National Library of Energy BETA

Sample records for dry process mw

  1. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    Open Energy Info (EERE)

    Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric Power-Station Abstract Man-made, hot dry rock (HDR) geothermal energy reservoirs have been investigated for over...

  2. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect (OSTI)

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  3. FINAL REPORT: Transformational electrode drying process

    SciTech Connect (OSTI)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  4. Process control system of a 500-MW unit of the Reftinskaya local hydroelectric power plant

    SciTech Connect (OSTI)

    L.L. Grekhov; V.A. Bilenko; N.N. Derkach; A.I. Galperina; A.P. Strukov

    2002-05-01

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  5. Process Control System of a 500-MW Unit of the Reftinskaya Local Hydroelectric Power Plant

    SciTech Connect (OSTI)

    Grekhov, L. L.; Bilenko, V. A.; Derkach, N. N.; Galperina, A. I.; Strukov, A. P.

    2002-05-15

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  6. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energys Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  7. Vehicle Technologies Office Merit Review 2015: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  8. Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  9. Technical and economical considerations of new DRI melting process

    SciTech Connect (OSTI)

    Ito, Shuzo; Tokuda, Koji; Sammt, F.; Gray, R.

    1997-12-31

    The new DRI melting process can effectively and economically produce high quality molten iron. This process utilizes hot charging of DRI directly from a reduction furnace into a dedicated new melting furnace. The molten iron from this DRI premelter can be charged into a steelmaking furnace, such as an electric arc furnace (EAF), where the molten iron, together with other iron sources, can be processed to produce steel. Alternatively the molten iron can be pigged or granulated for off-site merchant sales. Comprehensive research and development of the new process has been conducted including operational process simulation, melting tests using FASTMET DRI, slag technology development, and refractory corrosion testing. This paper describes the process concept, its operational characteristics and further applications of the process.

  10. Dry Process Electrode Fabrication | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Statistical Process Evaluation Volume 3 | Department of Energy Final Report: Drivers of Success in the Better Buildings Neighborhood Program - Statistical Process Evaluation Final Evaluation Volume 3, American Recovery and Reinvestment Act of 2009, June 2015. PDF icon Drivers of Success in BBNP -- Statistical Process Evaluation More Documents & Publications Process Evaluation of the Better Buildings Neighborhood Program, Final Evaluation Volume 4 Evaluation of the Better Buildings

  11. Utilization of geothermal heat in tropical fruit-drying process

    SciTech Connect (OSTI)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  12. The hydro nuclear services dry active waste processing system

    SciTech Connect (OSTI)

    Bunker, A.S.

    1985-04-01

    There is a real need for a dry active waste processing system that can separate clean trash and recoverable items from radwaste safely and efficiently. This paper reports that Hydro Nuclear Services has produced just such a system and is marketing it as a DAW Segregation/Volume Reduction Process. The system is a unique, semi-automated package of sensitive monitoring instruments of volume reduction equipment that separates clean trash from contaminated and recoverable items in the waste stream and prepares the clean trash for unrestricted release. What makes the HNS system truly unique is its end product - clean trash.

  13. Energy-efficient regenerative liquid desiccant drying process

    DOE Patents [OSTI]

    Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  14. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  15. Process and composition for drying of gaseous hydrogen halides

    DOE Patents [OSTI]

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  16. Modified dry limestone process for control of sulfur dioxide emissions

    DOE Patents [OSTI]

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  17. Process and apparatus for indirect-fired heating and drying

    DOE Patents [OSTI]

    Abbasi, Hamid Ali; Chudnovsky, Yaroslav

    2005-04-12

    A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

  18. Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process

    SciTech Connect (OSTI)

    Cheol Shin, Woo; Hun Mun, Jeong; Yong Kim, Taek; Choi, Sung-Yool; Jin Cho, Byung E-mail: tskim1@kaist.ac.kr; Yoon, Taeshik; Kim, Taek-Soo E-mail: tskim1@kaist.ac.kr

    2013-12-09

    We present the facile dry transfer of graphene synthesized via chemical vapor deposition on copper film to a functional device substrate. High quality uniform dry transfer of graphene to oxidized silicon substrate was achieved by exploiting the beneficial features of a poly(4-vinylphenol) adhesive layer involving a strong adhesion energy to graphene and negligible influence on the electronic and structural properties of graphene. The graphene field effect transistors (FETs) fabricated using the dry transfer process exhibit excellent electrical performance in terms of high FET mobility and low intrinsic doping level, which proves the feasibility of our approach in graphene-based nanoelectronics.

  19. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect (OSTI)

    Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

    1990-02-01

    The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

  20. Drying '84

    SciTech Connect (OSTI)

    Baunack, F.

    1984-01-01

    This book covers the following topics: mechanism of water sorption-desorption in polymers; progress in freeze drying; on drying of materials in through circulation system; safety aspects of spray drying; dewatering process enhanced by electroosmosis; pressure drop and particle circulation studies in modified slot spouted beds; and experience in drying coal slurries.

  1. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect (OSTI)

    Boysen, J.E.; Kang, T.W.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.; AMAX Research and Development Center, Golden, CO )

    1989-10-01

    The main objective of this research is to develop a thermal process for drying fine coal that (1) reduces explosion potential, (2) uses a fluidized bed with minimum elutriation, (3) produces a stable dry coal by preventing moisture reabsorption and autogeneous heating, (4) reduces fugitive dust emissions, and (5) is technically and economically feasible. The project scope of work requires completion of five tasks: (1) project planning, (2) characterization of the two feed coals, (3) bench-scale IFB drying studies, (4) product characterization and testing, and (5) technical and economic process evaluation. The project technical achievements are primarily related to understanding of the behavior of the two coals in the IFB reactor. Solids residence time and solids entrainment can be correlated using the Reynolds number. Gas produced from the coal during drying and the product composition can be correlated to the average dryer temperature. A dry product with minimal proximate moisture and substantially increased heating value can be produced from either of these coals under a wide variety of fluidizing gas-to-solids ratios and IFB operating temperatures. Product characterization indicates that moisture reabsorption can be significantly reduced and that fugitive dust contents can be almost completely reduced. 4 refs., 19 figs., 24 tabs.

  2. Mechanisms of dry SO/sub 2/ control processes. Final report Sep 80-Sep 81

    SciTech Connect (OSTI)

    Apple, C.; Kelly, M.E.

    1982-04-01

    The report discusses physical and chemical processes and reaction mechanisms for lime spray drying and dry injection of sodium compounds in dry flue gas desulfurization (FGD) processes. It includes: chemical reactions, physical changes, proposed reaction mechanisms and mathematical models, process parameters affecting reactions and their rates, and data needed to verify proposed reaction mechanisms and models. Published technical papers were the primary reference sources. The report focuses on coal-fired boiler dry FGD applications. Lime spray drying reactions are primarily gas/liquid-phase reactions, with SO/sub 2/ removal depending on moisture in the lime slurry droplet. Initially, the moisture content is high, and the reaction rate is controlled by diffusion of SO/sub 2/ to the droplet surface; most SO/sub 2/ removal occurs during this phase. As evaporation reduces the moisture, the dissolution of Ca(OH)/sub 2/ into ions limits the SO/sub 2/ removal rate. Later, the precipitation of CaSO/sub 3/.1/2 H/sub 2/O onto the surface of the lime particles retards diffusion of SO/sub 2/ to the unreacted sorbent. Injecting sodium compound powders into flue gas removes SO/sub 2/ via gas/solid reactions. First, NaHCO/sub 3/ is thermally decomposed to Na/sub 2/CO/sub 3/ (small pores in the sorbent particles increase the particles' surface area and reactivity). Then the SO/sub 2/ reacts with Na/sub 2/CO/sub 3/ to form Na/sub 2/SO/sub 3/, starting at the particle surface.

  3. Sensitivity analysis of a dry-processed Candu fuel pellet's design parameters

    SciTech Connect (OSTI)

    Choi, Hangbok; Ryu, Ho Jin

    2007-07-01

    Sensitivity analysis was carried out in order to investigate the effect of a fuel pellet's design parameters on the performance of a dry-processed Canada deuterium uranium (CANDU) fuel and to suggest the optimum design modifications. Under a normal operating condition, a dry-processed fuel has a higher internal pressure and plastic strain due to a higher fuel centerline temperature when compared with a standard natural uranium CANDU fuel. Under a condition that the fuel bundle dimensions do not change, sensitivity calculations were performed on a fuel's design parameters such as the axial gap, dish depth, gap clearance and plenum volume. The results showed that the internal pressure and plastic strain of the cladding were most effectively reduced if a fuel's element plenum volume was increased. More specifically, the internal pressure and plastic strain of the dry-processed fuel satisfied the design limits of a standard CANDU fuel when the plenum volume was increased by one half a pellet, 0.5 mm{sup 3}/K. (authors)

  4. Method of drying passivated micromachines by dewetting from a liquid-based process

    DOE Patents [OSTI]

    Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara

    2000-01-01

    A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.

  5. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOE Patents [OSTI]

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  6. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOE Patents [OSTI]

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  7. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    SciTech Connect (OSTI)

    Moreira, B. R. E-mail: fabiopassador@gmail.com Passador, F. R. E-mail: fabiopassador@gmail.com Pessan, L. A. E-mail: fabiopassador@gmail.com

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Bchi, Switzerland) with 115C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  8. 5-MW Dynamometer Ground Breaking

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) National Renewable Energy Laboratory in Golden, Colorado, broke ground for a new 5-MW dynamometer test facility.

  9. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

    Broader source: Energy.gov [DOE]

    Purpose, Context, Meeting Process, and Agenda for MW and RF as Enabling Technologies for Advanced Manufacturing on July 25, 2012

  10. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R.

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  11. Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361

    SciTech Connect (OSTI)

    1992-05-01

    A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

  12. Dry sample storage system for an analytical laboratory supporting plutonium processing

    SciTech Connect (OSTI)

    Treibs, H.A.; Hartenstein, S.D.; Griebenow, B.L.; Wade, M.A.

    1990-07-25

    The Special Isotope Separation (SIS) plant is designed to provide removal of undesirable isotopes in fuel grade plutonium by the atomic vapor laser isotope separation (AVLIS) process. The AVLIS process involves evaporation of plutonium metal, and passage of an intense beam of light from a laser through the plutonium vapor. The laser beam consists of several discrete wavelengths, tuned to the precise wavelength required to ionize the undesired isotopes. These ions are attracted to charged plates, leaving the bulk of the plutonium vapor enriched in the desired isotopes to be collected on a cold plate. Major portions of the process consist of pyrochemical processes, including direct reduction of the plutonium oxide feed material with calcium metal, and aqueous processes for purification of plutonium in residues. The analytical laboratory for the plant is called the Material and Process Control Laboratory (MPCL), and provides for the analysis of solid and liquid process samples.

  13. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    Technologies" ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"En...

  14. Assessment of superheated steam drying of wood waste

    SciTech Connect (OSTI)

    Woods, B.G.; Nguyen, Y.; Bruce, S.

    1994-12-31

    A 5 MW co-generation facility using wood waste is described which will supply power to Ontario Hydro, steam to the sawmill for process heating, and hot water for district heating customers in the town. The use of superheated steam for drying the wood was investigated to determine the impact on boiler performance, the environmental impact and the economic feasibility. The main benefit with superheated steam drying is the reduction in VOC emissions. The capital cost is currently higher with superheated steam drying, but further investigation is warranted to determine if the cost reductions which could be achieved by manufacturing the major components in North America are sufficient to make the technology cost competitive.

  15. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 10-MW Demonstration of Gas Suspension Absorption - Project Brief [PDF-342KB] Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report [PDF-8.2MB] ((June 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 10-MW Demonstration of Gas Suspension Absorption, Project Performance Summary [PDF-2.0MB] ((June 1999) The Removal

  16. Property:Device Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed...

  17. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report PDF-8.2MB ((June 1995) CCT Reports: Project ...

  18. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  19. Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Ormat's North Brawley plant with 17MW short of its 50MW potential...

    Open Energy Info (EERE)

    Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI...

  1. 550 MW | OpenEI Community

    Open Energy Info (EERE)

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  2. Brigantine OffshoreMW Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind...

  3. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the third quarter, April 1, 1989-June 30, 1989

    SciTech Connect (OSTI)

    Boysen, J.E.; Barbour, F.A.; Turner, T.F.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-07-01

    This research project is for the development of a technical and economical feasible process for drying and stability fine particles of high-moisture subbituminous coal. Research conducted in this quarter focused upon thermogravimetric analysis (TGA) of both feed coals; continuation of the bench-scale IFB drying experiments; and initiation of the characterization of the products from the bench-scale drying experiments to determine their moisture reabsorption, dustiness, and spontaneous ignition properties. Thirty 4-hr and six 12-hr bench-scale IFB drying tests were conducted this quarter making a total of forty-one 4-hr (19 using Eagle Butte feed coal and 22 using Usibelli feed coal) and six 12-hr (3 using each feed coal) tests conducted thus far. IFB reactor slopes of 3, 6, 9, 12, and 15 degrees were investigated for each feed coal. During the tests using Eagle Butte coal, gas-to-solids ratios ranging from approximately 0.7 to 9.7 lb/lb (kg/kg) and average IFB reactor temperatures ranging from approximately 370 to 700/degree/F (188 to 371/degree/C) were tested. 5 refs., 41 figs., 7 tabs.

  4. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  5. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced ...

  6. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  7. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  8. 50MW extreme-scale turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MW extreme-scale turbine - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  9. Full containment spray drying

    SciTech Connect (OSTI)

    Masters, K.

    1999-11-01

    Aspects of safety, environmental protection, and powder quality will continue to influence advances within spray dryer design and operation, and the concept of full containment spray drying offers a means to meet future industrial requirements. Process air recycle and powder containment within the drying chamber leads to no process air discharge to atmosphere, provides a more favorable operator environment around the spray dryer installation, reduces regions within the dryer layout where potential explosive powder/air mixtures can exist, improves yields, reduces powder losses, and provides easier cleaning operations with reduced wash water requirements.

  10. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  11. Brigantine OffshoreMW Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  12. Property:Project Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 + MHK ProjectsADM 5 + 1 + MHK ProjectsAWS II + 1 + MHK Projects...

  13. Property:Permit/License Buildout (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 40 + MHK ProjectsAlgiers Light Project + 20 + MHK ProjectsAnconia Point...

  14. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  15. A 75 MW S-Band Klystron

    SciTech Connect (OSTI)

    Ferguson, Patrick; Read, Michael; Ives, Robert Lawrence; Marsden, David

    2013-12-16

    This program performed computational and preliminary mechanical design for a klystron producing 75 MW at 2.856 GHz using periodic permanent magnet (PPM) focusing. The performance specifications achieved were those for the Matter-Radiation Interactions in the Extremes (MaRIE) project at Los Alamos National Laboratory. The klystron is designed to provide 10 microsecond pulses at 60 Hz with 56 dB gain. The PPM-Focusing eliminates requirements for solenoids and their associated power supplies, cooling systems, interlocks, control and diagnostic instrumentation, and maintenance. The represents a significant in both acquisition and operating costs. It also increases reliability by eliminating many potential failure modes.

  16. 3 MW Solid Rotating Target Design

    SciTech Connect (OSTI)

    McManamy, Thomas J; Gallmeier, Franz X; Rennich, Mark J; Ferguson, Phillip D; Janney, Jim G

    2010-01-01

    A rotating solid target design concept is being developed for potential use at the second SNS target station (STS). A long pulse beam (~ 1 msec) at 1.3 GeV and 20 Hz is planned with power levels at or above 1 MW. Since the long pulse may give future opportunities for higher power, this study is looking at 3 MW to compare the performance of a solid rotating target to a mercury target. Unlike the case for stationary solid targets at such powers this study indicates that a rotating solid target, when used with large coupled hydrogen moderators, has neutronic performance equal to or better than that with a mercury target, and the solid target has a greatly increased lifetime. Design studies have investigated water cooled tungsten targets with tantalum cladding approximately 1.2 m in diameter, and 70mm thick. Operating temperatures are low ( < 150 C) with mid-plane, top and bottom surface cooling. In case of cooling system failure, the diameter gives enough surface area to remove the decay heat by radiation to the surrounding reflector assemblies while keeping the peak temperatures below approximately 700 C. This temperature should mitigate potential loss of coolant accidents and subsequent steam, tungsten interaction which has a threshold of approximately 800 C. Design layouts for the sealing systems and potential target station concepts have been developed.

