National Library of Energy BETA

Sample records for dry production total

  1. Natural Gas Dry Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2,295,903 2,183,378 2,294,255 2,208,136 2,260,692 2,167,273 1997-2016 Alaska 2006-2014 Arkansas 2006-2014 California 2006-2014 Colorado 2006-2014 Federal Offshore Gulf of Mexico 2006-2014 Kansas 2006-2014 Louisiana 2006-2014 Montana 2006-2014 New Mexico 2006-2014 North Dakota 2006-2014 Ohio 2006-2014 Oklahoma 2006-2014 Pennsylvania 2006-2014 Texas 2006-2014 Utah 2006-2014 West Virginia 2006-2014 Wyoming 2006-2014 Other States Other States Total 2006-2012 Alabama 2006-2014 Arizona 2006-2014

  2. New York Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) New York Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New York Dry Natural Gas Proved Reserves Dry ...

  3. Virginia Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production Virginia Dry Natural Gas Proved Reserves Dry ...

  4. Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 North Louisiana Dry Natural Gas Proved ...

  5. Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry ... Natural Gas Dry Production Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  6. New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves ...

  7. West Virginia Dry Natural Gas Reserves Estimated Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production West Virginia Dry Natural Gas Proved ...

  8. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  9. Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Virginia Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 Virginia Dry Natural Gas Proved Reserves ...

  10. West Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) West Virginia Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 West Virginia Dry Natural Gas Proved ...

  11. Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore ... Dry Natural Gas Proved Reserves as of Dec. 31 LA, State Offshore Dry Natural Gas Proved ...

  12. North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 North Dakota Dry Natural Gas Proved Reserves ...

  13. New York Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New York Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 New York Dry Natural Gas Proved Reserves Dry ...

  14. Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 TX, State Offshore Dry Natural Gas Proved ...

  15. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  16. Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

  17. Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  18. ,"Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production ... "Back to Contents","Data 1: Louisiana - North Dry Natural Gas Expected Future Production ...

  19. New Mexico Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New Mexico Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 New Mexico Dry Natural Gas Proved Reserves ...

  20. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  1. Lower 48 States Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  2. Texas - RRC District 9 Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  3. Texas - RRC District 10 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  4. Texas - RRC District 8 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  5. ,"Nevada Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Dry Natural Gas Production (Million Cubic ... 1:11:52 AM" "Back to Contents","Data 1: Nevada Dry Natural Gas Production (Million Cubic ...

  6. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  7. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million ... 10:12:48 AM" "Back to Contents","Data 1: New Mexico Dry Natural Gas Production (Million ...

  8. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Production (Million ... 10:12:49 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million ...

  9. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  10. New Mexico - West Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  11. New Mexico - East Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  12. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million ... 9:54:27 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Production (Million ...

  13. ,"Texas Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Dry Natural Gas Expected Future Production ... 7:18:08 AM" "Back to Contents","Data 1: Texas Dry Natural Gas Expected Future Production ...

  14. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  15. ,"Montana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  16. ,"Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  17. ,"Colorado Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  18. ,"Pennsylvania Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  19. ,"Michigan Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  20. ,"Florida Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  1. ,"Lower 48 States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  2. ,"Wyoming Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  3. ,"Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  4. ,"Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  5. ,"Kentucky Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  6. ,"Mississippi Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  7. ,"Texas Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  8. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  9. ,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  10. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  11. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  12. Land application uses for dry FGD by-products

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. ); Haefner, R. . Water Resources Div.)

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  13. Michigan Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  15. Kentucky Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  16. Mississippi Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  17. Utah Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. Florida Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  19. Montana Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  20. Alaska Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  1. Arkansas Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  2. Wyoming Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. Colorado Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  4. Alabama Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross

  6. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals

  7. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  8. Calif--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Calif--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 201,754 205,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production California Onsho

  9. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,878,956 7,135,326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Texas Onshore Natural Gas Gross Withdrawals and

  10. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:54 AM" "Back to Contents","Data 1: Arizona Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SAZ2"...

  11. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

  12. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  13. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. Product Supplied for Total Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished

  15. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... AM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  16. Refinery & Blender Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than

  17. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  18. California State Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 114 213 231 1980's 164 254 252 241 231 1990's 192 59 63 64 61 59 49 56 44 76 2000's 91 85 92 83 86 90 90 82 57 57 2010's 66 82 66 75 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 ...

  20. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  1. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  2. California Federal Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 250 246 322 1980's 414 1,325 1,452 1,552 1,496 1990's 1,454 1,162 1,118 1,099 1,170 1,265 1,244 544 480 536 2000's 576 540 515 511 459 824 811 805 704 739 2010's 724 710 651 261 240 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Natural Gas Dry Production (Annual Supply & Disposition)

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Dry Production Supplemental Gaseous Fuels Interstate Receipts Receipts Across U.S. Borders Withdrawals from Underground Storage Consumption Interstate Deliveries Deliveries Across U.S. Borders Injections into Storage Balancing Item Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266

  4. Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 69 117 1980's 68 94 102 121 134 123 116 128 162 136 1990's 160 140 139 138 141 113 132 129 131 130 2000's 117 114 133 165 155 181 176 183 211 273 2010's 591 1,248 2,241 3,283 4,197 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  6. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  7. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 121 154 1980's 170 196 198 159 181 151 165 178 181 155 1990's 141 143 109 111 82 91 88 93 79 79 2000's 78 94 98 94 93 86 83 100 110 100 2010's 87 75 64 61 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  8. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 44 47 1980's 61 86 45 49 46 49 42 42 60 43 1990's 48 48 52 50 49 51 52 55 51 41 2000's 67 73 77 86 95 100 117 112 114 113 2010's 93 75 65 62 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  9. Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 206 216 228 1980's 213 235 261 273 324 312 324 349 400 401 1990's 339 353 414 393 423 396 446 475 513 459 2000's 506 461 460 478 478 469 408 388 354 358 2010's 317 327 299 285 304 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 109 120 100 1980's 117 121 158 206 188 175 123 129 159 166 1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 1,151 1,140 1,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. California Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 301 313 347 1980's 294 372 345 335 306 1990's 293 308 285 252 244 216 217 212 246 266 2000's 282 336 291 265 247 268 255 253 237 239 2010's 243 311 200 188 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  12. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Total outlines world exploration, production challenges, approaches

    SciTech Connect (OSTI)

    Not Available

    1992-07-27

    This paper describes the current international picture of exploration/production; expresses the most prominent challenges the author sees emerging from changing conditions, and discusses briefly how the industry can and does answer these challenges. Geologic status---first, oil and gas provinces are obviously maturing. The peak of discoveries in the U.K. North Sea is well past, and if yearly additions still appear more or less stable, this happens at the expense of a larger number of exploratory wells being drilled. This is going on with variations in a number of areas. Second, the world is shrinking in terms of new prospective basins. For instance, the Norwegian Barents Sea looked so promising a few years ago but has yet to yield a major field. The case is not unique, and everyone can make his own list of disappointments: East African rift basins, Paraguay, and so on. One article pointed out that the last decade's reserve addition from wildcat oil discoveries was down by almost 40% from additions registered during 1972-81. This excluded the USSR, Eastern Europe, China, Mexico, and a couple of Middle East countries.

  14. U.S. Federal Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  15. Texas - RRC District 8A Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  16. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  17. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  18. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS1... "Date","U.S. Imports of Crude Oil and Petroleum Products (Thousand ...

  19. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS2... "Date","U.S. Imports of Crude Oil and Petroleum Products (Thousand Barrels ...

  20. ,"Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Dry Natural Gas Expected Future ... 12:18:23 PM" "Back to Contents","Data 1: Virginia Dry Natural Gas Expected Future ...

  1. ,"West Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Dry Natural Gas Expected Future ... PM" "Back to Contents","Data 1: West Virginia Dry Natural Gas Expected Future ...

  2. ,"Oklahoma Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Dry Natural Gas Expected Future ... 12:18:22 PM" "Back to Contents","Data 1: Oklahoma Dry Natural Gas Expected Future ...

  3. ,"Kansas Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Dry Natural Gas Expected Future ... 7:18:07 AM" "Back to Contents","Data 1: Kansas Dry Natural Gas Expected Future ...

  4. ,"Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Expected Future ... to Contents","Data 1: Louisiana State Offshore Dry Natural Gas Expected Future ...

  5. ,"Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas State Offshore Dry Natural Gas Expected Future ... "Back to Contents","Data 1: Texas State Offshore Dry Natural Gas Expected Future ...

  6. U.S. Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) U.S. Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 65,656 60,727 76,302 61,682 64,287 77,777 65,574 71,029 73,524 66,094 63,914 87,471 2007 74,110 67,403 72,850 58,881 77,365 72,897 63,995 74,019 72,125 69,854 72,113 71,815 2008 62,840 61,856 65,485 62,439 67,093 64,352 70,984 69,228 60,976 66,020 69,522 64,387 2009 61,231 62,626 61,342 56,360 64,967 61,824 59,656 64,642 63,550 62,669

  7. California Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) California Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,487 4,701 4,700 1980's 5,000 3,928 3,740 3,519 3,374 1990's 3,185 3,004 2,778 2,682 2,402 2,243 2,082 2,273 2,244 2,387 2000's 2,849 2,681 2,591 2,450 2,634 3,228 2,794 2,740 2,406 2,773 2010's 2,647 2,934 1,999 1,887 2,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,591 43,264 40,574 38,711 38,167 38,381 1990's 38,192 36,174 35,093 34,718 35,974 36,542 38,270 37,761 37,584 40,157 2000's 42,082 43,527 44,297 45,730 49,955 56,507 61,836 72,091 77,546 80,424 2010's 88,997 98,165 86,924 90,349 97,154 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,482 1,741 1,625 1,691 1,687 1990's 1,596 1,527 1,494 1,457 1,453 1,403 1,521 1,496 1,403 1,421 2000's 1,443 1,479 1,338 1,280 1,322 1,206 1,309 1,257 1,319 1,544 2010's 2,189 2,985 3,057 2,344 1,960 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 315 329 355 1980's 416 423 391 414 484 433 402 456 510 591 1990's 583 639 714 713 780 806 782 891 838 1,213 2000's 1,070 1,286 1,388 1,456 1,524 1,642 1,695 1,825 2,026 2,233 2010's 2,218 2,088 2,001 1,992 1,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Virginia Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 2,579 2,373 2,800 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 174 167 156 1980's 163 165 196 156 171 166 188 159 188 220 1990's 229 282 320 387 447 514 540 562 676 719 2000's 759 882 964 1,142 1,050 1,104 1,174 1,326 1,441 1,524 2010's 1,590 1,694 1,681 1,527 1,561 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 36 39 36 1980's 32 27 20 18 11 8 8 7 5 7 1990's 7 4 7 6 7 6 5 6 5 5 2000's 6 5 4 3 3 2 2 4 3 0 2010's 15 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 495 684 1,479 1980's 1,699 965 1,141 2,030 1,541 1,331 1,420 1,069 1,229 1,275 1990's 1,214 1,181 1,161 1,104 1,094 1,054 1,113 985 890 1,179 2000's 1,185 970 1,117 1,126 974 898 975 1,027 985 896 2010's 832 758 1,233 3,161 6,723 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13,889 14,417 13,816 1980's 13,138 14,699 16,207 16,211 16,126 16,040 16,685 16,711 16,495 15,916 1990's 16,151 14,725 13,926 13,289 13,487 13,438 13,074 13,439 13,645 12,543 2000's 13,699 13,558 14,886 15,401 16,238 17,123 17,464 19,031 20,845 22,769 2010's 26,345 27,830 26,599 26,873 31,778 -

  16. Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Expected Future Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 769 899 1,515 1980's 951 1,264 1,429 1,882 1,575 1,617 1,560 1,647 2,072 1,642 1990's 1,720 1,629 1,528 1,717 1,800 1,482 1,696 1,852 1,840 1,772 2000's 1,741 1,775 2,216 2,487 2,361 2,782 3,050 3,361 3,577 6,985 2010's 13,960 26,529 36,348 49,674 59,873 - = No Data Reported; -- =

  17. Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,567 5,151 4,620 4,517 4,590 4,568 1990's 4,478 4,480 4,545 4,645 4,775 4,724 4,889 4,942 4,855 4,897 2000's 5,072 5,138 5,038 5,166 5,318 5,424 5,608 6,263 7,009 7,017 2010's 6,974 7,139 7,570 7,607 7,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. The U.S. Dry-Mill Ethanol Industry: Biobased Products and Bioenergy Initiative Success Stories

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet provides an overview of the history of ethanol production in the United States and describes innovations in dry-mill ethanol production.

