient pulse quenching in a 65 nm bulk CMOS process.

    SciTech Connect (OSTI)

    Ball, D. R.; Ahlbin, Jonathan R.; Gadlage, Matthew J.; Massengill, Lloyd W.; Witulski, A. W.; Reed, R. A.; Vizkelethy, Gyorgy; Bhuva, Bharat L.

    2010-07-01

    Heavy-ion microbeam and broadbeam data are presented for a 65 nm bulk CMOS process showing the existence of pulse quenching at normal and angular incidence for designs where the pMOS transistors are in common n-wells or isolated in separate n-wells. Experimental data and simulations show that pulse quenching is more prevalent in the common n-well design than the separate n-well design, leading to significantly reduced SET pulsewidths and SET cross-section in the common n-well design.

  6. Standard operating procedure for the laboratory analysis of lead in paint, bulk dust, and soil by ultrasonic, acid digestion and inductively coupled plasma emission spectrometric measurement

    SciTech Connect (OSTI)

    Grohse, P.M.; Gutknecht, W.F.; Luk, K.K.; Wilson, B.M.; Van Hise, C.C.

    1997-09-01

    The details and performance of a simplified extraction procedure and analysis for three media are provided. Paint, bulk dust, and soil are collected using standard or referenced methods. Up to 0.25 g of paint, bulk dust, or soil weighted out and placed in a 50-mL centrifuge tube. Five mL of 25% (v/v) nitric acid is added and the sample is ultrasonicated for 30 minutes.

  7. First-principles study on the interaction of nitrogen atom with ?uranium: From surface adsorption to bulk diffusion

    SciTech Connect (OSTI)

    Su, Qiulei; Deng, Huiqiu E-mail: hqdeng@gmail.com; Xiao, Shifang; Li, Xiaofan; Hu, Wangyu; Ao, Bingyun; Chen, Piheng

    2014-04-28

    Experimental studies of nitriding on uranium surfaces show that the modified layers provide considerable protection against air corrosion. The bimodal distribution of nitrogen is affected by both its implantation and diffusion, and the diffusion of nitrogen during implantation is also governed by vacancy trapping. In the present paper, nitrogen adsorption, absorption, diffusion, and vacancy trapping on the surface of and in the bulk of ?uranium are studied with a first-principles density functional theory approach and the climbing image nudged elastic band method. The calculated results indicate that, regardless of the nitrogen coverage, a nitrogen atom prefers to reside at the hollow1 site and octahedral (Oct) site on and below the surface, respectively. The lowest energy barriers for on-surface and penetration diffusion occur at a coverage of 1/2 monolayer. A nitrogen atom prefers to occupy the Oct site in bulk ?uranium. High energy barriers are observed during the diffusion between neighboring Oct sites. A vacancy can capture its nearby interstitial nitrogen atom with a low energy barrier, providing a significant attractive nitrogen-vacancy interaction at the trapping center site. This study provides a reference for understanding the nitriding process on uranium surfaces.

  8. Thermal annealing study on P3HT: PCBM based bulk heterojunction organic solar cells using impedance spectroscopy

    SciTech Connect (OSTI)

    Gollu, Sankara Rao; Sharma, Ramakant G, Srinivas Gupta, Dipti

    2014-10-15

    Recently, Thermal annealing is an important process for bulk heterojunction organic solar cells (BHJ OSCs) to improve the device efficiency and performance of the organic solar cells. Here in, we have examined the changes in the efficiency and morphology of P3HT: PCBM film according to the thermal annealing temperature to find the changes during the annealing process by measuring the optical absorption, atomic force microscope and X-ray diffraction. We also investigated the effect of different annealing process conditions (without, pre- and post-annealing) on the device performance of the inverted bulk heterojunction organic solar cells consist the structure of ITO/ ZnO / P3HT: PCBM / MoO{sub 3}/ Al by measuring AC impedance characteristics. Particularly, the power conversion efficiency (PCE), crystalline nature of the polymer, light absorption and the surface smoothness of P3HT: PCBM films are significantly improved after the annealing process. These results indicated the improvement in terms of PCE, interface smoothness between the P3HT: PCBM and MoO{sub 3} layers of the post annealed device originated from the decrease of series resistance between P3HT: PCBM layer and Al electrodes, which could be due to decrease in the effective life time of charge carriers.

  9. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    SciTech Connect (OSTI)

    Li, Jiawei; Huo, Juntao; Chang, Chuntao E-mail: dujun@nimte.ac.cn; Du, Juan E-mail: dujun@nimte.ac.cn; Man, Qikui; Wang, Xinmin; Li, Run-Wei; Law, Jiayan

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{sub C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  10. Deep-level emission in ZnO nanowires and bulk crystals: Excitation-intensity dependence versus crystalline quality

    SciTech Connect (OSTI)

    Hou, Dongchao; Voss, Tobias; Ronning, Carsten; Menzel, Andreas; Zacharias, Margit

    2014-06-21

    The excitation-intensity dependence of the excitonic near-band-edge emission (NBE) and deep-level related emission (DLE) bands in ZnO nanowires and bulk crystals is studied, which show distinctly different power laws. The behavior can be well explained with a rate-equation model taking into account deep donor and acceptor levels with certain capture cross sections for electrons from the conduction band and different radiative lifetimes. In addition, a further crucial ingredient of this model is the background n-type doping concentration inherent in almost all ZnO single crystals. The interplay of the deep defects and the background free-electron concentration in the conduction band at room temperature reproduces the experimental results well over a wide range of excitation intensities (almost five orders of magnitude). The results demonstrate that for many ZnO bulk samples and nanostructures, the relative intensity R?=?I{sub NBE}/I{sub DLE} can be adjusted over a wide range by varying the excitation intensity, thus, showing that R should not be taken as an indicator for the crystalline quality of ZnO samples unless absolute photoluminescence intensities under calibrated excitation conditions are compared. On the other hand, the results establish an all-optical technique to determine the relative doping levels in different ZnO samples by measuring the excitation-intensity dependence of the UV and visible luminescence bands.

  11. CONSTRAINING THE BULK LORENTZ FACTOR OF GAMMA-RAY BURST OUTFLOW IN THE MAGNETIC-DOMINATED JET MODEL

    SciTech Connect (OSTI)

    Chang Zhe; Lin Hainan; Jiang Yunguo, E-mail: changz@ihep.ac.cn, E-mail: linhn@ihep.ac.cn, E-mail: jiangyg@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)

    2012-11-10

    Recent observations by the Fermi-LAT showed that there are delayed arrivals of GeV photons relative to the onset of MeV photons in some gamma-ray bursts (GRBs). In order to avoid a large optical depth, the minimal value of the Lorentz factor has been estimated to be higher than 1000 in some of the brightest bursts. In this paper, we present a detailed calculation of the time delay between the MeV and GeV photons in the framework of the magnetic-dominated jet model. We find that the time delay strongly depends on the saturated bulk Lorentz factor of the jet. Inspired by this fact, we use this model to calculate the Lorentz factors of the four brightest Fermi bursts. The results indicate that the Lorentz factors are much smaller than those obtained from the 'single-zone' scenario. The short burst GRB 090510 has a minimal Lorentz factor of 385, while the three long bursts, GRB 080916c, GRB 090902b, and GRB 090926, have almost the same Lorentz factors with an average value near 260. Another interesting result is that, for long bursts, GeV photons are emitted after the bulk Lorentz factor saturates. For the short GRB, however, MeV and GeV photons are emitted at the same phase, i.e., either in the expansion phase or in the coasting phase.

  12. Dominance of interface chemistry over the bulk properties in determining the electronic structure of epitaxial metal/perovskite oxide heterojunctions

    SciTech Connect (OSTI)

    Chambers, Scott A.; Du, Yingge; Gu, Meng; Droubay, Timothy C.; Hepplestone, Steven; Sushko, Petr

    2015-06-09

    We show that despite very similar crystallographic properties and work function values in the bulk, epitaxial Fe and Cr metallizations on Nb:SrTiO3(001) generate completely different heterojunction electronic properties. Cr is Ohmic whereas Fe forms a Schottky barrier with a barrier height of 0.50 eV. This contrast arises because of differences in interface chemistry. In contrast to Cr [Chambers, S. A. et al., Adv. Mater. 2013, 25, 4001.], Fe exhibits a +2 oxidation state and occupies Ti sites in the perovskite lattice, resulting in negligible charge transfer to Ti, upward band bending, and Schottky barrier formation. The differences between Cr and Fe are understood by performing first-principles calculations of the energetics of defect formation which corroborate the observed interface chemistry and structure.

  13. Charging and de-charging of dust particles in bulk region of a radio frequency discharge plasma

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research, Gandhinagar 382428 (India); Misra, Shikha; Sodha, M. S. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2013-03-15

    An analysis to investigate the effect of the dust particle size and density on the floating potential of the dust particles of uniform radius and other plasma parameters in the bulk region plasma of a RF-discharge in collisionless/collisional regime has been presented herein. For this purpose, the average charge theory based on charge balance on dust and number balance of plasma constituents has been utilized; a derivation for the accretion rate of electrons corresponding to a drifting Maxwellian energy distribution in the presence of an oscillatory RF field has been given and the resulting expression has been used to determine the floating potential of the dust grains. Further, the de-charging of the dust grains after switching off the RF field has also been discussed.

  14. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, K. Y.; Fan, Z.; Chen, Y.; Song, M.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe96Zr4 nanocomposite alloy. Irradiation resulted in amorphization of Fe2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphous nanocomposites.