  17. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the second quarter, January 19--March 31, 1989

    SciTech Connect (OSTI)

    Boysen, J.E.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-05-01

    This research project is for the development of a technically and economically feasible process for drying and stabilizing of fine particles of high-moisture subbituminous coal. Research activities were initiated with efforts concentrating on characterization of the two feed coals: Eagle Butte coal from AMAX Coal Company's mine located in the Powder River Basin of Wyoming; and coal from Usibelli Coal Mine, Inc.'s mine located in central Alaska. Both of the feed coals are high-moisture subbituminous coals with ''as received'' moisture contents of 29% and 22% for the Eagle Butte and Usibelli coals, respectively. However, physical analyses of the crushed coal samples (--28-mesh particle size range) indicate many differences. The minimum fluidization velocity (MFV) of the feed coals were experimentally determined. The MFV for --28-mesh Eagle Butte coal is approximately 1 ft/min, and the MFV for --28-mesh Usibelli coal is approximately 3 ft/min. 2 refs., 16 figs., 3 tabs.

  18. The influence of the drying medium on high temperature convective drying of single wood chips

    SciTech Connect (OSTI)

    Johansson, A.; Rasmuson, A.

    1997-10-01

    High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapor, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs. As the surface becomes dry, the drying front moves towards the center of the particle and an overpressure is simultaneously built up which affects the drying process. The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in pure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.

  19. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    SciTech Connect (OSTI)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  20. 10-MW Supercritical-CO2 Turbine

    Broader source: Energy.gov [DOE]

    This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cycle—the supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

  1. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  2. PG&E Plans for 500 MW of PV

    Broader source: Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  3. Northern Cheyenne Tribe30 MW Wind Energy Development Grant

    Energy Savers [EERE]

    4 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Renewable Energy Development on Tribal lands Joe Little Coyote, Sr., Tribal Planner Dale Osborn, President Distributed Generation Systems, Inc. (Disgen) Contractor 10-18-04 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Discussion Outline Project Overview Objectives Project Location Project Participants Requested Technical Support 10-18-04 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Project Overview *

  4. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Modular Installation in a Grid Form Dozens of MW + MHK TechnologiesFloating anchored OTEC plant + The first technology demonstration ocean model is expected to be able to...

  5. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    Handbook for Hydroelectric Project Licensing and 5 MW Exemptions from Licensing Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  6. A miniaturized mW thermoelectric generator for nw objectives...

    Office of Scientific and Technical Information (OSTI)

    reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for ...

  7. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    Open Energy Info (EERE)

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  8. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  9. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  10. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  11. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  12. dry-regen | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dry Regenerable Sorbents Project No.: FC26-07NT43089 Schematic of RTI's Dry Carbonate Process (click image to enlarge) Research Triangle Institute (RTI) International completed two projects, NT43089 and NT40923, to investigate the use of sodium carbonate (Na2CO3 or soda ash) as an inexpensive, dry, and regenerable sorbent for carbon dioxide (CO2) capture in the Dry Carbonate Process. In this process, Na2CO3 reacts with CO2 and water to form sodium bicarbonate at the temperature of the flue gas

  13. Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal...

    Open Energy Info (EERE)

    Venture's Plan for a 25 MW Commercial Geothermal Power Plant on Hawaii's Big Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Puna...

  14. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312 Citation Details In-Document Search Title: 10MW Class Direct Drive HTS Wind Turbine: ...

  15. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

  16. Spallation Neutron Source Power Level Exceeds 1 MW (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Spallation Neutron Source Power Level Exceeds 1 MW Citation Details In-Document Search Title: Spallation Neutron Source Power Level Exceeds 1 MW No abstract prepared. Authors: Ekkebus, Allen E [1] + Show Author Affiliations ORNL Publication Date: 2010-01-01 OSTI Identifier: 985278 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Neutron News; Journal Volume: 21; Journal Issue: 1 Research Org: Oak Ridge National Laboratory

  17. Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

  18. Aquantis 2.5MW Ocean Current Generation Device | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device File 12aquantisawpdaalexfleming.pptx ...

  19. Dephosphorization when using DRI

    SciTech Connect (OSTI)

    2005-09-21

    The increase in high quality steel production in electric arc furnaces (EAFs) requires the use of scrap substitute materials, such as Direct Reduced Iron (DRI) and Hot Briquetted Iron (HBI). Although DRI and HBI products have lower copper and nickel contents than most scrap materials, they can contain up to ten times more phosphorus. This project, led by Carnegie Mellon Universitys Center for Iron and Steelmaking Research, improves the understanding of how phosphorus behaves when DRI and HBI melt.

  20. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? RETURN TO 100 MW

    SciTech Connect (OSTI)

    Smith, Kevin Arthur [ORNL; Primm, Trent [ORNL

    2009-01-01

    The feasibility of low-enriched uranium (LEU) fuel as a replacement for the current, high enriched uranium (HEU) fuel for the High Flux Isotope Reactor (HFIR) has been under study since 2006. Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting to LEU fuel requires returning the reactor power to 100 MW from 85 MW. The analyses required to up-rate the reactor power and the methods to perform these analyses are discussed. Comments regarding the regulatory approval process are provided along with a conceptual schedule.

  1. Combined Corex/DRI technology

    SciTech Connect (OSTI)

    Flickenschild, A.J.; Reufer, F.; Eberle, A.; Siuka, D.

    1996-08-01

    A feasible steelmaking alternative, the Corex/direct reduction/electric arc furnace combination, provides an economic route for the production of high quality steel products. This combination is a major step into a new generation of iron and steel mills. These mills are based on the production of liquid steel using noncoking coal and comply with the increasing demands of environmental protection. The favorable production costs are based on: Utilization of Corex and DRI/HBI plants; Production of hot metal equal to blast furnace quality; Use of low cost raw materials such as noncoking coal and lump ore; Use of process gas as reducing agent for DRI/HBI production; and Use of electric arc furnace with high hot metal input as the steelmaking process. The high flexibility of the process permits the adjustment of production in accordance with the strategy of the steel mills. New but proven technologies and applications of the latest state of art steelmaking process, e.g., Corex, in conjunction with DRI production as basic raw material for an electric arc furnace, will insure high quality, high availability, optimized energy generation at high efficiency rates, and high product quality for steelmaking.

  2. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes. Volume 2, Duct spray drying: Final report

    SciTech Connect (OSTI)

    Jozewicz, W.; Rochelle, G.T.

    1992-01-29

    Removal of sulfur dioxide (SO{sub 2}) from the flue gas of coal- burning power plants can be achieved by duct spray drying using calcium hydroxide [Ca(OH){sub 2}] slurries. A primary objective of this research was to discover the aspects of mass transfer into Ca(OH){sub 2} slurries which limit SO{sub 2} absorption. A bench- scale stirred tank reactor with a flat gas/liquid interface was used to simulate SO{sub 2} absorption in a slurry droplet. The absorption rate of SO{sub 2} from gas concentrations of 500 to 5000 ppm was measured at 55{degrees}C in clear solutions and slurries of Ca(OH){sub 2} up to 1.0 M (7 wt percent). Results are reported in terms of the enhancement factor, {O}. This research will allow prediction of conditions where the absorption of SO{sub 2} in Ca(OH){sub 2} slurries can be enhanced by changes to liquid phase constituents (under which SO{sub 2} absorption is controlled by liquid film mass transfer). Experiments in the stirred tank have shown that SO{sub 2} absorption in a 1.0 M Ca(OH){sub 2} slurry was completely dominated by gas film mass transfer with a large excess of Ca(OH){sub 2} but becomes controlled by liquid film resistance at greater than 50 percent Ca(OH){sub 2} utilization. (VC)

  3. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  4. Low Beam Voltage, 10 MW, L-Band Cluster Klystron

    SciTech Connect (OSTI)

    Teryaev, V.; Yakovlev, V.P.; Kazakov, S.; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

    2009-05-01

    Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

  5. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  6. Freeze drying apparatus

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  7. Freeze drying method

    SciTech Connect (OSTI)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-12-07

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  8. COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab November 18, 2014, 2:00pm to 3:00pm Colloquia MBG Auditorium COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective Dr. Michael Bell Princeton Plasma Physics Laboratory "The Tokamak Fusion Test Reactor (TFTR) operated at the Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. TFTR set a number of world records, including a plasma temperature of 510 million degrees centigrade -- the highest ever produced in a laboratory, and well beyond

  9. Latest developments on the Dutch 1MW free electron maser

    SciTech Connect (OSTI)

    Caplan, M. [Lawrence Livermore National Laboratory, 7000 East Ave, L-637 Livermore California, 94551 (United States); Verhoeven, A.G.; Urbanus, W. [FOM Instituut voor Plasma Fysica, Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (The Netherlands)

    1999-05-01

    The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz{endash}250GHz with wall plug efficiencies of 60{percent}. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception ({lt}25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse ({lt}10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8{percent} beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible. {copyright} {ital 1999 American Institute of Physics.}

  10. Drying '86. Volume 1-2

    SciTech Connect (OSTI)

    Mujumdar, A.S. )

    1986-01-01

    These proceedings contain 123 papers grouped under the headings of: Drying theory and modelling; Drying of granular materials; Spray drying; Drying of paper and wood products; Drying of foodstuff and biomaterials; Drying of agricultural products and grains; Superheated steam drying; Industrial drying systems and novel dryers; Use of solar energy in drying; Measurement and control of humidity and moisture; and Dewatering.

  11. Gelcasting compositions having improved drying characteristics and machinability

    DOE Patents [OSTI]

    Janney, Mark A.; Walls, Claudia A. H.

    2001-01-01

    A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.

  12. Spray-drying FGD

    SciTech Connect (OSTI)

    Yeager, K.

    1984-05-01

    Limited data are available on spray drying for SO/SUB/2 and particulate control to enable utilities to evaluate the claims of vendors. EPRI is sponsoring pilot- and full-scale testing of this technology and some results are presented.

  13. Dry piston coal feeder

    DOE Patents [OSTI]

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  14. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect (OSTI)

    Weiren Chou

    2003-06-04

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  15. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect (OSTI)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  16. Biomass drying technologies. Final report, September 1997--May 1998

    SciTech Connect (OSTI)

    Salomaa, E.

    1998-07-01

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the drying medium are discussed more closely, with comparison to the methods of drying using air or flue gas as the drying medium. Available types of steam dryers are described with reference to operating conditions, energy requirements, and types of biomass dried. Energy aspects are considered, as well as possibilities of steam utilization to recover the latent heat of vaporization. Thermal energy required for drying of biomass is calculated using tabulated values of steam properties. The amount of steam to provide the thermal energy needed for biomass drying, at different pressures and temperatures applicable in steam dryers, is calculated for both indirectly and directly heated steam dryers. The calculated heat requirement values of steam dryers have been compared with those reported in the literature. Further, anticipated emissions from flue gas and steam drying processes have been summarized.

  17. Draft dry year tools (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA White Book Dry Year Tools Firstgov Dry Year Tools November 9, 2006 - Final Dry Year Guide: The Final Dry Year Guide (PDF, 5 pages, 44 kb) and Figure 1 - Dry Year Strategy (PDF,...

  18. Dry Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic feet billion cubic feet Alaska 6,805 241 6,745 Lower 48 States 382,036 14,788 361,959 Alabama 2,121 59 2,036 Arkansas 12,795 5 12,789 California 2,260 112 2,107 Coastal Region Onshore 277 12 261 Los Angeles Basin Onshore 84 4 80 San Joaquin Basin Onshore 1,823 96 1,690 State Offshore 76 0 76 Colorado 21,992 813 20,851

  19. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  20. Ultrasonic Clothes Drying Technology

    ScienceCinema (OSTI)

    Patel, Viral; Momen, Ayyoub

    2016-05-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE?s Building Technologies Office in 2014. For more information please contact momena@ornl.gov.

  1. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013) | Department of Energy Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant at the Humboldt Industrial Park in Hazle Township, PA for Hazle Spindle LLC. The plant will provide frequency regulation services to grid operator PJM Interconnection. For more information about how OE performs research

  2. MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy...

    Open Energy Info (EERE)

    NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3",...

  3. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz Sandia National ... Leishman, J. G., "Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines," ...

  4. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W. 17 WIND ENERGY WIND TURBINE TESTING;...

  5. Development of a 50 MW Multiple Beam Klystron

    SciTech Connect (OSTI)

    Ives, R Lawrence; Ferguson, Patrick; Read, Michael; Collins, George

    2007-10-31

    The goal of this program was to develop a 50 MW, multiple beam klystron at 11.424 GHz. The device uses eight electron guns and beam lines to achieve the required power level at a beam voltage of 190 kV, consistent with solid state power supplies. The electron gun operates with confined flow focusing, which is unique among current multiple beam sources, and allows operation at power levels consistent with producing 10s of MWs of pulsed RF power. The circuit consists of a ring resonator input cavity, eight sets of buncher cavities, and a ring resonator output cavity. The RF output power is coupled into four rectangular waveguides equally spaced around the klystron. Eight individual collectors absorb the spent beam power in each beam. The klystron operates in a solenoid. The principle challenges in the design included development of the beam optics using confined flow focusing, shaping of the magnetic field in the gun region to avoid beam spiraling, coupling input power equally to all eight beam lines from a single input, and obtaining the required frequency and Q in the output cavity. The mechanical design was particularly complex due to the large parts count, number of braze and weld joints, and close proximity of the beam lines that limited access. Addressing vacuum leaks and cold testing the complex structures was particularly troublesome. At the conclusion of the program, the klystron is experiencing several vacuum leaks that are under repair. Efforts will continue to seal and test the klystron.

  6. Fuel strategy for 2 MW SF-TMSR

    SciTech Connect (OSTI)

    Zhu, Zhiyong; Lin, Jun; Cao, Changqing; Zhang, Haiqing; Zhu, Tianbao; Li, Xiaoyun

    2013-07-01

    China has launched a series of projects for developing high performance nuclear energy systems. The 2 MW solid fuel thorium based molten salt reactor (TMSR-SF) is one of these projects, which uses TRISO fuel elements as the fuel carrier and the FLiBe molten salt (2LiF-BeF{sub 2}) as the coolant. TRISO fuel elements have been well developed in respect to manufacturing, testing experiments inside and outside reactors as well as their successful application in HTGRs. The application of LEU (low enriched uranium) spherical TRISO fuel elements in TMSR-SF can be safely conducted through careful control of temperature and power density. Although the soaking of molten salt into graphite has shown no damage to the graphite material as experienced by ORNL group in the sixties last century, the compatibility of FLiBe salt with graphite covering of the fuel elements should be tested before the application. It is expected that TMSR-SF can be an appropriate test reactor for high performance fuel element development. (authors)

  7. Method of drying articles

    DOE Patents [OSTI]

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  8. Method of drying articles

    DOE Patents [OSTI]

    Janney, Mark A.; Kiggans, Jr., James O.

    1999-01-01

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  9. Mathematical models of cocurrent spray drying

    SciTech Connect (OSTI)

    Negiz, A.; Lagergren, E.S.; Cinar, A.

    1995-10-01

    A steady state mathematical model for a cocurrent spray dryer is developed. The model includes the mass, momentum, and energy balances for a single drying droplet as well as the total energy and mass balances of the drying medium. A log normal droplet size distribution is assumed to hold at the exit of the twin-fluid atomizer located at the top of the drying chamber. The discretization of this log normal distribution with a certain number of bins yields a system of nonlinear coupled first-order differential equations as a function of the axial distance of the drying chamber. This system of equations is used to compute the axial changes in droplet diameter, density, velocity, moisture, and temperature for the droplets at each representative bin. Furthermore, the distributions of important process parameters such as droplet moisture content, diameter, density, and temperature are also obtainable along the length of the chamber. On the basis of the developed model, a constrained nonlinear optimization problem is solved, where the exit particle moisture content is minimized with respect to the process inputs subjected to a fixed mean particle diameter at the chamber exit. Response surface studies based on empirical models are also performed to illustrate the effectiveness of these techniques in achieving the optimal solution when an a priori model is not available. The structure of empirical models obtained from the model is shown to be in agreement with the structure of the empirical models obtained from the experimental studies.

  10. No Heat Spray Drying Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Objective Advance research from prototype dryer ... First commercial market is dry flavors designed to ... change from existing practice Requires novel dryer ...

  11. DRI Companies | Open Energy Information

    Open Energy Info (EERE)

    Irvine, California Zip: 92614 Sector: Solar Product: US-based residential and commercial installer of turnkey solar systems, through subsidiary iDRI Energy. Coordinates:...