  19. Michigan Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    52 55 59 71 67 55 2009-2014 Adjustments -13 10 0 -2 -1 -6 2009-2014 Revision Increases 21 4 5 19 4 3 2009-2014 Revision Decreases 17 5 4 3 2 2 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 1 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 10 0 8 3 0 0 2009-2014 New Reservoir Discoveries in Old Fields 5 0 1 1 2 1 2009-2014 Estimated Production 6 6 6 7 7 8 Cubic Feet)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New

  20. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. ,"New Mexico - West Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico - West Dry Natural Gas Expected ... 8:55:03 AM" "Back to Contents","Data 1: New Mexico - West Dry Natural Gas Expected ...

  2. ,"New Mexico - East Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico - East Dry Natural Gas Expected ... 8:55:02 AM" "Back to Contents","Data 1: New Mexico - East Dry Natural Gas Expected ...

  3. ,"New York Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Expected Future ... 8:55:07 AM" "Back to Contents","Data 1: New York Dry Natural Gas Expected Future ...

  4. ,"New Mexico Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Expected Future ... 8:55:07 AM" "Back to Contents","Data 1: New Mexico Dry Natural Gas Expected Future ...

  5. ,"North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Expected Future ... 9:28:52 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Expected Future ...

  6. ,"Texas - RRC District 8 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 8 Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 8 Dry Natural Gas Expected ...

  7. ,"Texas - RRC District 1 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 1 Dry Natural Gas Expected ... 7:18:04 AM" "Back to Contents","Data 1: Texas - RRC District 1 Dry Natural Gas Expected ...

  8. ,"Texas - RRC District 9 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 9 Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 9 Dry Natural Gas Expected ...

  9. ,"Texas - RRC District 6 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 6 Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 6 Dry Natural Gas Expected ...

  10. ,"Texas - RRC District 5 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 5 Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 5 Dry Natural Gas Expected ...

  11. ,"Texas - RRC District 10 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 10 Dry Natural Gas Expected ... 7:18:06 AM" "Back to Contents","Data 1: Texas - RRC District 10 Dry Natural Gas Expected ...

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  13. Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 1,763 1,890 2,123 - = No Data Reported; -- = Not Applicable;

  14. Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,457 10,992 10,243 1980's 9,508 9,860 9,724 9,553 9,387 9,337 10,509 10,494 10,104 10,091 1990's 9,614 9,358 9,681 9,348 9,156 8,571 7,694 6,989 6,402 5,753 2000's 5,299 5,101 4,983 4,819 4,652 4,314 3,931 3,982 3,557 3,279 2010's 3,673 3,486 3,308 3,592 4,359 - = No Data Reported; -- = Not

  15. Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 35,577 40,269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production

  16. California--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Production (Million Cubic Feet) California--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,051 5,952 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production

  17. Texas--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Production (Million Cubic Feet) Texas--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 16,506 11,222 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production

  18. Land application uses for dry FGD by-products, Phase 1 report

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. FGD by-product materials are treated as solid wastes and must be landfilled. It is highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. The results indicated the chemical composition of the FGD by-product materials were dominated by Ca, S, Al, and Si. Many of the elements regulated by the US Environmental Protection Agency reside primarily in the fly ash. Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD by-product materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  19. Data on production and use of DRI: World and U. S. [Direct Reduced Iron

    SciTech Connect (OSTI)

    Jensen, H.B.

    1993-01-01

    This paper will present data on the production and use direct-reduced iron (DRI) worldwide, focusing primarily on its use in the United States. The author is indebted to the Midrex Corporation for the data on world production of DRI. The U.S. data is his own and he will explain later how it was collected. He uses the term DRI to include all forms of direct-reduced iron, whether briquettes, pellets or lump.

  20. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Climate region 3 Very coldCold 31,898 30,469 28,057 28,228 21,019 30,542 25,067 Mixed-humid 27,873 26,716 24,044 26,365 21,026 27,096 22,812 Mixed-dryHot-dry 12,037 10,484 7,628 ...

  1. U.S. Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  3. ,"Alaska Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"Arkansas Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"Alabama Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Kansas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sks2m.xls" ,"Available from ...

  7. ,"Michigan Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160smi2m.xls" ,"Available from ...

  8. ,"South Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160ssd2m.xls" ,"Available from ...

  9. ,"West Virginia Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160swv2m.xls" ,"Available from ...

  10. ,"Utah Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sut2m.xls" ,"Available from ...

  11. ,"Wyoming Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160swy2m.xls" ,"Available from ...

  12. ,"Virginia Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sva2m.xls" ,"Available from ...

  13. ,"Tennessee Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160stn2m.xls" ,"Available from ...

  14. ,"Nebraska Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sne2m.xls" ,"Available from ...

  15. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160stx2m.xls" ,"Available from ...

  16. ,"Montana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160smt2m.xls" ,"Available from ...

  17. ,"Oregon Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sor2m.xls" ,"Available from ...

  18. ,"Ohio Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160soh2m.xls" ,"Available from ...

  19. ,"Louisiana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sla2m.xls" ,"Available from ...

  20. ,"Mississippi Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sms2m.xls" ,"Available from ...

  1. ,"Maryland Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160smd2m.xls" ,"Available from ...

  2. ,"Missouri Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160smo2m.xls" ,"Available from ...

  3. ,"Oklahoma Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sok2m.xls" ,"Available from ...

  4. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    64 131 118 94 59 42 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 161 128 113 88 56 42 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3 3 5 6 3 0 1981-2014 Dry Natural Gas 164 131 118 94 59 42 1981 Lease Separation

    161 128 113 88 56 42 1981-2014 Adjustments -29 -7 -24 7 -10 -2 1981-2014 Revision Increases 29 20 70 14 9 17 1981-2014 Revision Decreases 21 35 65 9 19 19 1981-2014 Sales 3 20 2 23 6 0 2000-2014 Acquisitions 0 35 26 0 0 0 2000-2014

  5. New York Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 1980's 0 0 0 0 30 8 8 0 0 0 1990's 0 0 0 0 1 2 9 4 25 10 2000's 5 17 0 0 0 0 0 0 0 0 2010's 0 27 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  8. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  9. West Virginia Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation 24 29 52 21 70 32 1979-2014 Adjustments 8 -3 -1 -16 114 -29 1979-2014 Revision Increases 0 3 26 0 2 1 1979-2014 Revision Decreases 5 2 6 13 59 6 1979-2014 Sales 0 7 26 0 0 1 2000-2014 Acquisitions 0 14 33 0 0 0 2000-2014 Extensions 0 3 0 0 0 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 2 3 3 2 8 3 Production

    20 220 139 107 113 76 2005-2014 Adjustments 0 0 -1 1 0 -2 2009-2014

  10. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  11. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  12. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  13. Florida Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Florida Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  14. Michigan Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Michigan Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  15. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    January 2014 (Thousand Barrels) Commodity PAD District 1 PAD District 2 PAD District 3 Receipts Shipments Net Receipts Receipts Shipments Net Receipts Receipts Shipments Net Receipts Crude Oil 1 ................................................................ 11,209 1,213 9,996 35,554 35,363 190 23,680 28,598 -4,918 Petroleum Products 2 .............................................. 106,990 8,669 107,347 29,831 18,055 -6,599 16,594 124,991 -103,885 Pentanes Plus

  16. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  17. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  18. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  20. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  1. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  2. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  3. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  4. Ohio Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Separation 97 90 74 223 314 208 1979-2014 Adjustments 2 -57 -12 123 -129 -35 1979-2014 Revision Increases 13 5 4 44 108 24 1979-2014 Revision Decreases 8 1 0 10 5 82 1979-2014 Sales 0 0 0 0 0 1 2000-2014 Acquisitions 1 54 0 0 0 7 2000-2014 Extensions 0 0 0 7 134 4 1979-2014 New Field Discoveries 0 0 0 0 1 1 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 5 6 0 1979-2014 Estimated Production 10 8 8 20 24 24 Consumers by Local Distribution and Marketers

    6.48 6.44 7.16 8.01 11.73

  5. California Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    ,835 2,939 3,009 2,976 2,878 2,874 2009-2014 Adjustments -17 14 32 8 -52 31 2009-2014 Revision Increases 427 276 394 507 239 381 2009-2014 Revision Decreases 119 167 230 391 116 247 2009-2014 Sales 3 1 7 1 322 537 2009-2014 Acquisitions 20 156 40 8 320 543 2009-2014 Extensions 30 24 37 32 17 12 2009-2014 New Field Discoveries 0 0 0 2 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 15 16 2009-2014 Estimated Production 208 198 196 198 199 203 Cubic Feet)

    New Reservoir

  6. Colorado Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Separation 1,882 2,371 2,518 3,448 4,280 5,482 1979-2014 Adjustments 14 68 -38 -32 35 118 1979-2014 Revision Increases 11 142 122 514 332 1,317 1979-2014 Revision Decreases 185 71 269 243 291 262 1979-2014 Sales 9 2 19 1 5 36 2000-2014 Acquisitions 10 160 5 169 184 30 2000-2014 Extensions 165 318 506 717 811 339 1979-2014 New Field Discoveries 0 0 0 6 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 134 126 160 200 234 304

    7,348 6,485 6,580

  7. Florida Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    9 19 22 24 38 70 2009-2014 Adjustments -1 2 -2 2 -1 -1 2009-2014 Revision Increases 8 10 9 6 13 1 2009-2014 Revision Decreases 0 0 2 3 1 6 2009-2014 Sales 0 0 0 0 0 20 2009-2014 Acquisitions 0 0 0 0 0 62 2009-2014 Extensions 0 0 0 0 5 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 2 2 3 2 4 Cubic Feet)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3

  8. Illinois Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    66 64 54 51 42 34 2009-2014 Adjustments 3 10 -10 -8 -6 -8 2009-2014 Revision Increases 12 0 6 7 11 3 2009-2014 Revision Decreases 1 4 2 1 11 1 2009-2014 Sales 0 15 0 0 0 0 2009-2014 Acquisitions 0 9 0 0 0 0 2009-2014 Extensions 3 2 0 3 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 5 4 4 4 3 2

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 13 13 12 11 11 11 8 9 9 9 8 9 2007 134 128 128 119

  9. Indiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    8 8 7 13 8 8 2009-2014 Adjustments -7 1 0 3 -4 0 2009-2014 Revision Increases 1 0 1 1 1 1 2009-2014 Revision Decreases 0 0 1 0 2 0 2009-2014 Sales 0 2 0 0 0 0 2009-2014 Acquisitions 0 2 0 0 0 0 2009-2014 Extensions 0 0 0 3 1 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 1 1 1 1

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 218 211 246 234 246 254 179 244 282 275 259 272 2007 282 235

  10. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    480 530 525 584 622 649 2009-2014 Adjustments -1 7 -8 44 6 24 2009-2014 Revision Increases 100 139 100 98 91 71 2009-2014 Revision Decreases 69 93 43 67 65 75 2009-2014 Sales 9 23 63 21 9 68 2009-2014 Acquisitions 11 52 53 23 30 82 2009-2014 Extensions 26 28 21 50 51 54 2009-2014 New Field Discoveries 0 0 1 1 1 5 2009-2014 New Reservoir Discoveries in Old Fields 3 6 2 1 4 3 2009-2014 Estimated Production 68 66 68 70 71 69 Cubic Feet)