  15. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect (OSTI)

    Unemoto, Atsushi, E-mail: unemoto@imr.tohoku.ac.jp; Ikeshoji, Tamio [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yasaku, Syun; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu [Mitsubishi Gas Chemicals Co., Ltd., 182 Tayuhama Shinwari, Kita-ku, Niigata 950-3112 (Japan); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-25

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  16. Observation of the fundamental Nyquist noise limit in an ultra-high Q-factor cryogenic bulk acoustic wave cavity

    SciTech Connect (OSTI)

    Goryachev, Maxim Ivanov, Eugene N.; Tobar, Michael E.; Kann, Frank van; Galliou, Serge

    2014-10-13

    Thermal Nyquist noise fluctuations of high-Q bulk acoustic wave cavities have been observed at cryogenic temperatures with a DC superconducting quantum interference device amplifier. High Q modes with bandwidths of few tens of milliHz produce thermal fluctuations with a signal-to-noise ratio of up to 23?dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high (Q?>?10{sup 8} at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  17. Water absorption in thermally grown oxides on SiC and Si: Bulk oxide and interface properties

    SciTech Connect (OSTI)

    Liu, Gang; Xu, Can; Feldman, Leonard C.; Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny; Bloch, Joseph; Dhar, Sarit

    2014-11-10

    We combine nuclear reaction analysis and electrical measurements to study the effect of water exposure (D{sub 2}O) on the n-type 4H-SiC carbon face (0001{sup }) MOS system and to compare to standard silicon based structures. We find that: (1) The bulk of the oxides on Si and SiC behave essentially the same with respect to deuterium accumulation; (2) there is a significant difference in accumulation of deuterium at the semiconductor/dielectric interface, the SiC C-face structure absorbs an order of magnitude more D than pure Si; (3) standard interface passivation schemes such as NO annealing greatly reduce the interfacial D accumulation; and (4) the effective interfacial charge after D{sub 2}O exposure is proportional to the total D amount at the interface.

  18. Paramagnetism, superparamagnetism, and spin-glass behavior in bulk amorphous Pd{endash}Ni{endash}Fe{endash}P alloys

    SciTech Connect (OSTI)

    Shen, T.D.; Schwarz, R.B.; Thompson, J.D. [Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-04-01

    We have investigated the magnetic properties of bulk amorphous Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} (x=0{endash}17.5) alloys. For Pd{sub 40}Ni{sub 40}P{sub 20} (x=0), the magnetic susceptibility consists of temperature-independent and Curie{endash}Weiss-type terms. Alloys with x{ge}5 are paramagnetic at high temperatures. With decreasing temperature, the amorphous alloys become superparamagnetic. At even lower temperatures, and under a weak applied magnetic field, these alloys are spin glasses, as evidenced by static and dynamic magnetic measurements. The spin-freezing temperature increases with increasing iron content and this is attributed to the role of the Ruderman{endash}Kittel{endash}Kasuya{endash}Yosida interaction in creating the spin-glass state. The occurrence of a reentrant spin-glass behavior on cooling (superparamagnetism-to-ferromagnetism-to-spin-glass transition) is also observed for x=17.5 at a field {ge}50 Oe. An unexpected result is that the ferromagnetic state in the present bulk metallic glasses is {ital field induced}. Evidence for the field-induced ferromagnetic-like order is obtained from (a) straight regions in the susceptibility versus temperature curves measured at various fields, (b) an Arrott plot, and (c) time-independent magnetization. With increasing applied field, the spin-freezing temperature decreases and the Curie temperature increases, broadening the temperature range of the field-induced ferromagnetic-like state. The temporal decay of the thermoremanent magnetization in the amorphous alloy with x=17.5 is slower than that in typical crystalline spin glasses. The spin-freezing temperature of the amorphous alloy with x=17.5 decreases approximately logarithmically with applied field, which differs from the prediction of N{acute e}el{close_quote}s model for spin glasses. {copyright} {ital 1999 American Institute of Physics.}

  19. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  20. Near-field thermal radiative transfer and thermoacoustic effects from vapor plumes produced by pulsed CO{sub 2} laser ablation of bulk water

    SciTech Connect (OSTI)

    Kudryashov, S. I.; Lyon, Kevin; Allen, S. D.

    2006-12-15

    Submillimeter deep heating of bulk water by thermal radiation from ablative water plumes produced by a 10.6 {mu}m transversely excited atmospheric CO{sub 2} laser and the related acoustic generation has been studied using a contact time-resolved photoacoustic technique. Effective penetration depths of thermal radiation in water were measured as a function of incident laser fluence and the corresponding plume temperatures were estimated. The near-field thermal and thermoacoustic effects of thermal radiation in laser-ablated bulk water and their potential near-field implications are discussed.

  1. Bulk Tritium Shipping Package

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013.

  2. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Motor Gasoline Prices by Grade and Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in

  3. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect (OSTI)

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramn; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ?80% at a carrier density of 10{sup 18?}cm{sup ?3} was achieved at ?258?nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  4. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Puretzky, Alexander; Das, Sanjib; Ivanov, Ilia; Rouleau, Christopher; Duscher, Gerd; Geohegan, David; et al

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH3NH3PbI3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH3NH3PbI3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded average PCE of 16.3 ± 0.9%, whichmore » are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH3NH3PbI3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less

  5. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

    2012-09-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

  6. Stopping Power of Different Ions in Si Measured with a Bulk Sample Method and Bayesian Inference Data Analysis

    SciTech Connect (OSTI)

    Barradas, N. P.; Alves, E.; Siketic, Z.; Radovic, I. Bogdanovic

    2009-03-10

    The accuracy of ion beam analysis experiments depends critically on the stopping power values available. While for H and He ions accuracies normally better than 5% are achieved by usual interpolative schemes such as SRIM, for heavier ions the accuracy is worse. One of the main reasons is that the experimental data bases are very sparse, even for important materials such as Si. New measurements are therefore needed. Measurement of stopping power is often made with transmission in thin films, with the usual problems of film thickness homogeneity. We have previously developed an alternative method based on measuring bulk spectra, and fitting the yield by treating the stopping power as a fit parameter in a Bayesian inference Markov chain Monte Carlo procedure included in the standard IBA code NDF. We report on improvements of the method and on its application to the determination of the stopping power of {sup 7}Li in Si. To validate the method, we also apply it to the stopping of {sup 4}He in Si, which is known with 2% accuracy.

  7. Time-Resolved Imaging of Material Response Following Laser-Induced Breakdown in the Bulk and Surface of Fused Silica

    SciTech Connect (OSTI)

    Raman, R N; Negres, R A; DeMange, P; Demos, S G

    2010-02-04

    Optical components within high energy laser systems are susceptible to laser-induced material modification when the breakdown threshold is exceeded or damage is initiated by pre-existing impurities or defects. These modifications are the result of exposure to extreme conditions involving the generation of high temperatures and pressures and occur on a volumetric scale of the order of a few cubic microns. The response of the material following localized energy deposition, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work, we investigate the events taking place during the entire timeline in both bulk and surface damage in fused silica using a set of time-resolved microscopy systems. These microscope systems offer up to 1 micron spatial resolution when imaging static or dynamic effects, allowing for imaging of the entire process with adequate temporal and spatial resolution. These systems incorporate various pump-probe geometries designed to optimize the sensitivity for detecting individual aspects of the process such as the propagation of shock waves, near-surface material motion, the speed of ejecta, and material transformations. The experimental results indicate that the material response can be separated into distinct phases, some terminating within a few tens of nanoseconds but some extending up to about 100 microseconds. Overall the results demonstrate that the final characteristics of the modified region depend on the material response to the energy deposition and not on the laser parameters.

  8. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-20

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and excellent wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via themore » micro-slot cutting method, and then predict them using a three dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analysis of serrated flow reveals plentiful and useful information of the underlying deformation process. As a result, our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.« less

  9. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling

    SciTech Connect (OSTI)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-20

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and excellent wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analysis of serrated flow reveals plentiful and useful information of the underlying deformation process. As a result, our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  10. Plasmonic excitations in ZnO/Ag/ZnO multilayer systems: Insight into interface and bulk electronic properties

    SciTech Connect (OSTI)

    Philipp, Martin; Knupfer, Martin; Buechner, Bernd; Gerardin, Hadia

    2011-03-15

    Electron energy-loss spectroscopy experiments in transmission were carried out on silver-based multi-layer systems, consisting of a silver layer of various thicknesses (8, 10 and 50 nm) sandwiched between two Al-doped ZnO layers. The films were produced by magnetron sputtering using potassium bromide single crystals as substrates. The electronic structure of these systems was probed and analyzed with respect to their plasmonic excitations, which can be basically split up into excitations of the electrons in the bulk silver and excitations at the ZnO:Al/Ag interface. A detailed examination of the momentum dependence of the plasmon peaks revealed a positive dispersion for both, the volume and the interface plasmon, where only for the first one a quadratic behavior (as expected for a free electron gas) could be observed. Furthermore, the peak width was analyzed and set into relation to electrical conductivity measurements by calculating the plasmon lifetime and the electron scattering rate. Here, a good agreement between these different methods was obtained.

  11. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  12. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  13. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB{sub 2} bulk samples

    SciTech Connect (OSTI)

    Phaneendra, Konduru, E-mail: phaneendra-50@yahoo.com; Asokan, K., E-mail: phaneendra-50@yahoo.com; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Vasanth Kung, New Delhi-110067 (India); Awana, V. P. S. [Quantum Phenomena and Applications, National Physical Laboratory, K S Krishnan Marg, New Delhi-110012 (India); Sastry, S. Sreehari [Dept. of Physics, Acharya Nagarjuna University, Guntur-522510 (India)

    2014-04-24

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB{sub 2}) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800c for two hours. Both the samples show clear superconducting transition at Tc ? 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [? (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB{sub 2} phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (J{sub c}) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  14. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions

    SciTech Connect (OSTI)

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Puretzky, Alexander; Das, Sanjib; Ivanov, Ilia; Rouleau, Christopher; Duscher, Gerd; Geohegan, David; Xiao, Kai

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH3NH3PbI3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH3NH3PbI3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded average PCE of 16.3 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH3NH3PbI3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.