  12. Producing Persistent, High-Current, High-Duty-Factor H- Beams for Routine 1 MW Operation of SNS

    SciTech Connect (OSTI)

    Stockli, Martin P; Han, Baoxi; Hardek, Thomas W; Kang, Yoon W; Murray Jr, S N; Pennisi, Terry R; Piller, Chip; Santana, Manuel; Welton, Robert F

    2012-01-01

    Since 2009, SNS has been producing neutrons with ion beam powers near 1 MW, which requires the extraction of ~50 mA H- ions from the ion source with a ~5% duty factor. The 50 mA are achieved after an initial dose of ~3 mg of Cs and heating the Cs collar to ~170 C. The 50 mA normally persist for the entire 4-week source service cycles. Fundamental processes are reviewed to elucidate the persistence of the SNS H- beams without a steady feed of Cs and why the Cs collar temperature may have to be kept near 170 C.

  13. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Advancements have been made in applications electrotechnologies across a number of areas; some examples include: * Microwave Processing of Ceramics Joining & Welding Binder Burnout ...

  14. Cascading elastic perturbation in Japan due to the 2012 Mw 8.6 Indian Ocean Earthquake

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Delorey, A. A.; Johnson, P. A.; Chao, K.; Obara, K.

    2015-10-02

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 Mw 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. Here we present that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascadingmore » fashion. Transient dynamic stresses place crustal material into a metastable state during which material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.« less

  15. Gamesa Installs 2-MW Wind Turbine at NWTC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamesa Installs 2-MW Wind Turbine at NWTC Gamesa Installs 2-MW Wind Turbine at NWTC December 19, 2011 - 3:12pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D Newsletter. In October, the Department of Energy (DOE) National Renewable Laboratory (NREL) worked with Gamesa Wind US to complete the installation of Gamesa's G97-2 MW Class IIIA turbine at NREL's National Wind Technology Center. The turbine will be the fourth multimegawatt wind turbine to be

  16. Development and Production of a 201 MHz, 5.0 MW Peak Power Klystron

    SciTech Connect (OSTI)

    Aymar, Galen; Eisen, Edward; Stockwell, Brad; Begum, rasheda; Lenci, Steve; Eisner, Rick; Cesca, Eugene

    2016-01-01

    Communications & Power Industries LLC has designed and manufactured the VKP-8201A, a high peak power, high gain, VHF band klystron. The klystron operates at 201.25 MHz, with 5.0 MW peak output power, 34 kW average output power, and a gain of 36 dB. The klystron is designed to operate between 1.0 MW and 4.5 MW in the linear range of the transfer curve. The klystron utilizes a unique magnetic field which enables the use of a proven electron gun design with a larger electron beam requirement. Experimental and predicted performance data are compared.

  17. INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION SYSTEMS Eaton Corporation - Arden, NC A 15 kilovolt (kV) SiC variable-speed drive will be integrated with a ...

  18. br Owner br Facility br Type br Capacity br MW br Commercial...

    Open Energy Info (EERE)

    Owner br Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de...

  19. Evaluation of a 1000 MW Commercial Ultra Super-Critical Coal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of instantaneous O2 mass fraction in a hypothetical commercial scale 1000 MW, Ultra Super-Critical (USC) coal boiler Large eddy simulation prediction of instantaneous O2 mass...

  20. A miniaturized mW thermoelectric generator for nw objectives: continuous,

    Office of Scientific and Technical Information (OSTI)

    autonomous, reliable power for decades. (Technical Report) | SciTech Connect Technical Report: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades. We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a

  1. Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant

    Energy Savers [EERE]

    Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant Project Description Beacon Power will design, build, and operate a utility-scale 20MW flywheel plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for the plant owner/operator, Hazle Spindle LLC The plant will provide frequency regulation services to grid operator PJM Interconnection. The Beacon Power technology uses flywheels to recycle energy from the grid in response to changes in demand and grid

  2. Some considerations in simulation of superheated steam drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S. [New Zealand Forest Research Inst., Rotorua (New Zealand). Wood Processing Div.

    1997-05-01

    A mathematical model for high-temperature drying of softwood lumber with moist air has been modified and extended to simulate wood drying with superheated steam. In the simulation, differences between the two types of drying are considered, these include: external heat and mass transfer processes and calculation of equilibrium moisture content. The external mass transfer coefficient in the superheated steam drying was found to be much higher than that in the moist air drying, however, the heat transfer coefficients for these two cases were of the same order. The predicted drying curves and wood temperatures from the superheated steam drying model were compared with experimental data and there was close agreement. Further studies will apply the model to development of commercial drying schedules for wood drying with superheated steam.

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  4. Lithographic dry development using optical absorption

    DOE Patents [OSTI]

    Olynick, Deirdre; Schuck, P. James; Schmidt, Martin

    2013-08-20

    A novel approach to dry development of exposed photo resist is described in which a photo resist layer is exposed to a visible light source in order to remove the resist in the areas of exposure. The class of compounds used as the resist material, under the influence of the light source, undergoes a chemical/structural change such that the modified material becomes volatile and is thus removed from the resist surface. The exposure process is carried out for a time sufficient to ablate the exposed resist layer down to the layer below. A group of compounds found to be useful in this process includes aromatic calixarenes.

  5. Salto Grande. [1890-MW project on Vruguay River

    SciTech Connect (OSTI)

    de Hoyos, R.J.

    1980-09-01

    A joint hydroelectric project, the Salto Grande Dam on the Uruguay River, serves six million people in Argentina and Uruguay. The construction day was continuous from April 1974 until the first turbine began on schedule in July 1979. Although planning began in 1890 by individual visionaries who saw the river's potential, serious efforts did not get underway for another 50 years. The project became a technical training school and has built up a recognized management team in the process. Financing became available only after the 1973 oil embargo. The benefits of regional cooperation to develop a common resource enables the two countries to provide water resources, electric power, navigable streams for commerce and recreation, a common highway, and an interconnecting railroad. The cooperative infrastructure established to meet the needs of project personnel has improved living conditions for the area. (DCK)

  6. evaluation-dry-sorbent-urs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Project No.: DE-FE0000465 Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. URS and the University of Illinois at Urbana-Champaign are investigating a dry sorbent process configured to

  7. Powder processing for the fabrication of Si{sub 3}N{sub 4} ceramics. 1: Influence of spray-dried granule strength on pore size distribution in green compacts

    SciTech Connect (OSTI)

    Kamiya, Hidehiro; Isomura, Kenji; Jimbo, Genji; Junichiro, Tsubaki

    1995-01-01

    The effect of spray-dried granule strength on the microstructure of green compacts obtained by isostatic pressing was quantitatively analyzed. The fracture strength of single granules of Si{sub 3}N{sub 4} powder made with ultrafine Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} powders was measured directly by diametral compression. It was found that fracture strength increased notably with the increasing relative density of the granule and the decreasing size of agglomerates in suspension before spray-drying. Even when green bodies were prepared at an isostatic pressure of 200 MPa, intergranular pores, which negatively affected densification of the sintered bodies, occurred between unfractured granules. The volume and size of these pores in the green compacts increased with the increasing fracture strength of the granules. In the case of closely packed granules, an isostatic pressure of 800 MPa was required to completely collapse the intergranular pores. A simple equation was derived to calculate the isostatic pressure necessary for complete collapse of intergranular pores in the green compacts, and it was determined that granule strength must be kept as low as possible to obtain uniform green compacts.

  8. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    SciTech Connect (OSTI)

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  9. California Dry Natural Gas Reserves Revision Decreases (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Decreases (Billion Cubic Feet) California Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases California Dry Natural Gas Proved Reserves Dry ...

  10. California Dry Natural Gas Reserves Revision Increases (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Increases (Billion Cubic Feet) California Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases California Dry Natural Gas Proved Reserves Dry ...

  11. Texas Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Texas Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 Texas Dry Natural Gas Proved Reserves Dry ...

  12. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  13. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  14. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    SciTech Connect (OSTI)

    Reategui, S.; Hendrickson, S.

    2011-08-01

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  15. Tucson Request for Proposal for 1-5 MW PV PPA

    Broader source: Energy.gov [DOE]

    The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

  16. Drying/self-assembly of nanoparticle suspensions.

    SciTech Connect (OSTI)

    Cheng, Shengfeng; Plimpton, Steven James; Lechman, Jeremy B.; Grest, Gary Stephen

    2010-10-01

    The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier that can be processed with well-known techniques such as spin, drip and spray coating, fiber drawing, and casting. The next stage in the processing is often solidification involving drying by solvent evaporation. While there has been significant progress in the past few years in developing discrete element numerical methods to model dense nanoparticle dispersion/suspension rheology which properly treat the hydrodynamic interactions of the solvent, these methods cannot at present account for the volume reduction of the suspension due to solvent evaporation. As part of LDRD project FY-101285 we have developed and implemented methods in the current suite of discrete element methods to remove solvent particles and volume, and hence solvent mass from the liquid/vapor interface of a suspension to account for volume reduction (solvent drying) effects. To validate the methods large scale molecular dynamics simulations have been carried out to follow the evaporation process at the microscopic scale.

  17. Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC

    SciTech Connect (OSTI)

    Amann, John; Arnold, Ray; Seryi, Andrei; Walz, Dieter; Kulkarni, Kiran; Rai, Pravin; Satyamurthy, Polepalle; Tiwari, Vikar; Vincke, Heinz; /CERN

    2012-07-05

    This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed.

  18. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S.; Dakin, M. [New Zealand Forest Research Inst., Ltd., Rotorua (New Zealand). Mfg. Technologies Portfolio

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  19. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  20. Powder treatment process

    DOE Patents [OSTI]

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  1. Powder treatment process

    DOE Patents [OSTI]

    Weyand, John D. (Greensburg, PA)

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  2. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Dry and Mixed-Dry Climates Guides and Case Studies for Hot-Dry and Mixed-Dry Climates Map of the Hot-Dry and Mixed-Dry Zone of the United States. The zone contains the eastern side of California and follows the US border to cover the western half of Texas. The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-dry and mixed-dry climates. Best Practice Guides 40%

  3. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  4. Sicangu Lakota Oyate, Hihan Sapa Wapaha, Tate Woilagyapi Project - 30 MW Wind Energy Facility

    Energy Savers [EERE]

    Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) 30 MW Wind Energy Facility Phil Two Eagle, Director Ken Haukaas, Project Manager Resource Development Office Dale Osborn, President Distributed Generation Systems, Inc. (DISGEN) www.disgenonline.com Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) Project Objectives 1. Complete all the development

  5. Multi-Mission Capable, High g Load mW RPS

    SciTech Connect (OSTI)

    John C. Bass; Nathan Hiller; Velimir Jovanovic; Norbert B. Elsner

    2007-05-23

    Over the past few years Hi-Z has been developing a wide range of mW generators and life testing thermoelectric modules for the Department of Energy (DOE) to fulfill requirements by NASA Ames and other agencies. The purpose of this report is to determine the capabilities of a wide range of mW generators for various missions. In the 1st quarterly report the power output of various mW generators was determined via thermal and mechanical modeling. The variable attributes of each generator modeled were: the number of RHUs (1-8), generator outer diameter (1.25-4 in.), and G-load (10, 500, or 2,000). The resultant power output was as high as 180 mW for the largest generator with the lowest Gload. Specifically, we looked at the design of a generator for high G loading that is insulated with Xenon gas and multifoil solid insulation. Because the design of this new generator varied considerably from the previous generator design, it was necessary to show in detail how it is to be assembled, calculate them as of the generator and determine the heat loss from the system. A new method of assembling the RHU was also included as part of the design. As a side issue we redesigned the test stations to provide better control of the cold sink temperature. This will help in reducing the test data by eliminating the need to 'normalize' the data to a specific temperature. In addition these new stations can be used to simulate the low ambient temperatures associated with Mars and other planets.

  6. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect (OSTI)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  7. Dry scrubbing of SO/sub 2/

    SciTech Connect (OSTI)

    Shah, N.D.

    1982-06-01

    The advantages of dry scrubbing over wet scrubbing or spray drying are considered. One of the problem areas is that of waste disposal. The most cost-effective solutions are land disposal or landfill in clay cells. The factors influencing the selection of an SO/sub 2/ scrubbing system are discussed. Nahcolite appears to be the most promising agent for dry scrubbing.

  8. Compton Dry-Cask Imaging System

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  9. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  10. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect (OSTI)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  11. 50 MW X-BAND RF SYSTEM FOR A PHOTOINJECTOR TEST STATION AT LLNL

    SciTech Connect (OSTI)

    Marsh, R A; Anderson, S G; Barty, C J; Beer, G K; Cross, R R; Ebbers, C A; Gibson, D J; Hartemann, F V; Houck, T L; Adolphsen, C; Candel, A; Chu, T S; Jongewaard, E N; Li, Z; Raubenheimer, T; Tantawi, S G; Vlieks, A; Wang, F; Wang, J W; Zhou, F; Deis, G A

    2011-03-11

    In support of X-band photoinjector development efforts at LLNL, a 50 MW test station is being constructed to investigate structure and photocathode optimization for future upgrades. A SLAC XL-4 klystron capable of generating 50 MW, 1.5 microsecond pulses will be the high power RF source for the system. Timing of the laser pulse on the photocathode with the applied RF field places very stringent requirements on phase jitter and drift. To achieve these requirements, the klystron will be powered by a state of the art, solid-state, high voltage modulator. The 50 MW will be divided between the photoinjector and a traveling wave accelerator section. A high power phase shifter is located between the photoinjector and accelerator section to adjust the phasing of the electron bunches with respect to the accelerating field. A variable attenuator is included on the input of the photoinjector. The distribution system including the various x-band components is being designed and constructed. In this paper, we will present the design, layout, and status of the RF system.

  12. Trends in powder processing equipment

    SciTech Connect (OSTI)

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  13. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  14. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  15. Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry ... Natural Gas Dry Production Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  16. California Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sales (Billion Cubic Feet) California Dry Natural Gas Reserves Sales (Billion Cubic Feet) ... Referring Pages: Dry Natural Gas Reserves Sales California Dry Natural Gas Proved Reserves ...

  17. California--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) California--State Offshore Natural Gas Dry Production ... Referring Pages: Natural Gas Dry Production California State Offshore Natural Gas Gross ...

  18. California Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production California Dry Natural Gas Proved Reserves ...

  19. California Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Acquisitions (Billion Cubic Feet) California Dry Natural Gas Reserves Acquisitions ... Referring Pages: Dry Natural Gas Reserves Acquisitions California Dry Natural Gas Proved ...

  20. California Dry Natural Gas Reserves Extensions (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Extensions (Billion Cubic Feet) California Dry Natural Gas Reserves Extensions (Billion ... Referring Pages: Dry Natural Gas Reserves Extensions California Dry Natural Gas Proved ...

  1. California Dry Natural Gas Reserves New Field Discoveries (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    New Field Discoveries (Billion Cubic Feet) California Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves California Dry Natural Gas Proved ...

  2. California Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) California Dry Natural Gas Reserves Adjustments (Billion ... Referring Pages: Dry Natural Gas Reserves Adjustments California Dry Natural Gas Proved ...

  3. Dry borax applicator operator's manual.

    SciTech Connect (OSTI)

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.

  4. Second survey of dry SO/sub 2/ control systems. Final report Mar-Sep 80

    SciTech Connect (OSTI)

    Kelly, M.E.; Shareef, S.A.

    1981-02-01

    The report is an updated assessment of dry flue gas desulfurization (FGD) systems. Current and recently completed research, development, and commercial activities in the U.S. since October 1979, are reviewed including: (1) spray dryers with a fabric filter or an electrostatic precipitator (ESP), (2) dry injection of alkaline material into flue gas combined with particulate collection in an ESP or fabric filter, and (3) combustion of coal/alkali fuel mixtures. Spray drying remains the only commercially applied dry FGD process. Since the last survey, completed late in 1979, eight utility and two industrial spray drying systems have been sold. Nine of them use lime as the sorbent, and nine use a fabric filter for particulate collection. Removal guarantees for so/sub 2/ range from 62 to 85%, depending on coal sulfur content. Two full-scale industrial spray drying systems are currently operating. The first large utility system is scheduled for startup early in 1981. Several publicly and privately funded pilot-scale programs have been completed in the past year. EPA is currently funding three such programs (two spray drying and one dry injection), as well as development of two combustion modification processes for SO2 control (combustion of coal/limestone pellets and of a pulverized coal/alkali mixture in a low-NOx burner). The DoE and others are studying dry injection on a pilot scale.