    New Reservoir Discoveries in Old Fields (Billion Cubic

  11. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    252 254 245 276 235 241 2009-2014 Adjustments -1 25 12 40 -20 12 2009-2014 Revision Increases 30 17 14 37 8 14 2009-2014 Revision Decreases 8 9 13 28 15 17 2009-2014 Sales 4 8 0 9 0 1 2009-2014 Acquisitions 0 1 1 10 0 1 2009-2014 Extensions 3 0 0 8 10 19 2009-2014 New Field Discoveries 1 0 1 1 0 2 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 1 2009-2014 Estimated Production 24 24 24 28 24 25 (Billion Cubic Feet)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet)

  12. Montana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Separation 12 302 270 289 304 325 1979-2014 Adjustments 84 -38 -33 -3 -5 2 1979-2014 Revision Increases 126 40 32 26 51 15 1979-2014 Revision Decreases 65 31 34 20 43 49 1979-2014 Sales 3 29 45 4 4 2 2000-2014 Acquisitions 3 30 45 4 4 1 2000-2014 Extensions 5 41 14 38 37 79 1979-2014 New Field Discoveries 0 0 7 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 1 1 0 0 0 1979-2014 Estimated Production 35 24 19 22 25 25

    37 64 25 11 16 11 2005-2014 Adjustments 0 11 -30 17 10 -3

  13. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation 1,982 2,213 2,552 2,819 3,413 4,683 1979-2014 Adjustments 170 -103 20 -1 -151 171 1979-2014 Revision Increases 302 230 335 655 789 1,173 1979-2014 Revision Decreases 299 249 214 444 503 597 1979-2014 Sales 64 57 126 244 34 4 2000-2014 Acquisitions 66 319 163 70 29 56 2000-2014 Extensions 233 270 362 478 650 809 1979-2014 New Field Discoveries 0 0 3 2 0 1 1979-2014 New Reservoir Discoveries in Old Fields 0 2 0 1 98 4 1979-2014 Estimated Production 181 181 204 250 284 343

  14. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    ,058 1,887 2,658 3,773 5,683 6,045 2009-2014 Adjustments 12 -8 9 33 -44 -68 2009-2014 Revision Increases 211 709 679 744 994 683 2009-2014 Revision Decreases 69 486 560 370 655 869 2009-2014 Sales 4 63 124 236 44 567 2009-2014 Acquisitions 2 226 224 218 353 310 2009-2014 Extensions 396 533 665 941 1,603 1,234 2009-2014 New Field Discoveries 12 29 14 9 4 3 2009-2014 New Reservoir Discoveries in Old Fields 5 3 16 27 13 30 2009-2014 Estimated Production 84 114 152 251 314 394 (Billion Cubic

  15. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  16. ,"California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. ,"California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"Illinois Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  19. ,"Indiana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  20. ,"U.S. Total Refiner Petroleum Product Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  1. Land application uses for dry FGD by-products. Phase 2 report

    SciTech Connect (OSTI)

    Stehouwer, R.; Dick, W.; Bigham, J.

    1996-03-01

    A study was initiated in December 1990 to demonstrate large volume beneficial uses of flue gas desulfurization (FGD) by-products. A Phase 1 report provided results of an extensive characterization of chemical, physical, mineralogical and engineering properties of 58 dry FGD by-product samples. The Phase 1 report concluded that high volume beneficial reuses will depend on the economics related to their ability to substitute for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mine lands). Phase 2 objectives were (1) to conduct laboratory and greenhouse studies of FGD and soil (spoil) mixtures for agronomic and engineering applications, (2) to initiate field studies related to high volume agronomic and engineering uses, and (3) to develop the basic methodological framework for estimation of the financial and economic costs and benefits to society of several FGD reuse options and to make some preliminary runs of economic models. High volume beneficial reuses of dry FGD by-products have been successfully demonstrated. Adverse environmental impacts have been negligible. Although few sources of dry FGD by-products currently exist in Ohio and the United States there is potential for smaller coal-fired facilities to adopt S0{sub 2} scrubbing technologies that produce dry FGD material. Also much of what we have learned from studies on dry FGD by-products is applicable to the more prevalent wet FGD by-products. The adaptation of the technologies demonstrated in this project seem to be not only limited by economic constraints, but even more so, by the need to create awareness of the market potential of using these FGD by-products.

  2. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports ...

  3. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Panama of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Peru ...

  4. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Georgia of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Germany of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Ghana of ...

  5. Alaska (with Total Offshore) Shale Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    company data. Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Shale Natural Gas Estimated Production Alaska Shale Gas Proved Reserves, Reserves Changes,...

  6. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils

  7. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  8. Land application uses for dry FGD by-products. Phase 1, [Annual report], December 1, 1991--November 30, 1992

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  9. Method for lowering the VOCS emitted during drying of wood products

    DOE Patents [OSTI]

    Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

    2000-01-01

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  10. Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,319 986 919 1980's 829 1,022 892 1,087 838 967 913 812 1,173 1,267 1990's 1,048 1,030 933 698 703 712 906 953 1,104 1,008 2000's 1,032 1,018 1,045 1,062 1,184 1,161 1,063 1,040 985 1,398 2010's 2,399 5,910 8,868 7,784 11,945 - = No Data Reported;

  11. Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,162 2,976 2,974 1980's 2,502 2,629 2,493 2,534 2,512 2,358 2,180 2,273 2,037 1,770 1990's 1,737 1,393 1,389 1,321 1,360 1,251 1,322 1,634 1,614 1,881 2000's 1,980 1,801 1,782 1,770 1,844 2,073 2,060 2,255 2,238 1,800 2010's 2,090

  12. Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,518 7,186 6,315 1980's 5,531 5,292 4,756 4,680 4,708 4,180 3,753 3,632 3,422 3,233 1990's 2,894 2,885 2,684 2,972 3,366 3,866 4,349 4,172 3,961 3,913 2000's 3,873 3,770 3,584 3,349 3,185 3,192 3,050 2,904 2,752 2,616 2010's 2,588

  13. Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,621 9,031 8,326 1980's 8,130 8,004 8,410 8,316 8,525 8,250 8,274 7,490 7,029 7,111 1990's 7,475 7,048 6,739 7,038 7,547 7,709 7,769 8,099 8,429 8,915 2000's 9,645 9,956 9,469 8,763 8,699 8,761 8,116 7,963 7,604 6,728 2010's 7,014

  14. Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 931 1,298 1,155 1980's 1,147 1,250 1,308 1,448 1,874 2,058 2,141 2,119 1,996 1,845 1990's 1,875 1,863 1,747 1,867 2,011 1,862 2,079 1,710 1,953 2,319 2000's 3,168 4,231 4,602 5,407 6,523 9,557 12,593 17,205 20,281 22,343 2010's 24,363 27,843 17,331

  15. Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 699 743 751 1980's 745 804 805 1,027 794 708 684 697 704 459 1990's 522 423 455 477 425 440 520 478 442 416 2000's 312 252 260 340 310 802 1,471 2,117 2,382 2,077 2010's 2,242 3,305 2,943 2,787 2,290 - = No Data Reported; -- = Not Applicable; NA =

  16. Total Crude Oil and Products Exports by Destination

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total All Countries 151,212 143,480 155,073 154,624 175,388 156,194 1981-2016 Afghanistan 0 0 0 0 0 1997-2016 Albania 0 0 1998-2016 Algeria 611 914 0 221 331 349 1996-2016 Andora 2005-2015 Angola 264 1 0 0 1 0 1995-2016 Anguilla 0 0 0 0 0 1 2005-2016 Antigua and Barbuda 61 145 66 112 187 129 1995-2016 Argentina 1,309 1,878 1,203 2,112 2,723 4,089 1993-2016 Armenia 0 2005-2016 Aruba 1,758 1,415 1,615 758 678 285 2005-2016 Australia 562 295

  17. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Import Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History All Countries 54,063 56,468 52,343 59,570 56,245 63,583 1981-2016 Persian Gulf 3,326 2,849 3,951 2,738 3,343 3,487 1993-2016 OPEC* 12,172 13,760 12,417 15,062 14,321 14,771

  18. U.S. Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Import Area: U.S. Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country 2010 2011 2012 2013 2014 2015 View History All Countries 4,304,533 4,174,210 3,878,852 3,598,454 3,372,904 3,431,210 1981-2015 Persian Gulf 624,638 679,403 789,082 733,325 684,235 550,046 1993-2015 OPEC* 1,790,811 1,662,720 1,563,273 1,357,907 1,181,458 1,058,209 1993-2015 Algeria 186,019 130,723 88,487 42,014 40,193 39,478

  19. ,"Pennsylvania Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  20. ,"California Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"California Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  2. ,"Colorado Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  3. ,"Florida Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  4. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect (OSTI)

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  5. Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,214 3,240 3,258 1980's 4,230 4,177 4,326 4,857 4,703 4,822 4,854 4,682 4,961 5,614 1990's 5,753 5,233 5,317 5,508 5,381 5,726 5,899 5,887 5,949 5,857 2000's 5,976 6,128 6,256 6,685 7,638 8,976 9,087 11,257 12,184 12,795 2010's 14,886 15,480 11,340

  6. Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,831 2,821 2,842 1980's 2,378 2,503 2,659 2,568 2,866 2,914 2,721 2,708 2,781 3,180 1990's 3,514 3,291 3,239 3,215 3,316 3,107 3,655 3,407 3,113 3,178 2000's 3,504 3,320 3,702 4,327 4,668 5,123 5,126 5,341 4,946 4,827 2010's 4,787 4,475 4,890

  7. U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,843 18,805 19,257 1980's 18,699 18,737 17,506 15,788 17,193 15,985 15,610 16,114 16,670 16,983 1990's 17,233 17,202 17,423 17,789 18,322 17,966 18,861 19,211 18,720 18,928 2000's 19,219 19,779 19,353 19,425 19,168 18,458 18,545 19,466 20,523 21,594 2010's 22,239 23,555 24,912 25,233 26,611 - = No

  8. Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants

    SciTech Connect (OSTI)

    Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

    2007-03-30

    The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

  9. ,"U.S. Federal Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Federal Offshore Dry Natural Gas Expected Future ... "Back to Contents","Data 1: U.S. Federal Offshore Dry Natural Gas Expected Future ...

  10. ,"Texas - RRC District 7B Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 7B Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 7B Dry Natural Gas Expected ...

  11. ,"Texas - RRC District 7C Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 7C Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 7C Dry Natural Gas Expected ...

  12. ,"Texas - RRC District 8A Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 8A Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 8A Dry Natural Gas Expected ...

  13. East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline, Tanker, Barge and Rail Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other

  14. ,"California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. Drying '86. Volume 1-2

    SciTech Connect (OSTI)

    Mujumdar, A.S. )

    1986-01-01

    These proceedings contain 123 papers grouped under the headings of: Drying theory and modelling; Drying of granular materials; Spray drying; Drying of paper and wood products; Drying of foodstuff and biomaterials; Drying of agricultural products and grains; Superheated steam drying; Industrial drying systems and novel dryers; Use of solar energy in drying; Measurement and control of humidity and moisture; and Dewatering.

  18. ,"Other States Total Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Other States Total Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release

  19. Total Crude Oil and Petroleum Products Imports by Area of Entry

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable

  20. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  1. Table 10. Total natural gas proved reserves, reserves changes, and production, w

    U.S. Energy Information Administration (EIA) Indexed Site

    Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014" "billion cubic feet" ,,"Changes in reserves during 2014" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved"

  2. Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361

    SciTech Connect (OSTI)

    1992-05-01

    A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  9. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Exports",6,"Monthly","6/2016","1/15/1981" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect (OSTI)

    Blümel, C. Schmidt, J. Dielesen, A. Sachs, M. Winzer, B. Peukert, W. Wirth, K.-E.

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  11. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

  12. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J.

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  13. ,"U.S. Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Dec. 31 740 725 711 652 264 243 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 9 3 0 0 0 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 731 722 711 652 264 243 1979-2014 Dry Natural Gas 739 724 710 651 261 240 Reserves, Wet After Lease Separation

    9 3 0 0 0 0 1979-2014 Adjustments -1 0 0 0 0 0 1979-2014 Revision Increases 8 0 0 0 0 0 1979-2014 Revision Decreases 0 5 3 0 0 0 1979-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 0 0 0 0 0

  15. Land application uses of dry FGD by-products. [Quarterly] report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Dick, W.A.; Beeghly, J.H.