  15. Impact of thermal annealing on bulk InGaAsSbN materials grown by metalorganic vapor phase epitaxy

    SciTech Connect (OSTI)

    Kim, T. W.; Mawst, L. J.; Kim, K.; Lee, J. J.; Kuech, T. F.; Wells, N. P.; LaLumondiere, S. D.; Sin, Y.; Lotshaw, W. T.; Moss, S. C.

    2014-02-03

    Two different thermal annealing techniques (rapid thermal annealing (RTA) and in-situ post-growth annealing in the metalorganic vapor phase epitaxy (MOVPE) chamber) were employed to investigate their impact on the optical characteristics of double-heterostructures (DH) of InGaAsSbN/GaAs and on the performance of single-junction solar cell structures, all grown by MOVPE. We find that an optimized RTA procedure leads to a similar improvement in the photoluminescence (PL) intensity compared with material employing a multi-step optimized anneal within the MOVPE reactor. Time-resolved photoluminescence techniques at low temperature (LT) and room temperature (RT) were performed to characterize the carrier dynamics in bulk InGaAsSbN layers. Room temperature carrier lifetimes were found to be similar for both annealing methods, although the LT-PL (16?K) measurements of the MOVPE-annealed sample found longer lifetimes than the RTA-annealed sample (680?ps vs. 260?ps) for the PL measurement energy of 1.24?eV. InGaAsSbN-based single junction solar cells processed with the optimized RTA procedure exhibited an enhancement of the electrical performance, such as improvements in open circuit voltage, short circuit current, fill factor, and efficiency over solar cells subjected to the in-situ MOVPE annealing technique.

  16. Lessons Learned from the Application of Bulk Characterization to Individual Containers on the Brookhaven Graphite Research Reactor Decommissioning Project at Brookhaven National Laboratory - 12056

    SciTech Connect (OSTI)

    Kneitel, Terri; Rocco, Diane

    2012-07-01

    When conducting environmental cleanup or decommissioning projects, characterization of the material to be removed is often performed when the material is in-situ. The actual demolition or excavation and removal of the material can result in individual containers that vary significantly from the original bulk characterization profile. This variance, if not detected, can result in individual containers exceeding Department of Transportation regulations or waste disposal site acceptance criteria. Bulk waste characterization processes were performed to initially characterize the Brookhaven Graphite Research Reactor (BGRR) graphite pile and this information was utilized to characterize all of the containers of graphite. When the last waste container was generated containing graphite dust from the bottom of the pile, but no solid graphite blocks, the material contents were significantly different in composition from the bulk waste characterization. This error resulted in exceedance of the disposal site waste acceptance criteria. Brookhaven Science Associates initiated an in-depth investigation to identify the root causes of this failure and to develop appropriate corrective actions. The lessons learned at BNL have applicability to other cleanup and demolition projects which characterize their wastes in bulk or in-situ and then extend that characterization to individual containers. (authors)

  17. Removal site evaluation report on the bulk shielding facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-09-01

    This removal site evaluation report on the Bulk Shielding Facility (BSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around BSF buildings pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. A removal site evaluation was conducted at nine areas associated with the BSF. The scope of each evaluation included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions or remedial evaluation. The results of the removal site evaluation indicate that no substantial risks exist from contaminants present because adequate efforts are being made to contain and control existing contamination and hazardous substances and to protect human health and the environment. At Building 3004, deteriorated and peeling exterior paint has a direct pathway to the storm water drainage system and can potentially impact local surface water during periods of storm water runoff. The paint is assumed to be lead based, thus posing a potential problem. The paint should be sampled and analyzed to determine its lead content and to assess whether a hazard exists. If so, a maintenance action will be necessary to prevent further deterioration and dislodging of the paint. In addition, if the paint contains lead, then a remedial site evaluation should be conducted to determine whether lead from fallen chips has impacted soils in the immediate area of the building.

  18. Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zhao, Xin-Hao; Campbell, Calli M.; DiNezza, Michael J.; Liu, Shi; Zhao, Yuan; Zhang, Yong-Hang

    2014-12-22

    The bulk Shockley-Read-Hall carrier lifetime of CdTe and interface recombination velocity at the CdTe/Mg{sub 0.24}Cd{sub 0.76}Te heterointerface are estimated to be around 0.5??s and (4.7??0.4)??10{sup 2?}cm/s, respectively, using time-resolved photoluminescence (PL) measurements. Four CdTe/MgCdTe double heterostructures (DHs) with varying CdTe layer thicknesses were grown on nearly lattice-matched InSb (001) substrates using molecular beam epitaxy. The longest lifetime of 179?ns is observed in the DH with a 2??m thick CdTe layer. It is also shown that the photon recycling effect has a strong influence on the bulk radiative lifetime, and the reabsorption process affects the measured PL spectrum shape and intensity.

  19. Towards risk-based management of critical infrastructures : enabling insights and analysis methodologies from a focused study of the bulk power grid.

    SciTech Connect (OSTI)

    Richardson, Bryan T.; LaViolette, Randall A.; Cook, Benjamin Koger

    2008-02-01

    This report summarizes research on a holistic analysis framework to assess and manage risks in complex infrastructures, with a specific focus on the bulk electric power grid (grid). A comprehensive model of the grid is described that can approximate the coupled dynamics of its physical, control, and market components. New realism is achieved in a power simulator extended to include relevant control features such as relays. The simulator was applied to understand failure mechanisms in the grid. Results suggest that the implementation of simple controls might significantly alter the distribution of cascade failures in power systems. The absence of cascade failures in our results raises questions about the underlying failure mechanisms responsible for widespread outages, and specifically whether these outages are due to a system effect or large-scale component degradation. Finally, a new agent-based market model for bilateral trades in the short-term bulk power market is presented and compared against industry observations.

  20. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture SwitchgrassFeedstock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genera Energy Inc. ● 167 Tellico Port Road ● Vonore, TN 37885 Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review March 25, 2015 Feedstock Supply & Logistics Presenter: Sam Jackson, Genera Energy Inc. Technical Lead: Al Womac, University of Tennessee Lead Organization: TennEra LLC (formerly Genera Energy LLC) Goal Statement  Develop and test

  1. Thermal conductivity of bulk and nanowire Mg?SixSn1x alloys from first principles

    SciTech Connect (OSTI)

    Li, Wu; Lindsay, L.; Broido, D. A.; Stewart, Derek A.; Mingo, Natalio

    2012-11-29

    The lattice thermal conductivity (?) of the thermoelectric materials, Mg?Si, Mg?Sn, and their alloys, are calculated for bulk and nanowires, without adjustable parameters. We find good agreement with bulk experimental results. For large nanowire diameters, size effects are stronger for the alloy than for the pure compounds. For example, in 200 nm diameter nanowires ? is lower than its bulk value by 30%, 20%, and 20% for Mg?Si?.?Sn?.?, Mg?Si, and Mg?Sn, respectively. For nanowires less than 20 nm thick, the relative decrease surpasses 50%, and it becomes larger in the pure compounds than in the alloy. At room temperature, ? of Mg?SixSn1x is less sensitive to nanostructuring size effects than SixGe1x, but more sensitive than PbTexSe1x. This suggests that further improvement of Mg?SixSn1x as a nontoxic thermoelectric may be possible.

  2. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    SciTech Connect (OSTI)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  3. Comparative study of optical and structural properties of electrospun 1-dimensional CaYAl{sub 3}O{sub 7}:Eu{sup 3+} nanofibers and bulk phosphor

    SciTech Connect (OSTI)

    Yim, Chul Jin; Unithrattil, Sanjith; Chung, Woon Jin; Im, Won Bin

    2014-09-15

    We report the optical and structural studies of Eu{sup 3+}-doped 1-dimensional CaYAl{sub 3}O{sub 7} nano-fiber phosphor. CaYAl{sub 3}O{sub 7}:Eu{sup 3+} phosphors were synthesized by electrospinning technique and the pristine nano-fibers were annealed at 900 C to form well crystallized uniform fibers. Under ultraviolet excitation, the CaYAl{sub 3}O{sub 7}:Eu{sup 3+} exhibited red emission, due to transitions in the 4f states of Eu{sup 3+}. In order to explore the difference between the quantum efficiency of nano-fiber and bulk CaYAl{sub 3}O{sub 7}:Eu{sup 3+} phosphor, detailed structural and optical analyses were carried out. The structural analysis of the CaYAl{sub 3}O{sub 7}:Eu{sup 3+} nano-fibers indicates that the structural environment surrounding the dopant Eu{sup 3+} ion was more unstable in nano-fiber when compared to a bulk sample. Decay curves for both the samples when fitted with double exponential decay model indicate that the nano-fiber has shorter decay time, arising from the larger contribution from the non-radiative decay, due to defect levels introduced in the host lattice. - Highlights: Synthesis of red nano-phosphor through electrospinning Luminescence properties of bulk and nano-phosphors are compared. Inferior emission intensity of the nano-phosphor is analyzed using MEM. Charge cloud around nano-phosphor was found to be oblique.

  4. Looking for footprint of bulk metallic glass in electronic and phonon heat capacities of Cu{sub 55}Hf{sub 45?x}Ti{sub x} alloys

    SciTech Connect (OSTI)

    Remenyi, G.; Biljakovi?, K.; Stareini?, D.; Dominko, D.; Risti?, R.; Babi?, E.; Figueroa, I. A.; Davies, H. A.