  5. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect (OSTI)

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  6. Wetter for fine dry powder

    DOE Patents [OSTI]

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  7. The R and D progress of 4 MW EAST-NBI high current ion source

    SciTech Connect (OSTI)

    Xie, Yahong Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin

    2014-02-15

    A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.

  8. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  9. DRI Research Parks Ltd | Open Energy Information

    Open Energy Info (EERE)

    Research Parks Ltd Jump to: navigation, search Name: DRI Research Parks Ltd Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research...

  10. ,"New Mexico Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301977" ,"Release Date:","11...

  11. Cold vacuum drying system conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W.

    1996-05-01

    This document summarizes the activities involved in the removal of the SNF from the leaking basins and to place it in stable dry storage.

  12. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster)

    SciTech Connect (OSTI)

    McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W.

    2013-04-01

    In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. On-site testing of wind turbines might be expensive and time consuming since it requires both test equipment transportation and personnel presence in sometimes remote locations for significant periods of time because such tests need to be conducted at certain wind speed and grid conditions. Changes in turbine control software or design modifications may require redoing of all tests. Significant cost and test-time reduction can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. Such testing capability does not exist in the United States today. An initiative by NREL to design and construct a 7-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

  13. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  14. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  15. Response of the Los Azufres Geothermal Field to Four Years of 25 MW Wellhead Generation

    SciTech Connect (OSTI)

    Kruger, P.; Ortiz, J.; Miranda, G.; Gallardo, M.

    1987-01-20

    Production and chemical data have been compiled and analyzed on a six-month averaged basis for the first four years of electric energy generation with five 5-MW wellhead generators at the Los Azufres geothermal field. The data were evaluated with respect to the extent of observable thermal drawdown of the reservoir from 25 MW of generation in relation to the estimated capacity of the field of several hundred megawatts of power. The analysis updates the previous one compiled after the first two years of continuous production, at which time the results indicated that differences in reservoir temperature estimated from geochemical thermometers and wellhead production data were not statistically significant based on the number of data and the standard deviations. Analysis of the data after four years of operation were made for the larger number of data and smaller standard deviations. The results review the adequacy of the sampling frequency and the reliability of the measurements from statistical t-Test of the means of the first and second two-year periods. 3 figs., 5 tabs., 20 refs.

  16. Initial operating experience of the 12-MW La Ola photovoltaic system.

    SciTech Connect (OSTI)

    Ellis, Abraham; Lenox, Carl; Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

    2011-10-01

    The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

  17. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Richardson, Carl; Steen, William; Triana, Eugenio; Machalek, Thomas; Davila, Jenny; Schmit, Claire; Wang, Andrew; Temple, Brian; Lu, Yongqi; Lu, Hong; Zhang, Luzheng; Ruhter, David; Rostam-Abadi, Massoud; Sayyah, Maryam; Ito, Brandon; Suslick, Kenneth

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent materials to seven that were deemed thermodynamically viable for the process. Molecular modeling was used to guide sorbent synthesis through first principles simulations of adsorption and regeneration. Molecular dynamics simulations also modeled the impact of gas phase impurities common in gasified coal streams (e.g., H{sub 2}S) on the adsorption process. The role of inert dopants added for mechanical durability to active sorbent materials was also investigated through molecular simulations. Process simulations were conducted throughout the project to help determine the overall feasibility of the process and to help guide laboratory operating conditions. A large component of the program was the development of sorbent synthesis methods. Three different approaches were used: mechanical alloying (MA), flame spray pyrolysis (FSP), and ultrasonic spray pyrolysis (USP). Sorbents were characterized by a host of analytical techniques and screened for SEWGS performance using a thermogravimetric analyzer (TGA). A feedback loop from screening efforts to sorbent synthesis was established and used throughout the project lifetime. High temperature, high pressure reactor (HTPR) systems were constructed to test the sorbents at conditions mimicking the SEWGS process as identified through process modeling. These experiments were conducted at the laboratory scale to examine sorbents for their CO{sub 2} capacity, conversion of CO to CO{sub 2}, and impacts of adsorption and regeneration conditions, and syngas composition (including impurities and H2O:CO ratio). Results from the HTPR testing showed sorbents with as high as 0.4 g{sub CO{sub 2}}/g{sub sorbent} capacity with the ability to initially shift the WGS completely towards CO{sub 2}/H{sub 2}. A longer term experiment with a simple syngas matrix and N{sub 2}/steam regeneration stream showed a USP sorbent to be stable through 50 adsorption-regeneration cycles, though the sorbent tested had a somewhat diminished initial capacity. The program culminated in a technoeconomic assessment in which two different approaches were taken; one approach was intended to be technically conservative while the second required several key engineering challenges to be met in order to succeed. The project team is confident that, with the proper support, those challenges could be met. The second approach relies on a slipstream of H{sub 2} from the shifted syngas and O{sub 2} from an air separation unit (ASU) to be combusted in the presence of the sorbent for regeneration; termed a regenerating boiler. The approach also makes use of the heat of adsorption to generate >400 MW of turbine quality steam; total plant gross energy output as high as 1 GW was estimated for an IGCC with an initial gross energy output of 737 MW, without any additional coal usage. The regenerating boiler concept could benefit further from additional heat integration, but the results of this effort show a COE of $97.50 per MWh for a rational combination of operating parameters and sorbent lifetime as well as conservative estimates for steam turbines, gas turbine, and ASU. If the COE of CO{sub 2} transmission, storage and monitoring ($5.60 / MWh) is added to the base case for an IGCC ($81.30 / MWh for Case 5 from the DOE Bituminous Coal Report), the cost of CO{sub 2} capture for the regenerating boiler was only $10.60 / MWh; other regenerating boiler cases are as low $6.90 / MWh. The project met all agreed upon milestones and was completed within budget, more than 25% cost share provided by the project team. Results from the program showed that the SEWGS process has great promise, and with further study and evaluation could become a component of a comprehensive carbon capture program. SEWGS requires a paradigm shift in the traditional approach to carbon capture because the regenerating boiler concept is not a ‘back-end’ solution to CO{sub 2} mitigation. Rather, it is an integral part of the plant operations and is responsible for generating more electricity than the IGCC itself. Schemes could be envisioned where the H{sub 2} production is used exclusively to regenerate the sorbent, with any excess sold as a commodity, and the heat of adsorption serving as the primary driver for power generation. Further work with sorbent evaluation, process modeling and heat integration, and scale-up would be needed to more fully vet SEWGS, but the culmination of this program indicates that additional study is warranted.

  18. Energy analysis on use of air and superheated steam as drying media

    SciTech Connect (OSTI)

    Tarnawski, W.Z.; Mitera, J.; Borowski, P.; Klepaczka, A. [Technical Univ. of Lodz (Poland). Inst. of Papermaking and Paper Machines

    1996-10-01

    The physical properties of air and superheated steam were analyzed in a range of temperatures applied in paper and paperboard drying processes. On the basis of tests carried out on a pilot stand the values of energy indices for air and steam drying processes are compared. With the drying media temperature as T{sub M} = 300 C, nozzle velocity {nu} = 60 m/s and using the Huang and Mujumdar model as well as relationships given by Chance a comparative analysis of the results has been carried out. Variation of several indices in the range of temperatures 100--600 C and various nozzle velocities was studied.

  19. Recent progress of spray drying in China

    SciTech Connect (OSTI)

    Jinxin, T.; Zonglian, W.; Lixin, H.

    1999-10-01

    The development of spray drying technique during past 10 years of China is reviewed. Main achievements in research, development and utilization of three types of atomization are described and summarized. General trend of spray drying research and development in 21st century is forecasted.

  20. Cold vacuum drying facility 90% design review

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  1. Dry phase reactor for generating medical isotopes

    DOE Patents [OSTI]

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  2. Evaluation of spray-drying methods for cellulase preservation

    SciTech Connect (OSTI)

    Himmel, M.; Oh, K.; Tucker, M.; Rivard, C.; Grohmann, K.; Scott, C.D.

    1986-01-01

    Spray drying processes are widely used for the large-scale preservation of biology goods. The application of this technology to the enhancement of the storability of cellulase and related enzymes would improve fermentation processes requiring input of specific quantities of enzyme catalyst of known activity. Very high percentages (90% of original) of filter paper and carboxymethyicellulose hydrolyzing activities can be recovered from conventional spray dryers when operated at inlet air temperatures ranging from 90 to 180 degrees. The beta-glucosidase and beta-xylosidase activity recoveries were somewhat lower and were optimal at temperatures ranging from 120 to 150 degrees. However, the individual performance of the 12 enzyme preparations examined was quite preparation specific. An ultrasonic nozzle adaptation to the Yamato dryer demonstrated the overall feasibility of high energy atomization inasmuch as the filter paper activity was retained after drying. The more labile beta-xylosidase activity was, however, entirely lost.

  3. Dry soldering with hot filament produced atomic hydrogen

    DOE Patents [OSTI]

    Panitz, Janda K. G.; Jellison, James L.; Staley, David J.

    1995-01-01

    A system for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs.

  4. Dry soldering with hot filament produced atomic hydrogen

    DOE Patents [OSTI]

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  5. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  6. Inclined fluidized bed system for drying fine coal

    DOE Patents [OSTI]

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  7. A 30 MW, 200 MHz Inductive Output Tube for RF Accelerators

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read

    2008-06-19

    This program investigated development of a multiple beam inductive output tube (IOT) to produce 30 MW pulses at 200 MHz. The program was successful in demonstrating feasibility of developing the source to achieve the desired power in microsecond pulses with 70% efficiency. The predicted gain of the device is 24 dB. Consequently, a 200 kW driver would be required for the RF input. Estimated cost of this driver is approximately $1.25 M. Given the estimated development cost of the IOT of approximately $750K and the requirements for a test set that would significantly increase the cost, it was determined that development could not be achieved within the funding constraints of a Phase II program.

  8. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  9. Definition of a 5MW/61.5m wind turbine blade reference model.

    SciTech Connect (OSTI)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  10. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  11. High-power targets: experience and R&D for 2 MW

    SciTech Connect (OSTI)

    Hurh, P.; Caretta, O.; Davenne, T.; Densham, C.; Loveridge, P.; Simos, N.; /Brookhaven

    2011-03-01

    High-power particle production targets are crucial elements of future neutrino and other rare particle beams. Fermilab plans to produce a beam of neutrinos (LBNE) with a 2.3 MW proton beam (Project X). Any solid target is unlikely to survive for an extended period in such an environment - many materials would not survive a single beam pulse. We are using our experience with previous neutrino and antiproton production targets, along with a new series of R&D tests, to design a target that has adequate survivability for this beamline. The issues considered are thermal shock (stress waves), heat removal, radiation damage, radiation accelerated corrosion effects, physics/geometry optimization and residual radiation.

  12. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  13. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  14. Energy and process substitution in the frozen-food industry:...

    Office of Scientific and Technical Information (OSTI)

    and process substitution in the frozen-food industry: geothermal energy and the retortable pouch Stern, M.W.; Hanemann, W.M.; Eckhouse, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  15. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  16. Airless drying -- Developments since IDS'94

    SciTech Connect (OSTI)

    Stubbing, T.J.

    1999-09-01

    Since its introduction to IDS'94 delegates, significant progress has been made with the development of airless drying technology. The ceramic industry internationally is beginning to benefit from both the energy use and drying time reductions it achieves, while on the basis of further theoretical work carried out since 1993 other industries, including the bioenergy sector, should also soon begin to exploit its advantages. As global warming becomes a reality and oil reserves decline, superheated steam drying and gasification of biomass will contribute to the mitigation of those problems.

  17. Recent performance and ignition tests of the pulsed SNS H{sup −} source for 1-MW neutron production

    SciTech Connect (OSTI)

    Stockli, Martin P. Han, B. X.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R. F.

    2015-04-08

    After acquiring several reliable spare targets, SNS ramped the beam power from 850 kW to 1.4 MW, which required an increase in H{sup −} beam pulse length from 0.88 to 1.0 ms at 60 Hz. This increase initially produced slow 2-MHz power ramp-ups and, after several weeks of uninterrupted operation, it produced plasma outages every time the pulse length was raised above ∼0.95 ms. Similar outages were previously observed towards the end of long service cycles, which were believed to indicate that the breakdown voltage of the high purity hydrogen started to exceed the induced electric fields. In 2011 the RF was reconfigured to start with 10 cycles of 1.96 MHz, which yielded the shortest H{sup −} beam rise times and apparently eliminated those plasma outages. The new, pulse-length dependent outages were eliminated by increasing the initial frequency to 1.985 MHz. However, careful frequency studies are unable to justify this frequency. In addition, the paper discusses the issues and solutions for the electron-dump voltage, which starts to sag and become unstable after several weeks of high current operation. At the request of the authors and the Proceedings Editor this article has been updated to include References 3–13, which were present in the author’s original submission but were lost during manuscript processing in the Proceedings Editor's office. The updated article was published on 5 May 2015.

  18. High strength air-dried aerogels

    DOE Patents [OSTI]

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  19. Dry Cask Storage Study Feb 1989

    Broader source: Energy.gov [DOE]

    This report on the use of dry-cask-storage technologies at the sites of civilian nuclear power reactors has been prepared by the U.S. Department of Energy (DOE} in response to the requirements of...

  20. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Processors is an Agricultural Drying low temperature direct use geothermal facility in Brady Hot Springs E of Fernley, Nevada. This article is a stub. You can help OpenEI by...

  1. Bioenergy Impacts … Billion Dry Tons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 2030 at least one billion dry tons of non-food biomass resources, yielding up to 60 billion gallons of biofuels, as well as bio- based chemicals, products, and electricity. ...

  2. Spray drying for high-sulfur coal

    SciTech Connect (OSTI)

    Rhudy, R.

    1988-09-01

    Recent pilot plant tests indicate that spray drying, now used to control SO/sub 2/ emissions from low-sulfur coal, can also be effective for high-sulfur coal. Spray drying coupled with baghouse particulate removal is the most effective configuration tested to date, removing over 90% of SO/sub 2/ while easily meeting New Source Performance Standards for particulate emissions. 2 figures, 1 table.

  3. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  4. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, Jerald A. (Oakley, CA)

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  5. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  6. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  7. Producing persistent, high-current, high-duty-factor H{sup -} beams for routine 1 MW operation of Spallation Neutron Source (invited)

    SciTech Connect (OSTI)

    Stockli, Martin P.; Han, B. X.; Hardek, T. W.; Kang, Y. W.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R.

    2012-02-15

    Since 2009, the Spallation Neutron Source (SNS) has been producing neutrons with ion beam powers near 1 MW, which requires the extraction of {approx}50 mA H{sup -} ions from the ion source with a {approx}5% duty factor. The 50 mA are achieved after an initial dose of {approx}3 mg of Cs and heating the Cs collar to {approx}170 deg. C. The 50 mA normally persist for the entire 4-week source service cycles. Fundamental processes are reviewed to elucidate the persistence of the SNS H{sup -} beams without a steady feed of Cs and why the Cs collar temperature may have to be kept near 170 deg. C.

  8. Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

  9. High Burnup Dry Storage Cask Research and Development Project...

    Office of Environmental Management (EM)

    High Burnup Dry Storage Cask Research and Development Project: Final Test Plan High Burnup Dry Storage Cask Research and Development Project: Final Test Plan The potential need to ...

  10. ,"Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Dry Natural Gas Expected Future ... 12:18:23 PM" "Back to Contents","Data 1: Virginia Dry Natural Gas Expected Future ...

  11. ,"West Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Dry Natural Gas Expected Future ... PM" "Back to Contents","Data 1: West Virginia Dry Natural Gas Expected Future ...

  12. Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

  13. Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  14. Louisiana State Offshore Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  15. Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  16. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like ...

  17. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle ...

  18. Aq Dryers Agricultural Drying Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Facility Aq...

  19. Texas - RRC District 2 Onshore Dry Natural Gas Expected Future...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 ...

  20. Texas - RRC District 3 Onshore Dry Natural Gas Expected Future...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 ...

  1. Texas - RRC District 4 Onshore Dry Natural Gas Expected Future...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 ...