    1993-12-31

    Reclamation of mine-sites with acid overburden requires the use of alkaline amendments and represents a potential high-volume use of alkaline dry flue gas desulfurization (FGD) by products. In a greenhouse study, 25-cm columns of acid mine spoil were amended with two FGD by-products; lime injection multistage burners (LIMB) fly ash or pressurized fluidized bed (PFBC) fly ash at rates of 0, 4, 8, 16, and 32% by weight (0, 40, 80, 160, and 320 tons/acre). Amended spoil was covered with 20 cm of acid topsoil amended with the corresponding FGD by-product to pH 7. Column leachate pH increased with FGD amendment rate while leachate Fe, Mn, and Zn decreased, Leachate Ca, S, and Mg decreased with LIMB amendment rate and increased with PFBC amendment. Leachate concentrations of regulated metals were decreased or unaffected by FGD amendment except for Se which was increased by PFBC. Spoil pH was increased up to 8.9 by PFBC, and up to 9.2 by LIMB amendment. Spoil pH also increased with depth with FGD amendments of 16 and 32%, Yield of fescue was increased by FGD amendment of 4 to 8%. Plant tissue content of most elements was unaffected by FGD amendment rate, and no toxicity symptoms were observed. Plant Ca and Mg were increased by LIMB and PFBC respectively, while plant S, Mn and Sr were decreased. Plant Ca and B was increased by LIMB, and plant Mg and S by PFBC amendment. These results indicate dry FGD by-products are effective in ameliorating acid, spoils and have a low potential for creating adverse environmental impacts.

  16. Management of dry gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The objective is to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement using virtually dry coal combustion by-products, and (2) hydraulic placement using a paste mixture of combustion by-products with about 70% solids. Phase 2 of the overall program began April 1, 1996. The principal objective of Phase 2 is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a limited, small-scale shakedown test of the pneumatic and hydraulic placement equipment. The shakedown test originally was to take place on the surface, in trenches dug for the tests. However, after a thorough study it was decided, with the concurrence of DOE-METC, to drill additional injection wells and conduct the shakedown tests underground. This will allow a more thorough test of the placement equipment.

  17. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  18. Management of dry flue gas desulfurization by-products in underground mines

    SciTech Connect (OSTI)

    Sevim, H.

    1997-06-01

    Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

  19. Dephosphorization when using DRI

    SciTech Connect (OSTI)

    2005-09-21

    The increase in high quality steel production in electric arc furnaces (EAFs) requires the use of scrap substitute materials, such as Direct Reduced Iron (DRI) and Hot Briquetted Iron (HBI). Although DRI and HBI products have lower copper and nickel contents than most scrap materials, they can contain up to ten times more phosphorus. This project, led by Carnegie Mellon University’s Center for Iron and Steelmaking Research, improves the understanding of how phosphorus behaves when DRI and HBI melt.

  20. Drying '84

    SciTech Connect (OSTI)

    Baunack, F.

    1984-01-01

    This book covers the following topics: mechanism of water sorption-desorption in polymers; progress in freeze drying; on drying of materials in through circulation system; safety aspects of spray drying; dewatering process enhanced by electroosmosis; pressure drop and particle circulation studies in modified slot spouted beds; and experience in drying coal slurries.

  1. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.

    1997-12-31

    The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

  2. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, [October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Thomasson, E.M.; Chugh, Y.P.; Esling, S.; Honaker, R.; Paul, B.; Sevin, H.

    1994-01-01

    The ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` program is one of the largest programs ever undertaken by the Mining Engineering Department of Southern Illinois university, both in terms of complexity and in terms of funding. Total funding over the expected four-year extent of the program, including both Department of Energy, matching Southern Illinois University funds, and contributed funds, this program exceeds three million dollars. The number of cooperating organizations adds to the management complexity of the program. It was believed, therefore, that sound management plan and management base is essential for the efficient and effective conduct of the program. This first quarter period (i.e., October 1--December 31, 1993) was developed to establishing the management base, developing a sound management plan, developing a test plan, and developing sound fiscal management and control. Actual technical operations, such as residue sample acquisition, residue analyses, groundwater sample acquisition and analyses, and material handling studies will get underway early in the next quarter (i.e., January 1--March 31, 1994). Some early results of residue analyses and groundwater analyses should be available by the end of the second quarter. These results will be reported in the next Technical Progress Report.

  3. Total All Countries Exports of Crude Oil and Petroleum Products by

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination Destination: Total All Countries Afghanistan Albania Algeria Andora Angola Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bangladesh Bahama Islands Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burkina Faso Burma Bermuda Cambodia Cameroon Canada Cayman Islands Chad Chile China Cocos (Keeling) Islands Colombia Congo (Brazzaville) Congo (Kinshasa) Costa Rica Croatia Curacao Cyprus Czech

  4. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1995-01-01

    On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

  5. Natural Gas Dry Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maryland 2006-2013 Michigan 2006-2013 Mississippi 2006-2013 Missouri 2007-2013 Nebraska 2006-2013 Nevada 2006-2013 New York 2006-2013 Oregon 2006-2013 South Dakota 2006-2013 ...

  6. Natural Gas Dry Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266 24,205,523 25,728,496 27,095,010 1930-2015 Alaska 353,391 334,671 329,789 317,503 326,897 1982-2014 ...

  7. Natural Gas Dry Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266 24,205,523 25,728,496 27,033,685 1930-2015 Alaska 353,391 334,671 329,789 317,503 326,897 1982-2014 Alaska Onshore 294,212 286,627 2012-2014 Alaska State Offshore 35,577 40,269 2012-2014 Arkansas 926,426 1,071,944 1,145,744 1,139,168 1,123,096 1982-2014 California 273,597 238,082 234,067 238,012 239,517 1982-2014 California Onshore 201,754 205,320 2012-2014 California State Offshore 5,051 5,952 2012-2014 Colorado

  8. Natural Gas Dry Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska 353,391 334,671 329,789 317,503 326,897 1982-2014 Alaska Onshore 294,212 286,627 ... West Virginia 256,567 385,498 528,973 722,289 982,669 1982-2014 Wyoming 2,212,748 ...

  9. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the U.S. Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SITJC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC-30252). Under the agreement SIUC will develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mine workings, and assess the environmental impact of such underground placements. This report discusses the technical progress achieved during the period October 1 - December 31, 1995. Rapid Aging Test columns were placed in operation during the second quarter of 1995, and some preliminary data were acquired during this quarter. These data indicate that the highly caustic pH is initially generated in the pneumatic mix, but that such pH is short lived. The initial pH rapidly declines to the range of 8 to 9. Leachates in this pH range will have little or no effect on environmental concerns. Dedicated sampling equipment was installed in the groundwater monitoring wells at the proposed placement site at the Peabody Number 10 mine. Also, the groundwater monitoring wells were {open_quotes}developed{close_quotes} during the quarter to remove the fines trapped in the sand pack and screen. A new procedure was used in this process, and proved successful. A series of tests concerning the geotechnical characteristics of the pneumatic mixes were conducted. Results show that both moisture content and curing time have a direct effect on the strength of the mixes. These are, of course, the expected general results. The Christmas holidays and the closing of the University during an extended period affected the progress of the program during the quarter. However, the program is essentially on schedule, both technically and fiscally, and any delays will be overcome during the first quarter of 1996.

  10. Total Net Imports of Crude Oil and Petroleum Products into the U.S.

    U.S. Energy Information Administration (EIA) Indexed Site

    Country: Total All Countries Persian Gulf OPEC Algeria Angola Ecuador Indonesia Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Afghanistan Albania Andora Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burma Cambodia Cameroon Canada Cayman Islands Chad Chile China Cocos

  11. U.S. Total Crude Oil Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. Total Lower 48 States Federal Offshore Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico (Louisiana & Alabama) Federal Offshore, Gulf of Mexico (Texas) Alaska Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Illinois Indiana Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  1. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, January--March 1995

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S.

    1995-04-01

    On September 30, 1993, the U.S. Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC 30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, as well as the management plan and the test plan for the overall program, and a discussion of these will not be repeated here. Rather, this report, will set forth the technical progress made during the period January 1 through March 31, 1995. The demonstration of the SEEC, Inc. technology for the transporting of coal combustion residues was completed with the unloading and final disposition of the three Collapsible Intermodal Containers (CIC). The loading and transport by rail of the three CIC`s was quire successful; however some difficulties were encountered in the unloading of the containers. A full topical report on the entire SEEC demonstration is being prepared. As a result of the demonstration some modifications of the SEEC concept may be undertaken. Also during the quarter the location of the injection wells at the Peabody No. 10 mine demonstration site were selected. Peabody Coal Company has developed the specifications for the wells and sought bids for the actual drilling. It is expected that the wells will be drilled early in May.

  2. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  3. Net Imports of Total Crude Oil and Products into the U.S. by Country

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total All Countries 4,857 5,072 5,000 4,674 4,525 4,870 1973-2016 Persian Gulf 1,509 1,553 1,805 1,707 1,923 1,712 1993-2016 OPEC* 2,824 2,940 3,423 3,179 3,420 3,154 1993-2016 Algeria 106 142 147 130 91 171 1993-2016 Angola 158 133 172 242 161 128 1993-2016 Ecuador 209 101 175 95 144 124 1993-2016 Indonesia 63 35 38 43 43 53 1993-2016 Iran 1993-2014 Iraq 252 245 365 349 555 434 1996-2016 Kuwait 205 289 123 199 177 135 1993-2016 Libya 10 5 0

  4. Net Imports of Total Crude Oil and Products into the U.S. by Country

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total All Countries 9,441 8,450 7,393 6,237 5,065 4,651 1973-2015 Persian Gulf 1,705 1,842 2,149 1,988 1,861 1,496 1993-2015 OPEC* 4,787 4,429 4,093 3,483 2,996 2,652 1993-2015 Algeria 510 355 241 108 109 105 1993-2015 Angola 393 346 233 215 154 136 1993-2015 Ecuador 135 147 117 153 116 104 1993-2015 Indonesia 37 20 6 23 24 37 1993-2015 Iran 0 0 1993-2014 Iraq 415 459 476 341 369 229 1996-2015 Kuwait 197 191 305 328 311 206 1993-2015 Libya 70 15 60 58 5

  5. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  6. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect (OSTI)

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  7. DRI Companies | Open Energy Information

    Open Energy Info (EERE)

    Irvine, California Zip: 92614 Sector: Solar Product: US-based residential and commercial installer of turnkey solar systems, through subsidiary iDRI Energy. Coordinates:...

  8. Land application uses of dry FGD by-products. [Quarterly report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Dick, W.A.; Beeghly, J.H.

    1994-08-01

    This report contains three separate monthly reports on the progress to use flue gas desulfurization by-products for the land reclamation of an abandoned mine site in Ohio. Data are included on the chemical composition of the residues, the cost of the project, as well as scheduling difficulties and efforts to allay the fears of public officials as to the safety of the project. The use of by-products to repair a landslide on State Route 541 is briefly discussed.

  9. Management of dry flue gas desulfurization by-products in underground mines. Technical progress report, 1 January--31 March 1994

    SciTech Connect (OSTI)

    Chugh, Y.P.; Esling, S.; Ghafoori, N.; Honaker, R.; Paul, B.; Sevim, H.; Thomasson, E.

    1994-04-01

    Southern Illinois University at Carbondale will develop and demonstrate several technologies for the handling and transport of dry coal combustion residues and for the underground placement in abandoned coal mines and assess associated environmental impacts. Although parts of the Residue Characterization portion of the program were delayed because residue samples were not obtained, other parts of the program are proceeding on schedule. The delays in obtaining residue samples were primarily caused by adverse weather conditions, the shut-down of one unit at the City Water, Light, and Power Company Plant for routing maintenance and problems due to conflicting schedules of utility and program personnel. However, by the end of the quarter most residue samples had been obtained, and the residue characterization studies were under way. Progress is described for five studies: environmental assessment and geotechnical stability and subsidence impacts; residue characterization; physico-chemical characterization of residues; identification and assessment of handling/transportation systems for FGD residues; and residue handling and transport.

  10. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal ... Dry Natural Gas Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana ...

  11. Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal ... Dry Natural Gas Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Texas Dry ...

  12. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1994-10-01

    Preliminary environmental risk assessment on the FGD by-products to be placed underground is virtually complete. The initial mixes for pneumatic and hydraulic placement have been selected and are being subject to TCLP, ASTM, and modified SLP shake tests as well as ASTM column leaching. Results of these analyses show that the individual coal combustion residues, and the residues mixes, are non-hazardous in character. Based on available information, including well logs obtained from Peabody Coal Company, a detailed study of the geology of the placement site was completed. The study shows that the disposal site in the abandoned underground mine workings at depths of between 325 and 375 feet are well below potable groundwater resources. This, coupled with the benign nature of the residues and residues mixtures, should alleviate any concern that the underground placement will have adverse effects on groundwater resources. Seven convergence stations were installed in the proposed underground placement area of the Peabody Coal Company No. 10 mine. Several sets of convergence data were obtained from the stations. A study of materials handling and transportation of coal combustion residues from the electric power plant to the injection site has been made. The study evaluated the economics of the transportation of coal combustion residues by pneumatic trucks, by pressure differential rail cars, and by SEEC, Inc. collapsible intermodal containers (CICs) for different annual handling rates and transport distances. The preliminary physico-chemical characteristics and engineering properties of various FBC fly ash-spent bed mixes have been determined, and long-term studies of these properties are continuing.

  13. Dry Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic feet billion cubic feet Alaska 6,805 241 6,745 Lower 48 States 382,036 14,788 361,959 Alabama 2,121 59 2,036 Arkansas 12,795 5 12,789 California 2,260 112 2,107 Coastal Region Onshore 277 12 261 Los Angeles Basin Onshore 84 4 80 San Joaquin Basin Onshore 1,823 96 1,690 State Offshore 76 0 76 Colorado 21,992 813 20,851

  14. DRI Research Parks Ltd | Open Energy Information

    Open Energy Info (EERE)

    Research Parks Ltd Jump to: navigation, search Name: DRI Research Parks Ltd Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research...

  15. Circulating system simplifies dry scrubbing

    SciTech Connect (OSTI)

    Morrison, S.Q.; Jorgensen, C.

    1995-10-01

    This article describes a circulating dry scrubber, based on fluid-bed absorption process, which demonstrates high SO{sub 2} removal with minimal O and M requirements. Unlike other dry scrubbers, this one involves dry reagent and results in dry products. Before construction can begin on a new coal-fired plant, a rigorous set of permit requirements must be satisfied. When the Roanoke Valley Energy Facility, Weldon, NC, began the permitting process for their proposed 44-MW pulverized-coal (p-c)-fired Unit 2, the facility permit limited not only SO{sub 2} emissions (0.187 lb SO{sub 2}/million Btu) but also the removal efficiency of the flue-gas desulfurization process (93%) and the maximum amount of sulfur in the coal (1.6%).

  16. Combined Corex/DRI technology

    SciTech Connect (OSTI)

    Flickenschild, A.J.; Reufer, F.; Eberle, A.; Siuka, D.

    1996-08-01

    A feasible steelmaking alternative, the Corex/direct reduction/electric arc furnace combination, provides an economic route for the production of high quality steel products. This combination is a major step into a new generation of iron and steel mills. These mills are based on the production of liquid steel using noncoking coal and comply with the increasing demands of environmental protection. The favorable production costs are based on: Utilization of Corex and DRI/HBI plants; Production of hot metal equal to blast furnace quality; Use of low cost raw materials such as noncoking coal and lump ore; Use of process gas as reducing agent for DRI/HBI production; and Use of electric arc furnace with high hot metal input as the steelmaking process. The high flexibility of the process permits the adjustment of production in accordance with the strategy of the steel mills. New but proven technologies and applications of the latest state of art steelmaking process, e.g., Corex, in conjunction with DRI production as basic raw material for an electric arc furnace, will insure high quality, high availability, optimized energy generation at high efficiency rates, and high product quality for steelmaking.

  17. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production from Greater than 200 Meters Deep (Percent) Decade...

  18. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  19. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts",5,"Monthly","6/2016","1/15/1981" ,"Release

  20. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total Canada 61,078 1% China 3,323,297 57% Germany 154,800 3% Japan 12,593 0% India 47,192 1% South Korea 251,105 4% All Others 2,008,612 34% Total 5,858,677 100% Table 7 . Photovoltaic module import shipments by country, 2014 (peak kilowatts) Note: All Others includes Cambodia, Czech Republic, Hong Kong, Malaysia, Mexico, Netherlands, Philippines, Singapore, Taiwan and Turkey Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic

  1. Status of dry SO/sub 2/ control systems: Fall 1983. Final report August 1983-July 1984

    SciTech Connect (OSTI)

    Palazzolo, M.A.; Baviello, M.A.

    1984-08-01

    The report, on the status of dry SO/sub 2/ control for utility and industrial boilers in the U.S., reviews curent and recently completed research, development, and commercial activities. Dry SO/sub 2/ control systems covered include: (1) spray dryers with a fabric filter or an electrostatic precipitator (ESP), (2) dry injection of alkaline material into flue gas accompanied by collection of product solids and fly ash in a fabric filter or an ESP, and (3) electron-beam (E-beam) irradiation. Spray drying and dry injection systems generally include a fabric filter or an ESP and control SO/sub 2/ and particulate matter simultaneously; E-beam technology is designed to also control NOx. Spray drying continues to be the only technology commercially applied to utility and industrial boilers. The two new utility systems sold since the last status report (Fall 1982) bring the total utility spray drying flue gas desulfurization (FGD) capacity to about 7200 MWe. Also, 10 recently sold new industrial units bring the total of commercial industrial boiler unit sales to 21. Performance data for five utility systems and three industrial systems were recently published. Some full-scale systems that have come on-line since the last survey have experienced atomization problems and solids buildup on the dryer walls during initial operation. The first trona dry injection application has been announced for a 500 MWe unit.

  2. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  3. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  4. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  5. Freeze drying method

    SciTech Connect (OSTI)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-12-07

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  6. Dry Valleys in Antarctica

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 20, 2016 The McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth. The sensitivity of these glaciers to climate change is not well understood. A ...

  7. Freeze drying apparatus

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  8. Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  9. Drying grain using crop residence as a fuel source. Final technical report

    SciTech Connect (OSTI)

    Hammond, C.

    1982-08-01

    An indirectly-fired biomass fueled furnace was evaluated to determine the feasibility of drying grain using crop residues as a fuel source. The furnace efficiency and total heat delivery were determined. Funds for this project were provided by the Department of Energy through an appropriate technology grant. Stalks and residue were harvested in large round bales using conventional hay-handling equipment available on most farms. Calorimeter tests were made to determine the heat content available in various residues prior to combustion in the Stormor Bio Mass Heat System. This allowed total efficiency measurements by comparing total heat available and total heat delivered to the grain dryer. For example, a bale of cotton stalks returned over 60 percent of the useable heat for an efficiency of 63.7 percent. Other residues such as corn stalks gave slightly lower efficiency but clearly showed that adequate heat could be obtained to dry grain using heated air and no petroleum fuels. The air from the furnace went through an air-to-air heat exchanger to prevent contamination of the grain from smoke and combustion by-products. Although reducing efficiency somewhat, the heat exchanger allows grain or other materials such as peanuts to be dried for human consumption. Some evidence of overheating of the firebox doors was observed which led to some warping of the doors. This warping subsequently made temperature control more difficult, since the air supply and burn rate are directly related. Air temperatures of up to 160/sup 0/F were measured. The results show that biomass combustion as a fuel source to dry grain is possible with fuel savings of about ten cents per bushel at current fuel prices. Thus, the cost of the biomass burner could be recovered in drying some 70,000 bushels of grain. 5 figures, 5 tables.

  10. Full containment spray drying

    SciTech Connect (OSTI)

    Masters, K.

    1999-11-01

    Aspects of safety, environmental protection, and powder quality will continue to influence advances within spray dryer design and operation, and the concept of full containment spray drying offers a means to meet future industrial requirements. Process air recycle and powder containment within the drying chamber leads to no process air discharge to atmosphere, provides a more favorable operator environment around the spray dryer installation, reduces regions within the dryer layout where potential explosive powder/air mixtures can exist, improves yields, reduces powder losses, and provides easier cleaning operations with reduced wash water requirements.

  11. Dry piston coal feeder

    DOE Patents [OSTI]

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  12. Spray-drying FGD

    SciTech Connect (OSTI)

    Yeager, K.

    1984-05-01

    Limited data are available on spray drying for SO/SUB/2 and particulate control to enable utilities to evaluate the claims of vendors. EPRI is sponsoring pilot- and full-scale testing of this technology and some results are presented.

  13. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  14. Dry Natural Gas Estimated Production (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    1,594 22,239 23,555 24,912 25,233 26,611 1977-2014 Federal Offshore Gulf of Mexico 1992-2007 Alabama 254 223 218 214 175 176 1977-2014 Alaska 358 317 327 299 285 304 1977-2014 Arkansas 698 951 1,079 1,151 1,140 1,142 1977-2014 California 239 243 311 200 188 176 1977-2014 Colorado 1,524 1,590 1,694 1,681 1,527 1,561 1977-2014 Florida 0 15 0 0 0 0 1977-2014 Kansas 334 305 285 281 283 272 1977-2014 Kentucky 108 96 101 83 81 70 1977-2014 Louisiana 1,544 2,189 2,985 3,057 2,344 1,960 1981-2014

  15. Dry Natural Gas Reserves Estimated Production

    Gasoline and Diesel Fuel Update (EIA)

    1,594 22,239 23,555 24,912 25,233 26,611 1977-2014 Federal Offshore U.S. 2,377 2,154 1,660 1,360 1,198 1,148 1990-2014 Pacific (California) 37 28 31 22 21 20 1977-2014 Gulf of Mexico (Louisiana & Alabama) 1,886 1,717 1,311 1,061 941 882 1981-2014 Gulf of Mexico (Texas) 454 409 318 277 236 246 1981-2014 Alaska 358 317 327 299 285 304 1977-2014 Lower 48 States 21,236 21,922 23,228 24,613 24,948 26,307 1977-2014 Alabama 254 223 218 214 175 176 1977-2014 Arkansas 698 951 1,079 1,151 1,140 1,142

  16. Draft dry year tools (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA White Book Dry Year Tools Firstgov Dry Year Tools November 9, 2006 - Final Dry Year Guide: The Final Dry Year Guide (PDF, 5 pages, 44 kb) and Figure 1 - Dry Year Strategy (PDF,...

  17. Dry borax applicator operator's manual.

    SciTech Connect (OSTI)

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.

  18. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  19. Ultrasonic Clothes Drying Technology

    ScienceCinema (OSTI)

    Patel, Viral; Momen, Ayyoub

    2016-05-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE?s Building Technologies Office in 2014.

  20. Measurements of the total and differential Higgs boson production cross sections combining the H ? ?? and H ? ZZ* ? 4? decay channels at ?s = 8 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-08-27

    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of ?s = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H ? ?? and H ? ZZ* ? 4? event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. Themoretotal production cross section is determined to be ?pp?H = 33.0 5.3 (stat) 1.6 (syst) pb. The measurements are compared to state-of-the-art predictions.less

  1. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  2. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  3. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  4. Advanced dry scrubbing on Ohio coals

    SciTech Connect (OSTI)

    Amrhein, G.T.; Kudlac, G.A.; Smith, P.V.

    1994-12-31

    The objective of this project is to demonstrate, at pilot scale, that advanced dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} emissions while burning high-sulfur Ohio coal, and that these technologies are economically competitive with wet scrubber systems. Dry scrubbing involves injecting an atomized mist of sorbent-containing slurry droplets into hot flue gas. The reaction products exit the scrubber as a dry powder that can be filtered from the gas and recycled or disposed. The project consists of testing an advanced dry scrubber system on two high sulfur Ohio coals. All testing will be conducted in the 5 MBtu pilot facility at B and W`s Alliance Research Center. The facility consists of a test furnace, a dry scrubber using a B and W DuraJet{trademark} two fluid atomizer, a pulse-jet baghouse, and an ash slaking system. Tests were conducted with and without recycling the solids collected from the baghouse. During recycle operation the solids were slurried with water and injected into the dry scrubber with the fresh lime slurry. Test results will be presented, including SO{sub 2} removal (70--99%), calcium to sulfur ratios (1.1--1.9), dry scrubber outlet temperatures (10--30 F), and system performance. An advanced feature of the project was the use of the B and W patented Droplet Impingement Device which removes large slurry droplets from the gas stream prior to the baghouse to prevent baghouse deposition. This allows operation at low approach temperatures.

  5. Method of drying articles

    DOE Patents [OSTI]

    Janney, Mark A.; Kiggans, Jr., James O.

    1999-01-01

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  6. Method of drying articles

    DOE Patents [OSTI]

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  7. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  8. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  9. Mathematical models of cocurrent spray drying

    SciTech Connect (OSTI)

    Negiz, A.; Lagergren, E.S.; Cinar, A.

    1995-10-01

    A steady state mathematical model for a cocurrent spray dryer is developed. The model includes the mass, momentum, and energy balances for a single drying droplet as well as the total energy and mass balances of the drying medium. A log normal droplet size distribution is assumed to hold at the exit of the twin-fluid atomizer located at the top of the drying chamber. The discretization of this log normal distribution with a certain number of bins yields a system of nonlinear coupled first-order differential equations as a function of the axial distance of the drying chamber. This system of equations is used to compute the axial changes in droplet diameter, density, velocity, moisture, and temperature for the droplets at each representative bin. Furthermore, the distributions of important process parameters such as droplet moisture content, diameter, density, and temperature are also obtainable along the length of the chamber. On the basis of the developed model, a constrained nonlinear optimization problem is solved, where the exit particle moisture content is minimized with respect to the process inputs subjected to a fixed mean particle diameter at the chamber exit. Response surface studies based on empirical models are also performed to illustrate the effectiveness of these techniques in achieving the optimal solution when an a priori model is not available. The structure of empirical models obtained from the model is shown to be in agreement with the structure of the empirical models obtained from the experimental studies.

  10. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  11. No Heat Spray Drying Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Objective Advance research from prototype dryer ... First commercial market is dry flavors designed to ... change from existing practice Requires novel dryer ...

  12. Total Number of Existing Underground Natural Gas Storage Fields

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,878,956 7,135,326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Texas Onshore Natural Gas Gross Withdrawals and

  13. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Normal Butane Isobutane Other Liquids OxygenatesRenewables Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol...

  14. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  15. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  16. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  17. California - Coastal Region Onshore Dry Natural Gas Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 350 365 1980's 299 306 362 381 265 256 255 238 215 222 1990's 217 216 203 189 194 153 156 164 106 192 2000's 234 177 190 167 189 268 206 205 146 163 2010's 173 165 290 266 261 - = No Data Reported; -- = Not

  18. California - Los Angeles Basin Onshore Dry Natural Gas Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 93 86 80 - = No Data Reported; -- = Not Applicable;

  19. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect (OSTI)

    Orloff, D.I.; Phelan, P.M.

    1993-12-01

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  20. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  1. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  2. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  3. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  5. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  6. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  9. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energys Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  10. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; Florida Solar Energy Center; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  11. Bioenergy Impacts … Billion Dry Tons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Oak Ridge National Laboratory published research that shows that U.S. resources could sustainably produce by 2030 at least one billion dry tons of non-food biomass resources, yielding up to 60 billion gallons of biofuels, as well as bio- based chemicals, products, and electricity. This could potentially reduce greenhouse gas emissions by up to 500 million tons per year, create 1.5 million new jobs, and keep about $200 billion extra in the U.S. economy each year. Research is showing that U.S.

  12. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  13. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  14. Drying studies for corroded DOE aluminum plate fuels

    SciTech Connect (OSTI)

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-05-01

    The Idaho National Engineering Laboratory (INEL) currently stores a wide variety of spent nuclear fuel. The fuel was originally intended to be stored underwater for a short period of thermal cooling, then removed and reprocessed. However, it has been stored underwater for much longer thank originally anticipated. During this time dust and airborne desert soil have entered the oldest INEL pool, accumulating on the fuel. Also, the aluminum fuel cladding has corroded compromising the exposed surfaces of the fuel. Plans are now underway to move some the the more vulnerable aluminum plate type fuels into dry storage in an existing vented and filtered fuel storage facility. In preparation for dry storage of the fuel a drying and canning station is being built at the INEL. The two primary objectives of this facility are to determine the influence of corrosion products on the drying process and to establish temperature distribution inside the canister during heating.

  15. Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  16. New York Dry Natural Gas Reserves Revision Decreases (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decreases (Billion Cubic Feet) New York Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases New York Dry Natural Gas Proved Reserves Dry ...

  17. New Mexico Dry Natural Gas Reserves Revision Increases (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Increases (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases New Mexico Dry Natural Gas Proved Reserves Dry ...

  18. New York Dry Natural Gas Reserves Revision Increases (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Increases (Billion Cubic Feet) New York Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases New York Dry Natural Gas Proved Reserves Dry ...

  19. New Mexico Dry Natural Gas Reserves Revision Decreases (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decreases (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases New Mexico Dry Natural Gas Proved Reserves Dry ...

  20. West Virginia Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Extensions (Billion ... Dry Natural Gas Reserves Extensions West Virginia Dry Natural Gas Proved Reserves Dry ...

  1. West Virginia Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Adjustments ... Dry Natural Gas Reserves Adjustments West Virginia Dry Natural Gas Proved Reserves Dry ...

  2. Virginia Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases Virginia Dry Natural Gas Proved Reserves Dry ...

  3. Virginia Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases Virginia Dry Natural Gas Proved Reserves Dry ...

  4. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  6. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  7. Management of dry flue gas desulfurization by-products in underground mines. The development and testing of collapsible intermodal containers for the handling and transport of coal combustion residues

    SciTech Connect (OSTI)

    Carpenter, J.L.; Thomasson, E.M.

    1995-07-01

    SEEC, Incorporated, is developing a collapsible intermodal container (CIC{trademark}) designed for containment and transport of fly ash and other dry-flowable bulk commodities. The CIC is specially configured to ride in open top rail cars, but as an intermodal container, it also rides in barges and on flat bed trailers. This allows SEEC to use unit coal train back haul capacity to transport fly ash to markets at and near coal mines. SEEC`s goals for this project were to design a CIC for handling and transporting dry fly ash, and then demonstrate the CIC technology. During this project, SEEC has performed extensive initial design work, leading to the manufacture of three prototype CICs for demonstration. Preliminary tests to examine safety issues included finite element analyses and an overload test in which the CIC was lifted while carrying weight in excess of its rated capacity. In both cases, the CIC met all safety requirements. With the above information satisfying possible safety concerns in hand, SEEC worked with SIU and other cooperators to plan and carry out field demonstration and testing of three CICs. This demonstration/testing including filling the CICs with fly ash, transporting them in a coal hopper car, handling with standard intermodal equipment, and emptying by inverting (two CICs) and by vacuuming (one CIC). Results were very positive. Filling with fly ash, transporting, and intermodal handling went very well, as did emptying by vacuum. Emptying by inverting was less successful, but most of the problems were predicted ahead of time, and were mostly due to lack of fly ash fluidizing equipment as much as anything. Throughout the testing, valuable information was gathered that will greatly accelerate refinement of both the CIC and the system of CIC handling.

  8. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  9. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  10. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  11. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  12. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S.; Dakin, M. [New Zealand Forest Research Inst., Ltd., Rotorua (New Zealand). Mfg. Technologies Portfolio

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  13. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy

  14. Process and apparatus for indirect-fired heating and drying

    DOE Patents [OSTI]

    Abbasi, Hamid Ali; Chudnovsky, Yaroslav

    2005-04-12

    A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

  15. The influence of the drying medium on high temperature convective drying of single wood chips

    SciTech Connect (OSTI)

    Johansson, A.; Rasmuson, A.

    1997-10-01

    High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapor, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs. As the surface becomes dry, the drying front moves towards the center of the particle and an overpressure is simultaneously built up which affects the drying process. The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in pure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.

  16. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    76 Females Male Female Male Female Male Female Male Female Male Female 27 24 86 134 65 24 192 171 1189 423 PAY PLAN SES 96 EX 4 EJ/EK 60 EN 05 39 EN 04 159 EN 03 21 EN 00 8 NN (Engineering) 398 NQ (Prof/Tech/Admin) 1165 NU (Tech/Admin Support) 54 NV (Nuc Mat Courier) 325 GS 15 3 GS 14 1 GS 13 1 GS 10 1 Total includes 2318 permanent and 17 temporary employees. DIVERSITY 2335 1559 66.8% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 33.2% National

  17. California - San Joaquin Basin Onshore Dry Natural Gas Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,784 3,960 3,941 1980's 4,344 4,163 3,901 3,819 3,685 3,574 3,277 3,102 2,912 2,784 1990's 2,670 2,614 2,415 2,327 2,044 1,920 1,768 1,912 1,945 1,951 2000's 2,331 2,232 2,102 2,013 2,185 2,694 2,345 2,309 2,128

  18. Compton Dry-Cask Imaging System

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  19. Compton Dry-Cask Imaging System

    SciTech Connect (OSTI)

    2011-01-01

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  20. Dry scrubbing of SO/sub 2/

    SciTech Connect (OSTI)

    Shah, N.D.

    1982-06-01

    The advantages of dry scrubbing over wet scrubbing or spray drying are considered. One of the problem areas is that of waste disposal. The most cost-effective solutions are land disposal or landfill in clay cells. The factors influencing the selection of an SO/sub 2/ scrubbing system are discussed. Nahcolite appears to be the most promising agent for dry scrubbing.

  1. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  2. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  3. New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sales (Billion Cubic Feet) New York Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales New York Dry Natural Gas Proved Reserves ...

  4. New York Dry Natural Gas Reserves Adjustments (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Adjustments (Billion Cubic Feet) New York Dry Natural Gas Reserves Adjustments (Billion ... Referring Pages: Dry Natural Gas Reserves Adjustments New York Dry Natural Gas Proved ...

  5. New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Extensions (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Extensions (Billion ... Referring Pages: Dry Natural Gas Reserves Extensions New Mexico Dry Natural Gas Proved ...

  6. New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Adjustments (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Adjustments (Billion ... Referring Pages: Dry Natural Gas Reserves Adjustments New Mexico Dry Natural Gas Proved ...

  7. New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Sales (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales New Mexico Dry Natural Gas Proved Reserves ...

  8. New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Acquisitions (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Acquisitions ... Referring Pages: Dry Natural Gas Reserves Acquisitions New Mexico Dry Natural Gas Proved ...

  9. New York Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Acquisitions (Billion Cubic Feet) New York Dry Natural Gas Reserves Acquisitions (Billion ... Referring Pages: Dry Natural Gas Reserves Acquisitions New York Dry Natural Gas Proved ...

  10. New York Dry Natural Gas Reserves Extensions (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Extensions (Billion Cubic Feet) New York Dry Natural Gas Reserves Extensions (Billion ... Referring Pages: Dry Natural Gas Reserves Extensions New York Dry Natural Gas Proved ...

  11. Virginia Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Virginia Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves Virginia Dry Natural Gas Proved Reserves ...

  12. West Virginia Dry Natural Gas Reserves New Field Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves New ... New Field Discoveries of Dry Natural Gas Reserves West Virginia Dry Natural Gas Proved ...

  13. Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales Virginia Dry Natural Gas Proved Reserves ...

  14. Virginia Dry Natural Gas Reserves Extensions (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Extensions (Billion ... Referring Pages: Dry Natural Gas Reserves Extensions Virginia Dry Natural Gas Proved ...

  15. Virginia Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Adjustments (Billion ... Referring Pages: Dry Natural Gas Reserves Adjustments Virginia Dry Natural Gas Proved ...

  16. West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Sales (Billion Cubic ... Referring Pages: Dry Natural Gas Reserves Sales West Virginia Dry Natural Gas Proved ...

  17. Virginia Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Acquisitions (Billion ... Referring Pages: Dry Natural Gas Reserves Acquisitions Virginia Dry Natural Gas Proved ...

  18. West Virginia Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases West Virginia Dry Natural Gas Proved Reserves ...

  19. North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Extensions (Billion ... Referring Pages: Dry Natural Gas Reserves Extensions North Dakota Dry Natural Gas Proved ...

  20. North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic ... Referring Pages: Dry Natural Gas Reserves Sales North Dakota Dry Natural Gas Proved ...

  1. North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Acquisitions ... Referring Pages: Dry Natural Gas Reserves Acquisitions North Dakota Dry Natural Gas Proved ...

  2. North Dakota Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases North Dakota Dry Natural Gas Proved Reserves ...

  3. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas ... Dry Natural Gas New Reservoir Discoveries in Old Fields North Dakota Dry Natural Gas ...

  4. North Dakota Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves North Dakota Dry Natural Gas Proved ...

  5. North Dakota Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases North Dakota Dry Natural Gas Proved Reserves ...

  6. North Dakota Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Adjustments ... Referring Pages: Dry Natural Gas Reserves Adjustments North Dakota Dry Natural Gas Proved ...

  7. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    1 3 6 5 1 6 4 60 29 PAY PLAN SES 2 EJ/EK 18 EN 05 1 EN 04 28 EN 03 3 NN (Engineering) 19 NQ (Prof/Tech/Admin) 40 NU (Tech/Admin Support) 4 White 35.7% NNSA Production Office (NPO) As of March 21, 2015 DIVERSITY 115 74 64.3% American Indian Alaska Native African American Asian American Pacific Islander Hispanic SES EJ/EK EN 05 EN 04 EN 03 NN NQ NU 1.7% 15.7% 0.9% 24.3% 2.6% 16.5% 34.8% 3.5% 0.0% 0.9% 2.6% 5.2% 4.3% 0.9% 5.2% 3.5% 52.2% 25.2% SUPERVISORS DISABILITY 11 SUPERVISORS RATIO VETERANS 24

  8. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    2 Females Male Female Male Female Male Female Male Female Male Female 0 1 3 6 4 1 8 4 65 30 PAY PLAN SES 2 EJ/EK 15 EN 05 1 EN 04 38 EN 03 7 EN 00 2 NN (Engineering) 16 NQ (Prof/Tech/Admin) 38 NU (Tech/Admin Support) 3 DIVERSITY 122 80 65.6% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 34.4% NNSA Production Office (NPO) As of September 5, 2015 SES EJ/EK EN 05 EN 04 EN 03 EN 00 NN NQ NU 1.6% 12.3% 0.8% 31.1% 5.7% 1.6% 13.1% 31.1% 2.5% 0.0% 0.8%

  9. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  10. Non-aqueous spray drying as a route to ultrafine ceramic powders

    SciTech Connect (OSTI)

    Armor, J.N. ); Fanelli, A.J.; Marsh, G.M. ); Zambri, P.M. )

    1988-09-01

    Spray drying imparts unique powder handling features to a wide variety of dried products and is usually carried out in a heated air stream while feeding an aqueous suspension of some solid material. The present work, however, describes non-aqueous spray drying as a means of preparing fine powders of metal oxides. In this case an alcohol solvent was used in place of water and the slurry sprayed under an inert atmosphere. Using the non-aqueous technique, the product consists of distinct but loosely aggregated primary particles. Such materials have potential for use as catalysts or catalyst supports.

  11. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the third quarter, April 1, 1989-June 30, 1989

    SciTech Connect (OSTI)

    Boysen, J.E.; Barbour, F.A.; Turner, T.F.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-07-01

    This research project is for the development of a technical and economical feasible process for drying and stability fine particles of high-moisture subbituminous coal. Research conducted in this quarter focused upon thermogravimetric analysis (TGA) of both feed coals; continuation of the bench-scale IFB drying experiments; and initiation of the characterization of the products from the bench-scale drying experiments to determine their moisture reabsorption, dustiness, and spontaneous ignition properties. Thirty 4-hr and six 12-hr bench-scale IFB drying tests were conducted this quarter making a total of forty-one 4-hr (19 using Eagle Butte feed coal and 22 using Usibelli feed coal) and six 12-hr (3 using each feed coal) tests conducted thus far. IFB reactor slopes of 3, 6, 9, 12, and 15 degrees were investigated for each feed coal. During the tests using Eagle Butte coal, gas-to-solids ratios ranging from approximately 0.7 to 9.7 lb/lb (kg/kg) and average IFB reactor temperatures ranging from approximately 370 to 700/degree/F (188 to 371/degree/C) were tested. 5 refs., 41 figs., 7 tabs.

  12. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  13. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  14. Wetter for fine dry powder

    DOE Patents [OSTI]

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  15. Modified dry limestone process for control of sulfur dioxide emissions

    DOE Patents [OSTI]

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  16. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  17. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  18. Total quality management program planning

    SciTech Connect (OSTI)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  19. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  20. Cold vacuum drying system conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W.

    1996-05-01

    This document summarizes the activities involved in the removal of the SNF from the leaking basins and to place it in stable dry storage.

  1. Biomass Engineering: Size reduction, drying and densification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... when high durability and stable pellets are needed - Energy efficient dryers (grain or belt dryers) can be used for drying high moisture pellets Fig. 3 TEA analysis of ...

  2. ,"New Mexico Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301977" ,"Release Date:","11...

  3. Dry scrubber with integral particulate collection device

    SciTech Connect (OSTI)

    Johnson, D.J.; Myers, R.B.; Tonn, D.P.

    1993-06-01

    A dry scrubber/particulate collection device is described comprising: (a) a dry scrubber component having a flue gas entrance, a spray zone, and a flue gas exit; (b) a particulate collection component downstream of said flue gas exit and capable of being isolated utilizing one or more isolation dampers located between said dry scrubber component and said particulate collection component, said dry scrubber component and said particulate collection component together comprising integral parts of a single assembly; and, (c) control means for controlling the flow of flue gas through said particulate collection component of said assembly.

  4. FINAL REPORT: Transformational electrode drying process

    SciTech Connect (OSTI)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  5. Dry FGD (flue-gas desulfurization) at Argonne National Laboratory

    SciTech Connect (OSTI)

    Livengood, C.D.

    1990-01-01

    Flue-gas desulfurization (FGD) systems based on spray drying are a relatively recent addition to the spectrum of sulfur dioxide (SO{sub 2}) control options available to utility and industrial boiler operators. Such systems appear to offer advantages over wet lime/limestone systems in a number of areas: low energy consumption, low capital cost, high reliability, and production of a dry waste that is easily handled and disposed of. These advantages have promoted rapid acceptance of dry scrubbers for applications using western low-sulfur coal, but uncertainties regarding the performance and economics of such systems for control of high-sulfur-coal emissions have slowed adoption of the technology in the Midwest and East. At Argonne National Laboratory (ANL) we have had more than eight years of operating experience with an industrial-scale dry scrubber used with a boiler firing high-sulfur (3.5%) midwestern coal. This paper describes our operating experience with that system and summarizes several research programs that have utilized it. 7 refs., 15 figs., 6 tabs.

  6. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India

  7. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-dry and mixed-dry climates.

  8. Cold vacuum drying facility 90% design review

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  9. Recent progress of spray drying in China

    SciTech Connect (OSTI)

    Jinxin, T.; Zonglian, W.; Lixin, H.

    1999-10-01

    The development of spray drying technique during past 10 years of China is reviewed. Main achievements in research, development and utilization of three types of atomization are described and summarized. General trend of spray drying research and development in 21st century is forecasted.

  10. Dry phase reactor for generating medical isotopes

    DOE Patents [OSTI]

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  11. Geothermal Electricity Production Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Production Basics Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Dry Steam Dry steam

  12. Measurement of the ratios of the Z/gamma* + >= n jet production cross sections to the total inclusive Z/gamma* cross section in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota

    2006-08-01

    We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in p{bar p} collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/{gamma}* {yields} e{sup +}e{sup -} candidates corresponding to the integrated luminosity of 340 pb{sup -1} collected using the D0 detector. Ratios of the Z/{gamma}* + {ge} n jet cross sections to the total inclusive Z/{gamma}* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.

  13. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  14. U.S. Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 1,617,923 1,465,907 1,627,602 1,551,268 1,610,527 1,525,325 1,584,526 1,581,520 1,545,194 1,597,116 1,547,069 1,575,412 1998 1,658,885 1,476,580 1,648,339 1,591,701 1,650,538 1,582,144 1,611,386 1,622,594 1,473,001 1,589,442 1,539,977 1,578,976 1999 1,625,336 1,465,120 1,621,893 1,549,496 1,578,623 1,540,990 1,585,739 1,582,361 1,531,563 1,587,111 1,560,232 1,603,767 2000 1,622,726 1,494,676 1,635,707 1,546,594 1,606,752 1,568,345

  15. Natural Gas Dry Production (Annual Supply & Disposition)

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266 24,205,523 25,728,496 27,033,685 1930-2015 Federal Offshore Gulf of Mexico 2,245,062 1,812,328 1,420,087 1,238,955 1,179,714 1999-2014 Alabama 203,873 178,310 208,577 188,651 174,010 1982-2014 Alaska 353,391 334,671 329,789 317,503 326,897 1982-2014 Arizona 183 168 117 72 106 1982-2014 Arkansas 926,426 1,071,944 1,145,744 1,139,168 1,123,096 1982-2014 California 273,597 238,082 234,067 238,012 239,517 1982-2014

  16. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,147 1,954 2,168 1,829 1,326 1,180 851 849 1990's 793 771 1,174 2,114 2,890 2,240 1,876 1,670 1,695 1,395 2000's 1,218 1,208 1,188 1,454 1,476 1,172 1,200 1,555 3,082 2,908 2010's 2,231 1,959 1,328 1,032 402

  17. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 934,321 838,975 898,786 851,319 651,319 758,617 728,464 793,021 1990's 898,478 967,821 1,193,343 1,326,236 1,471,082 1,540,169 1,445,746 1,449,587 1,394,433 1,403,821 2000's 1,584,884 1,580,167 1,522,044 1,492,723 1,527,127 1,544,102 1,509,252 1,421,672 1,353,625 1,288,164 2010's 1,200,222 1,147,012 1,131,211 1,084,845 1,091,91

  18. New York Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,877 17,836 25,200 31,561 29,964 25,676 23,455 20,433 1990's 25,023 22,777 23,508 21,183 20,465 18,400 18,131 16,188 16,699 16,122 2000's 17,757 27,787 36,816 36,137 46,050 55,180 55,980 54,942 50,320 44,849 2010's 35,813 31,124 26,424 23,458 20,201

  19. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,216 62,148 62,636 64,213 48,142 54,399 50,802 45,041 1990's 45,725 47,137 48,828 53,927 52,134 44,141 44,737 47,325 47,704 47,058 2000's 46,405 48,564 51,052 49,875 48,776 45,699 48,019 52,817 44,566 49,229 2010's 70,456 82,920 146,128 198,871 275,947

  20. Oregon Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3 2,790 4,080 4,600 3,800 4,000 2,500 1990's 2,815 2,741 2,580 4,003 3,221 1,923 1,439 1,173 1,067 1,291 2000's 1,214 1,110 837 731 467 454 621 409 778 821 2010's 1,407 1,344 770 770 95

  1. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 45,070 40,507 55,002 66,792 75,729 68,122 71,487 70,973 1990's 73,434 76,723 77,348 84,714 ...

  2. Florida Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,062 12,787 5,954 5,074 4,031 4,397 3,900 3,983 1990's 3,652 2,991 4,094 4,528 5,697 4,833 ...

  3. Pennsylvania Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,071 118,317 166,281 150,089 159,655 163,000 166,817 191,520 1990's 177,309 152,105 138,071 ...

  4. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 409,175 424,320 487,514 384,694 377,447 473,153 479,624 636,452 1990's 707,137 745,058 811,198 ...

  5. Colorado Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 196,930 152,231 162,486 166,320 153,243 154,362 179,955 203,397 1990's 229,819 270,139 304,892 ...

  6. Texas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,112,411 5,562,712 5,791,148 5,668,944 5,767,082 5,761,838 5,928,273 5,898,192 1990's 6,000,960 ...

  7. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,899,450 1,688,769 1,948,032 1,893,472 1,871,683 1,974,291 2,063,748 2,142,148 1990's 2,161,773 ...

  8. Kansas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 417,928 418,646 450,504 499,068 451,913 444,355 563,045 570,923 1990's 543,961 586,611 615,274 ...

  9. Alaska Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 263,896 276,251 286,280 314,643 300,635 340,247 355,398 373,797 1990's 381,431 409,382 411,593 ...

  10. Indiana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 221 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 ...

  11. Alabama Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 70,276 86,092 96,699 102,106 102,348 112,354 124,750 123,389 1990's 130,337 165,850 349,609 ...

  12. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 ...

  13. Michigan Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,869 125,373 131,708 120,726 115,643 136,120 135,662 146,102 1990's 163,834 187,646 186,722 ...

  14. Arkansas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 123,324 126,303 133,961 153,958 129,757 139,876 165,512 173,309 1990's 174,156 164,412 202,066 ...

  15. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,042,769 5,207,920 5,692,554 4,895,966 4,779,790 4,997,619 5,060,175 4,956,700 1990's 5,122,584 ...

  16. Maryland Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 135 118 63 18 2000's 34 32 22 48 34 46 48 35 28 ...

  17. Missouri Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 4 4 4 4 4 4 1990's 7 15 27 14 8 16 25 5 0 0 2000's 0 0 0 0 0 0 0 0 NA NA 2010's NA NA NA 9 9

  18. Illinois Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -10,579 -11,813 -10,157 -10,112 -7,372 -5,291 1,277 1,396 1990's 596 366 247 254 253 258 234 31 ...

  19. Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    May Jun Jul Aug Sep Oct Nov Dec 2006 8,410 7,694 8,597 8,227 8,671 8,619 8,741 8,829 8,709 8,803 8,721 9,005 2007 9,148 8,368 9,350 8,949 9,431 9,373 9,507 9,602 9,472 9,575...

  20. Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    37,840 50,259 49,818 54,290 58,249 57,263 72,189 2000's 71,545 71,543 76,915 143,644 85,508 88,610 103,027 112,057 128,454 140,738 2010's 147,255 151,094 146,405 139,382 131,885

  1. Arkansas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 18,546 16,947 19,757 19,566 21,048 21,471 22,642 23,956 24,198 26,472 26,928 28,550 2007 18,430 16,848 19,649 19,459 21,011 21,441 22,595 23,921 24,250 26,634 26,925 28,562 2008 29,068 29,082 32,973 33,043 35,331 35,806 38,869 40,631 39,412 42,558 42,579 46,966 2009 49,673 45,476 51,973 53,142 56,218 56,255 56,932 63,384 47,067 62,797 66,448 70,419 2010 70,073 64,169 72,458 73,424 76,475 75,411 79,934 82,380 80,488 83,809 81,415 86,390

  2. Illinois Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 13 13 12 11 11 11 8 9 9 9 8 9 2007 134 128 128 119 120 120 96 99 99 103 95 106 2008 114 109 109 101 103 103 82 85 85 88 81 91 2009 140 134 134 124 126 126 101 104 104 108 100 111 2010 175 161 168 169 169 126 94 79 98 111 157 194 2011 99 81 106 95 94 71 56 84 78 88 114 112 2012 184 156 193 181 183 156 144 173 165 180 205 205 2013 532 203 267 204 160 155 157 155 186 158 165 546 2014 212 213 217 227 205 227 206 206 224 206 228 206

  3. Indiana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 218 211 246 234 246 254 179 244 282 275 259 272 2007 282 235 286 324 301 267 308 343 310 374 351 224 2008 349 364 407 409 438 397 416 357 368 423 420 353 2009 425 301 419 414 428 393 366 422 370 472 450 468 2010 475 457 421 502 468 539 575 556 633 736 717 723 2011 761 622 799 751 807 760 758 759 746 788 744 779 2012 619 734 797 737 741 707 754 772 742 747 714 749 2013 722 647 718 693 719 684 675 643 655 527 657 599 2014 505 535 635 611

  4. Kansas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 29,881 26,619 29,613 28,810 29,602 29,084 29,222 29,033 26,997 27,603 26,611 27,244 2007 29,683 26,410 29,381 28,600 29,344 28,883 29,025 28,833 26,819 27,425 26,382 27,028 2008 29,063 27,490 29,485 28,317 27,862 28,278 29,479 29,490 28,775 29,371 30,304 28,092 2009 28,859 26,305 28,387 27,223 28,433 26,975 27,149 28,170 26,932 27,198 26,261 25,597 2010 25,774 23,787 25,958 25,013 22,913 24,881 24,848 25,690 24,446 25,528 24,560 25,072

  5. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 5,697 7,677 8,520 8,183 7,489 9,115 5,881 6,968 11,760 2,755 7,527 11,496 2007 3,406 11,177 11,028 2,999 9,590 13,070 1,236 8,146 7,953 7,263 7,873 9,740 2008 5,222 7,491 8,501 8,780 9,590 9,270 14,157 11,552 8,504 8,568 14,157 5,923 2009 7,603 12,215 4,388 4,959 12,194 10,773 3,106 10,861 11,461 10,245 9,907 12,318 2010 9,912 17,124 4,128 10,287 10,652 9,940 11,821 9,979 11,091 18,920 4,638 12,261 2011 9,162 9,704 11,350 10,611 8,658

  6. Virginia Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 8,410 7,694 8,597 8,227 8,671 8,619 8,741 8,829 8,709 8,803 8,721 9,005 2007 9,148 8,368 9,350 8,949 9,431 9,373 9,507...

  7. Texas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 430,569 385,770 433,275 423,525 440,256 425,524 439,080 442,449 430,887 444,407 431,300 447,631 2007 441,468 412,905 470,928 455,133 486,205 470,615 487,991 495,092 484,416 509,596 500,023 521,459 2008 526,847 493,754 538,080 528,645 559,589 540,512 564,006 567,203 518,543 574,401 562,985 584,625 2009 590,953 516,416 574,898 542,453 553,391 527,916 533,023 540,469 505,084 514,658 486,991 508,678 2010 517,709 473,363 532,310 504,173

  8. U.S. Dry Natural Gas Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 1,869 1,883 1,830 1,741 1,821 1,765 1,804 1,819 1,766 1,799 1,788 1,848 1974 1,851 1,688 1,817 1,707 1,771 1,669 1,743 1,716 1,683 1,694 1,658 1,716 1975 1,702 1,574 1,663 1,599 1,616 1,563 1,604 1,604 1,533 1,575 1,548 1,655 1976 1,676 1,576 1,641 1,554 1,601 1,570 1,604 1,566 1,498 1,569 1,566 1,678 1977 1,665 1,602 1,676 1,573 1,619 1,578 1,602 1,574 1,530 1,558 1,537 1,652 1978 1,669 1,579 1,673 1,597 1,593 1,554 1,621 1,587 1,509

  9. U.S. Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 1,903,771 1,659,614 1,541,982 1,548,393 1,763,606 1,913,475 2,164,413 2,403,273 2,284,863 2,464,637 1940's 2,654,293 2,778,061 3,026,694 3,393,743 3,672,156 3,882,066 3,987,488 4,393,439 4,938,512 5,195,404 1950's 6,022,198 7,164,959 7,694,299 8,056,848 8,388,198 9,028,665 9,663,910 10,246,622 10,572,208 11,547,658 1960's 12,228,148 12,661,579 13,253,006 14,076,412 14,824,027 15,286,280 16,467,320 17,386,791

  10. West Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 143,764 122,573 135,092 135,293 126,750 151,170 165,103 167,071 1990's 168,892 188,860 172,564 160,194 172,872 178,835 162,746 165,089 172,663 168,681 2000's 253,741 180,795 180,289 180,497 189,561 213,433 217,513 223,113 236,489 255,650 2010's 256,567 385,498 528,973 722,289 982,669

  11. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Speculation and Oil Price Volatility Robert J. Weiner Robert J. Weiner Professor of International Business, Public Policy & Professor of International Business, Public Policy & Public Administration, and International Affairs Public Administration, and International Affairs George Washington University; George Washington University; Membre Associ Membre Associ é é , GREEN, Universit , GREEN, Universit é é Laval Laval EIA Annual Conference Washington Washington 7 April 2009 7 April

  12. Oregon Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 47 56 56 46 72 71 57 32 56 40 43 46 2007 60 48 38 33 35 38 35 27 18 13 24 42 2008 78 60 64 42 48 53 66 73 78 78 58 80 2009 69 55 60 46 57 45 45 53 42 45 63 242 2010 175 193 152 158 150 119 82 30 55 69 103 121 2011 144 158 129 96 114 134 153 85 54 90 86 98 2012 90 71 72 57 81 69 70 24 44 49 57 85 2013 90 71 72 57 81 69 70 24 44 49 57 85 2014 81 73 81 78 81 78 81 81 78 80 78 8

  13. Pennsylvania Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.72 2.04 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of Lease Separation

    33 144 134 125 269 299 1979-2014

  14. South Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    in Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) South Central Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 24.30 27.20 70.30 75.70 64.30 50.50 39.00 35.90 29.90 21.20 22.90 24.80 2016 32.10 77.60 87.90 54.60 34.30 23.30 - = No Data Reported; --

  15. Texas Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Separation 8,762 10,130 13,507 19,033 22,167 26,928 1981-2014 Adjustments 226 206 -381 871 192 629 1981-2014 Revision Increases 1,133 1,450 2,099 2,234 3,607 5,191 1981-2014 Revision Decreases 740 1,058 1,030 2,214 3,523 3,742 1981-2014 Sales 176 732 493 363 890 1,840 2000-2014 Acquisitions 336 1,188 1,151 994 1,323 2,142 2000-2014 Extensions 1,078 985 2,755 5,134 3,872 4,448 1981-2014 New Field Discoveries 21 64 49 51 5 12 1981-2014 New Reservoir Discoveries in Old Fields 27 13 90 111 204

  16. Utah Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History All Operators Net Withdrawals -17,009 -347,562 -7,279 545,848 -252,958 -538,421 1967-2015 Injections 3,291,395 3,421,813 2,825,427 3,155,661 3,838,826 3,639,015 1935-2015 Withdrawals 3,274,385 3,074,251 2,818,148 3,701,510 3,585,867 3,100,594 1944-2015 Salt Cavern Storage Fields Net Withdrawals -58,295 -92,413 -19,528 28,713 -81,890 -56,052 1994-2015 Injections 510,691 532,893 465,005 492,143 634,045 607,148 1994-2015 Withdrawals 452,396 440,480 445,477

  17. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    OECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover ... ... Transport Energy and CO 2 Where are we going? What are the dangers? How do we change direction? Primarily reporting on: IEA WEO 2008 IEA ETP 2008 On-going work with IEA's Mobility Model One or two detours to talk about modelling © OECD/IEA - 2008 0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 1980 1990 2000 2010 2020 2030 Mtoe Other renewables Hydro Nuclear

  18. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    91,281 80,300 63,023 95,156 102,923 107,000 107,573 105,559 2000's 77,181 92,087 96,503 122,471 49,656 38,615 45,869 60,363 85,795 69,803 2010's 55,316 70,266 63,357 58,806 53,945

  19. Kansas Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    447 503 461 437 546 549 1990's 523 580 590 657 671 673 702 629 548 486 2000's 491 438 471 426 376 380 350 361 357 334 2010's 305 285 281 283 272 - No Data Reported; -- Not ...

  20. California Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306