    2014-04-28

    We report on the heat capacity investigation of Cu{sub 55}Hf{sub 45?x}Ti{sub x} metallic glasses. The most appropriate procedure to estimate low temperature electronic and phonon contributions has been determined. Both contributions exhibit monotonous Ti concentration dependence, demonstrating that there is no relation of either the electron density of states at the Fermi level or the Debye temperature to the increased glass forming ability in the Ti concentration range x?=?1530. The thermodynamic parameters (e.g., reduced glass temperature) remain better indicators in assessing the best composition for bulk metallic glass formation.

  5. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    SciTech Connect (OSTI)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: A new method of clinker characterization Combination of electron probe technique with cluster analysis Simultaneous assessment of phase abundance, composition and bulk chemistry Experimental validation performed on industrial clinkers.

  6. A Phenomenological Model of Bulk Force in a Li-Ion Battery Pack and Its Application to State of Charge Estimation

    SciTech Connect (OSTI)

    Mohan, S; Kim, Y; Siegel, JB; Samad, NA; Stefanopoulou, AG

    2014-09-19

    A phenomenological model of the bulk force exerted by a lithium ion cell during various charge, discharge, and temperature operating conditions is developed. The measured and modeled force resembles the carbon expansion behavior associated with the phase changes during intercalation, as there are ranges of state of charge (SOC) with a gradual force increase and ranges of SOC with very small change in force. The model includes the influence of temperature on the observed force capturing the underlying thermal expansion phenomena. Moreover the model is capable of describing the changes in force during thermal transients, when internal battery heating due to high C-rates or rapid changes in the ambient temperature, which create a mismatch in the temperature of the cell and the holding fixture. It is finally shown that the bulk force model can be very useful for a more accurate and robust SOC estimation based on fusing information from voltage and force (or pressure) measurements. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email oa@electrochem.org. All rights reserved.

  7. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    SciTech Connect (OSTI)

    Sharma, Jyoti; Suresh, K. G.

    2015-02-16

    We report a giant exchange bias (EB) field of 3520?Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  8. A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results

    SciTech Connect (OSTI)

    Gettelman, A.; Morrison, H.; Ghan, Steven J.

    2008-08-11

    The global performance of a new 2-moment cloud microphysics scheme for a General Circulation Model (GCM) is presented and evaluated relative to observations. The scheme produces reasonable representations of cloud particle size and number concentration when compared to observations, and represents expected and observed spatial variations in cloud microphysical quantities. The scheme has smaller particles and higher number concentrations over land than the standard bulk microphysics in the GCM, and is able to balance the radiation budget of the planet with 60% the liquid water of the standard scheme, in better agreement with observations. The new scheme treats both the mixing ratio and number concentration of rain and snow, and is therefore able to differentiate the two key regimes, consisting of drizzle in shallow warm clouds and larger rain drops in deeper cloud systems. The modeled rain and snow size distributions are consistent with observations.

  9. Investigation of Interfacial and Bulk Dissociation of HBr, HCl, and HNO3 Using Density Functional Theory-Based Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Baer, Marcel; Tobias, Douglas J.; Mundy, Christopher J.

    2014-12-18

    In this study we investigate the free energy barrier associated with the dissociation of strong acids, XH (HBr, HCl and HNO3) deprotonation, and subsequent formation of ionpairs, X___H3O+ in the vicinity of the air-water interface. We will show that the free energy for acid dissociation for HCl and HNO3 show significant differences at the air-water than under bulk solvation conditions producing a picture where at the interface associated molecular species can be stable. For the strongest acid we consider, HBr the more traditional picture of acids is preserved in the vicinity of the air-water interface. Our results have implications for our understanding of acids, and their surface tensions at the air-water interface.

  10. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    SciTech Connect (OSTI)

    Yu, K. Y.; Fan, Z.; Chen, Y.; Song, M.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe96Zr4 nanocomposite alloy. Irradiation resulted in amorphization of Fe2Zr and formed crystal/amorphous nanolayers. ?-Fe layers exhibited drastically lower defect density and size than those in large ?-Fe grains. In situ video revealed that mobile dislocation loops in ?-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphous nanocomposites.

  11. Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods

    SciTech Connect (OSTI)

    Huang, Yongjiang E-mail: yjhuang@hit.edu.cn; Khong, J. C.; Mi, J. E-mail: yjhuang@hit.edu.cn; Connolley, Thomas

    2014-01-20

    The plasticity of a ZrTi-based bulk metallic glass composite consisting of glassy matrix and crystalline dendritic phase was studied in-situ under identical tensile loading conditions using scanning electron microscopy and synchrotron X-ray diffraction. A generic procedure was developed to separate the diffraction information of the crystalline phases away from that of the matrix and to precisely calculate the microscopic strains of the two phases at different macroscopic load steps. In this way, the time-evolved quantitative links between shear bands nucleation/propagation and the corresponding microscopic stress fields around them are established, providing more quantitative understanding on (1) how the shear bands are driven by the local stress field, and (2) the critical stresses required for the shear bands to nucleate in the crystalline phase, propagate through the crystalline/matrix interface, and finally into the matrix.

  12. Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrificati...

    Office of Environmental Management (EM)

    ... in the Procurement Specification and ASME AG-1 Code. ... requirements to withstand the environment in the vessel. ... vapor and reduce its partial pressure within the dryer. ...

  13. Bulk Modulus Capacitor Load Cells

    SciTech Connect (OSTI)

    Dickey, C.E.

    1990-04-01

    Measurement of forces present at various locations within the SSC Model Dipole collared coil assembly is of great practical interest to development engineers. Of particular interest are the forces between coils at the parting plane and forces that exist between coils and pole pieces. It is also desired to observe these forces under the various conditions that a magnet will experience such as: during the collaring process, post-collaring, under the influence of cryogens, and during field excitation. A twenty eight thousandths of an inch thick capacitor load cell which utilizes the hydrostatic condition of a stressed plastic dielectric has been designed. These cells are currently being installed on SSC Model Dipoles. The theory, development, and application of these cells will be discussed.

  14. High Performance Bulk Thermoelectric Materials

    SciTech Connect (OSTI)

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  15. Bulk materials handling equipment roundup

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-07-15

    The article reports recent product developments in belt conveyors. Flexco Steel Lancing Co. (Flexco) has a range of light, portable maintenance tools and offers training modules on procedures for belt conveyor maintenance on its website www.flexcosafe.com. Siemens recently fitted a 19 km long conveyor belt drive system at a Texan aluminium plant with five 556-kW Simovent Masterdrive VC drives. Voith recently launched the TPKL-T turbo coupling for users who want an alignment-free drive solution. Belt cleaners newly on the market include the RemaClean SGB brush and ASGCO Manufacturing's Razor-Back with Spray bar. Continental Conveyor has introduced a new line of dead-shaft pulleys offering increased bearing protection. 6 photos.

  16. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-2, 2A, 2B, and 3: Data report

    SciTech Connect (OSTI)

    Boyd, P.J.; Martin, R.J.; Noel, J.S. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves characterization of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from boreholes UE25 NRG-2, 2A, 2B, and 3 drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. The holes penetrated the Timber Mountain tuff and two thermal/mechanical units of the Paintbrush tuff. The thermal/mechanical stratigraphy was defined by Ortiz to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy for each borehole is presented. The tuff samples in this study have a wide range of welding characteristics (usually reflected in sample porosity), and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  17. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report. Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Martin, R.J.; Boyd, P.J.; Noel, J.S. [New England Research, Inc. White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves prediction of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from the USW NRG-717A borehole drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. USW NRG-7/7A was drilled to a depth of 1,513.4 feet through five thermal/mechanical units of Paintbrush tuff and terminating in the tuffaceous beds of the Calico IEUS. The thermal/mechanical stratigraphy was defined by Orfiz et al. to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy is presented. The tuff samples in this study have a wide range of welding characteristics, and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  18. Characterizing HfXZr1-XO2 by EXAFS: Relationship Between Bulk and Surface Composition, and Impact on Catalytic Selectivity for Alcohol Conversion

    SciTech Connect (OSTI)

    Jacobs, G.; Milling, M; Ji, Y; Patterson, P; Sparks, D; Davis, B

    2009-01-01

    A series of mixed Hf{sub X}Zr{sub 1-X}O{sub 2} oxide catalysts was prepared according to a recipe that yields the monoclinic structure. The samples were examined by EXAFS spectroscopy at the Zr K and Hf L{sub III} edges. A fitting model was used that simultaneously fits data from both edges, and makes use of an interdependent mixing parameter X mix to take into account substitution of the complementary atom in the nearest metal-metal shell. For XPS analysis, Scofield factors were applied to estimate the relative atomic surface concentrations of Zr and Hf. EXAFS results suggested that a solid bulk solution was formed over a wide range of X for Hf{sub X}Zr{sub 1-X}O{sub 2} binary oxides, and that the relative ratio was retained in the surface shell (i.e., including some subsurface layers by XPS) and the surface (e.g., by ISS). The increase in selectivity for the 1-alkene from dehydration of alcohols at high Zr content does not correlate smoothly with the tuned relative atomic concentration of Hf to Zr. The step change at high Zr content appears to be due to other indirect factors (e.g., surface defects, oxygen vacancies).