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  5. Final Report 200 MW L-Band Annular Beam Klystron for Accelerators

    SciTech Connect (OSTI)

    Read, Michael; Ferguson, Patrick; Ives, Lawrence; Song, Liqun; Carlsten, Bruce; Fazio, Michael

    2009-02-11

    This program developed a 200 MW, 1.3 GHz, Annular Beam Klystron (ABK) for accelerator systems. An ABK provides lower impedance than a conventional klystron, making it possible to produce higher RF powers with lower voltages. With a higher power per unit, fewer klystrons would be required for a large accelerator. Lower voltage also simplifies and reduces the cost of the power supply system. Both features will significantly lower the cost of an RF system. This device operates at 475 kV. The klystron uses a magnetron injection gun producing 1100 A in one microsecond pulses. Power is extracted into fundamental rectangular waveguide through two output windows. The predicted gain is approximately 45 dB with estimated efficiency of 45%. The klystron was assembled, but no facility was available for testing. Consequently, no high power performance measurements are available. Because the assembled klystron is approximately 15 feet long, it was disassembled for storage. It can be reassembled should a use materialize.

  6. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

    2011-11-28

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  7. Recent Performance and Ignition Tests of the pulsed SNS H- Source for 1-MW Neutron Production

    SciTech Connect (OSTI)

    Stockli, Martin P; Han, Baoxi; Murray, Jr, S N; Pennisi, Terry R; Piller, Chip; Santana, Manuel; Welton, Robert F

    2015-01-01

    After acquiring several reliable spare targets, SNS ramped the beam power from 850 kW to 1.4 MW, which required an increase in H- beam pulse length from 0.88 to 1.0 ms at 60 Hz. This increase initially produced slow 2-MHz power ramp-ups and, after several weeks of uninterrupted operation, it produced plasma outages every time the pulse length was raised above ~0.95 ms. Similar outages were previously observed towards the end of long service cycles, which were believed to indicate that the breakdown voltage of the high purity hydrogen started to exceed the induced electric fields. In 2011 the RF was reconfigured to start with 10 cycles of 1.96 MHz, which yielded the shortest H- beam rise times and apparently eliminated those plasma outages. The new, pulse-length dependent outages were eliminated by increasing the initial frequency to 1.985 MHz. However, careful frequency studies are unable to justify this frequency. In addition, the paper discusses the issues and solutions for the electron-dump voltage, which starts to sag and become unstable after several weeks of high current operation.

  8. Biomass gasification at the focus of the Odeillo (France 1-MW (thermal) solar furnace

    SciTech Connect (OSTI)

    Antal, M.J. Jr.; Royere, C.; Vialaron, A.

    1980-01-01

    Experiments described in this paper were undertaken to explore the use of concentrated solar radiation for the flash pyrolysis of biomass. Biomass materials (powdered, microcrystalline cellulose and ground corn cob material) have been successfully gasified in a windowed chemical reactor operating at the focus of the Odeillo 1 MW/sub th/ solar furnace. The quartz window survived radiant flux levels in excess of 1000 W/cm/sup 2/; however impurities carried by the steam flow into the reactor ultimately clouded the window. Pyrolytic char yields of the Odeillo experimetns were quite low: ranging between one and four percent. Gas yields were also relatively low, but condensible yields were high. These results reflect the important role played by the gas phase chemistry (largely unaffected by the high solar flux) in the production of permanent gases from biomass. A consideration of the characteristic times for chemical kinetic and heat transfer phenomenon within a rapidly pyrolyzing particle indicate that heat transfer (not chemical kinetics) is the rate limiting step. However, the thermochemical and optical properties of biomass materials are poorly understood and much more experimental work must be completed before definitive conclusions in this important area can be made. Because the use of concentrated solar radiation for direct gasification of biomass materials results in the formation of little or no char without reliance on the water gas or Boudourad reactions, solar flash pyrolysis of biomass holds unusual promise for the economical production of liquid and gaseous fuels from renewable resources.

  9. Advanced dry scrubbing on Ohio coals

    SciTech Connect (OSTI)

    Amrhein, G.T.; Kudlac, G.A.; Smith, P.V.

    1994-12-31

    The objective of this project is to demonstrate, at pilot scale, that advanced dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} emissions while burning high-sulfur Ohio coal, and that these technologies are economically competitive with wet scrubber systems. Dry scrubbing involves injecting an atomized mist of sorbent-containing slurry droplets into hot flue gas. The reaction products exit the scrubber as a dry powder that can be filtered from the gas and recycled or disposed. The project consists of testing an advanced dry scrubber system on two high sulfur Ohio coals. All testing will be conducted in the 5 MBtu pilot facility at B and W`s Alliance Research Center. The facility consists of a test furnace, a dry scrubber using a B and W DuraJet{trademark} two fluid atomizer, a pulse-jet baghouse, and an ash slaking system. Tests were conducted with and without recycling the solids collected from the baghouse. During recycle operation the solids were slurried with water and injected into the dry scrubber with the fresh lime slurry. Test results will be presented, including SO{sub 2} removal (70--99%), calcium to sulfur ratios (1.1--1.9), dry scrubber outlet temperatures (10--30 F), and system performance. An advanced feature of the project was the use of the B and W patented Droplet Impingement Device which removes large slurry droplets from the gas stream prior to the baghouse to prevent baghouse deposition. This allows operation at low approach temperatures.

  10. Cold Vacuum Drying facility design basis accident analysis documentation

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  11. Organic additive systems for spray-drying and dry pressing silicon nitride

    SciTech Connect (OSTI)

    Walker, W.J. Jr.; Reed, J.S.

    1996-06-01

    Silicon nitride granules for dry pressing were prepared by spray-drying slurries containing polyethylene glycol as the primary binder combined with other organic additives. Differences in slurry viscosity, granule character, pressing behavior and green strength were found to depend on the choice of deflocculant.

  12. Method and apparatus for drying web

    DOE Patents [OSTI]

    Orloff, David I.; Kloth, Gerald R.; Rudemiller, Gary R.

    1992-01-01

    The present invention is directed to a method and apparatus for drying a web of paper utilizing impulse drying techniques. In the method of the invention for drying a paper web, the paper web is transported through a pair of rolls wherein at least one of the rolls has been heated to an elevated temperature. The heated roll is provided with a surface having a low thermal diffusivity of less than about 1.times.10.sup.-6 m.sup.2 /s. The surface material of the roll is preferably prepared from a material selected from the group consisting of ceramics, polymers, glass, inorganic plastics, composite materials and cermets. The heated roll may be constructed entirely from the material having a low thermal diffusivity or the roll may be formed from metal, such as steel or aluminum, or other suitable material which is provided with a surface layer of a material having a low thermal diffusivity.

  13. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  14. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  15. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect (OSTI)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  16. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  17. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    SciTech Connect (OSTI)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

  18. Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households

    SciTech Connect (OSTI)

    Murto, Marika; Bjrnsson, Lovisa; Rosqvist, Hkan; Bohn, Irene

    2013-05-15

    Highlights: ? A novel approach for biogas production from a waste fraction that today is incinerated. ? Biogas production is possible in spite of the impurities of the waste. ? Tracer studies are applied in a novel way. ? Structural material is needed to improve the flow pattern of the waste. ? We provide a solution to biological treatment for the complex waste fraction. - Abstract: At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a dry fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m{sup 3}/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane.

  19. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  20. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  1. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G.

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  2. Long Wavelength Catalytic Infrared Drying System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conventional drying. 2006 2007 2008 2009 2010 2011 Energy Savings (Trillion Btu) 0.003 0.003 0.003 0.003 0.003 0.003 Emissions Reductions (Thousand Tons) Carbon 0.046 0.046 0.046 ...

  3. Design and preliminary test results of the 40 MW power supply at the National High Magnetic Field Laboratory

    SciTech Connect (OSTI)

    Boenig, H.J.; Bogdan, F.; Morris, G.C.; Ferner, J.A.; Schneider-Muntau, H.J.; Rumrill, R.H.; Rumrill, R.S.

    1993-11-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 {times} 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented.

  4. LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM Scott Kuszamaul 1 , Abraham Ellis 1 , Joshua Stein 1 , and Lars Johnson 2 1 Sandia National Laboratories, Albuquerque, NM, USA 2 SunPower Corporation, Richmond, CA, USA ABSTRACT Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery

  5. Assessment of technologies for constructing self-drying low-slope roofs

    SciTech Connect (OSTI)

    Kyle, D.M.; Desjarlais, A.O.

    1994-05-01

    Issues associated with removing excessive moisture from low-slope roofs have been assessed. The economic costs associated with moisture trapped in existing roofs have been estimated. The evidence suggests that existing moisture levels cause approximately a 40% overall reduction in the R-value of installed roofing insulation in the United States. Excess operating costs are further increased by a summertime heat transfer mode unique to wet insulation, caused by the daily migration of water within the roof. By itself, this effect can increase peak electrical demand for air conditioning by roughly 15 W/m{sup 2} of roofing, depending on the type of insulation. This effect will increase peak demand capacity required of utilities in any geographic region (e.g., 900 MW in the South). A simple formula has been derived for predicting the effect that self-drying roofs can have upon time-averaged construction costs. It is presumed that time-averaged costs depend predominantly upon (1) actual service life and (2) the likelihood that the less expensive recover membranes can be installed safely over old roofs. For example, an increase in service life from 15 to 20 years should reduce the current cost of roofing ($12 billion/year) by 21%. Another simple formula for predicting the reroofing waste volume indicates that an increase in service life from 15 to 20 years might reduce the current estimated 0.4 billion ft{sup 3}/year of waste by 25%. A finite-difference computer program has been used to study the flow of heat and moisture within typical existing roofs for a variety of US climates. Nearly all publicly available experimental drying data have been consulted. The drying times for most existing low-slope roofs in the United States are controlled largely climate and the permeability of the structural deck to water vapor.

  6. Feed Processing, Handling, and Gasification

    SciTech Connect (OSTI)

    2006-04-01

    Both current and future sugar biorefineries will generate a wide variety of residue streams that can be used as feedstocks for thermochemical processes, including corn stover, corn fiber, lignin-rich materials, and distillers dried grain and solubles.

  7. Human factors engineering report for the cold vacuum drying facility

    SciTech Connect (OSTI)

    IMKER, F.W.

    1999-06-30

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  8. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    SciTech Connect (OSTI)

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was evaporated first under vacuum condition at low temperature. Then, the dry woodchips were baked at high temperature (120-130 C) at atmospheric pressure. The qualities of the pulp made with this method were improved compared to that made with method one. The pulp shows higher brightness and lower bulk than Kraft pulping. The tensile strength is significantly higher than the pulp made from the first method. Although the pulp is stronger than that of TMP pulp, it is still lower than conventional Kraft fiber. Method Three: The third dry method was done in a Kraft pulping digester at elevated pressure but without free liquid in the digester. With this method, pulp that has almost the same qualities as conventional Kraft pulp could be produced. The screen yield, Kappa number, fiber brightness, pulp strength and pulp bulk are almost identical to the conventional Kraft pulp. The key advantages of this dry pulping method include ca. 55 % of cooking energy saved during the pulping process, as high as 50 wt% of NaOH saving as well as 3 wt% of Na2S saving comparing to Kraft one. By analyzing fiber properties, yields, chemical and energy consumptions, we concluded that the dry pulping method based on Liquid Free Chemical Pulping, LFCP, could be very attractive for the pulp and paper industry. More fundamental studies and scale up trials are needed to fully commercialize the technology. We expect to conduct pilot trials between 12 to 24 months of period if the DOE or industry can provide continual research funding. Based on the technology we demonstrated in this report, several pilot trial facilities in the United States will be available after small modifications. For example, the Herty Foundation in Savannah, Georgia is one of these potential locations. DOE funding for continuous study and final lead to commercialization of the technique is important.

  9. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  10. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  11. Dry lake reveals evidence of Southwestern 'megadroughts'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic feet billion cubic feet Alaska 6,805 241 6,745 Lower 48 States 382,036 14,788 361,959 Alabama 2,121 59 2,036 Arkansas 12,795 5 12,789 California 2,260 112 2,107 Coastal Region Onshore 277 12 261 Los Angeles Basin Onshore 84 4 80 San Joaquin Basin Onshore 1,823 96 1,690 State Offshore 76 0 76 Colorado 21,992 813 20,851

  12. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  13. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  14. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect (OSTI)

    Blümel, C. Schmidt, J. Dielesen, A. Sachs, M. Winzer, B. Peukert, W. Wirth, K.-E.

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  15. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Dry Natural Gas New Reservoir Discoveries in Old Fields Florida Dry Natural Gas Proved ...

  16. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  17. Dry Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Lower 48 States Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  19. Texas - RRC District 9 Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  20. Texas - RRC District 10 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  1. Texas - RRC District 8 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  2. Louisiana - North Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  3. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  4. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill Abstract The concept of Hot Dry Rock...

  5. Inspection of Used Fuel Dry Storage Casks (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    Inspection of Used Fuel Dry Storage Casks Citation Details In-Document Search Title: Inspection of Used Fuel Dry Storage Casks ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) ...

  6. Texas - RRC District 5 Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  7. Texas - RRC District 6 Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  8. Texas - RRC District 1 Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  9. Managing Aging Effects on Dry Cask Storage Systems for Extended...

    Office of Environmental Management (EM)

    dry cask storage system designs; and 4) AMPs and TLAAs for the SSCs that are important to safety in the DCSS designs. PDF icon Managing Aging Effects on Dry Cask Storage Systems...

  10. High Performance Walls in Hot-Dry Climates (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    High Performance Walls in Hot-Dry Climates Citation Details In-Document Search Title: High Performance Walls in Hot-Dry Climates High performance walls represent a high priority...

  11. http://www.cemp.dri.edu/cemp/climate/

    National Nuclear Security Administration (NNSA)

    Go Page 1 of 1 Community Environmental Monitoring Program | CEMP - DOE 5152011 http:www.cemp.dri.educempclimate

  12. Dry compliant seal for phosphoric acid fuel cell

    DOE Patents [OSTI]

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1990-01-01

    A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.

  13. Evaluation of battery converters based on 4. 8-MW fuel cell demonstrator inverter. Final report. [Contains brief glossary

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Electrical power conditioning is a critical element in the development of advanced electrochemical energy storage systems. This program evaluates the use of existing self-commutated converter technology (as developed by the Power Systems Division of United Technologies for the 4.8-MW Fuel Cell Demonstrator) with modification for use in battery energy storage systems. The program consists of three parts: evaluation of the cost and performance of a self-commutated converter modified to maintain production commonality between battery and fuel cell power conditioners, demonstration of the principal characteristics required for the battery application in MW-scale hardware, and investigation of the technical requirements of operation isolated from the utility system. A power-conditioning system consisting of a self-commutated converter augmented with a phase-controlled rectifier was selected and a preliminary design, prepared. A principal factor in this selection was production commonality with the fuel cell inverter system. Additional types of augmentation, and the use of a self-commutated converter system without augmentation, were also considered. A survey of advanced battery manufacturers was used to establish the dc interface characteristics. The principal characteristics of self-commutated converter operation required for battery application were demonstrated with the aid of an available 0.5-MW development system. A survey of five REA and municipal utilities and three A and E firms was conducted to determine technical requirements for operation in a mode isolated from the utility. Definitive requirements for this application were not established because of the limited scope of this study. 63 figures, 37 tables.

  14. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  17. DRI Model of the U.S. Economy -- Model Documentation:

    Reports and Publications (EIA)

    1993-01-01

    Provides documentation on Data Resources, Inc., DRI Model of the U.S. Economy and the DRI Personal Computer Input/Output Model. It also describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations.

  18. Application and energy saving potential of superheated steam drying in the food industry

    SciTech Connect (OSTI)

    Fitzpatrick, J. [Univ. College Cork (United Kingdom); Robinson, A. [Stork Engineering, Uxbridge (United Kingdom)

    1996-12-31

    The possibilities of using superheated steam in heat and mass transfer processes such as drying have lately been investigated and tested by several industries. The mode of operation, energy saving potential, advantages of and problems with this media in contact with foodstuffs and food waste sludge are discussed in this article.

  19. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  20. Multi-MW K-Band 7th Harmonic Multiplier for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Solyak, N.A.; Yakovlev, V.P.; Hirschfield, J.L.; Kazakevich, G.M.; LaPointe, M.A.; /Yale U.

    2009-05-01

    A preliminary design and current status are presented for a two-cavity 7th harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power in K-band using as its RF driver an XK-5 S-band klystron (2.856 GHz). The multiplier is to be built with a TE{sub 111} rotating mode input cavity and interchangeable output cavities, a principal example being a TE{sub 711} rotating mode cavity running at 20 GHz. The design that is described uses a 250 kV, 20 A injected laminar electron beam. With 8.5 MW of S-band drive power, 4.4 MW of 20-GHz output power is predicted. The design uses a gun, magnetic coils, and beam collector from an existing waveguide 7th harmonic multiplier. The gun has been re-conditioned and the desired operating parameters have been achieved.