  19. Characterisation of radiation damage in W and W-based alloys from 2MeV self-ion near-bulk implantations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yi, Xiaoou; Culham Science Centre, Abingdon; Jenkins, Michael L.; Hattar, Khalid; Edmondson, Philip D.; Roberts, Steve G.; Culham Science Centre, Abingdon

    2015-04-21

    The displacement damage induced in bulk W and W-5 wt.% Re and W-5 wt.% Ta alloys by 2 MeV W+ irradiation to doses 3.3×1017 - 2.5×1019 W+/m2 at temperatures ranging from 300 to750°C has been characterized by transmission electron microscopy. An automated sizing and counting approach based on Image J has been proposed and performed for all irradiation data. In all cases the damage comprised dislocation loops, mostly of interstitial type, with Burgers vectors b = ½<111> (> 60%) and b = <100>. The diameters of loops did not exceed 20 nm, with the majority being ≤ 6 nm. Themore » loop number density varied between 1022 and 1023 loops/m3 . With increasing irradiation temperature, the loop size distributions shifted towards larger sizes, and there was a substantial decrease in loop number densities. The damage microstructure was less sensitive to dose than to temperature. Under the same irradiation conditions, loop number densities in the alloys were higher than in pure W but loops were smaller. In grains with normals close to z = <001>, loop strings developed in W at temperatures ≥ 500°C and doses ≥ 1.2 dpa, but such strings were not observed in the W-Re or W-Ta alloys. However, in other grain orientations complex structures appeared in all materials and dense dislocation networks formed at higher doses.« less

  20. Structural and optoelectronic properties of hybrid bulk-heterojunction materials based on conjugated small molecules and mesostructured TiO{sub 2}

    SciTech Connect (OSTI)

    Phan, Hung [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Jahnke, Justin P.; Chmelka, Bradley F. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Nguyen, Thuc-Quyen, E-mail: quyen@chem.ucsb.edu [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-06-09

    Improved hybrid bulk-heterojunction materials was fabricated by spin-casting a benchmark conjugated small molecule, namely, 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP(TBFu){sub 2}), into mesostructured TiO{sub 2}. Due to both a reduced molecular size and less hydrophobic nature of the conjugated molecules (relative to conjugated polymers), homogeneous and improved infiltration into the mesoporous TiO{sub 2} are achieved without the need for pre-treatment of the TiO{sub 2}. Remarkably, this small molecule can realize loadings of up to 25% of the total pore volume2.5 the typical loadings achieved for conjugated polymers. The small molecule loading was determined using dynamic secondary ion mass spectroscopy and absorption spectroscopy. Further characterization such as charge transfer and nanoscale conducting atomic force microscopy helps to demonstrate the promise and viability of small molecule donors for hybrid optoelectronic devices.

  1. Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1-xCex)2Fe14-yCoyB ribbons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pathak, Arjun K.; Khan, M.; Gschneidner, Jr., K. A.; McCallum, R. W.; Zhou, L.; Sun, K.; Kramer, M. J.; Pecharsky, V. K.

    2015-11-06

    Magnetic properties of Ce and Co co-doped (Nd1-xCex)2Fe14-yCoyB compounds have been investigated both in bulk polycrystalline and rapidly solidified nanostructured ribbon forms. For certain Ce concentrations the materials exhibit spin re-orientation transitions below 140 K. The Curie temperatures, saturation magnetizations, and other magnetic properties relevant for applications as permanent magnets are controlled by Ce and Co substitutions for Nd and Fe, respectively. Most importantly, the results show that Ce, Co co-doped compounds are excellent replacements for several Dy-based high performance permanent magnets (dysprosium is one of the critical elements and is, therefore, in short supply). As a result, the highmore » temperature (>375 K) magnetic properties for Nd–Ce–Fe–Co–B based alloys show promise not only as a replacement for Dy-doped Nd2Fe14B permanent magnets, but the new alloys also require significantly lower amounts of Nd, which too is the critical element that can be replaced by a more abundant Ce.« less

  2. High open-circuit voltage small-molecule p-DTS(FBTTh 2 )2.ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; Huang, Ye; Bazan, Guillermo C.; Laquai, Frédéric; Nguyen, Thuc -Quyen

    2014-11-27

    The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh2)2:PC70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh2)2:PC70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to μs) range in combination with multivariate curve resolution analysis of the TA data reveals thatmore » generation of free charges is more efficient in the blend with PC70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to μs charge carrier dynamics in p-DTS(FBTTh2)2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh2)2:PC70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.« less

  3. Bulk matter evolution and extraction of jet transport parameters in heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Chen Xiaofang; Greiner, Carsten; Wang Enke; Wang Xinnian; Xu Zhe

    2010-06-15

    Within the picture of jet quenching induced by multiple parton scattering and gluon bremsstrahlung, medium modification of parton fragmentation functions and therefore the suppression of large transverse-momentum hadron spectra are controlled by both the value and the space-time profile of the jet transport parameter along the jet propagation path. Experimental data on single-hadron suppression in high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider energy are analyzed within the higher-twist (HT) approach to the medium-modified fragmentation functions and the next-to-leading order perturbative QCD parton model. Assuming that the jet transport parameter q is proportional to the particle number density in both quark gluon plasma (QGP) and hadronic phase, experimental data on jet quenching in deeply inelastic scattering off nuclear targets can provide guidance on q{sub h} in the hot hadronic matter. One can then study the dependence of the extracted initial value of jet-quenching parameter q{sub 0} at initial time tau{sub 0} on the bulk medium evolution. Effects of transverse expansion, radial flow, phase transition, and nonequilibrium evolution are examined. The extracted values are found to vary from q{sub 0}tau{sub 0}=0.54 GeV{sup 2} in the (1+3)d ideal hydrodynamic model to 0.96 GeV{sup 2} in a cascade model, with the main differences coming from the initial nonequilibrium evolution and the later hadronic evolution. The overall contribution to jet quenching from the hadronic phase, about 22%-44%, is found to be significant. Therefore, a realistic description of the early nonequilibrium parton evolution and later hadronic interaction will be critical for accurate extraction of the jet transport parameter in the strongly interacting QGP phase in high-energy heavy-ion collisions.

  4. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    SciTech Connect (OSTI)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; Abreu, Elsa; Zhang, Jingdi; Goldflam, Michael; Dai, Siyuan; Ni, Guang -Xin; Lu, Jiwei; Bechtel, Hans A.; Martin, Michael C.; Raschke, Markus B.; Averitt, Richard D.; Wolf, Stuart A.; Kim, Hyun -Tak; Canfield, Paul C.; Basov, D. N.

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches.

  5. Effect of the valence electron concentration on the bulk modulus and chemical bonding in Ta{sub 2}AC and Zr{sub 2}AC (A=Al, Si, and P)

    SciTech Connect (OSTI)

    Schneider, Jochen M.; Music, Denis; Sun Zhimei

    2005-03-15

    We have studied the effect of the valence electron concentration, on the bulk modulus and the chemical bonding in Ta{sub 2}AC and Zr{sub 2}AC (A=Al, Si, and P) by means of ab initio calculations. Our equilibrium volume and the hexagonal ratio (c/a) agree well (within 2.7% and 1.2%, respectively) with previously published experimental data for Ta{sub 2}AlC. The bulk moduli of both Ta{sub 2}AC and Zr{sub 2}AC increase as Al is substituted with Si and P by 13.1% and 20.1%, respectively. This can be understood since the substitution is associated with an increased valence electron concentration, resulting in band filling and an extensive increase in cohesion.

  6. Nanocrystallization in spark plasma sintered Fe{sub 48}Cr{sub 15}Mo{sub 14}Y{sub 2}C{sub 15}B{sub 6} bulk amorphous alloy

    SciTech Connect (OSTI)

    Singh, Ashish; Harimkar, Sandip P.; Katakam, Shravana; Dahotre, Narendra B.; Ilavsky, Jan

    2013-08-07

    Spark plasma sintering (SPS) is evolving as an attractive process for the processing of multi-component Fe-based bulk amorphous alloys and their in-situ nanocomposites with controlled primary nanocrystallization. Extended Q-range small angle neutron scattering (EQ-SANS) analysis, complemented by x-ray diffraction and transmission electron microscopy, was performed to characterize nanocrystallization behavior of SPS sintered Fe-based bulk amorphous alloys. The SANS experiments show significant scattering for the samples sintered in the supercooled region indicating local structural/compositional changes associated with the profuse nucleation of nanoclusters (?4 nm). For the samples spark plasma sintered near and above crystallization temperature (>653 C), the SANS data show the formation of interference maximum indicating the formation and growth of (Fe,Cr){sub 23}C{sub 6} crystallites. The SANS data also indicate the evolution of bimodal crystallite distribution at higher sintering temperatures (above T{sub x1}). The growth of primary nanocrystallites results in impingement of concentration gradient fields (soft impingement effect), leading to non-random nucleation of crystallites near the primary crystallization.

  7. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    SciTech Connect (OSTI)

    Klobukowski, Erik

    2011-12-29

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and morpholinones and related analogues such as quinoxalinones and benzoxazin-2-ones.

  8. Bulk Tritium Shipping Package Overview and Status

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation from the 36th Tritium Focus Group Meeting held in Los Alamos, New Mexico, November 3-5, 2015.

  9. Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics

    SciTech Connect (OSTI)

    Stevenson, T. Bennett, J.; Brown, A. P.; Wines, T.; Bell, A. J.; Comyn, T. P.; Smith, R. I.

    2014-08-01

    Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO{sub 3}–0.3PbTiO{sub 3}, we can induce a reversible, piezoelectric strain controlled ME effect. Employing an in situ neutron diffraction experiment, we have demonstrated that this piezomagnetoelectric effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe{sup 3+} ion of +0.142 μ{sub B}. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.

  10. Summary - Demonstration Bulk Vitrification System (DBVS) for...

    Office of Environmental Management (EM)

    should be completed and its effectiveness tested in the full demonstration. The mixer-dryer and off-gas systems need special attention in the next project phase since past work...

  11. Formation of bulk refractive index structures

    DOE Patents [OSTI]

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  12. Electrolytes- Interfacial and Bulk Properties and Stability

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Hydrogen bond dynamics in bulk alcohols

    SciTech Connect (OSTI)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamicsquantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquidalcoholshas attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  14. Robbins Corn & Bulk Services | Open Energy Information

    Open Energy Info (EERE)

    National Wind Technology Center, Renewable Electricity & End Use Systems, Science & Technology, Thermal Systems Group, Transportation Technologies and Systems) for...

  15. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are ...

  16. Bulk dimensional nanocomposites for thermoelectric applications

    DOE Patents [OSTI]

    Nolas, George S

    2014-06-24

    Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

  17. Pairing in bulk nuclear matter beyond BCS

    SciTech Connect (OSTI)

    Ding, D.; Dickhoff, W. H.; Dussan, H.; Witte, S. J.; Rios, A.; Polls, A.

    2014-10-15

    The influence of short-range correlations on the spectral distribution of neutrons is incorporated in the solution of the gap equation for the {sup 3}P{sub 2}?{sup 3}F{sub 2} coupled channel in pure neutron matter. This effect is studied for different realistic interactions including one based on chiral perturbation theory. The gap in this channel vanishes at all relevant densities due to the treatment of these correlations. We also consider the effect of long-range correlations by including polarization terms in addition to the bare interaction which allow the neutrons to exchange density and spin fluctuations governed by the strength of Landau parameters allowed to have reasonable values consistent with the available literature. Preliminary results indicate that reasonable values of these parameters do not generate a gap in the {sup 3}P{sub 2}?{sup 3}F{sub 2} coupled channel either for all three realistic interactions although the pairing interaction becomes slightly more attractive.

  18. Quarry Bulk Waste Removal, Weldon Spring Site.

    Office of Legacy Management (LM)

  19. The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium

    SciTech Connect (OSTI)

    Van Weverberg, K.; VanLipzig, N. P. M.; Delobbe, L.

    2011-04-01

    In this research the impact of modifying the size distribution assumptions of the precipitating hydrometeors in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics has been explored for long-lived low-topped supercells in Belgium. It was shown that weighting the largest precipitating ice species of the microphysics scheme to small graupel results in an increase of surface precipitation because of counteracting effects. On the one hand, the precipitation formation process slowed down, resulting in lower precipitation efficiency. On the other hand, latent heat release associated with freezing favored more intense storms. In contrast to previous studies finding decreased surface precipitation when graupel was present in the microphysics parameterization, storms were rather shallow in the authors simulations. This left little time for graupel sublimation. The impact of size distribution assumptions of snow was found to be small, but more realistic size distribution assumptions of rain led to the strongest effect on surface precipitation. Cold pools shrunk because of weaker rain evaporation at the cold pool boundaries, leading to a decreased surface rain area.

  20. Large magnetic entropy change and adiabatic temperature rise of a Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass

    SciTech Connect (OSTI)

    Xia, L.; Tang, M. B.; Chan, K. C.; Dong, Y. D.

    2014-06-14

    Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass (BMG) was synthesized by minor Ni substitution for Co in the Gd{sub 55}Al{sub 20}Co{sub 25} BMG in which excellent glass forming ability (GFA) and magneto-caloric effect were reported previously. The Gd{sub 55}Al{sub 20}Ni{sub 20}Co{sub 5} amorphous rod has a similar GFA to the Gd{sub 55}Al{sub 20}Co{sub 25} BMG but exhibits better magnetic properties. The peak value of magnetic entropy change (−ΔS{sub m}{sup peak}) of the Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} BMG is 9.8 Jkg{sup −1} K{sup −1}. The field dependence of −ΔS{sub m}{sup peak} follows a −ΔS{sub m}{sup peak}∝H{sup 0.85} relationship. The adiabatic temperature rise of the rod is 4.74 K under 5 T and is larger than of other BMGs previously reported. The improved magnetic properties were supposed to be induced by the enhanced interaction between 4f electron in the rare-earth and 3d electron in the transition metal elements by means of a minor Ni substitution for Co.

  1. Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1-xCex)2Fe14-yCoyB ribbons

    SciTech Connect (OSTI)

    Pathak, Arjun K.; Khan, M.; Gschneidner, Jr., K. A.; McCallum, R. W.; Zhou, L.; Sun, K.; Kramer, M. J.; Pecharsky, V. K.

    2015-11-06

    Magnetic properties of Ce and Co co-doped (Nd1-xCex)2Fe14-yCoyB compounds have been investigated both in bulk polycrystalline and rapidly solidified nanostructured ribbon forms. For certain Ce concentrations the materials exhibit spin re-orientation transitions below 140 K. The Curie temperatures, saturation magnetizations, and other magnetic properties relevant for applications as permanent magnets are controlled by Ce and Co substitutions for Nd and Fe, respectively. Most importantly, the results show that Ce, Co co-doped compounds are excellent replacements for several Dy-based high performance permanent magnets (dysprosium is one of the critical elements and is, therefore, in short supply). As a result, the high temperature (>375 K) magnetic properties for Nd–Ce–Fe–Co–B based alloys show promise not only as a replacement for Dy-doped Nd2Fe14B permanent magnets, but the new alloys also require significantly lower amounts of Nd, which too is the critical element that can be replaced by a more abundant Ce.

  2. Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics

    SciTech Connect (OSTI)

    Ratcliff, Erin L.; Meyer, Jens; Steirer, K. Xerxes; Garcia, Andres; Berry, Joseph J.; Ginley, David S.; Olson, Dana C.; Kahn, Antoine; Armstrong, Neal R.

    2011-11-22

    The characterization and implementation of solution-processed, wide bandgap nickel oxide (NiO{sub x}) hole-selective interlayer materials used in bulk-heterojunction (BHJ) organic photovoltaics (OPVs) are discussed. The surface electrical properties and charge selectivity of these thin films are strongly dependent upon the surface chemistry, band edge energies, and midgap state concentrations, as dictated by the ambient conditions and film pretreatments. Surface states were correlated with standards for nickel oxide, hydroxide, and oxyhydroxide components, as determined using monochromatic X-ray photoelectron spectroscopy. Ultraviolet and inverse photoemission spectroscopy measurements show changes in the surface chemistries directly impact the valence band energies. O?-plasma treatment of the as-deposited NiO{sub x} films was found to introduce the dipolar surface species nickel oxyhydroxide (NiOOH), rather than the p-dopant Ni?O?, resulting in an increase of the electrical band gap energy for the near-surface region from 3.1 to 3.6 eV via a vacuum level shift. Electron blocking properties of the as-deposited and O?-plasma treated NiO{sub x} films are compared using both electron-only and BHJ devices. O?-plasma-treated NiO{sub x} interlayers produce electron-only devices with lower leakage current and increased turn on voltages. The differences in behavior of the different pretreated interlayers appears to arise from differences in local density of states that comprise the valence band of the NiO{sub x} interlayers and changes to the band gap energy, which influence their hole-selectivity. The presence of NiOOH states in these NiO{sub x} films and the resultant chemical reactions at the oxide/organic interfaces in OPVs is predicted to play a significant role in controlling OPV device efficiency and lifetime.

  3. High open-circuit voltage small-molecule p-DTS(FBTTh 2 )2:ICBA bulk heterojunction solar cells morphology, excited-state dynamics, and photovoltaic performance

    SciTech Connect (OSTI)

    Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; Huang, Ye; Bazan, Guillermo C.; Laquai, Frdric; Nguyen, Thuc -Quyen

    2014-11-27

    The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh2)2:PC70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh2)2:PC70BM. Transient absorption (TA) pumpprobe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to ?s) range in combination with multivariate curve resolution analysis of the TA data reveals that generation of free charges is more efficient in the blend with PC70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to ?s charge carrier dynamics in p-DTS(FBTTh2)2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh2)2:PC70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.

  4. Constant permeability of (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} bulk metallic glass prepared by B{sub 2}O{sub 3} flux melting and Cu-mold casting

    SciTech Connect (OSTI)

    Bitoh, T.; Shibata, D. [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo 015-0055 (Japan)

    2009-04-01

    The effect of B{sub 2}O{sub 3} flux melting on the soft magnetic properties of (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} bulk metallic glass prepared by casting has been investigated. Ring-shaped bulk specimens that were prepared by B{sub 2}O{sub 3} flux melting and Cu-mold casting (fluxed specimens) show a flat hysteresis curve, indicating a good linear relationship between the magnetic induction and the applied magnetic field. Although the permeability of the fluxed specimens is lower than that of the specimens prepared by conventional Cu-mold casting by one order of magnitude, their coercivities are almost same. These results show that it is possible to develop a new soft magnetic material that exhibits constant permeability with low core loss.

  5. Scanned Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Narrows Dam - Power Section Intake Trash Racks Location: Steel trash racks located at the intake portion of the power section of Narrows Dam. What: Loss of trash rack at the intake of ...

  6. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Article" rack. The rack is functionally acceptable, but some of the details in their seismic qualification report are still undergoing SLAC review. If the seismic review is...

  7. Enhancing covalent mechanochemistry in bulk polymers using electrospun...

    Office of Scientific and Technical Information (OSTI)

    (ANL), Argonne, IL (US) Sponsoring Org: USDOE Office of Science (SC) Country of Publication: United States Language: ENGLISH Word Cloud More Like This Full Text Journal Articles ...