  1. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom

    2012-06-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requires participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.

  2. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  3. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  4. Analysis of transport phenomena during the convective drying in superheated steam

    SciTech Connect (OSTI)

    Topin, F.; Tadrist, L. [Univ. de Provence, Marseille (France)

    1997-10-01

    This work focused on high-temperature convective drying (superheated steam drying). The process has been investigated both experimentally and numerically. The experimental analysis was carried out in an aerodynamic return-flow wind-tunnel, with very small cylinders of cellular concrete. For the local analysis, the samples were fitted with thermocouples and pressure sensors. The mean moisture content of the cylinders was measured by simple weighing while the temperature and pressure readings were being taken. Global and local analysis of heat and mass transfer in small cylinders in superheated steam were carried out. The systematical study for several sizes and aerothermal conditions show a similar behavior for moisture content, pressure and temperature values. A numerical model for high temperature drying, using the finite elements method, in a 2-D configuration, was implemented and validated.

  5. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  6. Energy-Efficient and Reduced-Effluent Process for Ultraclean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Energy-Efficient and Reduced-Effluent Process for ... Marangoni drying is extremely efficient in producing ultraclean surfaces on both ...

  7. Electricity rate effects of 150 MW shop assembled turbocharged boiler generating units

    SciTech Connect (OSTI)

    Drenker, S.; Fancher, R.

    1984-08-01

    Major upheavals in the environment in which electric utilities operate began in the 1960's. Modular construction, developed and perfected by process industry engineering firms, in conjuction with small turbocharged boiler power plants (currently under development), can respond to these forces by shortening construction time. Benefits from this approach, resulting from better matching of load growth and reducing planning horizon, can equal 15% to 60% of the capital cost of large pulverized coal plants.

  8. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    SciTech Connect (OSTI)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and. 4) development of dry deposition formulations applicable to urban areas. Also to improve dry deposition modeling capabilities, atmospheric dispersion models in which the dry deposition formulations are imbedded need better source-term plume initialization and improved in-plume treatment of particle growth processes. Dry deposition formulations used in current models are largely inapplicable to the complex urban environment. An improved capability is urgently needed to provide surface-specific information to assess local exposure hazard levels in both urban and non-urban areas on roads, buildings, crops, rivers, etc. A model improvement plan is developed with a near-term and far-term component. Despite some conceptual limitations, the current formulations for particle deposition based on a resistance approach have proven to provide reasonable dry deposition simulations. For many models with inadequate dry deposition formulations, adding or improving a resistance approach will be the desirable near-term update. Resistance models however are inapplicable aerodynamically very rough surfaces such as urban areas. In the longer term an improved parameterization of dry deposition needs to be developed that will be applicable to all surfaces, and in particular urban surfaces.

  9. Use of a TM sub 010 microwave cavity at 2. 45 GHz for aerosol and filament drying

    SciTech Connect (OSTI)

    Christiansen, D.E.; Unruh, W.P.

    1991-01-01

    As part of the development of a generic spray-drying process for aerosol preparation of homogeneous powders of complex metal oxide systems, we have investigated the use of 2.45 GHz power in a high-Q single-mode TM{sub 010} cavity coupled directly to aerosols of aqueous solutions. Partial success was attained with a concentrated solution of ferric nitrate. Although all particulates showed drying, only a few percent of the particles were fully dried prior to collection. The cavity operated at a power level just below that sufficient to cause electric field breakdown in the carrier gas (dry nitrogen). The large inherent dielectric shielding of the spherical droplets makes it difficult to couple enough power into an aerosol at 2.45 GHz to overcome the heat loss from individual droplets to the surrounding gas and achieve full particulate drying. The calculated and measured dielectric shielding of a thin cylinder of water aligned with the cavity electric field is very much smaller. We have produced heating rates in water {approximately}600 times more rapid than could be achieved with aerosols. This suggests using 2.45 GHz microwave power for drying extruded filaments and then calcining those dried filaments to ceramic fiber. 3 refs., 4 figs.

  10. Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.

    2013-01-01

    Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.

  11. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

  12. Metal wastage analysis of carbon steel tubes from TVA 20 MW AFBC (atmospheric fluidized-bed combustion)

    SciTech Connect (OSTI)

    Natesan, K.

    1987-11-01

    Evaporator tubes of carbon steel material, obtained from the TVA 20 MW AFBC test facility, were examined for deposit formation and metal wastage. Three different regions of the tube sections were analyzed using electron diffraction and several electron-optical techniques. The results showed that excessive metal wastage in one of the locations can be attributed to erosive wear of chlorine impregnated iron oxide scales. The results also showed that corrosion accelerating elements such as Cl, S, and K act independent of each other on the carbon steel evaporator tubes and it is imperative to characterize the local environment in the vicinity of the tube banks for understanding the complex deposition/corrosion phenomena that occur in FBC systems. 2 refs., 11 figs., 1 tab.

  13. Model for flue-gas desulfurization in a circulating dry scrubber

    SciTech Connect (OSTI)

    Neathery, J.K.

    1996-01-01

    A simple model was developed to describe the absorption of SO{sub 2} in a circulating dry scrubbing (CDS) process, which is a semi dry, lime-based, flue-gas desulfurization (FGD) process that utilizes a circulating fluidized bed arrangement for contacting a sorbent with SO{sub 2}-laden flue gas under coolside conditions. The reaction chemistry is thought to be similar to that of spray-drying absorption. The liquid-phase mass-transfer coefficient was successfully modeled as a function of the sorbent particle spacing on the wetted surfaces. Gas-phase mass-transfer resistances were assumed to be insignificant. Due to the high surface area available in a CDS reactor, the evaporation rate of water from the slurry was modeled as constant-rate drying according to classic spray-dryer theory. However, the falling-rate and diffusion evaporation stages were negligible in CDS since sorbent particle bunching at the surface of the slurry is nonexistent.

  14. Land application uses for dry FGD by-products

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. ); Haefner, R. . Water Resources Div.)

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  15. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect (OSTI)

    Botsch, W.; Smalian, S.; Hinterding, P.

    2013-07-01

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  16. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  17. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production from Greater than 200 Meters Deep (Percent) Decade...

  18. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Billion Cubic Feet) Decade...

  19. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep...

  20. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 17 978 729 946 6 1,147 484 258 92 2010's 530 758 12 478 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Utah Dry Natural Gas Proved Reserves Dry

  1. Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 28 718 0 0 0 1 133 0 2 0 2010's 124 3 0 1 573 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Virginia Dry Natural Gas Proved Reserves Dry Natural

  2. Hydrogen storage materials and method of making by dry homogenation

    DOE Patents [OSTI]

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  3. Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 336 8 66 63 24 31 4 298 19 54 2010's 393 6,760 1 4 248 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Arkansas Dry Natural Gas Proved Reserves Dry

  4. Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 47 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Florida Dry Natural Gas Proved Reserves Dry Natural Gas Proved

  5. Kansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 190 259 43 230 140 44 18 65 17 2 2010's 17 124 887 31 1,092 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Kansas Dry Natural Gas Proved Reserves Dry

  6. ,"Montana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  7. ,"Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  8. ,"Utah Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  9. ,"Pennsylvania Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  10. ,"Michigan Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  11. ,"Ohio Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  12. ,"New York Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  13. ,"Lower 48 States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  14. ,"Wyoming Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  15. ,"North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  16. ,"Mississippi Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  17. Aging Management Program for Stainless Steel Dry Storage System Canisters

    SciTech Connect (OSTI)

    Dunn, Darrell S.; Lin, Bruce P.; Meyer, Ryan M.; Anderson, Michael T.

    2015-06-01

    This is a conference paper presenting an aging management program for stainless steel dry storage system canisters. NRC is lead author of paper. PNNL provided input.

  18. New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) New York Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 1 23 118 12 1 55 3 0 54 2010's 2 0 43 8 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales New York Dry Natural Gas Proved Reserves Dry Natural Gas

  19. Ohio Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 124 87 19 7 0 54 11 0 31 196 2010's 374 0 0 12 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Ohio Dry Natural Gas Proved Reserves Dry Natural Gas

  20. ,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  1. ,"New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  2. ,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  3. ,"New Mexico Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  4. ,"New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  5. ,"New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  6. ,"New Mexico Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  7. ,"New Mexico Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  8. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  9. ,"New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  10. Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 432 50 2 0 5 1 432 4 10 0 2010's 0 100 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Kentucky Dry Natural Gas Proved Reserves Dry Natural Gas

  11. Michigan Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 479 24 35 201 13 104 48 1,043 0 0 2010's 529 643 0 11 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Michigan Dry Natural Gas Proved Reserves Dry

  12. Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 57 10 225 3 6 20 41 90 3 2010's 40 44 30 72 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Montana Dry Natural Gas Proved Reserves Dry Natural

  13. Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 1 6 246 29 419 188 302 10 2 2010's 263 573 11 357 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alabama Dry Natural Gas Proved Reserves Dry

  14. Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4,531 0 13 0 0 96 0 10 0 5 2010's 131 36 2 91 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alaska Dry Natural Gas Proved Reserves Dry Natural

  15. Dry Run, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dry Run, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1042277, -84.330494 Show Map Loading map... "minzoom":false,"mappingservice":...

  16. ,"Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981" ,"Release...

  17. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  18. Low Temperature Direct Use Agricultural Drying Geothermal Facilities...

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"","text":"DryingLowTemperatureGeothermalFacility" title"Geothermal...

  19. ,"Texas Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  20. ,"Texas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  1. ,"Texas Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  2. ,"Texas Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  3. ,"Texas Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  4. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  5. ,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  6. ,"Texas Dry Natural Gas Reserves Sales (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  7. ,"Texas Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  8. ,"Texas Dry Natural Gas Reserves Extensions (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  9. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology

    SciTech Connect (OSTI)

    Shi Xiaoliang Wang Sheng; Yang Hua; Duan Xinglong; Dong Xuebin

    2008-09-15

    Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm ({lambda}{sub ex}=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 {mu}m in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 deg. C calcining process was very helpful to obtain fully crystallized hBN at lower temperature. - Graphical abstract: hBN powder was fabricated prepared by spray drying and calcining-nitriding technology. The results indicated that spray drying and calcining-nitriding technology assisted with high-energy ball-milling process following calcined process was a hopeful way to manufacture hBN powder with high crystallinity in industrial scale.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  11. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore » of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  12. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore »of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  13. Dry calorimetry at the Savannah River Site

    SciTech Connect (OSTI)

    ReFalo, L.A.

    1992-01-01

    Heat flow calorimeters are used at the Savannah River Site to assay radioactive sources by measuring the emitted thermal power. The radioactive source is placed in a constant temperature environment and its thermal output is measured by non-destructive assay techniques. The isotopic mass is computed from the measured power through known watts/gram constants for each of the isotopes. The Equipment Engineering Section of the Savannah River Laboratory has developed calorimetric techniques which provide major improvements over other calorimeters. Improvements are in the areas of greater precision, reduced maintenance, and thermal control without using water. The elimination of water reduces criticality concerns during assay of fissionable materials and reduces health concerns during assay of tritium. Equipment Engineering Section has developed two basic dry calorimeter designs. The designs are identical in concept; however, they differ to accommodate different power levels. Each design has been tested demonstrating proof of concept. The current designs are for low wattage samples, .1 to 10 watts, and high wattage samples, 40 to 140 watts.

  14. Dry calorimetry at the Savannah River Site

    SciTech Connect (OSTI)

    ReFalo, L.A.

    1992-04-01

    Heat flow calorimeters are used at the Savannah River Site to assay radioactive sources by measuring the emitted thermal power. The radioactive source is placed in a constant temperature environment and its thermal output is measured by non-destructive assay techniques. The isotopic mass is computed from the measured power through known watts/gram constants for each of the isotopes. The Equipment Engineering Section of the Savannah River Laboratory has developed calorimetric techniques which provide major improvements over other calorimeters. Improvements are in the areas of greater precision, reduced maintenance, and thermal control without using water. The elimination of water reduces criticality concerns during assay of fissionable materials and reduces health concerns during assay of tritium. Equipment Engineering Section has developed two basic dry calorimeter designs. The designs are identical in concept; however, they differ to accommodate different power levels. Each design has been tested demonstrating proof of concept. The current designs are for low wattage samples, .1 to 10 watts, and high wattage samples, 40 to 140 watts.

  15. Drying low rank coal and retarding spontaneous ignition

    SciTech Connect (OSTI)

    Bixel, J.C.; Bellow, E.J.; Heaney, W.F.; Facinelli, S.H.

    1989-05-09

    A method is described of producing a dried particulate coal fuel having a reduced tendency to ignite spontaneously comprising spraying and intimately mixing the dried coal with an aqueous emulsion of a material selected from the group consisting of foots oils, petrolatum filtrate, and hydrocracker recycle oil.

  16. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  17. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect (OSTI)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt chloride was developed for nondestructive determination of surface moisture content. Fundamental new understanding of drying characteristics in wood and fiber has been provided that can be used by researchers to improve drying of wood and fiber. The three techniques for measuring moisture content and gradients provided in this study are efficient, practical, and economical - easy to apply by industry and researchers. An energy consumption worksheet is provided as a first step toward reducing energy consumed during drying of lumber and strandboard flakes. However, it will need additional verification and testing.

  18. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    SciTech Connect (OSTI)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  19. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  20. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    SciTech Connect (OSTI)

    Dr. Gordon A. Irons

    2004-03-31

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  1. Structural Sensitivity of Dry Storage Canisters

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Karri, Naveen K.; Adkins, Harold E.; Hanson, Brady D.

    2013-09-27

    This LS-DYNA modeling study evaluated a generic used nuclear fuel vertical dry storage cask system under tip-over, handling drop, and seismic load cases to determine the sensitivity of the canister containment boundary to these loads. The goal was to quantify the expected failure margins to gain insight into what material changes over the extended long-term storage lifetime could have the most influence on the security of the containment boundary. It was determined that the tip-over case offers a strong challenge to the containment boundary, and identifies one significant material knowledge gap, the behavior of welded stainless steel joints under high-strain-rate conditions. High strain rates are expected to increase the materials effective yield strength and ultimate strength, and may decrease its ductility. Determining and accounting for this behavior could potentially reverse the model prediction of a containment boundary failure at the canister lid weld. It must be emphasized that this predicted containment failure is an artifact of the generic system modeled. Vendor specific designs analyze for cask tip-over and these analyses are reviewed and approved by the Nuclear Regulatory Commission. Another location of sensitivity of the containment boundary is the weld between the base plate and the canister shell. Peak stresses at this location predict plastic strains through the whole thickness of the welded material. This makes the base plate weld an important location for material study. This location is also susceptible to high strain rates, and accurately accounting for the material behavior under these conditions could have a significant effect on the predicted performance of the containment boundary. The handling drop case was largely benign to the containment boundary, with just localized plastic strains predicted on the outer surfaces of wall sections. It would take unusual changes in the handling drop scenario to harm the containment boundary, such as raising the drop height or changing the impact angle. The seismic load case was derived from the August 23, 2011 earthquake that affected the North Anna power station. The source of the data was a monitoring station near Charlottesville, Virginia, so the ground motion is not an exact match. Stresses on the containment boundary were so low, even from a fatigue standpoint, that the seismic load case is generally not a concern. Based on this study, it is recommended that high strain rate testing of welded stainless steel test samples be pursued to define the currently unknown material behavior. Additional modeling is recommended to evaluate specific dry storage cask system designs subjected to tip-over loads using a high level of model detail. Additional modeling of the canister interior components (basket, fuel assemblies, etc.) is also recommended, to evaluate the feasibility of fuel retrievability after a tip-over incident. Finally, additional modeling to determine how much degradation a system could undergo and still maintain the integrity of the confinement barrier should be performed.

  2. Process for producing silicon

    DOE Patents [OSTI]

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  3. Process for producing silicon

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Carleton, Karen L. (Boulder, CO)

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  4. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    SciTech Connect (OSTI)

    JOSEPHSON, W S

    2003-09-04

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis refinements and/or relaxation of conservatisms. However, possible design improvements will be summarized for future application. All assumptions and related design features, while appropriate for conceptual designs, must be technically justified for the final design. The pertinent thermal design requirements and underlying assumptions are summarized in Section 1.3. The majority of the thermal analyses, as described in Sections 4.2 and 4.3, focus on an acceptable conceptual design arrived at by refinement of a preliminary but unacceptable design. The results of the subject thermal analyses, as presented in Section 4.0, satisfy items 3 and 4 above.