  8. Intrinsic carrier multiplication efficiency in bulk Si crystals...

    Office of Scientific and Technical Information (OSTI)

    This optical method allows us to estimate the carrier multiplication and surface recombination of carriers quantitatively, which are crucial for the design of the solar cells. ...

  9. Commercialization of Bulk Thermoelectric Materials for Power Generation

    Broader source: Energy.gov [DOE]

    Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

  10. A new class of high ZT doped bulk nanothermoelectrics through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materals - Part 1 The Bottom-Up Approach forThermoelectric Nanocomposites, plus Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )...

  11. Bulk synthesis of nanoporous palladium and platinum powders

    DOE Patents [OSTI]

    Robinson, David B. (Fremont, CA); Fares, Stephen J. (Pleasanton, CA); Tran, Kim L. (Livermore, CA); Langham, Mary E. (Pleasanton, CA)

    2012-04-17

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  12. RAPID/BulkTransmission/Environment/Arizona | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  13. RAPID/BulkTransmission/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  14. RAPID/BulkTransmission/Environment/Oregon | Open Energy Information

    Open Energy Info (EERE)

    impacts are reviewed during the Site Certification application process. Environmental Review Agency: Oregon Energy Facility Siting Council Type of State Environmental Review...

  15. RAPID/BulkTransmission/Environment/Washington | Open Energy Informatio...

    Open Energy Info (EERE)

    are included in the checklist: Earth Air Water (surface and ground) Plants Animals Energy and Natural Resources Environmental Health Noise Land and Shoreline Use Housing...

  16. RAPID/BulkTransmission/Environment/Wyoming | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  17. RAPID/BulkTransmission/Environment/Nevada | Open Energy Information

    Open Energy Info (EERE)

    Exploration): Type of State Environmental Review (Drilling): Type of State Environmental Review (Power Plant Siting): ContactsAgencies: Nevada Division of Environmental...

  18. RAPID/BulkTransmission/Environment/New Mexico | Open Energy Informatio...

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  19. RAPID/BulkTransmission/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  20. RAPID/BulkTransmission/Environment/Idaho | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  1. RAPID/BulkTransmission/Environment/California | Open Energy Informatio...

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  2. RAPID/BulkTransmission/Environment/Montana | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  3. Uniform bulk material processing using multimode microwave radiation

    DOE Patents [OSTI]

    Varma, Ravi (Los Alamos, NM); Vaughn, Worth E. (Madison, WI)

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  4. DEVELOPMENT AND USE OF A BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2010-09-30

    A shipping package for transporting tritium has been developed for use by the National Nuclear Safety Administration as a replacement for the DOE Model UC-609, a tritium package developed and used by the DOE and NRC since the early 1970s. This paper presents the major design features and highlights the improvements made over its predecessor by incorporating new engineered materials and implementing improved testing, handling, and maintenance capabilities, while improving manufacturability. A discussion will be provided demonstrating how the BTSP complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper further summarizes the results of testing to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and possible future missions for this packaging will be addressed.

  5. Lowering critical cooling rate for forming bulk metallic glass

    SciTech Connect (OSTI)

    Shen, T.D.; Schwarz, R.B. [MS G755, MST-8, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2006-02-27

    Small volumes of Pd{sub 44}Ni{sub 10}Cu{sub 26}P{sub 20} and Pd{sub 43.2}Ni{sub 8.8}Cu{sub 28}P{sub 20} were encapsulated in B{sub 2}O{sub 3} and thermally cycled between T{sub g}-60 deg. C and T{sub l}+60 deg. C, where T{sub g} and T{sub l} denote the alloys' glass transition and liquidus temperatures. After this thermal treatment, the critical cooling rates (CCRs) for glass formation can be lowered by an order of magnitude, resulting in a critical cooling rate significantly lower than that reported for any other glass forming alloy melt. These experiments demonstrate that the CCR is not constant but strongly dependent on the degree of heterogeneous nucleation.

  6. RAPID/BulkTransmission/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    ContactsAgencies: Alaska Department of Natural Resources, Alaska Department of Fish and Game, Alaska Department of Environmental Conservation State Environment Process...

  7. Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant

    Gasoline and Diesel Fuel Update (EIA)

    Stocks 2010 2011 2012 2013 2014 2015 View History U.S. 40,534 39,717 37,768 27,121 20,275 17,991 1993-2015 PAD District 1 3,913 3,741 3,513 3,190 1,785 1,901 1993-2015 Connecticut 1993-2004 Delaware 1993-2009 Florida 586 734 747 545 397 652 1993-2015 Georgia 374 251 220 269 235 220 1993-2015 Maine 130 152 254 1993-2013 Maryland 1993-2008 Massachusetts 2 4 3 6 5 5 1993-2015 New Hampshire 1993-2005 New Jersey 667 275 795 489 102 384 1993-2015 New York 194 628 483 394 43 11 1993-2015 North

  8. THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 4654936 Resource Type: Journal Article Resource Relation: Journal ... Language: English Subject: CHEMISTRY; Analytical Procedures; BACKGROUND; CESIUM 137; DIAGRAMS; ...

  9. Simplified Synthesis of Bulk Ammonia Borane - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    borane is a stable solid compound that has excellent potential as a hydrogen store for fuel cell and other applications. The ability to efficiently and economically manufacture...

  10. RAPID/BulkTransmission/Environment/Federal | Open Energy Information

    Open Energy Info (EERE)

    a federal permit. The level and scope of the NEPA review will vary depending on the nature of the project and the level of involvement by federal agencies. A small amount of...

  11. RAPID/BulkTransmission/Wyoming | Open Energy Information

    Open Energy Info (EERE)

    infrastructure to facilitate the consumption of Wyoming energy in the form of wind, natural gas, coal and nuclear, where applicable." WIA can participate in planning, financing,...

  12. Bulk synthesis of nanoporous palladium and platinum powders

    DOE Patents [OSTI]

    Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E

    2014-04-15

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  13. RAPID/BulkTransmission/Utah | Open Energy Information

    Open Energy Info (EERE)

    Administration Current Projects Transwest Express Zephyr Populus to Ben Lomand Sigurd to Red Butte No. 2 345kV Transmission Project Print PDF RAPID-State-Summary Retrieved from...

  14. RAPID/BulkTransmission/California | Open Energy Information

    Open Energy Info (EERE)

    District Valley Electric Assn, Inc Current Projects Colorado River-Valley (and Red Bluff Substation) Eldorado-Ivanpah Carrizo-Midway Reconductoring SCEIID Joint Path 42...

  15. Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stocks 7,028 18,017 19,195 17,987 17,396 17,991 1993-2015 PAD District 1 2,576 2,568 2,995 2,384 2,433 1,901 1993-2015 Connecticut 1993-2005 Delaware 1993-2010 Florida 956 787 959 847 827 652 1993-2015 Georgia 299 253 257 263 310 220 1993-2015 Maine 1993-2014 Maryland 1993-2009 Massachusetts 4 4 4 4 4 5 1993-2015 New Hampshire 1993-2006 New Jersey 220 435 785 225 168 384 1993-2015 New York 14 14 17 20 24 11 1993-2015 North Carolina 398 432 380 369 417 167 1993-2015 Pennsylvania 93 75 72 94

  16. RAPID/BulkTransmission/Montana | Open Energy Information

    Open Energy Info (EERE)

    Western Interconnection power grids and is part of two NERC regions - the Midwest Reliability Organization (MRO) and Western Electricity Coordinating Council (WECC). MRO's...

  17. RAPID/BulkTransmission/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    PNM collaborates with the agency WestConnect to accomplish transmission planning and reliability. Through WestConnect, PNM has joined together with utilities to the west and north...

  18. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    07,750 111,024 120,511 117,143 111,235 123,812 1993-2015 PAD District 1 35,684 41,109 47,692 48,247 50,887 55,286 1993-2015 Connecticut 1,693 1,981 2,714 3,388 3,960 4,509...

  19. Direct band gap electroluminescence from bulk germanium at room...

    Office of Scientific and Technical Information (OSTI)

    Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan) Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1...

  20. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of crystalline GaN growth in ESG Results and Accomplishments HRXRD vs reference SEM surface view 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 Deposition rate ...

  1. RAPID/BulkTransmission/Environment/Texas | Open Energy Information

    Open Energy Info (EERE)

    to Electric Power Transmission CCP Art. 49 Inquests upon dead bodies Fact Sheet - Air Quality Permitting Form PI-1 General Application for Air Preconstruction Permit RRC -...

  2. RAPID/BulkTransmission/Environment/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    Environmental Review Agency: Hawaii Department of Health Office of Environmental Quality Control Type of State Environmental Review (Leasing Stage): Type of State...

  3. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E. (East Setauket, NY); Weber, Rodney J. (Atlanta, GA)

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  4. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  5. Process for synthesis of ammonia borane for bulk hydrogen storage

    DOE Patents [OSTI]

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  6. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Relation: Conference: Presented at: ACS Spring Meeting 2015, Denver, CO, United States, Mar 22 - Mar 26, 2015 Research Org: Lawrence Livermore National Laboratory (LLNL),...

  7. Achieving large linear elasticity and high strength in bulk nanocompsi...

    Office of Scientific and Technical Information (OSTI)

    This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 Jcm that is almost one order of larger than that of spring ...

  8. RAPID/BulkTransmission/Water Quality | Open Energy Information

    Open Energy Info (EERE)

    Water Quality across multiple states Permitting Location State Nonpoint Source Pollution Process Nonpoint Source Pollution Agency State Discharge Elimination System...

  9. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect (OSTI)

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  10. Untitled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rack. Simply dividing 2823.7s by 16, we arrive at the perfect scaling value of 176.5s. Calculating the Main Loop compute time as measured for 16 racks produces 273s. Thus,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    eligible for the exemption; these include trackers, generating equipment, supporting structures or racks, inverters, towers and foundations, balance... Eligibility: Commercial,...

  12. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit...

    Office of Scientific and Technical Information (OSTI)

    ALUMINIUM; BOILING; DIMENSIONS; EARTHQUAKES; EXPLOSIONS; FUEL ASSEMBLIES; FUEL RACKS; HYDROGEN; NUCLEAR POWER PLANTS; OXIDATION; OXYGEN; RADIOISOTOPES; REACTOR ACCIDENTS;...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    these include trackers, generating equipment, supporting structures or racks, inverters, towers and foundations, balance... Eligibility: Commercial, Industrial, Local...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    equipment, supporting structures or racks, inverters, towers and foundations, balance... Eligibility: Commercial, Industrial, Local Government, Nonprofit, Residential,...

  15. U.S. Aims for Zero-Energy: Support for PV on New Homes

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-05-11

    As a market segment for solar photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost of the PV system into their mortgage and, with rebates or other financial incentives, potentially realize an immediate net positive cash flow from the investment. PV system performance can be optimized by taking roof orientation, shading, and other structural factors into account in the design of new homes. Building-integrated photovoltaics (BIPV), which are subject to fewer aesthetic concerns than traditional, rack-mounted systems, are well-suited to new construction applications. In large new residential developments, costs can be reduced through bulk purchases and scale economies in system design and installation. Finally, the ability to install PV as a standard feature in new developments - like common household appliances - creates an opportunity to circumvent the high transaction costs and other barriers typically confronted when each individual homeowner must make a distinct PV purchase decision.

  16. Corrosion of boiler tube alloys in refuse firing: Shredded vs bulk refuse

    SciTech Connect (OSTI)

    Krause, H.H. ); Daniel, P.L.; Blue, J.D. )

    1994-08-01

    Results of corrosion probe exposures at two mass burning incinerators were compared with those conducted in a unit burning refuse-derived fuel. Tests were conducted with carbon steel, low-alloy steels, stainless steels, and high nickel-chromium alloys. Corrosion rates at similar metal and gas temperatures were essentially the same for both types of fuel. Boiler tube performance in the waterwalls of other incinerators confirmed these results. Boiler design and operating conditions appear to be more important factors in tube wastage than the extent of refuse processing.

  17. P3HT/PCBM Bulk Heterojunction Organic Photovoltaics. Correlating Efficiency and Morphology

    SciTech Connect (OSTI)

    Chen, Dian; Nakahara, Atsuhiro; Wei, Dongguang; Nordlund, Dennis; Russell, Thomas P.

    2010-12-21

    Controlling thin film morphology is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. We show that morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Here, we provide detailed descriptions of the morphologies and interfacial behavior in thin film mixtures of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a typical active layer in a polymer-based PV device, in contact with an anode layer of PEDOT-PSS and either unconfined or confined by an Al cathode during thermal treatment. Small angle neutron scattering and electron microscopy show that a nanoscopic, bicontinuous morphology develops within seconds of annealing at 150 C and coarsens slightly with further annealing. P3HT and PCBM are shown to be highly miscible, to exhibit a rapid, unusual interdiffusion, and to display a preferential segregation of one component to the electrode interfaces. The ultimate morphology is related to device efficiency.

  18. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  19. Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition

    SciTech Connect (OSTI)

    Robaeys, Pieter Dierckx, Wouter; Dexters, Wim; Spoltore, Donato; Drijkoningen, Jeroen; Bonaccorso, Francesco; Bourgeois, Emilie; D'Haen, Jan; Haenen, Ken; Manca, Jean V.; Nesladek, Milos; Liesenborgs, Jori; Van Reeth, Frank; Lombardo, Antonio; Ferrari, Andrea C.

    2014-08-25

    Graphene has potential for applications in solar cells. We show that the short circuit current density of P3HT (Poly(3-hexylthiophene-2,5-diyl):PCBM((6,6)-Phenyl C61 butyric acid methyl ester) solar cells is enhanced by 10% upon the addition of graphene, with a 15% increase in the photon to electric conversion efficiency. We discuss the performance enhancement by studying the crystallization of P3HT, as well as the electrical transport properties. We show that graphene improves the balance between electron and hole mobilities with respect to a standard P3HT:PCBM solar cell.

  20. Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development

    Broader source: Energy.gov [DOE]

    Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology.

  1. Electric utility antitrust issues in an era of bulk power market competition

    SciTech Connect (OSTI)

    Green, D.G.; Bouknight, J.A. Jr.

    1994-12-31

    The electric utility industry is facing a new spectrum of antitrust issues reflecting its transformation from an industry that is fully regulated to one that is partly regulated, partly competitive. There are two principal antitrust issues: claims of price squeezes and claims by municipal and cooperative utilities that their traditional utility supplier is refusing to wheel power from other suppliers. This article discusses the following related topics: new antitrust issues; regional transmission groups and other joint ventures; mergers.

  2. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems

    SciTech Connect (OSTI)

    Factorovich, Matas H.; Scherlis, Damin A.

    2014-02-14

    In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

  3. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesse, Stephen; He, Qian; Lupini, Andrew R.; Leonard, Donovan N.; Oxley, Mark P.; Ovchinnikov, Oleg; Unocic, Raymond R.; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; et al

    2015-10-19

    We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulkmore » atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.« less

  4. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    SciTech Connect (OSTI)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzn, Erik; Hemmingsson, Carl; Ohshima, Takeshi

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}0.24?eV), D3 (E{sub C}0.60?eV), D4 (E{sub C}0.69?eV), D5 (E{sub C}0.96?eV), D7 (E{sub C}1.19?eV), and D8, were observed. After 2?MeV electron irradiation at a fluence of 1??10{sup 14?}cm{sup ?2}, three deep electron traps, labeled D1 (E{sub C}0.12?eV), D5I (E{sub C}0.89?eV), and D6 (E{sub C}1.14?eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  5. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  6. In-situ study of crystallization kinetics in ternary bulk metallic...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 105; Journal Issue: 20; Journal ID: ISSN 0003-6951 Publisher: American Institute of Physics Sponsoring Org: USDOE Country of ...

  7. Role of phase instabilities in the early response of bulk fused...

    Office of Scientific and Technical Information (OSTI)

    APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: APA ...

  8. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Tonnage | Department of Energy abstract

  10. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Tonnage | Department of Energy abstract_1

  11. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  12. Active hopper for promoting flow of bulk granular or powdered solids

    DOE Patents [OSTI]

    Saunders, Timothy; Brady, John D.

    2013-04-02

    An apparatus that promotes the flow of materials has a body having an inner shape for holding the materials, a wall having a shape that approximates a portion of the inner shape of the body, and a vibrator attached to the wall. The wall may be disposed vertically within the body close to the body's inner shape. The vibrator transfers vibrations to the wall to agitate the material and encourage material flow.

  13. Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Fan, Hongyou; Brener, Igal; Liu, Sheng; Luk, Ting S.; Li, Binsong

    2015-09-01

    QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.

  14. Renewable Electricity Futures Study Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: Energy.gov [DOE]

    This volume focuses on the role of variable renewable generation in creating challenges to the planning and operations of power systems and the expansion of transmission to deliver electricity from remote resources to load centers. The technical and institutional changes to power systems that respond to these challenges are, in many cases, underway, driven by the economic benefits of adopting more modern communication, information, and computation technologies that offer significant operational cost savings and improved asset utilization. While this volume provides background information and numerous references, the reader is referred to the literature for more complete tutorials.

  15. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-11-01

    The work presented in the paper corresponding to this presentation aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This presentation is an overview of a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool

  16. A knowledge-based method for making restoration plan of bulk power system

    SciTech Connect (OSTI)

    Shimakura, K.; Inagaki, J.; Matsunoki, Y. (Hokkaido Univ., Sapporo (Japan). Faculty of Science); Ito, M.; Fukui, S.; Hori, S. (Mitsubishi Electric Corp., 1-1-2 Wadasaki-cho, Hyogo-ku, Kobe (JP))

    1992-05-01

    In this paper a knowledge-based method is proposed for use in event of power system outages. This method uses general-purpose restoration knowledge not dependent on pre-outage system states in order to generate post-restoration target systems in which post-outage systems are taken as initial states. Conventionally post-outage system states are formed to emulate as closely as possible pre-outage system states, with system operations performed only within blackout systems. Therefore, depending on the amount of pre-outage load, some outage loads may be experienced in the restored system. Proposed here is a method by which system operations in both blackout systems and sound systems are combined according to the amount of load in the pre-outage systems, so that post-restoration system states with minimal outage loads from post-outage systems will be generated. A prototype system incorporating actual power systems and utilizing this method was built and tested under simulated conditions. The effectiveness of the proposed system is discussed on the basis of the test results.

  17. Restoring Faith in the bulk-power system: an early assessment of mandatory reliability standards

    SciTech Connect (OSTI)

    McAllister, Levi; Dawson, Kelly L.

    2010-03-15

    The driving force underlying creation of mandatory reliability standards was the prevention of widespread outages, such as those that occurred in 1965, 1977 and 2003. So far, no similar outage has occurred when an entity is in full compliance with the standards, and NERC and FERC have demonstrated that they will actively enforce compliance while aggressively pursuing entities alleged to be non-compliant. (author)

  18. Development of bulk-type all-solid-state lithium-sulfur battery...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANODES; BORON COMPOUNDS; CARBON; COLD PRESSING; DISPERSIONS; ELECTROCHEMISTRY; ELECTROLYTES; ENERGY...

  19. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/