  5. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.

  6. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Final report

    SciTech Connect (OSTI)

    Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.; Smith, L.

    1994-02-01

    This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emission reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.

  7. Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

  8. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  9. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (1.4 kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.

    1981-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.4 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a stainless steel canister representative of actual fuel canisters, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel near-surface drywell tests being conducted at E-MAD, the spent fuel deep geologic storage test being conducted in Climax granite on the Nevada Test Site, and for five constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  10. Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection

    SciTech Connect (OSTI)

    1996-01-29

    Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

  11. A commercial project for private investments. Update of the 280 MW api Energia IGCC plant construction in central Italy.

    SciTech Connect (OSTI)

    Del Bravo, R.; Pinacci, P.; Trifilo, R.

    1998-07-01

    This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plant fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.

  12. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  13. Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant

    SciTech Connect (OSTI)

    Radosevich, L.G.

    1988-03-01

    This report describes the evaluations of the power production testing of Solar One, the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant near Barstow, California. The Pilot Plant, a cooperative project of the US Department of Energy and utility firms led by the Southern California Edison Company, began a three year period of power production operation in August 1984. During this period, plant performance indicators, such as capacity factor, system efficiency, and availability, were studied to assess the operational capability of the Pilot Plant to reliably supply electrical power. Also studied was the long-term performance of such key plant components as the heliostats and the receiver. During the three years of power production, the Pilot Plant showed an improvement in performance. Considerable increases in capacity factor, system efficiency, and availability were achieved. Heliostat operation was reliable, and only small amounts of mirror corrosion were observed. Receiver tube leaks did occur, however, and were the main cause of the plant's unscheduled outages. The Pilot Plant provided valuable lessons which will aid in the design of future solar central receiver plants. 53 refs., 46 figs., 4 tabs.

  14. Mechanics of compression drying solid wood cubes and chip mats

    SciTech Connect (OSTI)

    Haygreen, J.G.

    1982-10-01

    Wood cubes and chip mats were compressed in a cell under ram face pressures to 13,000 psi. The amount of water removed was determined for a range of species of various specific gravities and at several green moisture contents (MCs). The time dependence of the process was also studied. The purpose of this work was to describe the mechanics of compression drying which must be considered in designing commercial equipment. Green MC of wood chip mats was reduced to 45 to 50 percent MC (31% to 33% MC, wet basis) at pressures of 13,000 psi. At low pressures of 1,000 to 2,000 psi, moisture was reduced to 60 to 75 percent MC (38% to 43% MC, wet basis). There was a significantly greater moisture reduction at these low pressures if the pressure is maintained for up to 2 minutes rather than releasing it immediately once the target pressure is obtained. Water can be removed from high density species but pressures required are higher by a factor of 2 to 3. The chip mat is reduced to about one-sixth of its original volume at 2,000 psi and one-seventh at 6,000 psi. When pressing cubes of high green MC, about 7,000 foot-pounds of work (equivalent to 9 Btu) applied to the wood will remove up to 1 pound of water. (Refs. 9).

  15. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,878,956 7,135,326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production Texas Onshore Natural Gas Gross Withdrawals and

  16. Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,464 37 720 690 953 0 1,189 541 251 133 2010's 7 833 22 640 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Utah Dry Natural Gas

  17. Virginia Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 842 0 0 0 3 154 27 1 0 2010's 166 3 0 0 722 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Virginia Dry Natural Gas Proved

  18. West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 875 29 1 1 71 6 745 2 160 54 2010's 895 265 275 47 1,723 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales West Virginia Dry Natural Gas Proved

  19. Arkansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 5 80 82 52 30 5 280 5 36 2010's 807 6,880 6 9 80 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Arkansas Dry Natural Gas

  20. Calif--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Calif--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 201,754 205,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production California Onshore Natural Gas Gross Withdrawals and

  1. Colorado Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,049 2,468 1,059 429 2,528 1,238 1,539 750 747 374 2010's 242 1,244 1,667 584 693 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Colorado Dry

  2. Florida Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Florida Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves Acquisitions

  3. Kansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 170 331 22 239 174 60 13 63 30 1 2010's 23 122 644 31 1,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Kansas Dry Natural Gas

  4. New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 649 312 1,029 652 682 963 6,248 570 402 287 2010's 145 1,016 311 705 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales New Mexico Dry Natural Gas

  5. New York Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) New York Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 0 21 111 15 2 52 0 22 0 2010's 11 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions New York Dry Natural Gas Proved

  6. North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 5 42 6 22 22 40 43 26 1 2010's 136 169 206 384 322 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions North Dakota Dry

  7. North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 7 8 46 1 11 1 53 39 25 2 2010's 47 113 237 13 557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales North Dakota Dry Natural Gas Proved Reserves

  8. Ohio Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 115 62 2 0 0 7 83 0 32 79 2010's 239 4 71 0 40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Ohio Dry Natural Gas Proved Reserves

  9. Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,243 480 767 1,598 511 539 821 1,545 395 600 2010's 219 2,995 1,133 733 1,088 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Oklahoma Dry Natural

  10. Pennsylvania Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 124 11 5 30 28 78 6 4 275 52 2010's 678 799 4 103 504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Pennsylvania Dry Natural Gas Proved

  11. Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 508 49 66 0 0 0 534 6 13 0 2010's 39 84 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Kentucky Dry Natural Gas Proved

  12. Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 597 496 594 622 935 224 500 2,303 1,069 127 2010's 738 5,583 352 1,049 2,478 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Louisiana Dry Natural

  13. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals and

  14. Michigan Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 665 2 71 386 14 89 27 1,238 10 16 2010's 711 403 0 11 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Michigan Dry Natural Gas

  15. Mississippi Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 35 29 33 29 9 54 30 78 4 2 2010's 13 10 109 90 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Mississippi Dry Natural Gas

  16. Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 96 34 29 42 18 17 44 24 2 17 2010's 31 11 159 39 115 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Mississippi Dry Natural Gas Proved Reserves

  17. Montana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Montana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 59 6 326 3 9 17 39 95 3 2010's 30 44 4 4 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Montana Dry Natural Gas Proved

  18. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross

  19. Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 237 3 0 264 0 431 253 379 21 0 2010's 148 383 21 183 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alabama Dry Natural Gas

  20. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  1. Alaska Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4,348 0 13 0 0 98 0 6 0 0 2010's 0 221 0 272 193 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alaska Dry Natural Gas Proved

  2. Alaska--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alaska--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 294,212 286,627 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production Alaska Onshore

  3. Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,780 1,845 772 333 865 139 3,239 337 286 174 2010's 1,278 1,145 536 695 3,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Wyoming Dry Natural Gas

  4. Method of low pressure and/or evaporative drying of aerogel

    DOE Patents [OSTI]

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1995-05-30

    A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  5. Method of low pressure and/or evaporative drying of aerogel

    DOE Patents [OSTI]

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  6. Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas

    SciTech Connect (OSTI)

    Lee, J.B.; Ryu, C.K.; Baek, J.I.; Lee, J.H.; Eom, T.H.; Kim, S.H.

    2008-07-15

    Dry regenerable sorbent technology is one of the emerging technologies as a cost-effective and energy-efficient technology for CO{sub 2} capture from flue gas. Six sodium-based dry regenerable sorbents were prepared by spray-drying techniques. Their physical properties and reactivities were tested to evaluate their applicability to a fluidized-bed or fast transport-bed CO{sub 2} capture process. Each sorbents contained 20-50 wt% of Na{sub 2}CO{sub 3} or NaHCO{sub 3}. All sorbents except for Sorb NX30 were insufficient with either attrition resistance or reactivity, or both properties. Sorb NX30 sorbent satisfied most of the physical requirements for a commercial fluidized-bed reactor process along with good chemical reactivity. Sorb NX30 sorbent had a spherical shape, an average size of 89 {mu}m, a size distribution of 38-250 {mu}m, and a bulk density of approximately 0.87 g/mL. The attrition index (AI) of Sorb NX30 reached below 5% compared to about 20% for commercial fluidized catalytic cracking (FCC) catalysts. CO{sub 2} sorption capacity of Sorb NX30 was approximately 10 wt% (>80% sorbent utilization) in the simulated flue gas condition compared with 6 of 30 wt% MEA solution (33% sorbent utilization). All sorbents showed almost-complete regeneration at temperatures less than 120{sup o}C.

  7. Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Johnson, Lars; Ellis, Abraham; Kuszmaul, Scott S.

    2012-01-01

    Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery operated data acquisition system. The Lanai High-Density Irradiance Sensor Network is comprised of 24 LI-COR{reg_sign} irradiance sensors (silicon pyranometers) polled by 19 RF Radios. The system was implemented with commercially available hardware and custom developed LabVIEW applications. The network of solar irradiance sensors was installed in January 2010 around the periphery and within the 1.2 MW ac La Ola PV plant on the island of Lanai, Hawaii. Data acquired at 1 second intervals is transmitted over wireless links to be time-stamped and recorded on SunPower data servers at the site for later analysis. The intent is to study power and solar resource data sets to correlate the movement of cloud shadows across the PV array and its effect on power output of the PV plant. The irradiance data sets recorded will be used to study the shape, size and velocity of cloud shadows. This data, along with time-correlated PV array output data, will support the development and validation of a PV performance model that can predict the short-term output characteristics (ramp rates) of PV systems of different sizes and designs. This analysis could also be used by the La Ola system operator to predict power ramp events and support the function of the future battery system. This experience could be used to validate short-term output forecasting methodologies.

  8. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

  9. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  10. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  11. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  12. Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  13. Spray-dried fluid-bed sorbents tests - CMP-5

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01

    The objective of this study is to determine the feasibility of manufacturing highly reactive and attrition-resistant zinc titanate sorbents by spray drying, suitable for bubbling (conventional) as well as transport-type fluidized-bed reactor systems.

  14. Dry scrubbing oxides and particulate contaminants from hot gases

    SciTech Connect (OSTI)

    Quee, J. A.; Haak, M. P.

    1985-03-12

    Sulfur dioxides are dry scrubbed from a flue gas by introducing minute droplets containing a liquid, such as water, and an alkali or alkaline reactant, such as lime, into the spray zone in the primary spray drying chamber of a spray dryer and concurrently contacting these droplets with the hot flue gas. The droplets are partially dried to a tacky condition before reaching a foraminous collecting member extending through the primary spray drying chamber and collect on the collecting member as a moist, porous mat. As the flue gas continues to flow through the mat, the mat serves as a filter for removing fly ash and other particulate matter and remaining sulfur oxides react with unreacted particles of the reactant and reactive ingredients of the fly ash particles in the mat.

  15. Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  16. Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  17. Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  18. Mississippi Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  19. California Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  20. Montana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  1. Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  2. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  3. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  4. Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  5. Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  6. Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  7. Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  8. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  9. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  10. Membranes and MEAs for Dry Hot Operating Conditions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membranes and MEAs for Dry Hot Operating Conditions Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 13m.pdf More Documents & ...

  11. Innovative Drying Technology Extracts More Energy from High Moisture Coal

    Broader source: Energy.gov [DOE]

    An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility.

  12. Michigan Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. Mississippi Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  15. Utah Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. Montana Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  17. New York Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New York Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  18. Disneyland’s Dry Cleaning Gets an Energy Efficient Upgrade

    Broader source: Energy.gov [DOE]

    As the provider of laundry and dry cleaning services for Disneyland Resort’s costumes and hospitality supply items, L&N Costume and Linen Service knows a little something about both quantity and quality.

  19. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect (OSTI)

    SINGH, G.

    2000-04-25

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  20. http://www.wrcc.dri.edu/summary/nvut.html

    National Nuclear Security Administration (NNSA)

    Select from the list to the left in such cases. Western Regional Climate Center, wrcc@dri.edu Big Ben Ranger Stn (COOP) Page 1 of 1 WRCC cgi generated image map 5162011 http:...

  1. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  2. Effects of Multiple Drying Cycles on HBU PWR Cladding Alloys

    Broader source: Energy.gov [DOE]

    The purpose of this research effort is to determine the effects of canister/cask vacuum drying and storage on radial hydride precipitation in high‐burnup (HBU) pressurized water reactor (PWR)...

  3. Hollow-Fiber Membrane Compressed Air Drying System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    produces dry nonpermeate gas, a fraction of which is metered via a flow restrictor such as an orifice to provide a low-pressure purge gas that carries away the permeated moisture. ...

  4. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  5. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:54 AM" "Back to Contents","Data 1: Arizona Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SAZ2"...

  6. Radiative-dynamical consequences of dry tongues in the tropical...

    Office of Scientific and Technical Information (OSTI)

    The authors hypothesize that radiation is responsible for the thermal structure of dry tongues. A composite-derived radiative heating perturbation, acting for 3.5 days in an ...

  7. Design and operating experience of the Holcomb Station dry scrubber

    SciTech Connect (OSTI)

    Emerson, R.D.

    1985-01-01

    The Holcomb Station dry flue gas desulfurization system has been operational since May, 1983. The lime based system, consisting of three spray drying absorbers and two baghouses, has met all regulatory compliance requirements and contractual guarantee values. Some serious operational problems were encountered during the startup of this system. This paper discusses these problems and subsequent solutions along with testing experience to-date. The availability of this system for the first quarter of 1985 was 99.51 percent.

  8. What would you do if your water faucets ran dry?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What would you do if your water faucets ran dry? Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit What would you do if your water faucets ran dry? New Mexico's recurring drought pattern is an environmental and economic challenge June 1, 2014 Arid northern New Mexico landscape waiting for rain. Arid northern New Mexico landscape waiting for rain. Contact Community Programs Office Director Kurt

  9. Characterization of Dried and Torrefied Arundo Donax Biomass for Inorganic

    Office of Scientific and Technical Information (OSTI)

    Species Prior to Combustion (Technical Report) | SciTech Connect Dried and Torrefied Arundo Donax Biomass for Inorganic Species Prior to Combustion Citation Details In-Document Search Title: Characterization of Dried and Torrefied Arundo Donax Biomass for Inorganic Species Prior to Combustion Portland General Electric (PGE) potentially plans to replace the coal with torrefied Arundo donax for their Boardman coal-fired power plant by 2020. Since there is only a limited amount of experience

  10. Attrition resistant microporous particles by spray drying

    SciTech Connect (OSTI)

    Bergna, H.E. )

    1988-09-01

    Industrial powders made of grains in the micron size range are often used in processes that require high attrition resistance. Good examples of such powders are catalysts for fluid bed processes which are generally made of ca. 45 to ca. 150 or 200 {mu}m porous grains, hereby referred to as porous micrograins or, if they are spheroidal, porous microspheres (PMS). A conventional approach to impart attrition resistance to a catalyst grain is to embed small particles of the active catalyst in a continuous framework or skeleton made of a hard and relatively inert material. In this case, the percentage of hard materials required to impart sufficient attrition resistance to the catalyst composite particle is so high ({approximately} 50%) that it may affect the activity and/or the selectivity of the catalyst.

  11. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  12. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  13. Process for forming transparent aerogel insulating arrays

    SciTech Connect (OSTI)

    Tewari, P.H.; Hunt, A.J.

    1986-09-09

    This patent describes a drying process for forming transparent aerogel insulating arrays of the type utilizing the steps of hydrolyzing and condensing alkoxides to form alcogels, and subsequently removing the alcohol therefrom to form aerogels, the improvement comprising the additional step, after alcogels are formed, of substituting a solvent having a critical temperature less than the critical temperature of the alcohol for the alcohol in the alcogels, and drying the resulting gels at a supercritical temperature for the solvent, to thereby provide a transparent aerogel array within a substantially reduced drying time period.

  14. Process for preparing active oxide powders

    DOE Patents [OSTI]

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  15. Building America Case Study: High Performance Ducts in Hot-Dry...

    Office of Scientific and Technical Information (OSTI)

    Performance Ducts in Hot-Dry Climates; Technology Solutions for New and Existing Homes, ... Title: Building America Case Study: High Performance Ducts in Hot-Dry Climates; Technology ...

  16. Automatic system for regulating the frequency and power of the 500 MW coal-dust power generating units at the Reftinskaya GRES

    SciTech Connect (OSTI)

    Bilenko, V. A.; Gal'perina, A. I.; Mikushevich, E. E.; Nikol'skii, D. Yu.; Zhugrin, A. G.; Bebenin, P. A.; Syrchin, M. V.

    2009-03-15

    The monitoring and control systems at the 500 MW coal-dust power generating units No. 7, 8, and 9 at the Reftinskaya GRES have been modernized using information-regulator systems. Layouts for instrumental construction of these systems and expanded algorithmic schemes for the automatic frequency and power control system and for the boiler supply and fuelling are discussed. Results from tests and normal operation of the automatic frequency and power control system are presented.

  17. Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants

    SciTech Connect (OSTI)

    Nelson, Thomas; Coleman, Luke; Anderson, Matthew; Gupta, Raghubir; Herr, Joshua; Kalluri, Ranjeeth; Pavani, Maruthi

    2009-12-31

    The objective of this research and development (R&D) project was to further the development of a solid sorbent-based CO2 capture process based on sodium carbonate (i.e. the Dry Carbonate Process) that is capable of capturing>90% of the CO2 as a nearly pure stream from coal-fired power plant flue gas with <35% increase in the cost of electrictiy (ICOE).

  18. Preparation of Al{sub 2}O{sub 3}/Mo nanocomposite powder via chemical route and spray drying

    SciTech Connect (OSTI)

    Lo, M.; Cheng, F.; Wei, W.J.

    1996-08-01

    A route to prepare nanometer-sized Mo particulates in Al{sub 2}O{sub 3} was attempted by a combination of solution reactions in molecular scale and forcing precipitation by a spray-drying technique. MoO{sub 3} was first dissolved in ammonia water and then added in the slurry with high purity, submicrometer Al{sub 2}O{sub 3} powder. Mixed suspension was spray-dried, and then the dried granules were reduced by hydrogen gas and further hot-pressing to a bulky composite at various temperatures. Dissolution of Mo oxide, adsorption reactions on alumina surface, and surface potential of alumina particles in homogeneous ammonia suspension were studied. Characterization of the granules, including compactability, flowing properties, surface morphology, grain growth of Mo and Al{sub 2}O{sub 3}, and mixing homogeneity, were examined. Homogeneity of the spray-dried granules was determined by the calculation of mixing index and the observation of the microstructure of sintered body. The existence of intergranular, intragranular, and nanosized Mo particulates within Al{sub 2}O{sub 3} grains was observed by transmission electron microscopy (TEM). All the evidences revealed that homogeneous composites with nanometer-sized Mo had been successfully prepared by this attempt with the proposed chemical route and following spray-drying process. {copyright}{ital 1996 Materials Research Society.}

  19. 500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application

    SciTech Connect (OSTI)

    Chu, Tak Sum; Anderson, Scott; Barty, Christopher; Gibson, David; Hartemann, Fred; Marsh, Roark; Siders, Craig; Adolphsen, Chris; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Wang, Juwen; /SLAC

    2012-07-03

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  20. 500 MW X-BAND RF SYSTEM OF A 0.25 GEV ELECTRON LINAC FOR ADVANCED COMPTON SCATTERING SOURCE APPLICATION

    SciTech Connect (OSTI)

    Chu, T S; Anderson, S G; Gibson, D J; Hartemann, F V; Marsh, R A; Siders, C; Barty, C P; Adolphsen, C; Jongewaard, E; Tantawi, S; Vlieks, A; Wang, J W; Raubenheimer, T

    2010-05-12

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  1. Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Rounds, Robert; Peek, Georgianne Huff

    2009-01-01

    This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

  2. Wind Program Manufacturing Research Advances Processes and Reduces Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis Tower sections being installed for a 2-MW wind turbine. Knowing that reducing the overall cost of wind energy begins on the factory floor, the Department of Energy's (DOE's) Wind Program supports research and development efforts and funding opportunities that integrate new designs, materials, and advanced

  3. Water quality investigation of Kingston Fossil Plant dry ash stacking

    SciTech Connect (OSTI)

    Bohac, C.E.

    1990-04-01

    Changing to a dry ash disposal systems at Kingston Fossil Plant (KFP) raises several water quality issues. The first is that removing the fly ash from the ash pond could alter the characteristics of the ash pond discharge to the river. The second concerns proper disposal of the runoff and possibly leachate from the dry ash stack. The third is that dry ash stacking might change the potential for groundwater contamination at the KFP. This report addresses each of these issues. The effects on the ash pond and its discharge are described first. The report is intended to provide reference material to TVA staff in preparation of environmental review documents for new ash disposal areas at Kingston. Although the investigation was directed toward analysis of dry stacking, considerations for other disposal options are also discussed. This report was reviewed in draft form under the title Assessment of Kingston Fossil Plant Dry Ash Stacking on the Ash Pond and Groundwater Quality.'' 11 refs., 3 figs., 18 tabs.

  4. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    SciTech Connect (OSTI)

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence; Guimaraes, Maria

    2015-11-30

    Silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete is widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems

  5. Standard review plan for dry cask storage systems. Final report

    SciTech Connect (OSTI)

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  6. Olefin separation membrane and process

    DOE Patents [OSTI]

    Pinnau, I.; Toy, L.G.; Casillas, C.

    1997-09-23

    A membrane and process are disclosed for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5{times}10{sup {minus}6}cm{sup 3}(STP)/cm{sup 2}{center_dot}s{center_dot}cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment. 4 figs.

  7. Olefin separation membrane and process

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Toy, Lora G. (San Francisco, CA); Casillas, Carlos (San Jose, CA)

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  8. West Virginia Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 798 32 0 36 25 132 886 25 118 2 2010's 984 590 105 0 2,287 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions West Virginia

  9. Colorado Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,598 2,794 891 604 2,397 1,767 1,540 450 1,346 437 2010's 229 1,218 445 953 567 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  10. Are Energy Vampires Sucking You Dry? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Are Energy Vampires Sucking You Dry? Are Energy Vampires Sucking You Dry? October 29, 2015 - 10:22am Addthis Max Schreck in Nosferatu, presumably climbing the stairs to plug in some unused appliances. | Photo from Wikipedia, Public Domain in the U.S. Max Schreck in Nosferatu, presumably climbing the stairs to plug in some unused appliances. | Photo from Wikipedia, Public Domain in the U.S. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for

  11. California - Coastal Region Onshore Dry Natural Gas Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 350 365 1980's 299 306 362 381 265 256 255 238 215 222 1990's 217 216 203 189 194 153 156 164 106 192 2000's 234 177 190 167 189 268 206 205 146 163 2010's 173 165 290 266 261 - = No Data Reported; -- = Not

  12. California - Los Angeles Basin Onshore Dry Natural Gas Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 93 86 80 - = No Data Reported; -- = Not Applicable;

  13. California State Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 114 213 231 1980's 164 254 252 241 231 1990's 192 59 63 64 61 59 49 56 44 76 2000's 91 85 92 83 86 90 90 82 57 57 2010's 66 82 66 75 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,087 307 1,052 852 1,323 1,238 6,278 376 192 292 2010's 419 1,078 115 594 62 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  15. Oklahoma Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,325 671 845 1,864 763 728 1,202 1,567 599 387 2010's 1,519 2,459 975 738 1,210 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  16. Pennsylvania Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 160 32 6 1 29 139 234 41 168 600 2010's 930 1,884 12 351 1,295 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Pennsylvania

  17. Louisiana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 758 888 686 513 592 378 738 1,651 1,287 103 2010's 847 5,552 285 1,425 4,523 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  18. Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,720 2,026 850 406 811 470 3,372 647 170 54 2010's 1,308 1,205 619 679 4,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  19. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  20. PROCESSING OF RADIOACTIVE WASTE

    DOE Patents [OSTI]

    Allemann, R.T.; Johnson, B.M. Jr.

    1961-10-31

    A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

  1. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 ...

  2. Study of in-duct spray drying using condensation aerosol

    SciTech Connect (OSTI)

    Chen, W.J.R.; Chang, S.M.; Adikesavalu, R. )

    1992-06-01

    Sulfur removal efficiency of in-duct spray drying is limited by sorbent content and surface properties of the sorbent-water aerosol. It was the purpose of this study to improve the sulfur removal efficiency for in-duct spray drying by injecting condensation aerosol instead of conventional dispersion aerosol. The program was composed of three phases. In Phase I, a novel pulsed fluid bed feeder was developed and was used to feed hydrated lime for subsequent experiments. A small condensation aerosol generator was then built, which produces a lime-water condensation aerosol by condensing steam on lime particles. The results show that novel lime-water aerosols less than 10 microns were generated. The central task in Phase II was to simulate experimentally in-duct spray drying using condensation aerosols and compare the results with those using dispersion aerosols reported in the literature. A small entrained-flow reactor was constructed to simulate an in-duct spray dryer. The condensation aerosol was then introduced to the reactor at various approach to saturation temperature, calcium/sulfur stoichiometry and sulfur dioxide concentration for desulfurization study. The results show that we have improved the sulfur removal efficiency for in-duct spray drying to 90 percent or above. Thus we have met and exceeded the stated project goal of 70 percent sulfur removal. A comprehensive computer code was employed to calculate sulfur removal efficiency in Phase III.

  3. Dry FGD (flue-gas desulfurization) at Argonne National Laboratory

    SciTech Connect (OSTI)

    Livengood, C.D.

    1990-01-01

    Flue-gas desulfurization (FGD) systems based on spray drying are a relatively recent addition to the spectrum of sulfur dioxide (SO{sub 2}) control options available to utility and industrial boiler operators. Such systems appear to offer advantages over wet lime/limestone systems in a number of areas: low energy consumption, low capital cost, high reliability, and production of a dry waste that is easily handled and disposed of. These advantages have promoted rapid acceptance of dry scrubbers for applications using western low-sulfur coal, but uncertainties regarding the performance and economics of such systems for control of high-sulfur-coal emissions have slowed adoption of the technology in the Midwest and East. At Argonne National Laboratory (ANL) we have had more than eight years of operating experience with an industrial-scale dry scrubber used with a boiler firing high-sulfur (3.5%) midwestern coal. This paper describes our operating experience with that system and summarizes several research programs that have utilized it. 7 refs., 15 figs., 6 tabs.

  4. Photocatalytic properties of titania pillared clays by different drying methods

    SciTech Connect (OSTI)

    Ding, Z.; Zhu, H.Y.; Lu, G.Q.; Greenfield, P.F.

    1999-01-01

    Photocatalysts based on titania pillared clays (TiO{sub 2} PILCs) have been prepared through a sol-gel method. Different drying methods, air drying (AD), air drying after ethanol extraction (EAD), and supercritical drying (SCD) have been employed and found to have significant effects on the photocatalytic efficiency of the resultant catalysts for the oxidation of phenol in water. Titania pillared clay (TiO{sub 2} PILC) obtained by SCD has the highest external and micropore surface area, largest amount and smallest crystallite size of anatase, and exhibited the highest photocatalytic activity. Furthermore, silica titania pillared clay (SiO{sub 2}-TiO{sub 2} PILC) after SCD, titania coated TiO{sub 2} PILC (SCD) and SiO{sub 2}-TiO{sub 2} PILC (SCD) were synthesized to study the key factors controlling the photocatalytic activity. It is concluded that the dispersion of nanometer-sized anatase on the surface of the PILC particles and the suspensibility of the particles are the most important factors for high photocatalytic efficiency.

  5. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  6. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  7. Final Report - Membranes and MEA's for Dry, Hot Operating Conditions

    SciTech Connect (OSTI)

    Hamrock, Steven J.

    2011-06-30

    The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA?¢????s comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20???ºC to 120???ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA?¢????s, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the 2005 Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year R&D Plan. In the course of this four-year program we developed a new PEM with improved proton conductivity, chemical stability and mechanical stability. We incorporated this new membrane into MEAs and evaluated performance and durability.

  8. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  9. Navajo Nation Navajo-Hopi Land Commission Feasibility Study for 4,000 MW of Renewable Power at the Paragon-Bisti Ranch

    Energy Savers [EERE]

    4,000 MW of Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO March 25, 2014   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974.  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside certain lands for the benefit of relocatees. HISTORY  HISTORY   Paragon-Bisti Ranch is one of the selected lands :  Located in northwestern New Mexico.  22,000 acres of land  Benefits

  10. Gas pollution control apparatus and method and wood drying system employing same

    SciTech Connect (OSTI)

    Eatherton, J.R.

    1984-02-14

    Pollution control apparatus and method are disclosed in which hot exhaust gas containing pollutants including solid particles and hydrocarbon vapors is treated by transmitting such exhaust gas through a container containing wood members, such as wood chips, which serve as a filter media for filtering out such pollutants by causing such solids to deposit and such hydrocarbon vapors to condense upon the surface of the wood members. The contaminated wood chips are discharged from the filter and further processed into chip board or other commercial wood products thereby disposing of the pollutants. Lumber may be used as the wood members of the filter in a lumber kiln by deposition of solid particles on the rough surface of such lumber. The contaminated surfaces of the lumber are removed by a planer which produces a smooth finished lumber and contaminated wood chips that may be processed into chip board or other commercial wood products. A wood drying system employing such pollution control apparatus and method includes a hot air dryer for wood or other organic material, such as a wood chip rotary dryer or a wood veneer dryer, which produces hot exhaust gases containing pollutants including hydrocarbon vapors and solid particles. This hot exhaust air is transmitted through a lumber kiln to dry lumber thereby conserving heat energy and causing solid particle pollutants to deposit on the surface of the lumber. The kiln exhaust air containing solid and hydrocarbon vapor pollutants is then transmitted up through a filter stack of wood chips.

  11. Method and apparatus for de-watering biomass materials in a compression drying process

    DOE Patents [OSTI]

    Haygreen, John G.

    1986-01-01

    A method and apparatus for more effectively squeezing moisture from wood chips and/or other "green" biomass materials. A press comprising a generally closed chamber having a laterally movable base at the lower end thereof, and a piston or ram conforming in shape to the cross-section of the chamber is adapted to periodically receive a charge of biomass material to be dehydrated. The ram is forced against the biomass material with suffcient force to compress the biomass and to crush the matrix in which moisture is contained within the material with the face of the ram being configured to cause a preferential flow of moisture from the center of the mass outwardly to the grooved walls of the chamber. Thus, the moisture is effectively squeezed from the biomass and flows through the grooves formed in the walls of the chamber to a collecting receptacle and is not drawn back into the mass by capillary action when the force is removed from the ram.

  12. Flow Processes in the Dry Regime: The Effect on Capillary Barrier...

    Office of Scientific and Technical Information (OSTI)

    consist of two layers of granular materials designed so that the contrast in material hydraulic properties and sloping interface retains infiltrating water in the upper layer. ...

  13. Enhancement of Ca(OH){sub 2}/fly ash sorbent for the dry-desulfurization process

    SciTech Connect (OSTI)

    Mitsuo Yamamoto; Satoshi Komaki; Daichi Nakajima; Norihiko Matsushima; Dan Liu; Masateru Nishioka; Masayoshi Sadakata

    2006-10-15

    Ca(OH){sub 2}/fly ash sorbent has been studied as an effective method for SO{sub 2} removal. The effect of iron and other species for enhancing the ability of Ca(OH){sub 2}/fly ash sorbent was investigated in this study. At first, Fe(NO{sub 3}){sub 3} was added in the preparation of the sorbent, and TG analysis was carried out. The Ca utilization rate over a period of 90 min was about 10% greater than that for Ca(OH){sub 2}/fly ash sorbent. However, it was found that iron is not effective for enhancing the ability of Ca(OH){sub 2}/fly ash sorbent but that NO{sub 3}{sup -} was the most effective factor to enhance it. The mechanism of enhancing the Ca utilization rate was also investigated, and it was found that Ca(NO{sub 3})2 was produced in the sorbent and reacted with SO{sub 2}, so that the reaction Ca(NO{sub 3}){sub 2} + SO{sub 2} {yields} CaSO{sub 4} + 2NO + O{sub 2} proceeded. 12 refs., 6 figs., 3 tabs.

  14. Cleaning process for EUV optical substrates

    DOE Patents [OSTI]

    Weber, Frank J.; Spiller, Eberhard A.

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  15. Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1985-07-04

    A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

  16. Texas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Texas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5,873 4,297 4,249 2,878 4,137 5,024 6,366 6,244 3,442 1,563 2010's 3,179 22,546 3,000 3,942 8,111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas

  17. Texas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Texas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4,402 2,902 3,889 2,552 2,780 4,098 4,603 5,790 3,087 1,852 2010's 2,580 20,510 2,774 3,423 6,483 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Texas

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  19. Florida Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Florida Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 2 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas

  20. Florida Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Florida Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1 1 1980's 0 0 0 0 1 0 1 0 0 3 1990's 1 0 1 0 0 0 0 0 0 0 2000's 0 0 3 0 1 0 32 0 183 0 2010's 0 9 4 2 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry