Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area (Redirected from Winnemucca Dry Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

2

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

3

2-M Probe At Winnemucca Dry Lake Area (Kratt, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Winnemucca Dry Lake Area (Kratt, Et Al., 2010) Winnemucca Dry Lake Area (Kratt, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Winnemucca Dry Lake Area (Kratt, Et Al., 2010) Exploration Activity Details Location Winnemucca Dry Lake Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes More than 20 2-meter-deep temperatures were measured adjacent to these selected towers in a two-day period of November 2007. No obvious zones of temperature anomalies were detected. We were unable to clearly ascertain the background temperature but the spatial distribution of the data did not point to a broader zone of thermal highs. At both of these tufa localities, the process of inserting 2-meterlong probes into the ground was

4

The balance between deposition and subsidence (tectonics) in a rift basin playa and its effect on the climatic record of an area: Evidence from Bristol Dry Lake, California  

SciTech Connect

Two continuous core intervals drilled in Bristol Dry Lake, a large (150 km{sup 2}) playa in the central Mojave Desert of California, penetrated over 500 m of sediment and did not reach basement. The repetitious nature of the alternating shallow brine pond halite and siliciclastic and the consistency of the carbonate isotopic data from the surface and core indicate a relatively stable brine composition for most of the history of Bristol Dry Lake. All sedimentary structures and primary halite fabrics in the core indicate shallow-water, brine-pond halite alternated with halite-saturated siliciclastic muds in the basin center. A delicate balance of subsidence and mechanical and chemical deposition of evaporite and siliciclastic minerals was necessary to maintain the largely ephemeral lake environment of deposition through over 550 m of basin fill. The alternating brine pond/saline lake setting in Bristol Dry Lake is not directly related to climatic influences, and the sediments do not record major climatic events demonstrated in other closed-basin lakes. The reason for this insensitivity to climatic events is explained by the interior location of the basin, the low relief of the mountains surrounding the catchment, the large surface area of the catchment, and the low average sedimentation rates. All of the above criteria are at least partially controlled by the tectonics of the area, which, in turn, affect the sedimentation rate and supply water to the basin. Therefore, it is important to consider the influence of the above factors in determining global versus local, or regional, climate curves for a particular basin.

Rosen, M.R. (CSIRO, Floreat Park (Australia))

1991-03-01T23:59:59.000Z

5

Honey Lake Geothermal Area  

Energy.gov (U.S. Department of Energy (DOE))

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

6

Dry Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Dry Lake Wind Farm Facility Dry Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Iberdrola Renewables Location Navajo County AZ Coordinates 34.635651°, -110.357351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Lake Charles Urbanized Area MTP 2034  

E-Print Network (OSTI)

................................................................................................................................ 2-9 National Highway System ........................................................................................................................... 2-10 City of Lake Charles Transit System Routes... transportation. The Lake Charles Urbanized Area is located wholly within Calcasieu Parish and includes the cities of Lake Charles, Sulphur, and Westlake, as well as the unincorporated areas known as Moss Bluff, and Carlyss (see map on following page...

Lake Charles Urbanized Area Metropolitan Planning Organization

2009-08-04T23:59:59.000Z

8

Dry Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Dry Lake II Wind Farm Dry Lake II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Salt River Project Location Northwest of Snowflake AZ Coordinates 34.635651°, -110.357351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Oakland Sub-Area Folsom Lake  

E-Print Network (OSTI)

Oakland Sub-Area 25 MW (C) 92 Lake Tahoe Folsom Lake Clear Lake Indian Valley Reservoir Nacimiento IONE CLAY IONE ENERGY TIGER CREEK WEST POINT PINE GROVE NEPCO ELECTRA 1& 2 Camanche Reservoir New Hogan EARLY INTAKE NEW MOCCASIN CR BEAR VALLEY INDIAN FLAT MARIPOSA Mariposa TULLOCH CHINESE CAMP SONORA

10

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

11

Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

12

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

13

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

14

Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...  

Open Energy Info (EERE)

Home Exploration Activity: Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Medicine Lake Area Exploration Technique...

15

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Emmons Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Emmons Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3333,"lon":-162.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area (Redirected from Medicine Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

Clear Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Clear Lake Geothermal Area (Redirected from Clear Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01666667,"lon":-122.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Soda Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Soda Lake Geothermal Area Soda Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Soda Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.56666667,"lon":-118.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Clear Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Clear Lake Geothermal Area Clear Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01666667,"lon":-122.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Soda Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Soda Lake Geothermal Area (Redirected from Soda Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Soda Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.56666667,"lon":-118.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Geothermal Area Hot Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.33333333,"lon":-118.6,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network (OSTI)

survey of the Swan Lake Valley area, Oregon: Geonornicssurvey of the Swan Lake Valley Area, Oregon: GeonomicsKLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.

Stark, M.

2011-01-01T23:59:59.000Z

25

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network (OSTI)

KLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.survey of the Swan Lake Valley area, Oregon: Geonornicssurvey of the Swan Lake Valley Area, Oregon: Geonomics

Stark, M.

2011-01-01T23:59:59.000Z

26

MCM LTER METADATA FILE TITLE: Bacteria enumeration in lakes of the McMurdo Dry Valleys  

E-Print Network (OSTI)

(4):427-439. Spigel, R.H. and J.C. Priscu. 1996. Evolution of temperature and salt structure of Lake Bonney limnology of the McMurdo Dry Valley lakes. In Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys depending on the concentration of cells in each sample) is added to a cleaned filter tower (scrubbed

Priscu, John C.

27

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

28

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

29

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

30

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

Fish Lake Valley Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA...

31

Static Temperature Survey At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

32

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

33

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area (Redirected from Walker Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

34

The biogeochemistry of Si in the McMurdo Dry Valley lakes, Antarctica  

E-Print Network (OSTI)

as part of the McMurdo Dry Valleys, Long-Term Ecological Research (MCM-LTER) programme and is pres- ented, Antarc- tica. The valley is 33 km long and 12 km wide (Fig. 1). Taylor Valley is a polar desertThe biogeochemistry of Si in the McMurdo Dry Valley lakes, Antarctica Heather E. Pugh1 *, Kathleen

Priscu, John C.

35

Road Effects on a Population of Copperhead Snakes in the Land Between the Lakes National Recreation Area, K.Y.  

E-Print Network (OSTI)

the Lakes National Recreation Area (LBL) in Kentucky. LBL isBetween the Lakes National Recreation Area in Kentucky andthe Lakes National Recreation Area, Kentucky. Methods

Titus, Valorie R.; Zimmerer, Ed

2007-01-01T23:59:59.000Z

36

Aeromagnetic Survey At Clear Lake Area (Skokan, 1993) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Skokan, 1993) Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes USGS aeromagnetic data (Rapolla and Keller, 1984) were acquired at an elevation of 4500 feet and flown with one-mile spacings. These data were dominated by patterns of highs that coincide with serpentinite outcrops. Serpentinite is one component of the complex Franciscan melange. Fracturing within the Franciscan provides the porosity needed for collection of hot water characteristic of the Geysers Field. The Clear Lake Volcanics overlie the Franciscan formation. These in turn, are overlain by the Great Valley Sequence. The susceptibilities of both the Clear Lake Volcanics and Great

37

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

38

Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

39

Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fish Lake Valley Area (DOE GTP) Exploration...

40

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network (OSTI)

KLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.of the Swan Lake-Yonna Valley area, Klamath County, Oregon:

Stark, M.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Details Activities (1) Areas (1) Regions (0) Abstract: Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures were measured at five meter intervals from the ground surface to the deepest five meter interval. Subsequently, temperatures were remeasured two or three times in each borehole in order to demonstrate that equilibrium thermal conditions existed. The maximum difference in temperature, at any of the five meter intervals, was 0.03 deg

42

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

43

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

44

Lake City Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake City Hot Springs Geothermal Area Lake City Hot Springs Geothermal Area (Redirected from Lake City Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lake City Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.66842001,"lon":-120.2068527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Fish Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Geothermal Area Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-118.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Carson Lake Corral Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Carson Lake Corral Geothermal Area Carson Lake Corral Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson Lake Corral Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3561,"lon":-118.6642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Summer Lake Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Summer Lake Hot Springs Geothermal Area Summer Lake Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Summer Lake Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.725,"lon":-120.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

North Shore Mono Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Shore Mono Lake Geothermal Area Shore Mono Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: North Shore Mono Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.048205,"lon":-119.080047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Fish Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-118.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Lake City Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lake City Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lake City Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.66842001,"lon":-120.2068527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

(1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgwindex.php?titleFieldMappingAtFishLakeValleyArea(DOEGTP)&oldid51073...

52

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalAnd-OrNearInfraredAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid386621...

53

Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

(1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgwindex.php?titleReflectionSurveyAtFishLakeValleyArea(DOEGTP)&oldid402617...

54

Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay.  

E-Print Network (OSTI)

??Swan Lake is a sub-bay of the Galveston Bay system. The area received runoff from a tin smelter via the Wah Chang Ditch which ran (more)

Park, Junesoo

2012-01-01T23:59:59.000Z

55

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes Core holes enabled injection and flow testing up to 70 gpm. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake City, California Geothermal Field Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Lake_City_Hot_Springs_Area_(Benoit_Et_Al.,_2005)&oldid=386872" Category: Exploration Activities What links here Related changes

56

Geodetic Survey At Medicine Lake Area (Poland, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Geodetic Survey At Medicine Lake Area (Poland, Et Al., 2006) Geodetic Survey At Medicine Lake Area (Poland, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Medicine Lake Area (Poland, Et Al., 2006) Exploration Activity Details Location Medicine Lake Area Exploration Technique Geodetic Survey Activity Date Usefulness useful DOE-funding Unknown References Michael Poland, Roland Burgmann, Daniel Dzurisin, Michael Lisowski, Timothy Masterlark, Susan Owen, Jonathan Fink (2006) Constraints On The Mechanism Of Long-Term, Steady Subsidence At Medicine Lake Volcano, Northern California, From Gps, Leveling, And Insar Retrieved from "http://en.openei.org/w/index.php?title=Geodetic_Survey_At_Medicine_Lake_Area_(Poland,_Et_Al.,_2006)&oldid=386441"

57

Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown References Walter R. Benoit, Colin Goranson, Steven Wesnousky, David Blackwell (2004) Overview Of The Lake City, California Geothermal System Retrieved from

58

Salt Lake City Area Integrated Projects Power Sales Rate History  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Lake City Area Integrated Projects Power Sales Rate History Updated: 9/11/2013 Rate Schedule Effective Dates Energy (Mills/kWh) Capacity ($/kW-mo.) Combined (Mills/kWh) 1/ Composite (Mills/kWh) 2/ SLIP-F1 10/87-9/90 5.000 $2.09 9.92 - SLIP-F2 10/90-11/91 7.250 $3.08 14.5 - SLIP-F3 12/91-9/92 8.100 $3.44 16.2 - SLIP-F4 10/92-9/94 8.400 $3.54 16.72 - SLIP-F5 12/94-4/98 8.900 $3.83 - 20.17 SLIP-F6 4/98-9/02 8.100 $3.44 - 17.57 SLIP-F7 10/02-9/06 9.500 $4.04 - 20.72 SLIP-F8 10/06-9/08 10.430 $4.43 - 25.28 SLIP-F9 (First Step) 10/08-9/09 11.060 $4.70 - 26.80 SLIP-F9 (Second Step) 10/09-Present 12.190 $5.18 - 29.62 The Salt Lake City Area Integrated Projects is a combination of resources from the Collbran, CRSP, and Rio Grande Projects. 1/ Combined rates are calculated with a load factor which is assumed to be constant over a given period. In the SLCA/IP, the load factor is considered to be 58.2 percent.

59

Sensitivity analysis of sediment resuspension parameters in coastal area of southern Lake Michigan  

E-Print Network (OSTI)

Sensitivity analysis of sediment resuspension parameters in coastal area of southern Lake Michigan analysis was performed to identify and compare quantitatively the important resuspension parameters in the coastal area of southern Lake Michigan. A one-dimensional resuspension and bed model capable of dealing

60

Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa  

E-Print Network (OSTI)

is lower than 200 mm and the population density does not exceed 0.05 inhabitants per km2 . PreviousRemote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa Marc.springerlink.com #12;2 Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa Marc

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open  

Open Energy Info (EERE)

Fish Lake Valley Area (Deymonaz, Et Al., 2008) Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes (2) detailed geologic mapping of the Emigrant Miocene sedimentary basin and surrounding Paleozoic basement rocks; References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January 2008, Emigrant Slimhole Drilling Project, Doe Gred Iii (De-Fc36-04Go14339) Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Fish_Lake_Valley_Area_(Deymonaz,_Et_Al.,_2008)&oldid=510737"

62

Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) | Open Energy  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) Exploration Activity Details Location Soda Lake Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes "EM sounding, MT, CSAMT, dipole-dipole resistivity; reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Time-Domain_Electromagnetics_At_Soda_Lake_Area_(Combs_2006)&oldid=388133" Category:

63

Ground Gravity Survey At Clear Lake Area (Skokan, 1993) | Open Energy  

Open Energy Info (EERE)

Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes A detailed gravity survey (Isherwood, 1975) was undertaken as a follow-up to a regional gravity survey of the area in order to detail a low in the Clear Lake volcanics. The low (Fig. 5 ) was thought to be caused by an intrusion of molten rock which would be mass deficient. Modeling and interpretation indicated a+K139 chamber-like feature with a radius of approximately 7 km within 7-8 km of the surface. References

64

Compound and Elemental Analysis At Lake City Hot Springs Area...  

Open Energy Info (EERE)

Walter R. Benoit (2004) Geochemistry Of The Lake City Geothermal System, California, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleCompounda...

65

Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Lake City Hot Springs Area (Warpinski, Et Al., Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

66

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010)  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes "The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument acquired hyperspectral data over northern Fish Lake Valley in March 2003. The AVIRIS sensor is maintained by the Jet Propulsion Laboratory and collects data in 224 wavelengths from the visible to shortwave infrared (0.4 to 2.5 micro-m) at 2 m spatial resolution. The data set covers the

67

Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Medicine Lake Area (Warpinski, Et Al., 2002) Medicine Lake Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Medicine Lake Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes The Glass Mountain region of northern California, which is considered to be one of the sites of the greatest untapped geothermal potential in the lower 48 states, is the focus of an exploration project to identify the characteristics of the resource at the Fourmile Hill location (northwest of Medicine Lake in T44N R3E). The objective of Phase I work was to deepen a temperature gradient well to finalize the assessment of the site. The

68

Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Esmeralda Energy Company (EEC) intends to drill a core hole to a maximum depth of 4,000 feet on its Emigrant Project in Fish Lake Valley, Esmeralda County, Nevada. The drilling project is the key component in phased program of resource evaluation by EEC References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January

69

MTI Ground Truth Collection Ivanpah Dry Lake Bed, California, May, July, and August 2002  

SciTech Connect

A multi-agency collaboration successfully completed a series of ground truth measurements at the Ivanpah Dry Lake bed during FY 2002. Four collection attempts were made: two in May, one in July, and one in August. The objective was to collect ground-based measurements and airborne data during Multispectral Thermal Imager satellite overpasses. The measurements were to aid in the calibration of the satellite data and in algorithm validation. The Remote Sensing Laboratory, Las Vegas, Nevada; the National Aeronautics and Space Administration; Los Alamos National Laboratory; and the University of Arizona participated in the effort. Field instrumentation included a sun photometer on loan from the University of Arizona and the Remote Sensing Laboratory's radiosonde weather balloon, weather station, thermal infrared radiometers, and spectral radiometer. In addition, three reflectance panels were deployed; certain tests used water baths set at two different temperatures. Local weather data as well as sky photography were collected. May presented several excellent days; however, it was later learned that tasking for the satellite was not available. A combination of cloud cover, wind, and dusty conditions limited useful data collections to two days, August 28 and 29. Despite less-than- ideal weather conditions, the data for the Multispectral Thermal Imager calibration were obtained. A unique set of circumstances also allowed data collection during overpasses of the LANDSAT7 and ASTER satellites.

David L. Hawley

2002-10-01T23:59:59.000Z

70

Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Medicine Lake Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Medicine_Lake_Area_(Warpinski,_Et_Al.,_2004)&oldid=511156" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version

71

Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Area (Wood, 2002) Hot Lake Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

72

Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993) | Open  

Open Energy Info (EERE)

Clear Lake Area Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes Figure 4 illustrates seismicity from January of 1969 to June of 1977 (Rapolla and Keller, 1984). During this span, most of the seismicity occurred in the region of the Geysers geothermal field. Additional clustered activity was noted to the north and east of the Collayomi Fault in the Clear Lake region. Curiously, no unusual earthquake activity was noted along the major trend of the Collayomi Fault. Instead, the Collayomi Fault seems to separate two areas of active seismicity. References Catherine K. Skokan (1993) Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States

73

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes (4) synthesis of geologic mapping results and lithologic logs for 3_D geologic characterization of the prospect area; (5) compilation of relevant data from the foregoing sub_activities into a Geographic Information Systems (GIS) database for visualization and mapping, and to facilitate the development of an exploration model; and (6) development of a refined

74

Direct-Current Resistivity At Clear Lake Area (Skokan, 1993) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Skokan, 1993) Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Several direct-current, bipole-dipole surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid ( Fig. 6 ). The authors felt that local geologic noise could be reduced and large-scale features would be emphasized by this averaging. The most significant feature which resulted was a clear electrical signature of the

75

Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open  

Open Energy Info (EERE)

Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes There are no thermal springs within the Emigrant prospect area, but unambiguously indigenous hotwater samples were collected from boreholes 211 (see above) and 112 (Fig. 3). These samples were analyzed for major and selected minor chemical components (Table 1; Pilkington, 1984). Hot water at 96degrees C from borehole 211 was collected by airlifting from a depth of 123 m (water level) at a rate of 240 liters per minute. The

76

Geographic Information System At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

and (5) gravity data. Software for using this data has been installed at the Dyer, NV Fish Lake Green PowerEsmeralda Energy Company office with geologic data being transferred...

77

Multispectral Imaging At Fish Lake Valley Area (Deymonaz, Et Al., 2008) |  

Open Energy Info (EERE)

Multispectral Imaging At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Multispectral Imaging At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Multispectral Imaging Activity Date Spectral Imaging Sensor ASTER Usefulness useful DOE-funding Unknown Notes For this project, fused imagery was created using ASTER data and USGS Digital Orthophoto Quandrangles (DOQs). The ASTER data have a spatial resolution of 15 m for the visible to infrared and near_infrared bands, and 30 m for shortwave_infrared bands; with a cost of $85.00 per 60 x 60 km image. Thermal anomalies were mapped using ASTER kinetic temperature data

78

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes For this project, fused imagery was created using ASTER data and USGS Digital Orthophoto Quandrangles (DOQs). The ASTER data have a spatial resolution of 15 m for the visible to infrared and near_infrared bands, and 30 m for shortwave_infrared bands; with a cost of $85.00 per 60 x 60 km image. Thermal anomalies were mapped using ASTER kinetic temperature data

79

Isotopic Analysis At Clear Lake Area (Thompson, Et Al., 1992) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Thompson, Et Al., 1992) Clear Lake Area (Thompson, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Clear Lake Area (Thompson, Et Al., 1992) Exploration Activity Details Location Clear Lake Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Deuterium and oxygen- 18 values of the thermal waters indicate that they recharged locally and became K271enriched in oxygen-18 by exchange with rock. The isotopic composition of the waters indicates that they are of meteoric origin. A plot of deuterium versus chloride indicates that as the chloride concentration increases, the deuterium composition remains essentially constant. A plot of oxygen-18 versus chloride shows that the

80

Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008)  

Open Energy Info (EERE)

Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes While drilling, maximum reading thermometers will be used to monitor formation temperatures as discussed above. Upon completion of the drilling a temperature log will be run inside the drill rods to K943TD. References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Several datasets have been incorporated into a GIS database for map production, data archiving, data visualization, and modeling. These include (1) geology map layers produced from field work done on this project; (2) previously drilled U.S. Borax exploration bore holes and ancillary data; (3) temperature gradients; (4) thermal anomalies; and (5) gravity data.

82

Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Thompson, Et Al., 1992) Clear Lake Area (Thompson, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) Exploration Activity Details Location Clear Lake Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion, we favor a model in which thermal water rises somewhere between Howard and Seigler Springs. At Howard Springs we see evidence for the most representative deep thermal water because the C1 is elevated (highest measured C1 concentrations occur at Howard Springs). Moreover, the Na-Li, Na-K and Na-K-Ca geothermometers suggest temperatures greater than 240 degrees C. References J. M. Thompson, R. H. Mariner, L. D. White, T. S. Presser, W. C.

83

Resistivity Log At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Resistivity Log At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Resistivity_Log_At_Fish_Lake_Valley_Area_(DOE_GTP)&oldid=689876" Categories:

84

Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 2 wells References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Fish_Lake_Valley_Area_(DOE_GTP)&oldid=511222" Categories:

85

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

86

Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open  

Open Energy Info (EERE)

Holes At Lake City Hot Springs Area (Benoit Et Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Core Holes Activity Date Usefulness useful DOE-funding Unknown Notes Three core holes drilled between 2002 and 2005. Depths: 1,728; 3,435; 4,727 ft. Two deeper wells encountered temps of 327 and 329 oF and permable fractures in sedimentary and volcanic rocks; enabled injection and flow testing up to 70 gpm. Quartz fluid inclusions give temps of 264 and 316 oF. Core drillling allowed an understanding of geology and geothermal system that could never have been obtained from cuttings in this particular geologic setting. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake City, California Geothermal Field

87

Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored

88

Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been

89

Telluric Survey At Clear Lake Area (Skokan, 1993) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Telluric Survey At Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Telluric Survey Activity Date Usefulness useful DOE-funding Unknown Notes By far, the greatest effort in the area of Mount Konocti to understand the deep structure and hydrology was accomplished through use of a controlled source transient electromagnetic survey (Keller and Jacobson, 1983 ). A grounded-wire source of 1.1 km in length was energized with a current of

90

EIS-0150: Salt Lake City Area Integrated Projects Electric Power Marketing  

Energy.gov (U.S. Department of Energy (DOE))

The Western Area Power Administration prepared this environmental impact statement to analyze the environmental impacts of its proposal to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects hydroelectric power plants.

91

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Deymonaz, Et Al., Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes (1) Assembly and review of relevant published and proprietary literature and previous geothermal investigations in the region; References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January 2008, Emigrant Slimhole Drilling Project, Doe Gred Iii (De-Fc36-04Go14339) Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Fish_Lake_Valley_Area_(Deymonaz,_Et_Al.,_2008)&oldid=510804"

92

Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) | Open Energy  

Open Energy Info (EERE)

Clausen Et Al, 2006) Clausen Et Al, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Exploration Activity Details Location Medicine Lake Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes A major challenge to energy production in the region has been locating high-permeability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades. Medicine Lake site was selected for this study because of the extensive collection of core samples, lithologic, structural, geophysical and temperature data that are available. The sample collection totals about 15.8 km of core from 18 wells. Core samples are

93

Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Deepening At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Medicine Lake Area Exploration Technique Well Deepening Activity Date Usefulness useful DOE-funding Unknown Notes The Glass Mountain region of northern California, which is considered to be one of the sites of the greatest untapped geothermal potential in the lower 48 states, is the focus of an exploration project to identify the characteristics of the resource at the Fourmile Hill location (northwest of Medicine Lake in T44N R3E). The objective of Phase I work was to deepen a temperature gradient well to finalize the assessment of the site. The temperature gradient well - TGH88-28 - was completed in October 2001 and

94

Compound and Elemental Analysis At Lake City Hot Springs Area (Warpinski,  

Open Energy Info (EERE)

Warpinski, Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

95

Static Temperature Survey At Lake City Hot Springs Area (Benoit...  

Open Energy Info (EERE)

Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Two deeper wells encountered temps of 327 and 329 oF References...

96

Compound and Elemental Analysis At Hot Lake Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Area (Wood, 2002) Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

97

Direct-Current Resistivity Survey At Clear Lake Area (Skokan, 1993) | Open  

Open Energy Info (EERE)

Area (Skokan, 1993) Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Several direct-current, bipole-dipole surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid ( Fig. 6 ). The authors felt that local geologic noise could be reduced and large-scale features would be emphasized by this averaging. The most significant feature which resulted was a clear electrical signature of the

98

Silicatitania aerogel monoliths with large pore volume and surface area by ambient pressure drying  

Science Journals Connector (OSTI)

Ambient pressure drying has been carried out for the synthesis of silicatitania aerogel monoliths. The prepared aerogels show densities in the range 0.340.38g/cm3. The surface area and pore volume of these mix...

P. R. Aravind; P. Shajesh; P. Mukundan

2009-12-01T23:59:59.000Z

99

Microbial Diversity Studies in Sediments of Perennially Ice-covered Lakes, McMurdo Dry Valleys, Antarctica  

E-Print Network (OSTI)

Microbial Diversity in Sediments of Saline Qinghai Lake,PIRLA project lake sediments core. Journal of paleolimnologyAntarctic paleolake sediments and the search for extinct

Tang, Chao

2009-01-01T23:59:59.000Z

100

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Deymonaz, Et Al., Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes There are no thermal springs within the Emigrant prospect area, but unambiguously indigenous hotwater samples were collected from boreholes 211 (see above) and 112 (Fig. 3). These samples were analyzed for major and selected minor chemical components (Table 1; Pilkington, 1984). Hot water at 96degrees C from borehole 211 was collected by airlifting from a depth of 123 m (water level) at a rate of 240 liters per minute. The

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01eis0150_cov.html[6/24/2011 2:58:48 PM] 01eis0150_cov.html[6/24/2011 2:58:48 PM] COVER SHEET Title: Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement, DOE/EIS-0150 Cooperating Agencies: U.S. Fish and Wildlife Service, the National Park Service, and the Bureau of Reclamation Lead Agency: Western Area Power Administration, U.S. Department of Energy Written comments on this environmental impact statement (EIS) should be addressed to: For general information on the U.S. Department of Energy EIS process, contact: Mr. David Sabo Western Area Power Administration Colorado River Storage Project Customer Service Office P.O. Box 11606 Salt Lake City, Utah 84147-0606 Telephone: (801) 524-5392 Ms. Carol Borgstrom, Director Office of NEPA Policy and Assistance (EH-42)

102

Pennsylvanian fusulinids from the Beaverhead Mountains, Morrison Lake area, Beaverhead County, Montana  

SciTech Connect

A fusulinid fauna consisting of Triticites spp., Kansanella aff. K. tenuis (Merchant Keroher), Eowaeringella sp., Fusulina sp. (Beedeina of some authors), Wedekindellina henbesti (Skinner), Plectofusulina spp., Pseudostaffella sp., Fusulinella aff. F. acuminata Thompson, and Eoschubertella sp. has been identified from Pennsylvanian rocks exposed on the Continental Divide, Morrison Lake area, Beaverhead County, Montana. These fusulinids, the first to be published from Pennsylvanian rocks in southwestern Montana, indicate that strata of late Atokan, early Desmoinesian, Missourian, and Virgilian age are present. These rocks, previously assigned to the Quadrant Formation in the Morrison Lake area, are subdivided and correlated with the Bloom, Gallagher Peak Sandstone and Juniper Gulch members of the Snaky Canyon Formation (Skipp et al., 1979a).

Verville, G.J. (Consulting Geologist, Tulsa, OK (USA)); Sanderson, G.A.; Baesemann, J.F. (Amoco Production Company, Tulsa, OK (USA)); Hampton, G.L. III (Hampton and Associates, Denver, CO (USA))

1990-04-01T23:59:59.000Z

103

Compound and Elemental Analysis At Clear Lake Area (Thompson, Et Al., 1992)  

Open Energy Info (EERE)

Et Al., 1992) Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Clear Lake Area (Thompson, Et Al., 1992) Exploration Activity Details Location Clear Lake Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion, we favor a model in which thermal water rises somewhere between Howard and Seigler Springs. At Howard Springs we see evidence for the most representative deep thermal water because the C1 is elevated (highest measured C1 concentrations occur at Howard Springs). Moreover, the Na-Li, Na-K and Na-K-Ca geothermometers suggest temperatures greater than 240 degrees C. References J. M. Thompson, R. H. Mariner, L. D. White, T. S. Presser, W. C.

104

CONFIRMATORY SURVEY REPORT FOR THE SECTION 4 AREA AT THE RIO ALGOM AMBROSIA LAKE FACILITY NEW MEXICO  

SciTech Connect

The objectives of the confirmatory survey were to verify that remedial actions were effective in meeting established release criteria and that documentation accurately and adequately described the final radiological conditions of the RAM Ambrosia Lake, Section 4 Areas.

W.C. Adams

2010-02-12T23:59:59.000Z

105

Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 1, Summary  

SciTech Connect

The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams) are influenced by Western`s power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Western`s firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action altemative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

Not Available

1994-02-01T23:59:59.000Z

106

Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon  

SciTech Connect

Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

1980-09-01T23:59:59.000Z

107

Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary.html[6/24/2011 3:03:56 PM] Summary.html[6/24/2011 3:03:56 PM] SUMMARY S.1 DESCRIPTION OF THE PROPOSED ACTION The Western Area Power Administration (Western) proposes to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects (SLCA/IP) hydroelectric power plants. Power generated by the SLCA/IP facilities or purchased by Western from other sources is provided to Western's customers under contracts that establish the terms for how capacity (generation capacity) and energy (quantity of electrical energy) are to be sold. The contracts also specify amounts of capacity and energy that Western agrees to offer for long-term (greater than 12 months) sale to its customers. These amounts constitute Western's

108

Controlled-source electromagnetic survey at Soda Lakes geothermal area, Nevada  

SciTech Connect

The EM-60 system, a large-moment frequency-domain electromagnetic loop prospecting system, was operated in the Soda Lakes geothermal area, Nevada. Thirteen stations were occupied at distances ranging from 0.5-3.0 km from two transmitter sites. These yielded four sounding curves--the normalized amplitudes and phases of the vertical and radial magnetic fields as a function of frequency--at each station. In addition, two polarization ellipse parameters, ellipticity and tilt angle, were calculated at each frequency. The data were interpreted by means of a least-squares inversion procedure which fits a layered resistivity model to the data. A three-layer structure is indicated, with a near-surface 20 ohm-m layer of 100-400 m thickness, a middle 2 ohm-m layer of approximately 1 km thickness, and a basement of greater than 10 ohm-m. The models indicate a northwesterly structural strike; the top and middle layers seem to thicken from northeast to southwest. The results agree quite well with previous results of dipole-dipole and magnetotelluric (MT) surveys. The EM-60 survey provided greater depth penetration (1 to 1.5 km) than dipole-dipole, but MT far surpassed both in its depth of exploration. One advantage of EM in this area is its ease and speed of operation. Another advantage, its relative insensitivity to lateral inhomogeneities, is not as pronounced here as it would be in areas of more complex geology.

Stark, M.; Wilt, M.; Haught, J.R.; Goldstein, N.

1980-07-01T23:59:59.000Z

109

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA  

SciTech Connect

This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.

BECHTEL NEVADA

2005-12-01T23:59:59.000Z

110

CONSTRUCTION AND CALIBRATION OF A LARGE-SCALE MICRO-SIMULATION MODEL OF THE SALT LAKE AREA  

E-Print Network (OSTI)

CONSTRUCTION AND CALIBRATION OF A LARGE-SCALE MICRO-SIMULATION MODEL OF THE SALT LAKE AREA H. Rakha-scale network using a microscopic simulation model. The requirements of a validated microscopic model for large of Intelligent Transportation System (ITS) applications. Typically, microscopic simulation models have been

Rakha, Hesham A.

111

Isotopic Analysis At Lake City Hot Springs Area (Sladek, Et Al...  

Open Energy Info (EERE)

Walter R. Benoit (2004) Geochemistry Of The Lake City Geothermal System, California, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleIsotopicA...

112

Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area  

SciTech Connect

The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24 diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18 in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24 in diameter and ~11 feet long from a dry transfer cask to the basin. The 18 and 24 applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.

Krementz, Dan; Rose, David; Dunsmuir, Mike

2014-02-06T23:59:59.000Z

113

West Valley-derived radionuclides in the Niagara river area of Lake Ontario  

Science Journals Connector (OSTI)

The presence of West Valley-derived radionuclides in the densely-populated Niagara...137Cs profile in a 210Pb-dated Lake Ontario sediment core is consistent with the pattern of West Valley discharges to the local...

S. R. Joshi

1988-01-01T23:59:59.000Z

114

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network (OSTI)

surveys at Klamath Falls and Honey Lake: Group SevenKlamath Falls gravity lineament which manifests itself in Figure 8 lineament as well. GroupKlamath Falls "steamer This can be Seen in Figures 10 and 11. on Group

Stark, M.

2011-01-01T23:59:59.000Z

115

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

K. B. Campbell

2002-04-01T23:59:59.000Z

116

Relationships between Western Area Power Administration`s power marketing program and hydropower operations at Salt Lake City area integrated projects  

SciTech Connect

This technical memorandum provides background information on the Western Area Power Administration (Western) and the physical characteristics of the Salt Lake City Area Integrated Projects (SLCA/IP) hydropower plants, which include the Colorado River Storage Project, the Rio Grande Project, and the Collbran Project. In addition, the history, electrical capacity, storage capacity, and flow restrictions at each dam are presented. An overview of Western`s current programs and services, including a review of statutory authorities, agency discretion, and obligations, is also provided. The variability of SLCA/IP hourly generation under various alternative marketing strategies and purchasing programs is discussed. The effects of Western`s services, such as area load control, outage assistance, and transmission, on SLCA/IP power plant operations are analyzed.

Veselka, T.D.; Folga, S.; Poch, L.A. [and others

1995-03-01T23:59:59.000Z

117

Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16  

SciTech Connect

The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

Not Available

1994-02-01T23:59:59.000Z

118

Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005...  

Open Energy Info (EERE)

City Hot Springs Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Rock core analyses and mineral assemblage investigations...

119

Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay  

E-Print Network (OSTI)

facility (Gulf Coast Waste Disposal Authority) is located north of the Wah Chang Ditch. Consequently there have been concerns about possible metal contamination in this area. I determined trace metal concentrations in water, sediments, and organisms (oyster...

Park, Junesoo

1995-01-01T23:59:59.000Z

120

Lakes_Elec_You  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes, Lakes, Electricity & You Why It's So Important That Lakes Are Used To Generate Electricity Why We Can Thank Our Lakes For Electricity Because lakes were made to generate electricity. Back in the mid-1940s, Congress recognized the need for better flood control and navigation. To pay for these services, Congress passed laws that started the building of federal hydroelectric dams, and sold the power from the dams under long-term contracts. Today these dams provide efficient, environmentally safe electricity for our cities and rural areas. And now these beautiful lakes are ours to enjoy. There are now 22 major man-made lakes all across the Southeast built under these federal programs and managed by the U.S. Army Corps of Engineers - lakes that help prevent flooding and harness the renewable power of water to generate electricity. Power produced at these lakes is marketed by the Elberton,

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Proposal to market Provo River Project power, Salt Lake City area  

SciTech Connect

This report is an environmental assessment of the Western Area Power Administrations`s proposal to change the way in which the power produced by the Provo River Project (PRP) is marketed. The topics of the report include the alternatives to the proposed action that have been considered, a description of the environmental consequences of the proposed action and the alternatives that were considered, and other environmental considerations.

Not Available

1995-01-01T23:59:59.000Z

122

Use of a 2-inch, dual screen well to conduct aquifer tests in the upper and lower Lost lake aquifer zones: Western sector, A/M area, SRS  

SciTech Connect

The Western Sector, A/M Area is located just west of the M-Area Settling Basin on an upland area. The area is adjacent to the gently inclined area where the upland drops off to the Savannah River floodplain. Water in the parts of the uppermost aquifers contains dissolved contaminants which originated at the land surface and have leached downward into the groundwater. Subsurface contamination originated in the locality of the M-Area Settling Basin and Lost Lake, which is a Carolina Bay. These locations functioned as disposal sites for industrial solvents during the early years of operation of the Savannah River Site. The primary groundwater contaminants are trichloroethylene (TCE) and tetrachloroethylene (PCE), and groundwater concentrations of TCE are significantly greater than the PCE.

Hiergesell, R.A.; Novick, J.S.

1996-09-01T23:59:59.000Z

123

Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

NONE

1996-08-01T23:59:59.000Z

124

Evidence of a Quaternary dammed Lake in the MawatChwarta area, Western Zagros, Kurdistan Region, NE-Iraq  

Science Journals Connector (OSTI)

Abstract The MawatChwarta valley is located north of the Sulaimania City at Northern Iraq and is surrounded by high mountains on all sides. White laminated sediments with annual varves on a millimetre scale have been recorded at eight localities on the valley gentle slopes. Sedimentological, palaeontological and geomorphological data of these sediments suggest that a lake occupied the valley during the Quaternary. The sediments are of two types, purely fine-grained and fine-grained with coarse interbeds, the two types occur at an elevation difference of about 62m. The two types are interpreted as representing deep (abyssal) and shoreline deposits, respectively, and indicate the approximate depth of the lake. The sediments contain the fresh water green algae of the genus Botryococcus in addition to a few leaves, scattered plant debris and some pollen grains mainly of herbaceous plants. Contrary to the general south-western drainage pattern in Northern Iraq the MawatChwarta valley is drained to the north, where the Mawat River passes now through deep and narrow gorges along which rock slides and debris plugs are known to have occurred in the past. These mass wasting events are considered here to have blogged the runoff of the valley in the past and eventually led to the formation of a large dammed lake. Numerical chronology work failed, which requires further investigation in the future.

Polla Khanaqa; Kamal Haji Karim; Walter Riegel

2015-01-01T23:59:59.000Z

125

Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)  

SciTech Connect

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASs are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the results of Phase I sampling, the analytical program for Phase II investigation may be reduced. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

2002-01-09T23:59:59.000Z

126

A test of the Garreau model for edge city development using GIS-based shift-share analysis: a case study for the Clear Lake-NASA Area, Texas  

E-Print Network (OSTI)

Systems (GIS) was developed under the direction of Dr. Roger F. Tomlinson in the mid 1960's for use by the Canadian Geographic Information System to inventory their natural land resources (forests). GIS has subsequently become a worldwide multi... the Clear Lake area prior to 1961. 23 FAIRMONT PKWV 0 I I' OTE TIISTQ4 SrcTITN AT / (QE4R IAHE / OTS ( NASATJSC / / 8. f SEABKIK / / SAT I / FM 646 I I Sm 2. 26 mi 6ln EO in Figure 3. 1. The Clear Lake-NASA Area, Texas. Source: Texas...

Crate, Frances Margaret

2012-06-07T23:59:59.000Z

127

variability 1. Dry areas reasonable  

E-Print Network (OSTI)

.g., wind energy #12;Marine Core Service Organisation Wind KNMI lead DU at IFREMER L3 PU at KNMI L4 PU, .. ), QuikScat (NSCAT3, NWP Ocean Calibration) Documentation, verification #12;Plans Wind Constellation Description Platform NASA, Rapidscat, ISS · HY2A not NRT yet #12;Global constellation users OSI SAF Message

Haak, Hein

128

EIS-0005-FS: Bonneville Power Administration Proposed FY 1979 Program, Facility Location on Supplement, Southwest Oregon Area Service, Buckley-Summer Lake 500 kV Line, Supplemental  

Energy.gov (U.S. Department of Energy (DOE))

This Bonneville Power Administration document assesses the environmental impacts of constructing transmission facilities, which will coordinate with the Midpoint-Malin 500-kV line to be constructed by the Pacific Power and Light (PP&L) Company. The proposed action includes the construction of the 1.56-mile Buckley-Summer Lake 500-kV transmission line; the proposed Buckley Substation near Maupin, Oregon; and the proposed Summer Lake Substation near Silver Lake, Oregon.

129

Facies architecture of the Bluejacket Sandstone in the Eufaula Lake area, Oklahoma: Implications for the reservoir characterization of the Bartlesville Sandstone  

SciTech Connect

Outcrop studies of the Bluejacket Sandstone (Middle Pennsylvanian) provide significant insights to reservoir architecture of the subsurface equivalent Bartlesville Sandstone. Quarry walls and road cuts in the Lake Eufaula area offer excellent exposures for detailed facies architectural investigations using high-precision surveying, photo mosaics. Directional minipermeameter measurements are being conducted. Subsurface studies include conventional logs, borehole image log, and core data. Reservoir architectures are reconstructed in four hierarchical levels: multi-storey sandstone, i.e. discrete genetic intervals; individual discrete genetic interval; facies within a discrete genetic interval; and lateral accretion bar deposits. In both outcrop and subsurface, the Bluejacket (Bartlesville) Sandstone comprises two distinctive architectures: a lower braided fluvial and an upper meandering fluvial. Braided fluvial deposits are typically 30 to 80 ft thick, and are laterally persistent filling an incised valley wider than the largest producing fields. The lower contact is irregular with local relief of 50 ft. The braided-fluvial deposits consist of 100-400-ft wide, 5-15-ft thick channel-fill elements. Each channel-fill interval is limited laterally by an erosional contact or overbank deposits, and is separated vertically by discontinuous mudstones or highly concentrated mudstone interclast lag conglomerates. Low-angle parallel-stratified or trough cross-stratified medium- to coarse-grained sandstones volumetrically dominate. This section has a blocky well log profile. Meandering fluvial deposits are typically 100 to 150 ft thick and comprise multiple discrete genetic intervals.

Ye, Liangmiao; Yang, Kexian [Univ. of Tulsa, OK (United States)

1997-08-01T23:59:59.000Z

130

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

131

VERTEBRATES OF FISH LAKE  

E-Print Network (OSTI)

VERTEBRATES OF FISH LAKE CAUTION! FISH LAKE SCAVANGER HUNT RED HEADED is another majestic bird of Fish Lake. These birds can be seen perched at Fish Lake. CLUB-TAIL DRAGONFLY INSECTS OF FISH LAKE There are A LOT

Minnesota, University of

132

Great Lakes RESTORATION  

E-Print Network (OSTI)

these focus areas over a five-year period (FY 2010-2014). NOAA Climate Projects Contact Information Heather, and education in the Great Lakes. NOAA's Climate Projects use a three-pronged approach to research climate decisions made as a result. - Monitoring and modeling climate variables to project future climate trends

133

Disparities in Salt Lake County and Salt Lake City Mortgage Outcomes and  

E-Print Network (OSTI)

who applied for Salt Lake County properties selected West Valley. · As the overall application volume). · Over 54 percent of all Salt Lake County mortgage applications from 2006 to 2011 were for homes in West Valley, unincorporated areas, West Jordan, and Salt Lake City. For Hispanic/Latino applicants

Feschotte, Cedric

134

ORIGINAL ARTICLE The paleolimnology of Haynes Lake, Oak Ridges Moraine,  

E-Print Network (OSTI)

ORIGINAL ARTICLE The paleolimnology of Haynes Lake, Oak Ridges Moraine, Ontario, Canada is a small kettle lake located on the Oak Ridges Moraine, and is within the Greater metropolitan area

Patterson, Timothy

135

Search for non-Newtonian gravitationa gravimetric experiment in a hydroelectric lake  

Science Journals Connector (OSTI)

......gravitation-a gravimetric experiment in a hydroelectric lake G. Muller 1 W. Zurn 2 K. Lindner...gravitation-a gravimetric experiment in a hydroelectric lake G. Muller', W. Zurn2, K...are moved in dry rocks, locks and hydroelectric lakes, they often have a well-defined......

G. Mller; W. Zrn; K. Lindner; N. Rsch

1990-05-01T23:59:59.000Z

136

Core Hole Drilling And Testing At The Lake City, California Geothermal  

Open Energy Info (EERE)

Hole Drilling And Testing At The Lake City, California Geothermal Hole Drilling And Testing At The Lake City, California Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Core Hole Drilling And Testing At The Lake City, California Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: Unavailable Author(s): Dick Benoit, Joe Moore, Colin Goranson, David Blackwell Published: GRC, 2005 Document Number: Unavailable DOI: Unavailable Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005) Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Static Temperature Survey At Lake City Hot Springs Area (Benoit Et Al., 2005) Lake City Hot Springs Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Core_Hole_Drilling_And_Testing_At_The_Lake_City,_California_Geothermal_Field&oldid=389996

137

ARTHUR LAKES LIBRARY FACILITIES USE POLICY  

E-Print Network (OSTI)

;Reservations for Meeting Space The Library makes selected meeting facilities available at no charge to CSM are currently maintained on a Trailhead calendar, called Library Space, accessible to Library staff. PoliciesARTHUR LAKES LIBRARY FACILITIES USE POLICY The Arthur Lakes Library's meeting areas are designed

138

Postglacial (Holocene) ostracodes from Lake Erie  

E-Print Network (OSTI)

THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS ABSTRACT Ten cores, collected by personnel on C. M. S. Porte Dauphine from the central and eastern basins of Lake Erie, were examined for ostracodes at the University of Kansas. The cores varied in length... OF STUDY AREA Lake Erie, one of the five Great Lakes, is approxi- mately 250 miles long and has a maximum width of nearly 60 miles. The major part of the lake is less than 30 meters in depth, but its maximum depth in the eastern basin is about 64 meters...

Benson, R. H.; MacDonald, H. C.

1963-01-01T23:59:59.000Z

139

Lake Ecology  

NLE Websites -- All DOE Office Websites (Extended Search)

Lake Ecology Lake Ecology Name: Jody Location: N/A Country: N/A Date: N/A Question: We have a partically natural/ partially man-dug lake in our back yard. It is approximately 3 acres in size. The fish in this tiny like are plentiful and HUGE :) Bass up to 20" s (so far) and blue gill up to 10"s (so far). My question is this... we appear to have a heavy goose population and I was wondering if they are the cause of the green slimmy stuff that is all over the top of the water as well as the lighter green slime on the plants growing under the water? Are the fish being harmed by waste from the geese and if so, what can I put in the water to ensure their health? Additionally, I noticed hundreds of frogs during the mating period yet I've yet to see even one tad pole and I am at the lake atleast 5 out of the 7 days in a week. Is there a reason for this. The frogs are two toned.. light green with patches of darker shades of green on the head and body. I've never seen frogs like these before but then again, I've never lived in wet lands prior. The frogs are also very agressive... tend to attack fishing line and even leap up to 4' in the air to attack a fishing rod. Thank heavens they don't have teeth! . We do not keep the fish we catch, we always release.

140

Lake-effect snowfall in Western New York and surface temperatures of Lakes Erie and Ontario  

E-Print Network (OSTI)

during the 1976-77 winter (Alverson, 1977). Through an examination of weather records, Dewey (1977) points out that numerous paralyzing lake-effect storms have struck the Buffalo area over the years. The occurrence of such storms is far from unusual... LAKE-EFPECT SNOWFALL IN WESTERN NFW YORK AND SURFACE TEMPERATURF. S OF LAKES ERIE AND ONTARIO A Thesis by WILLIAM AGRELLA Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree...

Agrella, William

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NOAA Technical Memorandum ERL GLERL-58 LAKE SUPERIOR COOLING SEASON TEMPERATURE CLIMATOLOGY  

E-Print Network (OSTI)

and extreme temperatures over period of record. Table 51. Summary of Lake Superior, area 8, temperature period of record. Table 51. Summary of Lake Superior, area 11, temperature climatology and extreme profiles. Survey route and lake area locations. Mean survey temperature climatology and stages in cooling

142

Lake Tai: The limnology of a shallow lake in China  

Science Journals Connector (OSTI)

Lake Tai (Tai Hu) is located in the S part of the Yangtze River delta, has a surface area of 2,425 km2, a mean depth of 2.12 m, and a volume of 5.15 km3. The climate of the region is characterised by an average a...

Cheng-xi Shi; Rui-ju Liang

1987-04-01T23:59:59.000Z

143

Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes  

SciTech Connect

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska?s oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near?surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow?control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the ?baseline? conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake?s hydrological response to snowdrift melt, and cost assessment of snowdrift?generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open?water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21?29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, "North Slope Decision Support System (NSDSS) for Water Resources Planning and Management." The results

Stuefer, Svetlana

2013-03-31T23:59:59.000Z

144

3-D structural and seismic stratigraphic interpretation of the Guasare-Misoa Interval, VLE 196 Area, Block V, Lamar Field, Lake Maracaibo, Venezuela  

E-Print Network (OSTI)

In this study, the structure, depositional system, and the seismic stratigraphy of the VLE 196 area, Block V in Lamar Field were interpreted using 3-D seismic data and well logs to characterize structural and depositional settings of the Guasare...

Arzuman, Sadun

2004-09-30T23:59:59.000Z

145

Search for ancient microorganisms in Lake Baikal  

SciTech Connect

Lake Baikal in Russia, the world's oldest and deepest continental lake lies in south central Siberia, near the border to Mongolia. The lake is 1,643 m deep and has an area of about 46,000 km2. It holds one-fifth of all the terrestrial fresh water on Earth. Lake Baikal occupies the deepest portion of the Baikal Rift Zone. It was formed some 30-45 million years ago. The isolated Lake Baikal ecosystem represents a unique niche in nature based on its historical formation. The microbial diversity present in this environment has not yet been fully harvested or examined for products and processes of commercial interest and value. Thus, the collection of water, soil, and sub-bottom sediment samples was decided to characterize the microbial diversity of the isolated strains and to screen the isolates for their biotechnological value.

Hunter-Cevera, Jennie C.; Repin, Vladimir E.; Torok, Tamas

2000-06-14T23:59:59.000Z

146

The Geysers Geothermal Area | Department of Energy  

Energy Savers (EERE)

The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field....

147

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

148

Distribution, relative abundance and species composition of shrimp, crabs and fish in the intake area, discharge canal and cooling lake of the Cedar Bayou generating station, Baytown, Texas  

E-Print Network (OSTI)

area and discharge waters of Houston Lighting S Power Company's Cedar Bayou Generating Station, Baytown, Texas. Hydrological data were taken at each sampling station. A total of 12 species of crustaceans and 53 species of fish was captured. The 10... juvenile stages risk entrainment through the plant (Mihursky and Kennedy 1967; Bascom 1974) or impingement on the intake screens. As Landry (1977) found, the impact of either entrainment or impingement depends mainly on the season of recruitment...

St. Clair, Lou Ann

2012-06-07T23:59:59.000Z

149

Facies analysis of the Caballero Formation and the Andrecito Member of the Lake Valley Formation (Mississippian): implications for Waulsortian bioherm inception, Alamo Canyon area, Sacramento Mountains, New Mexico  

E-Print Network (OSTI)

sequence in which packstones and grainstones accumulated as localized in situ skeletal buildups. General facies trends indicate that deposition occured on a ramp with packstones and coarser clastics in the shallower, northern area, gradually changing... thinning of the lower Andrecito siliciclastic-rich facies; and 3) associated occurrences of upper Andrecito skeletal buildups. These trends lie parallel to basement block boundaries inferred from younger (Pennnsylvanian) structures, Sequence isopach...

Byrd, Thomas Martin

2012-06-07T23:59:59.000Z

150

Aspects of Solar Drying  

Science Journals Connector (OSTI)

For the economical utilization of solar energy for drying it is necessary to coordinate ... the drying purposes with the specific characteristic of solar radiation /e.g. small power demand;...

L. Imre

1985-01-01T23:59:59.000Z

151

Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake  

Open Energy Info (EERE)

Using Aviris Remote Sensing Data Over Fish Lake Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Fish Lake Valley, in Esmeralda County, Nevada, sits at the southern end of the Mina Deflection where the very active Death Valley-Furnace Creek-Fish Lake Valley fault system makes a right step to transfer slip northward into the Walker Lane. Northern Fish Lake Valley has been pulling part since ca. 6 Ma, primarily along the Emigrant Peak normal fault zone (Stockli et al., 2003). Elevated tectonic activity in Fish Lake Valley suggests there may be increased fracture permeability to facilitate

152

Cooking with Dry Beans  

E-Print Network (OSTI)

E-77 12/08 Cooking with Dry Beans Dry beans are nutritious and inexpensive. They are also very low in fat and sodium. Dry beans are great sources of fiber, folic acid, and protein. Cooked dry beans are also a good source of iron. To get the most... protein from the beans, serve them along with grain foods such as corn, rice or wheat. A serving size of cooked dry beans is ? cup. Uses Use beans as a tasty side dish or include it in casseroles, soups, and salads. Beans are often packaged in 1-pound...

Anding, Jenna

2008-12-09T23:59:59.000Z

153

Textile Drying Via Wood Gasification  

E-Print Network (OSTI)

TEXTILE DRYING VIA WOOD GASIFICATION Thomas F. ;McGowan, Anthony D. Jape Georgia Institute of Technology Atlanta, Georgia ABSTRACT This project was carried out to investigate the possibility of using wood gas as a direct replacement... for dryers. In addition to the experimental program described above, the DOE grant covered two other major areas. A survey of the textile industry was made to assess the market for gasification equip ment. The major findings were that a large amount...

McGowan, T. F.; Jape, A. D.

1983-01-01T23:59:59.000Z

154

Supersaturated N2O in a perennially ice-covered Antarctic lake: Molecular and stable isotopic evidence for a biogeochemical relict  

E-Print Network (OSTI)

Supersaturated N2O in a perennially ice-covered Antarctic lake: Molecular and stable isotopic Abstract The east lobe of Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys2O was produced via incomplete nitrification and has undergone virtually no subsequent consumption

Priscu, John C.

155

National Science Foundation - Lake Hoare, Antarctica | Department...  

Energy Savers (EERE)

Science Foundation - Lake Hoare, Antarctica National Science Foundation - Lake Hoare, Antarctica Photo of a Photovoltaic System Located at Lake Hoare, Antarctica Lake Hoare is a...

156

Lakes, Electricity and You | Department of Energy  

Energy Savers (EERE)

Lakes, Electricity and You Lakes, Electricity and You Why It's So Important That Lakes Are Used To Generate Electricity Lakes, Electricity and You More Documents & Publications An...

157

Cooling Dry Cows  

E-Print Network (OSTI)

This publication discusses the effects of heat stress on dairy cows, methods of cooling cows, and research on the effects of cooling cows in the dry period....

Stokes, Sandra R.

2000-07-17T23:59:59.000Z

158

Sandia National Laboratories: DRI  

NLE Websites -- All DOE Office Websites (Extended Search)

DRI ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

159

Cooking with Dried Potatoes  

E-Print Network (OSTI)

This fact sheet describes the nutritional value and safe storage of dried potatoes, a commodity food. It also offers food preparation ideas....

Anding, Jenna

2008-12-09T23:59:59.000Z

160

The paleolimnology of Haynes Lake, and Teapot Lake, Ontario  

E-Print Network (OSTI)

The paleolimnology of Haynes Lake, and Teapot Lake, Ontario: documenting anthropogenic disturbances in Teapot Lake and Haynes Lake were completed in 2006 with Tina Ziten and Paul Hamilton and, again, in 2007 student, who provided the pollen data and analysis thereof, for the Teapot Lake study. The Northwest

Patterson, Timothy

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Date: Well Name: Location: Depth: Initial Flow Rate: "de" is not declared as a valid unit of measurement for this property. The given value was not understood. Flow Test...

162

Lake and Reservoir Management 21(1):24-29, 2005 Copyright by the North American Lake Management Society 2005  

E-Print Network (OSTI)

derived from erosion of the exposed shoreline (i.e., by rain and runoff), or wave-driven resuspension in flood control reservoirs expose those sedi- ments previously deposited in deeper areas to resuspension by waves and rain. Resuspension of sediment by wind has been documented in shallow lakes with constant lake

163

Lake Lahontan: Geology of Southern Carson Desert, Nevada | Open Energy  

Open Energy Info (EERE)

Lake Lahontan: Geology of Southern Carson Desert, Nevada Lake Lahontan: Geology of Southern Carson Desert, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lake Lahontan: Geology of Southern Carson Desert, Nevada Abstract This report presents a stratigraphic study of an area of about 860 square miles in the southern part of the Carson Desert, near Fallen, Churchill County, Nev. The exposed rocks and surficial sediments range in age from early Tertiary (?) to Recent. The late Quaternary sediments and soils were especially studied: they furnish a detailed history of the fluctuations of Lake Lahontan (a huge but intermittent late Pleistocene lake) and of younger lakes, as well as a history of late Quaternary sedimentation, erosion, soil development, and climatic change that probably is

164

National Park Service - Lake Powell, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

165

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract...

166

Microsoft Word - Deering Lake-Eckley 115-kV Transmission Line...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deering Lake-Eckley 115-kV Transmission Line Structure Replacements Yuma County, Colorado 1 A. Brief Description of Proposal: Western Area Power Administration (Western) proposes...

167

Dry-cleaning of graphene  

SciTech Connect

Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universittsstr. 25, Bielefeld 33615 (Germany)

2014-04-14T23:59:59.000Z

168

Navy 1 Geothermal Area | Department of Energy  

Energy Savers (EERE)

Geothermal Area Navy 1 Geothermal Area The Navy 1 Geothermal Project is located on the test and evaluation ranges of the Naval Air Weapons Station, China Lake. At its peak, the...

169

Solar Lake on the Shores of the Red Sea  

Science Journals Connector (OSTI)

... lakes of which this is an excellent model have a considerable future in relation to desalination plants and low energy turbines in areas in which both energy resources and fresh water ...

F. D. POR

1968-06-01T23:59:59.000Z

170

6 - Pipeline Drying  

Science Journals Connector (OSTI)

Publisher Summary This chapter reviews pipeline dewatering, cleaning, and drying. Dewatering can be a simple process or, if the procedure is not properly planned, a difficult one. Pipelines used to transport crude oil and/or refined products will probably only require removal of the test water before the line is placed in service. If the pipeline will be used to transport materials that must meet a specified dryness requirement, the pipeline will need to be dewatered, cleaned, and dried. Pipelines used to transport natural gas will need some drying, depending on the operating pressure and the location of the line, to prevent the formation of hydrates. Other pipelines may require drying to protect the pipe from internal corrosion caused by the formation of corrosive acids, such as carbonic acid in the case of carbon dioxide pipelines.

2014-01-01T23:59:59.000Z

171

Freeze drying apparatus  

DOE Patents (OSTI)

The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

2001-01-01T23:59:59.000Z

172

Freeze drying method  

DOE Patents (OSTI)

The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

1999-01-01T23:59:59.000Z

173

Dry Process Electrode Fabrication  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

250m of free standing dry process cathode at thickness >200 m thickness. + Validate cost model by running pilot coating line at >25 mmin. + Deliver 24 cells in A123 SOA EV...

174

Dry Process Electrode Fabrication  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

free standing dry process cathode that retains 50% capacity at 1C rate. + Validate cost model by running pilot coating line. + Deliver 24 cells in SOA EV cell format....

175

Dry Process Electrode Fabrication  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

free standing dry process cathode that retains 50% capacity at 1C rate. + Validate cost model by running pilot coating line. + Deliver 24 cells in SOA EV cell format. 3...

176

The Behavior of Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

Behavior of Lakes Behavior of Lakes Nature Bulletin No, 320-A November 9, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation THE BEHAVIOR OF LAKES In many ways lakes are like living things -- especially a tree. A lake breathes and has a circulation; it is warmed and fed; it harbors many other living things; and in cold weather it goes into a winter sleep. If it were not for the special character of a body of standing water which we call a lake, the things that live in it would be radically different or, perhaps, not exist at all. Water is a very strange substance in many ways. For example, it is remarkable because it expands, becomes lighter and floats when it freezes into ice. If, like most substances, water shrank when it changed from a liquid to a solid, it would sink. Then, ponds and lakes would freeze from the bottom up and become solid blocks of ice. This would make life impossible for most kinds of aquatic plants and animals and indirectly affect all living things. Further, water is a poor conductor of heat -- otherwise lakes would freeze much deeper and, again most living things in it would perish.

177

National Park Service- Lake Powell, Utah  

Energy.gov (U.S. Department of Energy (DOE))

Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages.

178

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern  

Open Energy Info (EERE)

History of Lake Lahontan, a Quaternary Lake of Northwestern History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing Office, 1885 Report Number Monograph M11 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Citation Israel C. Russell (U.S. Geological Survey). 1885. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada. Washington, District of Columbia: U.S. Government Printing Office. Report No.:

179

Determining the effects of fluctuating lake levels on wildlife habitat using GIS and remote sensing  

E-Print Network (OSTI)

of the Lake Granger Area. Comparison of the Horizontal Coordinates of the Reference Benchmark Between GPS Unit Readings and NGS Published Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Lake Granger Lake Levels During Aerial Photography... of these established benchmarks are located within 3000 meters of the study area; none are located within the management units themselves. Although global positioning system (GPS) units may be used to collect elevation values for control coordinates, the accuracy...

Sabella, Raymond Jacob

2012-06-07T23:59:59.000Z

180

Remote Sensing Survey of the Coso Geothermal Area Inyo County...  

Open Energy Info (EERE)

Naval Weapons Center, China Lake, Calif., is an area of granitic rock exposure and fracture-controlled explosion breccias and perlitic domes. Fumarolic and hot springs activity...

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Remote sensing survey of the Coso geothermal area, Inyo county...  

Open Energy Info (EERE)

Naval Weapons Center, China Lake, Calif., is an area of granitic rock exposure and fracture-controlled explosion breccias and perlitic domes. Fumarolic and hot springs activity...

182

THE EFFECT OF LAKE ERIE WATER LEVEL VARIATIONS ON SEDIMENT RESUSPENSION  

E-Print Network (OSTI)

THE EFFECT OF LAKE ERIE WATER LEVEL VARIATIONS ON SEDIMENT RESUSPENSION A Thesis Presented regions of resuspension. In this study, areas of possible resuspension were examined for the heavily populated Cleveland, Ohio, region and for the entire lake. Areas of possible resuspension were identified

Foster, Diane

183

Lake Preservation (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The construction, reconstruction, recleaning, or repair of a dam, ditch, or other project is prohibited when the action is likely to lower the water level of a public freshwater lake, regulated or...

184

LAKE COLUSA SAN JOAQUIN  

E-Print Network (OSTI)

DORADO AMADOR SONOMA NAPA YOLO CALAVERAS SAN JOAQUIN TUOLUMNE MONO ALPINE MARIPOSA MERCED MADERA FRESNO LAKE COLUSA SUTTER YUBA NEVADA SIERRA PLACER EL DORADO AMADOR SONOMA NAPA YOLO CALAVERAS SAN JOAQUIN

185

Texas' Natural Lake  

E-Print Network (OSTI)

.? The Nature Conservancy?s Sustainable Waters program, designed to protect river ecosystems downstream of dams, has sponsored two workshops within the last year to determine the research needed to develop ecologically based environmental flow... recommendations for Caddo Lake. Environmental flows is the amount of water that needs to flow down the river to maintain the ecological system in the lake, river and flood plain. Dan Weber, the Conservancy?s northwest Louisiana program manager, said, ?We...

Wythe, Kathy

2006-01-01T23:59:59.000Z

186

Model-Generated Predictions of Dry Thunderstorm Potential  

Science Journals Connector (OSTI)

Dry thunderstorms (those that occur without significant rainfall at the ground) are common in the interior western United States. Moisture drawn into the area from the Gulfs of Mexico and California is sufficient to form high-based thunderstorms. ...

Miriam L. Rorig; Steven J. McKay; Sue A. Ferguson; Paul Werth

2007-05-01T23:59:59.000Z

187

QWould fruit and vegetable growers within a 30-mile radius of the Iowa Great Lakes benefit from cooperative marketing  

E-Print Network (OSTI)

cooperative marketing and distribution? AYes, they were able to achieve increases in market venues and sales. Background The Iowa Great Lakes Area possesses tremendous potential for marketing local foods, and very few 40-120 miles away. Growers in the immediate area have relied on the Lakes Area Farmers Market

Debinski, Diane M.

188

Sediment resuspension in the Lake Taihu, China  

Science Journals Connector (OSTI)

In order to examine the intensity of surficial sediment resuspension in Lake Taihu, a large shallow lake...0 mm.

Chunhua Hu; Weiping Hu; Fabing Zhang; Zhixin Hu; Xianghua Li

2006-03-01T23:59:59.000Z

189

Drying of fiber webs  

DOE Patents (OSTI)

A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

Warren, D.W.

1997-04-15T23:59:59.000Z

190

Text and references to accompany Nevada Bureau of Mines and Geology Map 164 Geologic Map of the Seven Lakes Mountain Quadrangle,  

E-Print Network (OSTI)

separate the north-trending ranges, and the west-trending Dry Valley separates Seven Lakes Mountain from encompasses all of the unusually west- trending Seven Lakes Mountain, the northern parts of the generally Mountain, and the southern part of the Fort Sage Mountains. Long Valley, Red Rock Valley, and Lees Flat

Tingley, Joseph V.

191

Distribution and Diversity of Archaea Corresponding to the Limnological Cycle of a Hypersaline Stratified Lake (Solar Lake, Sinai, Egypt)  

Science Journals Connector (OSTI)

...Stratified Lake (Solar Lake, Sinai, Egypt) Eddie Cytryn Dror Minz Ronald S. Oremland...monomictic lake, Solar Lake, Sinai, Egypt, during the limnological development of...stratified lake (Solar lake, Sinai, Egypt). | The vertical and seasonal distribution...

Eddie Cytryn; Dror Minz; Ronald S. Oremland; Yehuda Cohen

2000-08-01T23:59:59.000Z

192

Method of drying articles  

DOE Patents (OSTI)

A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

Janney, Mark A. (Knoxville, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

193

Method of drying articles  

DOE Patents (OSTI)

A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

Janney, M.A.; Kiggans, J.O. Jr.

1999-03-23T23:59:59.000Z

194

Dry reforming of hydrocarbon feedstocks  

SciTech Connect

Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

Shah, Yatish T. [Norfolk State University; Gardner, Todd H. [U.S. DOE

2014-01-01T23:59:59.000Z

195

Lake Improvement District Law and County Lake Improvement Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Improvement District Law and County Lake Improvement Program Lake Improvement District Law and County Lake Improvement Program (Minnesota) Lake Improvement District Law and County Lake Improvement Program (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting Lake Improvement Districts may be established by county boards in order to

196

MERCURY CYCLING IN LAKE GORDON AND LAKE PEDDER, TASMANIA (AUSTRALIA). I: IN-LAKE PROCESSES  

E-Print Network (OSTI)

MERCURY CYCLING IN LAKE GORDON AND LAKE PEDDER, TASMANIA (AUSTRALIA). I: IN-LAKE PROCESSES KARL C; accepted 2 December 2002) Abstract. The processes affecting the concentrations of total mercury (total Hg- vestigated. Surface concentrations of total mercury (total Hg) were temporally and spatially uniform in both

Canberra, University of

197

Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent  

Open Energy Info (EERE)

Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Details Activities (1) Areas (1) Regions (0) Abstract: From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged from a high of about -120 mgal over the outcrop areas to a

198

Geochemistry Of The Lake City Geothermal System, California, Usa | Open  

Open Energy Info (EERE)

Geochemistry Of The Lake City Geothermal System, California, Usa Geochemistry Of The Lake City Geothermal System, California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemistry Of The Lake City Geothermal System, California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: Lake City hot springs and geothermal wells chemically fall into a narrow compositional group. This indicates that, with the exception of a few hot springs, mixing with shallow cold ground waters does not have a significant influence on the chemistry of the hot springs. Narrow ranges in plots of F, B and Li versus Cl, and _D to _18O values indicate minimal mixing. Because of this, the compositions of the natural hot spring waters are fairly representative of the parent geothermal water. The average

199

Draft dry year tools (generation/planning)  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation > Planning > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Dry Year Tools November 9, 2006 - Final Dry Year Guide: The Final Dry...

200

Man-Made Lakes  

Science Journals Connector (OSTI)

... of these lakes demands that the fullest use be made of them. In addition to hydroelectric power, for which most of the dams are primarily constructed, their creation provides innumerable ... bottom waters become barren of fish and other life, and strongly sulphurated waters affect the turbines. How long these situations will persist depends on the shape, size and position of ...

ROSEMARY L. MCCONNELL; E. B. WORTHINGTON

1965-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GREAT LAKES ENVIRONMENTAL RESEARCH  

E-Print Network (OSTI)

or product does not constitute an endorsement by NOANERL. Use for publicity or advertising purposes & Global Change in Large Lakes ................" ... 7 Pollutant Effects and effects of pollutants, the cycling and through-put of nutrients and energy within the food chain, water

202

Microbial life at ?13 C in the brine of an ice-sealed Antarctic lake  

Science Journals Connector (OSTI)

...Vida core-DVDP6 . Dry Valley Drilling Project Bulletin 3...Prospects for inferring very large phylogenies by using...indicates the location of the borehole. The white rectangle indicates...shores of Lake Vida showing two large Ferrar dolerite sills (darker...

Alison E. Murray; Fabien Kenig; Christian H. Fritsen; Christopher P. McKay; Kaelin M. Cawley; Ross Edwards; Emanuele Kuhn; Diane M. McKnight; Nathaniel E. Ostrom; Vivian Peng; Adrian Ponce; John C. Priscu; Vladimir Samarkin; Ashley T. Townsend; Protima Wagh; Seth A. Young; Pung To Yung; Peter T. Doran

2012-01-01T23:59:59.000Z

203

Solar drying of seafood products  

SciTech Connect

The solar drying of seafood products by forced air convection and by direct insolation, as well as hot smoking fish with a solar assisted fish smoker are investigated.

Baird, C.D.; Deng, J.C.; Chau, K.V.; Heinis, J.J.; Perez, M.

1981-01-01T23:59:59.000Z

204

Chapter 5 Terminal Lake Level Variability and Man's Attempts to Cope it with them  

Science Journals Connector (OSTI)

Publisher Summary Terminal lakes are usually located in the arid, lightly populated regions. The lack of understanding about the nature of terminal lakes is not only unfortunate but also potentially dangerous and costly to structures, agricultural undertakings, and utilization of such lakes as chemical sources, transportation links, or recreation areas. Because closed lakes have no outlet, their level, surface area, and volume are dependent on the drainage and evaporation rate of their closed environment. The size of terminal lakes is, thus, dependent on the weather or more accurately its long-term effect, climate. Because the essence of weather and climate is change, it follows that the essence of terminal lakes is also change. Man interferes with terminal lakes and their mechanisms, thereby upsetting the balance regulated by nature. Two of the best known examples of problem-plagued terminal lakes and man's efforts to utilize, control, and regulate them are found today in the Soviet Union's Caspian Sea and the Great Salt Lake in the United States.

D.C. Greer

1980-01-01T23:59:59.000Z

205

Results of multiyear studies on the dynamics of pollution of lake Baikal by polycyclic aromatic hydrocarbons in the area waste water discharge from the Baikal Pulp and Paper Plant  

Science Journals Connector (OSTI)

New data on the concentration and spatial distribution of the benz(a)pyrene and polycyclic aromatic hydrocarbons in bottom sediments in the testing area ... Baikal Pulp and Paper Plant (BPPP) waste water discharg...

A. M. Nikonorov; A. A. Matveev; S. A. Reznikov; V. S. Arakelyan

2012-03-01T23:59:59.000Z

206

Plutonium in Lake Ontario  

Science Journals Connector (OSTI)

The presence of West Valley-delivered radionuclides in the western basin of Lake Ontario is demonstrated through an analysis of plutoniums and associated radionuclides in a 210Pb-dated sediment core. It is observed that the radionuclide profiles are consistent with the 1970 West Valley peak discharge and not the 1963 fallout peak activity. The drainage basin soils are estimated to annually release only about 0.006% of their fallout 239,240Pu inventory to the receiving waters. Taken together, on a lakewide basis, both releases have made very little contribution to the overall levels of plutoniums in the open waters though surges in West Valley emissions were obviously a significant contributor to western Lake Ontario waters. It appears nuclear reactor operations contribute very little plutonium to the open waters. Their influence on the nearshore zone must await the availability of relevant release and monitoring data.

S.R. Joshi

1995-01-01T23:59:59.000Z

207

salt lake city.cdr  

Office of Legacy Management (LM)

Locations of the Salt Lake City Processing and Disposal Sites Locations of the Salt Lake City Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Processing and Disposal Sites Site Descriptions and History Regulatory Setting The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt Lake City, Utah, at 3300 South and Interstate 15. The Vitro Chemical Company processed uranium and vanadium ore at the site from 1951 until 1968. Milling operations conducted at the processing site created radioactive tailings, a predominantly sandy material.

208

Kangley - Echo Lake Transmission Line Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEMENT STATEMENT Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement Responsible Agency: U.S. Department of Energy, Bonneville Power Administration (BPA) Cooperating Agency: U.S. Department of Agriculture, Forest Service (USFS) Title of Proposed Project: Kangley-Echo Lake Transmission Line Project State Involved: Washington Abstract: BPA is proposing to build a new transmission line to accommodate increasing demand for electricity and ensure reliability in the Puget Sound area. The Proposed Action would construct a new line that would connect to an existing transmis- sion line near the community of Kangley, and then connect with BPA's existing Echo Lake Substation. The major purpose of this proposal is to improve system reliability in the King County area. An outage on an existing line during times of heavy use, such as

209

ORISE Research Team Experiences: Joe Lake  

NLE Websites -- All DOE Office Websites (Extended Search)

Joe Lake One-Time Student Intern has 'Second Life' as ORNL Mentor Joe Lake Joe Lake, a full-time software engineer for Oak Ridge National Laboratory's Computational Science and...

210

From Greenland to green lakes  

Science Journals Connector (OSTI)

From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in .... Kahlert 2001), the importance of attached algae as an energy.

2003-06-16T23:59:59.000Z

211

NAWS-China Lake Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the NAWS-China Lake Project at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

212

E-Print Network 3.0 - area karelian isthmus Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Littorina Sea transgressions based on stratigraphic studies in coastal lakes of NW Russia Summary: Sweden; IN - Ingermanland area, NW Russia; KA - Karelian Isthmus, NW Russia....

213

E-Print Network 3.0 - area nye county Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Nye County Lincoln County Beaver County Iron County State Line County Boundary Solar Energy Study... Area China Lake Naval Weapons Center Nellis Air Force Base Nellis Air Force...

214

E-Print Network 3.0 - areas nye county Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Nye County Lincoln County Beaver County Iron County State Line County Boundary Solar Energy Study... Area China Lake Naval Weapons Center Nellis Air Force Base Nellis Air Force...

215

E-Print Network 3.0 - altares-las plumas area Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

in the planning area for the PEV Readiness PON. However... , Colusa, Glenn, Imperial, Kings, Lake, Lassen, Madera, Mariposa, Mendocino, Merced, Modoc, Nevada, Plumas Source:...

216

Investigation of Dry and Near-Dry Electrical Discharge Milling Processes.  

E-Print Network (OSTI)

??The dry and near-dry electrical discharge machining (EDM) processes are investigated in this research. Dry EDM uses gas to replace the liquid dielectric fluid in (more)

Tao, Jia

2008-01-01T23:59:59.000Z

217

Klamath and Lake Counties Agricultural Industrial Park; 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Klamath and Lake counties for the purpose of capitalizing on the area's abundant geothermal resources. Average Overall Score: 3.34.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0...

218

Forecasting the Vulnerability of Lakes to Aquatic Plant Invasions  

E-Print Network (OSTI)

water, hull fouling), aquarium and ornamental trades, angling (discharging live bait, trailer boats.g., public boat launch, urban land use) and physical­chemical conditions (e.g., lake area, elevation crispus L. PTMCR. Key words: Aquarium trade, ecological niche models, exotic plants, nursery plants

Olden, Julian D.

219

Lithographic dry development using optical absorption  

SciTech Connect

A novel approach to dry development of exposed photo resist is described in which a photo resist layer is exposed to a visible light source in order to remove the resist in the areas of exposure. The class of compounds used as the resist material, under the influence of the light source, undergoes a chemical/structural change such that the modified material becomes volatile and is thus removed from the resist surface. The exposure process is carried out for a time sufficient to ablate the exposed resist layer down to the layer below. A group of compounds found to be useful in this process includes aromatic calixarenes.

Olynick, Deirdre; Schuck, P. James; Schmidt, Martin

2013-08-20T23:59:59.000Z

220

REVIEW PLAN PINE CREEK LAKE  

E-Print Network (OSTI)

#12;REVIEW PLAN PINE CREEK LAKE McCurtain County, Oklahoma DAM SAFETY MODIFICATION STUDY TULSA LEFT BLANK #12;REVIEW PLAN Pine Creek Lake, Oklahoma Dam Safety Modification Study TABLE OF CONTENTS and Costs 17 13. Public Participation 19 14. Review Plan Approval and Updates 19 15. Review Plan Points

US Army Corps of Engineers

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NEWTON: Preventing Tire Dry Rot  

NLE Websites -- All DOE Office Websites (Extended Search)

Preventing Tire Dry Rot Preventing Tire Dry Rot Name: Millard Status: student Grade: 9-12 Location: MD Country: USA Date: Spring 2013 Question: My dad has a classic car, and because it gets driven very little each year, the tires dry rot before he can get much tread wear on them. What could be used to protect the tires from dry rot and cracking? Replies: Hi Millard, Thanks for the question. I would recommend keeping the car on blocks so that there is no weight on the tires. Additionally, I would recommend that no electrical equipment (motors, switches, and other things that spark) be used around the car. The sparks generate ozone and ozone can cause rubber items such as tires, belts, and hoses to crack. I hope this helps. Please let me know if you have more questions. Thanks Jeff Grell

222

DRI Companies | Open Energy Information  

Open Energy Info (EERE)

DRI Companies DRI Companies Jump to: navigation, search Name DRI Companies Place Irvine, California Zip 92614 Sector Solar Product US-based residential and commercial installer of turnkey solar systems, through subsidiary iDRI Energy. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Sustaining dry surfaces under water  

E-Print Network (OSTI)

Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

Paul R. Jones; Xiuqing Hao; Eduardo R. Cruz-Chu; Konrad Rykaczewski; Krishanu Nandy; Thomas M. Schutzius; Kripa K. Varanasi; Constantine M. Megaridis; Jens H. Walther; Petros Koumoutsakos; Horacio D. Espinosa; Neelesh A. Patankar

2014-09-29T23:59:59.000Z

224

Why Sequence Great Salt Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Salt Lake? Great Salt Lake? On average, the Great Salt Lake is four times saltier than the ocean and also has heavy metals, high concentrations of sulfur and petroleum seeps. In spite of all this, the lake is the saltiest body of water to support life. The lake hosts brine shrimp, algae and a diverse array of microbes, not to mention the roughly 5 million birds that migrate there annually. The secret to these microbes' ability to survive under such harsh conditions might be revealed in their genes. Researchers expect the genetic data will provide insight into how the microorganisms tolerate pollutants such as sulfur and detoxify pollutants such as sulfur and heavy metals like mercury. The information could then be used to develop bioremediation techniques. Researchers also expect that sequencing microorganisms sampled

225

J. Great Lakes Res. 29(4):681704 Internat. Assoc. Great Lakes Res., 2003  

E-Print Network (OSTI)

, lake level rise. Schematic reconstructions illustrate changing paleogeography and a Holocene lake level Postglacial Lake Level History Based on New Detailed Bathymetry Troy L. Holcombe1,*, Lisa A. Taylor1, David F. Holocene lake level history and paleogeography of Lake Erie are re-interpreted with the aid of new

226

GREAT LAKES UNIVERSITY OF KISUMU INTRODUCTION  

E-Print Network (OSTI)

agriculture, green valleys and hills, and occasional thick forest and mountains. It is situated on Lake

Petriu, Emil M.

227

Cascade Locks Wahtum LakeWahtum Lake  

E-Print Network (OSTI)

Cliff -- BJO Mesic Lowlands Conifer-Hardwood Forest -- BE, NSO Montane Mixed Conifer Forest -- NSOCreek Casey Creek Slide Creek Indian Cr eek USDA Forest Service USFS - Columbia Gorge Scenic Area Wilderness State Hood River County Hood River County Forest Private S.D.S. Co. LLC Other Columbia River Gorge

228

Western Lake Superior Sanitary District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Lake Superior Sanitary District (Minnesota) Western Lake Superior Sanitary District (Minnesota) Western Lake Superior Sanitary District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting A sanitary board is established to deal with long-term serious problems relating to water pollution and solid waste disposal in the area. The district can set regulations regarding garbage management and recycling,

229

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

230

Uganda-Demonstrating Wind and Solar Energy on Lake Victoria | Open Energy  

Open Energy Info (EERE)

Uganda-Demonstrating Wind and Solar Energy on Lake Victoria Uganda-Demonstrating Wind and Solar Energy on Lake Victoria Jump to: navigation, search Name Uganda-Demonstrating Wind and Solar Energy on Lake Victoria Agency/Company /Organization United Nations Development Programme Sector Energy Focus Area Renewable Energy, Solar, Wind Topics Policies/deployment programs, Background analysis, Technology characterizations Resource Type Guide/manual, Lessons learned/best practices Website http://sgp.undp.org/download/S Country Uganda UN Region Eastern Africa References Uganda-Demonstrating Wind and Solar Energy on Lake Victoria[1] Uganda-Demonstrating Wind and Solar Energy on Lake Victoria Screenshot Background "This project demonstrates the use of wind and solar energy sources to recharge batteries and meet lighting and other power needs within homes.A

231

Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility  

SciTech Connect

This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

JOHNSON, B.H.

1999-08-19T23:59:59.000Z

232

Changes in the fish species composition of all Austrian lakes >50 ha during the last 150 years  

E-Print Network (OSTI)

Changes in the fish species composition of all Austrian lakes >50 ha during the last 150 years D for Limnology, Mondsee, Austria Abstract The fish communities of all Austrian natural lakes (n ¼ 43) larger than 50 ha in surface area were assessed and the historical fish communities in c. 1850 were reconstructed

Filzmoser, Peter

233

Assessment Of Bacterial Sources Impacting Lake Waco And Belton Lake  

E-Print Network (OSTI)

time for sample delivery to the laboratory and initiation of analysis was maintained. Following incubation and enumeration using USEPA Method 1603, the Assessment of Bacterial Sources Impacting Lake Waco & Belton Lake Executive Summary J:\\742... of Contents J:\\742\\742880_TX_Farm_Bureau\\Reports\\Final_Report_2-2006\\TXFB_ReportFinal_020806.doc i February 2006 TABLE OF CONTENTS EXECUTIVE SUMMARY ........................................................................................ ES-1 SECTION 1...

Giovanni, G.

234

Dry cleaning of Turkish coal  

SciTech Connect

This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

235

Lake Ontario Maritime Cultural Landscape  

E-Print Network (OSTI)

(Watertown). I also benefited from interactions with several organizations, including Jefferson County Historical Society, Maritime Museum of the Great Lakes, 1000 Islands Land Trust, New York Office of Parks, Recreation, and Historic Preservation, Ontario... (Watertown). I also benefited from interactions with several organizations, including Jefferson County Historical Society, Maritime Museum of the Great Lakes, 1000 Islands Land Trust, New York Office of Parks, Recreation, and Historic Preservation, Ontario...

Ford, Benjamin L.

2010-10-12T23:59:59.000Z

236

RELATIONSHIPS BETWEEN ZOOPLANKTON DISPLACEMENT VOLUME, WET WEIGHT, DRY WEIGHT, AND CARBONI  

E-Print Network (OSTI)

of the regression line for log transformed values for carbon vs. dry weight and wet weight vs. displacement volumeRELATIONSHIPS BETWEEN ZOOPLANKTON DISPLACEMENT VOLUME, WET WEIGHT, DRY WEIGHT, AND CARBONI PETER H are identical. We have employed this type of analysis in determinations on samples from diverse sea areas

237

Cool, Dry, Quiet Dehumidification with  

E-Print Network (OSTI)

. Representative dehumidification increase using Trane CDQ dehumidification system Standard HVAC coil - 20% latent dehumidification system as the best new HVAC dehumidification product for 2006. #12;Trane CDQTM (Cool Dry Quiet, supply fan, cooling coil, optional reheat coil, optional final filters. A CDQ system in a Custom Climate

Oak Ridge National Laboratory

238

Impingement drying of potato chips  

E-Print Network (OSTI)

Superheated steam impingement drying was used as an alternative technique to develop nutritious fat-free potato chips. The effect of superheated steam temperature (115, 130, and 145 C) and convective heat transfer coefficient (100 and 160 W/m C...

Caixeta, Aline Teixeira

2012-06-07T23:59:59.000Z

239

THE DIRT ON DRY MERGERS  

SciTech Connect

Using data from the Spitzer Space Telescope, we analyze the mid-infrared (3-70 {mu}m) spectral energy distributions of dry merger candidates in the Booetes field of the NOAO Deep Wide-Field Survey. These candidates were selected by previous authors to be luminous, red, early-type galaxies with morphological evidence of recent tidal interactions. We find that a significant fraction of these candidates exhibit 8 and 24 {mu}m excesses compared to expectations for old stellar populations. We estimate that a quarter of dry merger candidates have mid-infrared-derived star formation rates greater than {approx}1 M{sub sun} yr{sup -1}. This represents a 'frosting' on top of a large old stellar population, and has been seen in previous studies of elliptical galaxies. Further, the dry merger candidates include a higher fraction of star-forming galaxies relative to a control sample without tidal features. We therefore conclude that the star formation in these massive ellipticals is likely triggered by merger activity. Our data suggest that the mergers responsible for the observed tidal features were not completely dry, and may be minor mergers involving a gas-rich dwarf galaxy.

Desai, Vandana; Soifer, B. T. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Dey, Arjun [National Optical Astronomy Observatory, Tucson, AZ 85726-6732 (United States); Cohen, Emma [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Le Floc'h, Emeric, E-mail: desai@ipac.caltech.edu [AIM, CNRS, Universite Paris Diderot, Bat. 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

2011-04-01T23:59:59.000Z

240

Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska  

SciTech Connect

Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dry and Mixed-Dry Climates Dry and Mixed-Dry Climates Guides and Case Studies for Hot-Dry and Mixed-Dry Climates Map of the Hot-Dry and Mixed-Dry Zone of the United States. The zone contains the eastern side of California and follows the US border to cover the western half of Texas. The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-dry and mixed-dry climates. Best Practice Guides New Construction Case Studies Improvements to Existing Homes Case Studies Best Practice Guides 40% Whole-House Energy Savings in Hot-Dry and Mixed-Dry Climates - Volume 9 New Construction Case Studies Arizona Project: Gordon Estates - Phoenix Builder: Mandalay Homes Profile: Fourteen homes in this subdivision achieved Challenge Home

242

Evidence from lake sediments, marine sediments, and ice cores  

E-Print Network (OSTI)

Evidence from lake sediments, marine sediments, and ice cores #12;Outline · Archives · Proxies and glaciers #12;Archive: Lake sediments #12;Lake sediments - sampling #12;Lake sediments - proxies Lake sediments: age Wohlfarth et al. Geology 2008 #12;Lake sediments - proxies Wohlfarth et al. Geology 2008 #12

Sengun, Mehmet Haluk

243

Category:Salt Lake City, UT | Open Energy Information  

Open Energy Info (EERE)

UT UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVFullServiceRestauran... 57 KB SVHospital Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVHospital Salt Lake C... 57 KB SVLargeHotel Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeHotel Salt Lake... 55 KB SVLargeOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeOffice Salt Lak... 57 KB SVMediumOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVMediumOffice Salt La... 62 KB SVMidriseApartment Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png

244

Resuspension in a shallow eutrophic lake  

Science Journals Connector (OSTI)

The frequency and the importance of wind-induced resuspension were studied in the shallow, eutrophic Lake...2, mean depth 3 m). During storm events in autumn 1988 lake water samples were collected every 28 hours...

Peter Kristensen; Martin Sndergaard; Erik Jeppesen

1992-01-01T23:59:59.000Z

245

Geology of the Normangee Lake area, Leon County, Texas  

E-Print Network (OSTI)

. G. & R, Drilling Company in Bryan, Texas, supplied electric and drillers' logs and aided the writer in taking samples of cuttings from wells being drilled. Mr, Louis Noack of Noack Drilling Company in Marquez, Texas, supplied drillers' logs... Well Data. 242 246 249 261 VITA 282 LIST OF TABLES Table Page Concentration limits for dissolved mineral constituents and properties of drinking water 126 Recommended concentration limits for naturally occurring fluoride in drinking water...

Anspach, David Harold

1972-01-01T23:59:59.000Z

246

Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...  

Open Energy Info (EERE)

N. Hinz, A. Sabin, M. Lazaro, S. Alm (2010) Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada...

247

Data Acquisition-Manipulation At Lake City Hot Springs Area ...  

Open Energy Info (EERE)

site for a new confirmation well into the fault zone. This work is currently nearing completion and permitting of potential well sites has begun. References N. R. Warpinski,...

248

Compound and Elemental Analysis At Lake City Hot Springs Area...  

Open Energy Info (EERE)

site for a new confirmation well into the fault zone. This work is currently nearing completion and permitting of potential well sites has begun. References N. R. Warpinski,...

249

Species composition and distribution of the macrozooplankton in Postoak Lake  

E-Print Network (OSTI)

and winter months. Cladocera predominated in late October and early November. The lnean momentary composition of Postoak Lake included 5. 6 cladoceran species and 3. 0 copepod species. Density differences between inshore and offshore areas occurred... but were not consistent over time. The cyclopoid opp d. T. ~o' 1 D ' * ' . d~M1~ edax were generally more abundant offshore. The calanoid . pp dp t*, ~11'd h d ho *ffh preference. The cladoceran Cerio~da hnia lacustris exhibi ed uniform horizonta...

Welch, Douglas Edward

2012-06-07T23:59:59.000Z

250

Fallout Plutonium in an Alkaline, Saline Lake  

Science Journals Connector (OSTI)

...Mono Lake, a natural closed-basin (3) alkaline, saline lake...3 pCi/m3), and New York Bight (-0.7 pCi/m3) are much...volcanic debris that fills the basin to a depth of 1000 m. Mono...Water is lost from a closed basin lake only by evaporation and...

H. J. SIMPSON; R. M. TRIER; C. R. OLSEN; D. E. HAMMOND; A. EGE; L. MILLER; J. M. MELACK

1980-03-07T23:59:59.000Z

251

Biosecurity for Aquaculture Rend Lake Workshop  

E-Print Network (OSTI)

's The Right Thing To Do Makes You More Profitable Protects Your Investment Regulatory Rend Lake Biosecurity Protect economic investmentProtect economic investment Reputation Protect against new diseases Viral regulations Rend Lake Biosecurity Workshop #12;Regulatory International Federal StateState Local Rend Lake

252

RECIPIENT:Lake County, FL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake County, FL Lake County, FL u.s. DEPARTIIIEN T OF ENERGY EERE PROJECT MANAGEMENT CEN T ER NEPA DETERlIJJNATION PROJECf TITLE: Lake County, FL EECBG SOW (S) Page lof2 STATE: FL Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Numbcr CID Numbtr OE·FOA-OOOOO13 DE·EE00Q0786.001 0 Based on my review of the information concerning the proposed adion, as NEPA Compliance Officer (authorized undtr DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: 65.1 Actions to conserve energy, demonstrate potential energy conserva tion, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

253

City of Detroit Lakes, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name City of Detroit Lakes Place Minnesota Utility Id 5111 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights - 100 Watt HPS (Unmetered) Lighting Area Lights - 100 Watt HPS (metered) Lighting Area Lights - 250 Watt HPS (Unmetered) Lighting Area Lights - 250 Watt HPS (metered) Lighting Area Lights - 400 Watt HPS (Unmetered) Lighting Area Lights - 400 Watt HPS (metered) Lighting

254

Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227  

SciTech Connect

The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow and load scenarios. (authors)

Freihammer, Till; Chaput, Barb [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada)] [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada); Vandergaast, Gary [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)] [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Arey, Jimi [Public Works and Government Services Canada, Ontario (Canada)] [Public Works and Government Services Canada, Ontario (Canada)

2013-07-01T23:59:59.000Z

255

Salt Lake Community College | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

SLCC Partners with DOE's Rocky Mountain Solar Training Program This program is a joint partnership between DOE's Solar Energy Technogies Program, Salt Lake Community College, Solar Energy International, and the Utah Solar Energy Association that works to accelerate use of solar electric technologies, training and facilities at community and technical college solar training programs within a 15 western United States region. DOE Solar Instructor Training Network Salt Lake City, Utah DOE Applauds SLCC's Science and Technical Programs Architectural Technology Biology Biotechnology Biomanufacturing Chemistry Computer Science Electric Sector Training Energy Management Engineering Geographic Information Sciences Geosciences InnovaBio Manufacturing & Mechanical Engineering Technology

256

E-Print Network 3.0 - arsenic-rich soda lakes Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Lakes DiagnosticFeasibility Study... For Clear Lake, California prepared for: Lake County Flood Control and Water Conservation District... Engineer Lake County Flood Control...

257

Florida Dry Natural Gas Reserves Acquisitions (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Dry Natural Gas Reserves Acquisitions Florida Dry Natural Gas Proved Reserves Dry Natural Gas Proved...

258

Florida Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Next Release Date: 12312015 Referring Pages: New Field Discoveries of Dry Natural Gas Reserves Florida Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves New...

259

An Oxygen Isotope Study Of Hydrothermal Alteration In The Lake City  

Open Energy Info (EERE)

Isotope Study Of Hydrothermal Alteration In The Lake City Isotope Study Of Hydrothermal Alteration In The Lake City Caldera, San Juan Mountains, Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Oxygen Isotope Study Of Hydrothermal Alteration In The Lake City Caldera, San Juan Mountains, Colorado Details Activities (2) Areas (1) Regions (0) Abstract: A 23-m.y.-old, fossil meteoric-hydrothermal system in the Lake City caldera (11 _ 14 km) has been mapped out by measuring Δ 18O values of 300 rock and mineral samples. Δ 18O varies systematically throughout the caldera, reaching values as low as -2. Great topographic relief, regional tilting, and variable degrees of erosion within the caldera all combine to give us a very complete section through the hydrothermal system, from the

260

Exploration And Discovery In Yellowstone Lake- Results From High-Resolution  

Open Energy Info (EERE)

Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Details Activities (1) Areas (1) Regions (0) Abstract: No portion of the American continent is perhaps so rich in wonders as the Yellow Stone' (F.V. Hayden, September 2, 1874) Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar Lakes and Solar Energy  

Science Journals Connector (OSTI)

... It is worth estimating the magnitude of the energy that can be extracted from the stable layer of such a lake. Por presented ... the depth of 125 cm as the top of that layer. Now the fraction of solar radiation which penetrates unabsorbed below a water layer 125 cm thick2 is about 30 per ...

J. NEUMANN

1968-08-24T23:59:59.000Z

262

GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY  

E-Print Network (OSTI)

by the NOAA Environmental Research Laboratories, in any advertising or sales promotion which would indicate or indirectly the advertised product to be used or purchased because of this NOAA Environmental Research and dispersion of pollutants; surface waves and oscillation5-critical to lake transportation, boating

263

GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY  

E-Print Network (OSTI)

- cation furnished by the NOAA Environmental Re- search Laboratories, in any advertising or sales promo as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased~sand an understanding of the transport and dispers~onof pollutants; surface waves and oscillations-critical to lake

264

GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY  

E-Print Network (OSTI)

by the NOAA Environmental Research Laboratories, in any advertising or sales promotion which would indicate directly or indirectly the advertised product to be used or purchased because of this NOAA Environmental of the transport and dispersion of pollutants; surface waves and oscillations-critical to lake transportation

265

NETL: Gasification Systems - Evaluation of the Benefits of Advanced Dry  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Evaluation of the Benefits of Advanced Dry Feed System for Low Rank Coal Project Number: DE-FE0007902 General Electric Company (GE) is evaluating and demonstrating the benefits of novel dry feed technologies to effectively, reliably, and economically provide feeding of low-cost, low-rank coals into commercial Integrated Gasification Combined Cycle (IGCC) systems. GE is completing comparative techno-economic studies of two IGCC power plant cases, one without and one with advanced dry feed technologies. A common basis of design is being developed so that overall assumptions and methodologies are common in the two cases for both technical and economic areas. The baseline case, without advanced dry feed technologies, will use operational data from the Eastman Chemical Company Kingsport gasification facility in combination with DOE/NETL's Cost and Performance Baseline Low-Rank Coal to Electricity IGCC study for both cost and performance comparisons. Advanced dry feed technologies, based upon the Posimetric® pump currently under development by GE, will be developed to match the proposed plant conditions and configuration, and will be analyzed to provide comparative performance and cost information to the baseline plant case. The scope of this analysis will cover the feed system from the raw coal silo up to, and including, the gasifier injector. Test data from previous and current testing will be summarized in a report to support the assumptions used to evaluate the advanced technologies and the potential value for future applications. This study focuses primarily on IGCC systems with 90 percent carbon capture, utilization, and storage (CCUS), but the dry feed system will be applicable to all IGCC power generating plants, as well as other industries requiring pressurized syngas.

266

Hydrology of modern and late Holocene lakes, Death Valley, California  

SciTech Connect

Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

Grasso, D.N.

1996-07-01T23:59:59.000Z

267

In Situ Observations of Sediment Resuspension in a Non-Depositional Region of Southern Lake Michigan: A Comparison of Spring and Fall Events  

E-Print Network (OSTI)

In Situ Observations of Sediment Resuspension in a Non-Depositional Region of Southern Lake-bottom conditions and sediment resuspension in Lake Michigan have concentrated on areas of high sediment deposition that the apparently recurrent winter-spring resuspension event (misnamed "plume") includes new material eroded from

NOAA Great Lakes Environmental Research Laboratory, Episodic Events

268

Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California  

SciTech Connect

Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

Czarnecki, J.B.

1997-12-31T23:59:59.000Z

269

Photocatalytic properties of titania pillared clays by different drying methods  

SciTech Connect

Photocatalysts based on titania pillared clays (TiO{sub 2} PILCs) have been prepared through a sol-gel method. Different drying methods, air drying (AD), air drying after ethanol extraction (EAD), and supercritical drying (SCD) have been employed and found to have significant effects on the photocatalytic efficiency of the resultant catalysts for the oxidation of phenol in water. Titania pillared clay (TiO{sub 2} PILC) obtained by SCD has the highest external and micropore surface area, largest amount and smallest crystallite size of anatase, and exhibited the highest photocatalytic activity. Furthermore, silica titania pillared clay (SiO{sub 2}-TiO{sub 2} PILC) after SCD, titania coated TiO{sub 2} PILC (SCD) and SiO{sub 2}-TiO{sub 2} PILC (SCD) were synthesized to study the key factors controlling the photocatalytic activity. It is concluded that the dispersion of nanometer-sized anatase on the surface of the PILC particles and the suspensibility of the particles are the most important factors for high photocatalytic efficiency.

Ding, Z.; Zhu, H.Y.; Lu, G.Q.; Greenfield, P.F. [Univ. of Queensland, Brisbane, Queensland (Australia). Dept. of Chemical Engineering] [Univ. of Queensland, Brisbane, Queensland (Australia). Dept. of Chemical Engineering

1999-01-01T23:59:59.000Z

270

Unique Luminescences of Dry Chlorophylls  

Science Journals Connector (OSTI)

Dry chlorophylls a and b in a rigid glass hydrocarbon solvent have intense emission at 7550 A and 7330 A respectively. In each case the room temperature absorption spectra show the presence of a band shoulder on the long wavelength side of the main red band. Both the emission and the absorption bands disappear in the presence of hydroxyllic solvents. The absorption and emission are interpreted as n??* singlet and n??* triplet transitions respectively. The lifetime of the n??* triplet emission in chlorophyll a is estimated to be 103 second. Cu chlorophyll b has an intense phosphorescence at 8740 A with a lifetime of less than 104 second. The differences in the room temperature emission spectra for chlorophylls a and b are discussed.

Jose Fernandez; Ralph S. Becker

1959-01-01T23:59:59.000Z

271

Candidate Sites For Future Hot Dry Rock Development In The United States |  

Open Energy Info (EERE)

Candidate Sites For Future Hot Dry Rock Development In The United States Candidate Sites For Future Hot Dry Rock Development In The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Candidate Sites For Future Hot Dry Rock Development In The United States Details Activities (8) Areas (4) Regions (0) Abstract: Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is categorized according to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are

272

Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 | Open Energy  

Open Energy Info (EERE)

Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Details Activities (3) Areas (1) Regions (0) Abstract: The Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site grew continuously during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat-extraction and thermal-contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m2 and reservoir fracture volume grew from 11 to 266 m3. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure

273

,"New York Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2013,"6301977" ,"Release Date:","124...

274

DRI Research Parks Ltd | Open Energy Information  

Open Energy Info (EERE)

Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: DRI Research Parks Ltd1 This article is a stub. You can help OpenEI...

275

,"New Mexico Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","410...

276

,"California Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","4...

277

Propane earth materials drying techniques and technologies.  

E-Print Network (OSTI)

??A feasibility study for the use of propane as a subbase drying technique. Michael Blahut (1) Dr. Vernon Schaefer (2) Dr. Chris Williams (3) The (more)

Blahut, Michael Edward

2010-01-01T23:59:59.000Z

278

,"New York Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","410...

279

Lake Winds | Open Energy Information  

Open Energy Info (EERE)

Winds Winds Jump to: navigation, search Name Lake Winds Facility Lake Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Consumers Energy Developer Consumers Energy Energy Purchaser Consumers Energy Location Ludington MI Coordinates 43.83972728°, -86.38154984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.83972728,"lon":-86.38154984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

NAWS-China Lake Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

g g y g y S S C C NAWS NAWS - - China Lake China Lake Working with the Local Utility Working with the Local Utility Mark Shvartzman Mark Shvartzman Project Manager, Southern California Edison Project Manager, Southern California Edison Presented at the November FUPWG Meeting Presented at the November FUPWG Meeting November 18, 2009 November 18, 2009 1 1 g E t bli h d i 1998 d Ad i Fili 1358 E History of SCE's UESC Program History of SCE's UESC Program History of SCE s UESC Program History of SCE s UESC Program * Background - Edison developed Energy Related Services (ERS) to assist Federal customers in identifying and implementing energy efficiency and renewable energy projects at government owned and/or managed facilities within Southern California Edison service territory - Established in 1998 under Advice Filing 1358-E

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NORTHWESTERN LAKES OF THE UNITED STATES: BIO-LOGICAL AND CHEMICAL STUDIES WITH REFERENCE  

E-Print Network (OSTI)

102 102 103 103 Lakes in western Washington-Continued. Lake Stevens, Wash . Swan Lake, Wash . Lake '" . Lakes in California and Oregon . Crater Lake, Oreg .. Temperatures .. Net plankton '" . Fallen Leaf LakeNORTHWESTERN LAKES OF THE UNITED STATES: BIO- LOGICAL AND CHEMICAL STUDIES WITH REFERENCE

282

Spirit Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spirit Lake Wind Farm Spirit Lake Wind Farm Jump to: navigation, search Name Spirit Lake Wind Farm Facility Spirit Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Spirit Lake School Developer Minnesota Windpower Energy Purchaser Alliant/IES Utilities Location Spirit Lake IA Coordinates 43.411381°, -95.10075° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.411381,"lon":-95.10075,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Lake Region State College | Open Energy Information  

Open Energy Info (EERE)

College College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Lake Region State College Developer Lake Region State College Energy Purchaser Lake Region State College Location Devils Lake ND Coordinates 48.166071°, -98.864529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.166071,"lon":-98.864529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

ORIGINAL ARTICLE The paleolimnology of Haynes Lake, Oak Ridges Moraine,  

E-Print Network (OSTI)

ORIGINAL ARTICLE The paleolimnology of Haynes Lake, Oak Ridges Moraine, Ontario, Canada-Verlag 2012 Abstract Haynes Lake is a small kettle lake located on the Oak Ridges Moraine, and is within

Patterson, Timothy

285

FAYETTEVILLE GREEN LAKE, NEW YORK. V. STUDIES OF ...  

Science Journals Connector (OSTI)

Green Lake, N.Y., was estimated to be 290 g C/m', .... chemical data for Fayetteville Green Lake .... Green Lake, Spectrum of light energy reaching the chemo-.

2000-02-12T23:59:59.000Z

286

Stratification and horizontal exchange in Lake Victoria, East ... - ASLO  

Science Journals Connector (OSTI)

energy budgets derived from local meteorological stations and two reanalysis products, address whether ... surface energy budget and wind drive the hydrodynamics of Lake Victoria ...... Laurentian Great Lakes region: Implementation of a lake.

2014-09-04T23:59:59.000Z

287

Corrosion assessment of dry fuel storage containers  

SciTech Connect

The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

Graves, C.E.

1994-09-01T23:59:59.000Z

288

Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico  

SciTech Connect

Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U/sub 3/O/sub 8/ by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions.

none,

1981-10-01T23:59:59.000Z

289

Development of the Great Lakes Ice-circulation Model (GLIM): Application to Lake Erie in 20032004  

E-Print Network (OSTI)

due to strong cooling and wind mixing. Prediction of the lake's ice extent (i.e., ice coverDevelopment of the Great Lakes Ice-circulation Model (GLIM): Application to Lake Erie in 2003: Received 4 May 2009 Accepted 30 November 2009 Communicated by Dr. Ram Yerubandi Index words: Coupled Ice

290

Water Quality, Lake Sensitivity Ratings, and Septic Seepage Surveys of Six Lakes in the  

E-Print Network (OSTI)

#12;Water Quality, Lake Sensitivity Ratings, and Septic Seepage Surveys of Six Lakes in the Bridge 224 West Esplanade North Vancouver, B.C. V7M 3H7 #12;i TABLE OF CONTENTS TABLE OF CONTENTS)..................................................... 9 3.2 Bridge Lake

291

Why sequence Bacteria from Lake Washington?  

NLE Websites -- All DOE Office Websites (Extended Search)

bacteria from Lake Washington? bacteria from Lake Washington? Previous collaborations between the University of Washington team and the DOE JGI involving both single genome and metagenomic sequencing have greatly enhanced the community's ability to explore the diversity of bacteria functionally active in metabolism of single carbon compounds, known as methylotrophs, isolated from Lake Washington (Seattle, Washington) sediment. Sequencing genomes of 50 methylotroph isolates from the Lake Washington will further enhance the methylotroph community knowledge database providing a much higher level of resolution of global (meta)transcriptomic and (meta)proteomic analyses, as well as species interaction studies, informing a better understanding of biogeochemical cycling of carbon and nitrogen.

292

A case study from Lake Matano, Indonesia  

Science Journals Connector (OSTI)

local winds could generate sufficient energy to mix the water in the deep basins of Lake Matano. Methods. Sampling and storageSampling was conducted at a.

2007-12-18T23:59:59.000Z

293

Precipitation scavenging, dry deposition, and resuspension. Volume 2: dry deposition and resuspension  

SciTech Connect

Papers are presented under the headings: dry deposition of gases, dry deposition of particles, wind erosion, plutonium deposition and resuspension, air-sea exchange, tropical and polar, global scale, and future studies.

Pruppacher, H.R.; Semanin, R.G.; Slinn, W.G.N.

1983-01-01T23:59:59.000Z

294

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per...

295

Ancient lakes: Their cultural and biological diversity (Hiroya ...  

Science Journals Connector (OSTI)

cichlid fishes in the East African Rift Valley lakes). In fact, ancient lakes contain the ... podsGeary et al., Michel, Nishino, and Watanabe, West and. Michel; and

2001-08-08T23:59:59.000Z

296

Obama Administration and Great Lakes States Announce Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of...

297

DOE - Office of Legacy Management -- West Lake Landfill - MO...  

Office of Legacy Management (LM)

Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

298

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

Churchman, C.W.

2011-01-01T23:59:59.000Z

299

DOE - Office of Legacy Management -- Ambrosia Lake Mill Site...  

Office of Legacy Management (LM)

Surveillance Plan (LTSP) for the Ambrosia Lake, New Mexico Site. FACT SHEET Office of Legacy Management Ambrosia Lake, New Mexico, Disposal Site This fact sheet provides...

300

Cold vacuum drying facility 90% design review  

SciTech Connect

This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

O`Neill, C.T.

1997-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

E-Print Network 3.0 - area utah characterization Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Awards to Members of the University Community 1. University of Utah Health... Care is the No. 1 health care system in the Salt Lake City metro area, according to ......

302

The health of Great Lakes habitats and wildlife depends upon the protection and restoration of ecosystems. A multitude of threats affect the health of Great Lakes habitats and wildlife, and many  

E-Print Network (OSTI)

and implementation. AOC Land Acquisition Project The Great Lakes Areas of Concern (AOC) Land Acquisition Project, the AOC Land Acquisition Project also targets areas that are high priority for habitat restoration. The Land Acquisition Project provides GLRI funds so that state and local agencies can purchase land in AOCs

303

Assessing Naturalness in Northern Great Lakes Forests Based on Historical Land-Cover and Vegetation Changes  

E-Print Network (OSTI)

Assessing Naturalness in Northern Great Lakes Forests Based on Historical Land-Cover and Vegetation was developed to assess to what degree landscapes represent a natural state. Protected areas are often regarded into naturalness assessments and the results provide useful information for future park management. More broadly

304

Biological effects of salinity gradient reversals in a southeast African estuarine lake  

Science Journals Connector (OSTI)

St Lucia Lake on the north coast of Natal, South Africa, has an area of 325 km2 and is the largest estuarine complex in Africa. It consists of a 20 km tidal channel, averagingca. 400 m in width, linking the sea w...

A. T. Forbes; D. P. Cyrus

1993-01-01T23:59:59.000Z

305

Development of A GIS for Integrated Ecosystem Assessments of Great Lakes Aquatic Resources  

E-Print Network (OSTI)

Development of A GIS for Integrated Ecosystem Assessments of Great Lakes Aquatic Resources Primary management and restoration strategies. Development of aquatic habitat databases and maps will eliminate stressors. A priority research area for NOAA's ecosystems observations program is to generate and manage

306

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

307

The Role of Disturbance in Dry Tropical Forest Landscapes  

SciTech Connect

Disturbance can be defined as 'any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment'. This definition requires that the spatial and temporal scales of the system and disturbance be determined. Disturbances are typically characterized by their size, spatial distribution, frequency or return time, predictability, and magnitude (which includes both intensity and severity). These disturbance attributes set the parameters for the suite of species, both plant and animal, that can persist within a given system. As such, an understanding of seasonally dry tropical forests in Asia requires an understanding of disturbance within the region. However, disturbances are relatively poorly understood in dry tropical forests, partly because of the weak seasonality in temperature and high tree species diversity of these forests relative to most forest systems of the world. There are about 1,048,700 km{sup 2} of dry tropical forests worldwide and that only 3% of this land is in conservation status. In other words, 97% of the world's seasonally dry tropical forest is at risk of human disturbance. About half of this forest occurs in South America, where most of the conservation lands are located. Satellite imagery based on MODIS (Moderate Resolution Imaging Spectroradiometer) data shows that only about 3.8% of the world's dry tropical forests are in Australia and South east Asia. The susceptibility of these forests to human disturbances is of great concern and is largely unstudied. Because natural disturbance regimes shape the ecosystem structure and are in many ways integral to these forest systems, it is critical to know how natural disturbance affects dry forest in order to understand the effects of human activities on these forests. Even basic information about disturbances in dry tropical forests is only recently available. Therefore this chapter brings together much of the available information from dry tropical forest throughout the world with the goal of developing an understanding of the role of disturbance in Asian dry forests. Most ecologists now recognize that disturbances, rather than being catastrophic agents of destruction, are a normal, perhaps even an integral, part of long-term system dynamics. The composition, structure, organization, and development and trophic dynamics of most forest systems are the products of disturbances. As an example, the forest composition for two disturbances in the Anaikatty Hills of Western Ghats were compared, where the low disturbance was from past logging followed by cutting and illicit felling and grazing and the high disturbance was due to human presence, past logging, and fuelwood collection. They found higher species richness and Shannon-Wiener diversity index for the low-disturbance forest (98 and 3.9, respectively) compared to the high-disturbance stand (45 and 2.71, respectively) as well as significant differences in mean basal area of trees, density of seedlings, number of species, density and diversity of shrubs, and number of species and diversity of herbs. Some ecological systems contain species that have evolved in response to disturbances. Adaptations typical of dry tropical forest plants are drought tolerance, seed dispersal mechanisms, and the ability to sprout subsequent to disturbance. In contrast, evidence was found that human disturbance in Kakamega Forest of western Kenya has significantly reduced allelic richness and heterozygosity, increased inbreeding, and slightly reduced gene flow in Prunus africana in the past century.

Dale, Virginia H [ORNL

2011-01-01T23:59:59.000Z

308

Dry texturing of solar cells  

DOE Patents (OSTI)

A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside on an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer. 9 figs.

Sopori, B.L.

1994-10-25T23:59:59.000Z

309

Dry texturing of solar cells  

DOE Patents (OSTI)

A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer.

Sopori, Bhushan L. (Denver, CO)

1994-01-01T23:59:59.000Z

310

The Lake Charles CCS Project  

SciTech Connect

The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

Doug Cathro

2010-06-30T23:59:59.000Z

311

Why sequence novel haloarchaea from Deep Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

novel haloarchaea from Deep Lake? novel haloarchaea from Deep Lake? Antarctica's Deep Lake was isolated from the ocean by glaciers long ago, creating a salt water lake with a unique ecosystem for studying the evolution of marine microorganisms in harsh extremes. Among these microorganisms are haloarchaea, members of the halophile community which need high salt concentrations in order to grow. Haloarchaea are a distinct evolutionary branch of the Archaea, and are considered extremophiles. The haloarchaea from Deep Lake are naturally adapted to cold, nutrient-limited and high saline level conditions that would kill almost any other life. The enzymes in these naturally adapted microorganisms can provide insight into bioprospecting and bioengineering cold active and salt-adapted enzymes. Understanding how haloarchaea

312

Bingham Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Wind Farm Lake Wind Farm Jump to: navigation, search Name Bingham Lake Wind Farm Facility Bingham Lake Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Alliant Energy Location Bingham Lake MN Coordinates 43.909°, -95.0464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.909,"lon":-95.0464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,  

E-Print Network (OSTI)

;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Dolomite Pine Canyon Limestone Humbug Formation Tertiary System North Horn Formation Moroni Formation Quaternary System Pre-Lake Bonneville Fanglomerate Lake Bonneville Sediments Recent Lake Sediments Igneous

Seamons, Kent E.

314

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

315

coherence area  

Science Journals Connector (OSTI)

1....In an electromagnetic wave, such as a lightwave or a radio wave, the area of a surface (a) every point on which the surface is perpendicular to the direction of propagation, (b) over which the e...

2001-01-01T23:59:59.000Z

316

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

317

Dry Storage of Research Reactor Spent Nuclear Fuel - 13321  

SciTech Connect

Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)] [Moore Nuclear Energy, LLC (United States)

2013-07-01T23:59:59.000Z

318

District Heating and Cooling feasibility study, Salt Lake City, Utah: Final report  

SciTech Connect

The following is a general description of the Burns and Roe study of District Heating and Cooling Feasibility for Salt Lake City, Utah. The study assesses District Heating and Cooling (DHC) and develops a conceptual district system for Salt Lake City. In assessing District Heating and Cooling in Salt Lake City, the system conceived is evaluated to determine whether it is technically and economically viable. To determine technical viability, aspects such as implementation, pipe routing, and environmental restrictions are reviewed to foresee any technical problems that would arise as a result of DHC. To determine economic feasibility, the conceived system is priced to determine the capital cost to construct, and modeled in an economic analysis using anticipated operating and fuel costs to produce the required revenue necessary to run the system. Technical and Economic feasibility are predicated on many variables, including heating and cooling load, pipe routing, system implementation, and fuel costs. These variables have been investigated and demonstrate a substantial potential for DHC in Salt Lake City. Areas of consideration include the Downtown Area, Metropolitan Hall of Justice and surrounding area, and the Hotel District.

Not Available

1988-09-09T23:59:59.000Z

319

District Heating and Cooling Feasiblity Study, Salt Lake City, Utah: Final report  

SciTech Connect

The following is a general description of the Burns and Roe study of District Heating and Cooling Feasibility for Salt Lake City, Utah. The study assesses District Heating and Cooling (DHC) and develops a conceptual district system for Salt Lake city. In assessing District Heating and Cooling in Salt Lake City, the system conceived is evaluated to determine whether it is technically and economically viable. To determine technical viability, aspects such as implementation, pipe routing, and environmental restrictions are reviewed to foresee any technical problems that would arise as a result of DHC. To determine economic feasibility, the conceived system is priced to determine the capital cost to construct, and modeled in an economic analysis using anticipated operating and fuel costs to produce the required revenue necessary to run the system. Technical and Economic feasibility are predicated on many variables, including heating and cooling load, pipe routing, system implementation, and fuel costs. These variables have been investigated and demonstrate a substantial potential for DHC in Salt Lake City. Areas of consideration include the Downtown Area, Metropolitan Hall of Justice and surrounding area, and the Hotel District.

Not Available

1988-09-09T23:59:59.000Z

320

Integrated Ingredients Dehydrated Agricultural Drying Low Temperature  

Open Energy Info (EERE)

Ingredients Dehydrated Agricultural Drying Low Temperature Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Facility Integrated Ingredients Dehydrated Sector Geothermal energy Type Agricultural Drying Location Empire, Nevada Coordinates 40.5757352°, -119.34213° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Resuspension and dry deposition research needs  

SciTech Connect

The author concludes that better predictive models are needed for the signifcant health, ecological, and economic impacts of resuspended particles and their subsequent dry deposition. Both chemical and radioactive aerosols are discussed. (PSB)

Sehmel, G.A.

1983-01-01T23:59:59.000Z

322

Advanced wet-dry cooling tower concept  

E-Print Network (OSTI)

The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

Snyder, Troxell Kimmel

323

Amendment 1 - Dry-type power transformers  

E-Print Network (OSTI)

Specifies requirements for dry-type power transformers (including auto-transformers) having values of highest voltage for equipment up to and including 36 kV. The following small and special dry-type transformers are not covered by this standard: -instrument transformers (covered by IEC 60185 and 60186); -transformers for static convertors (covered by IEC 60084, 60119 and 60146). Where IEC standards do not exist for other special transformers, this standard may be applicable as a whole or in part.

International Electrotechnical Commission. Geneva

1986-01-01T23:59:59.000Z

324

Compression of cooked freeze-dried carrots  

E-Print Network (OSTI)

. Reduction in volume of up to 18-fold can be obtained by com- pressing dehydrated vegetables (Rabman, 1969). During World War II, the United Kingdom produced dehydrated cabbage and carrots in compressed blocks (Gooding and Rolfe, 1967). Fairbrother (1968...-propanol at low concentration by freeze-drying carbohydrate solutions. J. of Food Sci. 37:617. Flosdorf, E. W. 1949. "Freeze-drying, " Reinhold Publishing Co. , New York. Gooding, E. B. B. and Rolfe, E. J. 1957. Some Recent Work on Dehy- dration...

Macphearson, Bruce Alan

2012-06-07T23:59:59.000Z

325

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A  

Open Energy Info (EERE)

Waters Along The Konocti Bay Fault Zone, Lake County, California- A Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Details Activities (3) Areas (1) Regions (0) Abstract: The Konocti Bay fault zone (KBFZ), initially regarded by some as a promising target for liquid-dominated geothermal systems, has been a disappointment. At least five exploratory wells were drilled in the vicinity of the KBFZ, but none were successful. Although the Na-K-Ca and Na-Li geothermometers indicate that the thermal waters discharging in the vicinity of Howard and Seigler Springs may have equilibrated at temperatures greater than 200°C, the spring temperatures and fluid

326

A Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In  

Open Energy Info (EERE)

Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In A Philippine Aborigine Legend Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In A Philippine Aborigine Legend Details Activities (0) Areas (0) Regions (0) Abstract: The prehistoric eruptions of Mount Pinatubo have followed a cycle: centuries of repose terminated by a caldera-forming eruption with large pyroclastic flows; a post-eruption aftermath of rain-triggered lahars in surrounding drainages and dome-building that fills the caldera; and then another long quiescent period. During and after the eruptions lahars descending along volcano channels may block tributaries from watersheds

327

Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake, 1985 Annual Report.  

SciTech Connect

This study has investigated the effects of the operation of Kerr Dam on the reproductive success of kokanee that spawn along the shores of Flathead Lake. We have estimated the spawning escapement to the lakeshore, characterized spawning habitat, monitored egg and alevin survival in redds, and related survival to length of redd exposure due to lake drawdown. Groundwater discharge apparently attracts kokanee to spawning sites along the lakeshore and is responsible for prolonging egg survival in redds above minimum pool. We have quantified and described the effect of lake drawdown on groundwater flux in spawning areas. This report defines optimal lakeshore spawning habitat and discusses eqg and alevin survival both in and below the varial zone.

Beattie, Will; Fraley, John J.; Decker-Hess, Janet (Montana Department of Fish, Wildlife and Parks, Kalispell, MT)

1986-06-01T23:59:59.000Z

328

Category:Houghton-Lake, MI | Open Energy Information  

Open Energy Info (EERE)

Houghton-Lake, MI Houghton-Lake, MI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houghton-Lake, MI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houghton-Lake MI Detroit Edison Co.png SVFullServiceRestauran... 64 KB SVHospital Houghton-Lake MI Detroit Edison Co.png SVHospital Houghton-La... 64 KB SVLargeHotel Houghton-Lake MI Detroit Edison Co.png SVLargeHotel Houghton-... 61 KB SVLargeOffice Houghton-Lake MI Detroit Edison Co.png SVLargeOffice Houghton... 64 KB SVMediumOffice Houghton-Lake MI Detroit Edison Co.png SVMediumOffice Houghto... 61 KB SVMidriseApartment Houghton-Lake MI Detroit Edison Co.png SVMidriseApartment Hou... 65 KB SVOutPatient Houghton-Lake MI Detroit Edison Co.png SVOutPatient Houghton-...

329

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

330

Texas State Offshore Dry Natural Gas Expected Future Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

331

Louisiana State Offshore Dry Natural Gas Expected Future Production...  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

332

California State Offshore Dry Natural Gas Expected Future Production...  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Expected Future Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

333

High Burnup Dry Storage Cask Research and Development Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Burnup Dry Storage Cask Research and Development Project: Final Test Plan High Burnup Dry Storage Cask Research and Development Project: Final Test Plan The potential need to...

334

E-Print Network 3.0 - alkaline saline lakes Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Chemical and physical properties of some saline lakes in Alberta and Saskatchewan Jeff S Bowman* and Julian... and ephemeral athalassohaline lakes. These lakes...

335

The physics of the warming of Lake Tanganyika by climate change  

Science Journals Connector (OSTI)

... increased the density stratification and stability of Lake Tanganyika, a deep rift valley lake. ... Lakes warm through increased incoming long-wave radiation.

336

Surface reclamation of the Big Lake oil field  

SciTech Connect

Since the discovery of 1 Santa Rita in 1923, millions of barrels of salt water have been produced along with 135 million bbl of oil from the Big Lake oil field in Reagan County, Texas. Until the early 1960s, the accepted disposal method for the produced water was surface discharge to a large evaporation pond north of the field. Produced water was allowed to flow from wells to the pond via natural topographic drainage. This practice resulted in 2000 ac of eroded, barren landscape, characterized by highly saline soils incapable of supporting vegetation. In 1989, the University of Texas System, the U.S. Soil Conservation Service, and Marathon Oil Company, which acquired Big Lake field in 1962, initiated an experimental project to reclaim the affected land and restore rangeland productivity. An underground drainage system, consisting of 125,000 ft of buried drainage conduit and eight collection sumps, was installed over 205 ac of the affected area. Earthen terraces were constructed to capture and hold rain water to facilitate downward percolation and leaching of salts from the soil profile. Salts leached from the soil are captured by the drainage system and pumped to injection wells for disposal. The excellent revegetation that has occurred over the test area after three years of operations is encouraging and has shown the need for expanding and enhancing the existing system with supplemental water from fresh water wells, application of soil-amending agents, additional terracing, and selective planting with salt-tolerant species.

Weathers, M.L. (Univ. of Texas Lands, Midland, TX (United States)); Moore, K.R. (Univ. of Texas Lands, Big Lake, TX (United States)); Ford, D.L. (U.S.D.A. Soil Conservation Service, San Angelo, TX (United States)); Curlee, C.K. (Marathon Oil Company, Midland, TX (United States))

1994-03-01T23:59:59.000Z

337

Radiological survey results at 4400 Piehl Road, Ottawa Lake, Michigan  

SciTech Connect

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 4400 Piehl Road in Ottawa Lake, Michigan. The survey was performed in September, 1992. The purpose of the survey was to determine if materials containing uranium from work performed under government contract at the former Baker Brothers facility in Toledo, Ohio had been transported off-site to this neighboring area. The radiological survey included surface gamma scans indoors and outdoors, alpha and beta scans inside the house and attached garage, beta-gamma scans of the hard surfaces outside, and the collection of soil, water, and dust samples for radionuclide analyses. Results of the survey demonstrated that the majority of the measurements on the property were within DOE guidelines. However, the presence of isolated spots of uranium contamination were found in two areas where materials were allegedly transported to the property from the former Baker Brothers site. Uranium uptake by persons on the property by ingestion is fairly unlikely, but inhalation is a possibility. Based on these findings, it is recommended that the residential property at 4400 Piehl Road in Ottawa Lake, Michigan be considered for inclusion under FUSRAP.

Foley, R.D.; Johnson, C.A.

1993-04-01T23:59:59.000Z

338

Solar Policy Environment: Salt Lake  

Energy.gov (U.S. Department of Energy (DOE))

The overall objective of the Solar Salt Lake (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

339

Technical report for the alkali lake ecological assessment, phase 1 reconnaissance (FY 91 and FY 92)  

SciTech Connect

The report summarizes the results of three field survey trips (June and September 1991, May 1992) taken to investigate the ecological effects associated with the release of over a million gallons of hazardous waste from herbicide production on the Alkali Lake playa. Sampling of soil, sediment, groundwater, soil-dwelling invertebrates and vegetation confirmed that hazardous materials from the waste disposal area are migrating westerly within the shallow aquifer to West Alkali Lake. Two areas of dead vegetation were identified and permanently marked to determine if these areas are changing in size and location. Preliminary calculations using a linear food-chain model suggested that small mammalian herbivores would probably not display adverse effects due to dietary exposures to the contaminants. However, nestling shorebirds may be exposed to concentrations potentially associated with adverse biological effects.

Linder, G.

1993-03-01T23:59:59.000Z

340

Meadow Lake III | Open Energy Information  

Open Energy Info (EERE)

Lake III Lake III Jump to: navigation, search Name Meadow Lake III Facility Meadow Lake III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lake View Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lake View Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Lake View Geothermal Facility General Information Name Lake View Geothermal Facility Facility Lake View Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.823527148671°, -122.78173327446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.823527148671,"lon":-122.78173327446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

CA-TRIBE-BLUE LAKE RANCHERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-BLUE LAKE RANCHERIA CA-TRIBE-BLUE LAKE RANCHERIA Location: Tribe CA-TRIBE-BLUE CA LAKE RANCHERIA American Recovery and Reinvestment Act: Proposed Action or Project Description The Blue Lake Rancheria Tribe of California proposes to hire a technical consultant to gather additional information and make recommendations as to the best energy efficiency and conservation project or projects to utilize energy efficiency and conservation block grant funds. Following these recommendations, a decision will be made on building retrofits, and the specific retrofits will be identified and submitted for NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, A11 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

343

Lake Erie Alternative Power | Open Energy Information  

Open Energy Info (EERE)

Erie Alternative Power Erie Alternative Power Jump to: navigation, search Name Lake Erie Alternative Power Facility Lake Erie Alternative Power Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Alternative Power LLC Location Lake Erie PA Coordinates 42.265°, -80.642° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.265,"lon":-80.642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Lost Lakes Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lakes Wind Farm Lakes Wind Farm Jump to: navigation, search Name Lost Lakes Wind Farm Facility Lost Lakes Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Market Location Dickinson County IA Coordinates 43.32401°, -95.264354° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32401,"lon":-95.264354,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE Location: Tribe NV-TRIBE-SUMMIT NV LAKE PAIUTE TRIBE American Recovery and Reinvestment Act: Proposed Action or Project Description The Summit Lake Paiute Tribe of Nevada will conduct energy building retrofits on several tribal-owned buildings including: Maintenance Shop (insulate walls and cover insulation to keep in place); Bunkhouse (replace single-pane glass windows, and repair or replace two exit doors); Tribal Administrative Office (replace old electric water heater and three air conditioner/heaters, and replace single-pane glass windows): Community Well Shed (install walls, cover insulation, and replace single-pane glass windows); Cabin #1 and Cabin #2 (insulate and/or replace single-pane windows). Conditions: None

346

Sandia Lake Facility | Open Energy Information  

Open Energy Info (EERE)

Sandia Lake Facility Sandia Lake Facility Jump to: navigation, search Basic Specifications Facility Name Sandia Lake Facility Overseeing Organization Sandia National Laboratories Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 57.3 Beam(m) 36.6 Depth(m) 15.2 Water Type Freshwater Cost(per day) $5000-15000 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 15.2 Length of Effective Tow(m) 45.7 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 4.57 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Values listed are for a conceptual design yet to be implemented for the Sandia Lake facility.

347

Environmental status of a tropical lake system  

Science Journals Connector (OSTI)

Eutrophication has become a serious threat to the lake systems all over the world. This is mainly due to the pollution caused by anthropogenic activities. Carlson trophic state index (CTSI) is commonly used fo...

A. M. Sheela; J. Letha; Sabu Joseph

2011-09-01T23:59:59.000Z

348

National Science Foundation- Lake Hoare, Antarctica  

Energy.gov (U.S. Department of Energy (DOE))

Lake Hoare is a scientific research site located in Antarctica. Research at this large field site is conducted all summer and requires an energy source that does not cause pollution or engine noise.

349

Lakes: Restrictions on Ditches and Drains (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The construction or alteration of new ditches and drains that may result in a lowering of the water level of a given lake must be accompanied by the construction of a dam to protect the water level...

350

Control of Mississippi Headwater Lakes (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

The lakes at the headwaters of the Mississippi River are subject to joint federal and state control, and the Commissioner of the Department of Natural Resources is responsible for establishing a...

351

Synthetic ecology : revisiting Mexico City's lakes project  

E-Print Network (OSTI)

Mexico City was founded 700 years ago on man made islets in the middle of a lake. Today, it faces a contradictory situation were water is running scarce, but simultaneously the city runs the risk of drowning in its own ...

Daou, Daniel (Daou Ornelas)

2011-01-01T23:59:59.000Z

352

Klamath and Lake Counties Agricultural Industrial Park  

Energy.gov (U.S. Department of Energy (DOE))

Engineered Geothermal Systems, Low Temp, Exploration Demonstration Projects. Project goal: to attract new businesses to Klamath and Lake counties for the purpose of capitalizing on our abundant geothermal resources.

353

DEEP LAKE, CAPE BARNE-ANTARCTICA  

Science Journals Connector (OSTI)

of it is floating. During sumrncr this ice rises as fresh meltwater flows into the lake. Ice which has touched bottom may carry gravel, frozen to its sole, upward.

1999-12-25T23:59:59.000Z

354

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

355

Running dry at the power plant  

SciTech Connect

In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

Barker, B.

2007-07-01T23:59:59.000Z

356

Dry, laser?assisted rapid HBr etching of GaAs  

Science Journals Connector (OSTI)

Dry rapid etching of GaAs has been accomplished using an excimer laser (ArF 193 nm) with HBr etching gas by photochemical initiation. Spatially uniform etch rates of up to 8 ?m/min have been achieved on large?area masked substrates. Selective crystallographic etching is observed and controlled in the process.

P. D. Brewer; D. McClure; R. M. Osgood Jr.

1985-01-01T23:59:59.000Z

357

Dry ports: a lacuna in Sri Lanka  

Science Journals Connector (OSTI)

This paper examines the needs for dry ports in Sri Lanka, where none exists now, using the inputs from the stake holders in the logistics industry to fulfil a vacuum of some scholarly literature on the topic which is not sufficiently discussed. A hybrid approach comprising both quantitative and qualitative methods was used to analyse the topic using the data collected through surveys and literary sources. Resultant conclusion is that the dry ports are needed in Sri Lanka as a solution to capacity issues of the sea port and the roads and the railways could play prominent role in this context. Findings of the research show that dry ports could offer a relief to heavily congested roads of Colombo city and the port infrastructure.

Jayantha Rathnayake; Lu Jing; A.W. Wijeratne

2013-01-01T23:59:59.000Z

358

Growth of solid conical structures during multistage drying of sessile poly(ethylene oxide) droplets  

E-Print Network (OSTI)

Sessile droplets of aqueous poly(ethylene oxide) solution, with average molecular weight of 100 kDa, are monitored during evaporative drying at ambient conditions over a range of initial concentrations $c_0$. For all droplets with $c_0 \\geq 3%$, central conical structures, which can be hollow and nearly 50% taller than the initial droplet, are formed during a growth stage. Although the formation of superficially similar structures has been explained for glass-forming polymers using a skin-buckling model which predicts the droplet to have constant surface area during the growth stage (L. Pauchard and C. Allain, Europhys. Lett., 2003, 62, 897-903), we demonstrate that this model is not applicable here as the surface area is shown to increase during growth for all $c_0$. We interpret our experimental data using a proposed drying and deposition process comprising the four stages: pinned drying; receding contact line; bootstrap growth, during which the liquid droplet is lifted upon freshly-precipitated solid; and late drying. Additional predictions of our model, including a criterion for predicting whether a conical structure will form, compare favourably with observations. We discuss how the specific chemical and physical properties of PEO, in particular its amphiphilic nature, its tendency to form crystalline spherulites rather than an amorphous glass at high concentrations and its anomalous surface tension values for MW = 100 kDa may be critical to the observed drying process.

David Willmer; Kyle Anthony Baldwin; Charles Kwartnik; David John Fairhurst

2010-03-26T23:59:59.000Z

359

Dry-Mass Sensing for Microfluidics  

E-Print Network (OSTI)

Dry-Mass Sensing for Microfluidics T. Muller,1 D. A. White,1 and T. P. J. Knowles1, a) Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom (Dated: 25 November 2014) We present an approach... for interfacing an electromechanical sensor with a microfluidic device for the accurate quantification of the dry mass of analytes within microchannels. We show that depositing solutes onto the active surface of a quartz crystal microbalance by means of an on...

Mller, T.; White, D. A.; Knowles, T. P. J.

2014-11-25T23:59:59.000Z

360

Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia  

Science Journals Connector (OSTI)

The analyses of radioactive isotopes 14C, 137Cs and 210Pb, and stable isotope 13C were performed in the sediment cores, top 40 cm, taken in 2011 from karst lakes Pro?e and Kozjak in the Plitvice Lakes National P...

Nada Horvatin?i?; Andreja Sironi?; Jadranka Barei?

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganyika  

Science Journals Connector (OSTI)

...lineages pre-date lake formation Combined seismic reflection readings and radiocarbon...as has been demonstrated for cichlid fishes (Ruber et al. 1999). The identification...others 535 of that observed in the cichlid fishes of the lake (Salzburger et al. 2002...

2004-01-01T23:59:59.000Z

362

Methanogenesis in Big Soda Lake, Nevada: an Alkaline, Moderately Hypersaline Desert Lake  

Science Journals Connector (OSTI)

...Methanogenesis in Big Soda Lake, Nevada: an Alkaline, Moderately...slurries from Big Soda Lake, Nevada, produced significant...MATERIALS AND METHODS Site description and sampling...is located in eastern Nevada near Fallon (-350 miles...injected into a sterile test tube (18 x 150 mm; Bellco...

Ronald S. Oremland; Lorraine Marsh; David J. DesMarais

1982-02-01T23:59:59.000Z

363

J. Great Lakes Res. 25(3):468481 Internat. Assoc. Great Lakes Res., 1999  

E-Print Network (OSTI)

Center (NDBC) has op- erated a series of satellite-reporting weather buoys in the Great Lakes during has been developed. It is based on satellite-derived AVHRR (Advanced Very High Resolution Radiometer well with water temperatures measured at the eight NOAA weather buoys in the lakes. The mean difference

364

Dynamically Downscaled Projections of Lake-Effect Snow in the Great Lakes Basin  

Science Journals Connector (OSTI)

Projected changes in lake-effect snowfall by the mid- and late 21st century are explored for the Laurentian Great Lakes Basin. Simulations from two state-of-the-art global climate models within the latest Coupled Model Intercomparison Project ...

Michael Notaro; Val Bennington; Steve Vavrus

365

Abilene Metropolitan Area Metropolitan Transportation Plan 2010-2035  

E-Print Network (OSTI)

Lindley, former Abilene City Engineer MPO Staff (Non-Voting) Robert Allen, Abilene MPO Transportation Planning Director Dyess AFB SH 351 SH 351 FM 10 82 Jones County JonesCounty Jones County Jones County Jones County Te xt Jones County Jones... Area Urbanized Area Boundary county lines City Limits Freeways and Expressways Major Streets and Highways Railroad 0241Miles Tye Potosi Caps Dyess AFB Abilene Regional Airport Abilene ??? 20 ??? 20 ??? 20 Hamby State Prisons Lake Fort Phantom Hill...

Abilene Metropolitan Planning Organization

2010-01-12T23:59:59.000Z

366

Hog Fuel Drying Using Vapour Recompression  

E-Print Network (OSTI)

A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

Azarniouch, M. K.; MacEachen, I.

1984-01-01T23:59:59.000Z

367

Hot-dry-rock geothermal resource 1980  

SciTech Connect

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

368

BWR In-Core Monitor Housing Replacement Under Dry Condition of Reactor Pressure Vessel  

SciTech Connect

A new method of In-Core Monitor Housing replacement has been successfully applied to Tokai Unit 2 (BWR with 1100 MWe) in April of 2001. It was designed to replace a housing under dry condition of reactor pressure vessel (RPV): this enabled the elimination of water filled-up and drained processes during the replacement procedure resulting in the reduction of implementation schedule. To realize the dry condition, the radiation shields were placed in the RPV and the hollow guide pipe (GP) was adopted to transfer the apparatuses from the top to the bottom work area. (authors)

Tatsuo Ishida; Shoji Yamamoto; Fujitoshi Eguchi [Japan Atomic Power Company (Japan); Motomasa Fuse; Kouichi Kurosawa; Sadato Shimizu; Minoru Masuda [Hitachi Ltd. (Japan); Shinya Fujii; Junji Tanaka [General Electric International Inc. (Japan); Jacobson, Bryce A. [General Electric Company (United States)

2002-07-01T23:59:59.000Z

369

Physical properties of soils contaminated by oil lakes, Kuwait  

SciTech Connect

In preparation for a marine assault by the coalition forces, the Iraqi Army heavily mined Kuwait`s coastal zone and the oil fields. Over a million mines were placed on the Kuwait soil. Burning of 732 oil wells in the State of Kuwait due to the Iraqi invasion caused damages which had direct and indirect effect on environment. A total of 20-22 million barrels of spilled crude oil were collected in natural desert depressions and drainage network which formed more than 300 oil lakes. The total area covered with oil reached 49 km{sup 2}. More than 375 trenches revealed the existence of hard, massive caliche (CaCO{sub 3}) subsoil which prevent leached oil from reaching deeper horizons, and limited the maximum depth of penetration to 1.75 m. Total volume of soil contaminated reached 22,652,500 m{sup 3} is still causing environmental problems and needs an urgent cleaning and rehabilitation. Kuwait Oil Company has recovered approximately 21 million barrels from the oil lakes since the liberation of Kuwait. In our examined representative soil profiles the oil penetration was not deeper than 45 cm. Infiltration rate, soil permeability, grain size distribution, aggregates formation and water holding capacity were assessed. 15 refs., 5 figs., 5 tabs.

Mohammad, A.S. [Kuwait Univ., Safat (Kuwait); Wahba, S.A.; Al-Khatieb, S.O. [Arabian Gulf Univ. (Bahrain)

1996-08-01T23:59:59.000Z

370

Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes.

371

Benthic diatoms in lakes: environmental drivers and ecological  

E-Print Network (OSTI)

of Natural Resources and Agricultural Sciences Department of Aquatic Sciences and Assessment Uppsala DoctoralBenthic diatoms in lakes: environmental drivers and ecological assessment Steffi Gottschalk Faculty #12;Benthic diatoms in lakes: environmental drivers and ecological assessment Abstract In order

372

Water chemistry of high elevation Colorado wilderness lakes  

Science Journals Connector (OSTI)

High elevation alpine and subalpine Rocky Mountain lakes in Colorado and southeastern Wyoming were examined to determine ... of the state. In contrast the north-western most lakes are significantly more dilute th...

Robert C. Musselman; William L. Slauson

2004-12-01T23:59:59.000Z

373

YELLOWSTONE LAKE TROUT CREEL CENSUSES, 1950-51  

E-Print Network (OSTI)

7^ YELLOWSTONE LAKE TROUT CREEL CENSUSES, 1950-51 SPECIAL SCIENTIFIC REPORT: FISHERIES No. 81 -, h Census method .......... ,o ..... |j Fishing Bridge Dock ........... 5 West Thumb Dock Bridge ,.....,.....,,.,.,.. 18 Lake shore census .......... . ip Private boat fishery

374

Poincar waveinduced mixing in a large lake  

Science Journals Connector (OSTI)

For example, we estimate that, in Lake Erie, 0.85% of the wind energy is transferred to the lake interior (below the surface layer); of this, 40% is dissipated in the...

375

Crow Lake Wind | Open Energy Information  

Open Energy Info (EERE)

Crow Lake Wind Crow Lake Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds SD 1 Inc. (100) Mitchell Technical Institute (1) South Dakota Wind Partners (7) Developer Prairie Winds SD 1 Inc. Energy Purchaser Basin Electric Power Cooperative Location White Lake SD Coordinates 43.920959°, -98.7282157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.920959,"lon":-98.7282157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES  

SciTech Connect

The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

Garrett, A.; Casterline, M.; Salvaggio, C.

2010-01-05T23:59:59.000Z

377

A comparative study of the macroinvertebrate communities in three oxbow lakes and the Brazos River in East Central Texas  

E-Print Network (OSTI)

Macroinvertebrate communities of the Brazos River and three of its oxbow lakes, in East Central Texas, were sampled from the summer of 1994 to the spring of 1996. The floodplain for this area is predominantly nutrient-rich forested and agricultural...

Lanza, Shirley Anne

2003-01-01T23:59:59.000Z

378

Carbon fixation by phytoplankton in high Arctic lakes: Implications of ...  

Science Journals Connector (OSTI)

ABSTRACT: Photosynthesis vs. irradiance relationships were determined for phytoplankton communities from seven lakes in the Canadian high Arctic, including...

379

Great Lakes Water Scarcity and Regional Economic Development  

ScienceCinema (OSTI)

Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

2013-06-06T23:59:59.000Z

380

Eutrophication of ancient Lake Ohrid: Global warming amplifies ...  

Science Journals Connector (OSTI)

Eutrophication of ancient Lake Ohrid: Global warming amplifies detrimental effects of increased nutrient inputs. Matzinger, Andreas, Martin Schmid, Elizabeta

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Great Lakes Water Scarcity and Regional Economic Development  

SciTech Connect

Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

2012-10-10T23:59:59.000Z

382

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

Section Nine: Section Ten: Section Eleven: Lake Countyyour consideration. c u SECTION TEN: BENEFIT TRACING As w s

Churchman, C.W.

2011-01-01T23:59:59.000Z

383

EIS-0317-S1: Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration (BPA) has completed a supplemental draft Environmental Impact Statement (SDEIS) for the proposed Kangley-Echo Lake Transmission Line Project. The proposed line in central King County, Washington is needed to accommodate electrical growth and reliability concerns in the Puget Sound area. The SDEIS analyzes four additional transmission alternatives not analyzed in detail in the draft Environmental Impact Statement (DEIS) issued in June 2001, and a number of non-transmission alternatives.

384

Texas A&M University Lake Granbury and Bosque River Assessment Final Scientific/Technical Report  

E-Print Network (OSTI)

to increased aquatic vegetation growth and subsequent taste and odor problems in Lake Waco. This project enlists physically based computer modeling to determine the nutrient and sediment removal capabilities of implementing recommended Best Management... Practices (BMPs) throughout the watershed. Results of this project indicate areas where specific management strategies will provide the most pollutant control for the cost to implement the practice. Each project is focused on addressing specific water...

385

Non-Linear Drying Diffusion and Viscoelastic Drying Shrinkage Modeling in Hardened Cement Pastes  

E-Print Network (OSTI)

modeling with an average diffusion coefficient and with determined viscoelastic parameters from creep tests agreed well compared to the shrinkage data from experiments, indicating that drying shrinkage of cement paste may be considered as a poroviscoelastic...

Leung, Chin K.

2010-07-14T23:59:59.000Z

386

Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake, 1984 Annual Report.  

SciTech Connect

This study was initiated in the fall of 1981 to delineate the extent of successful shoreline spawning of kokanee salmon in Flathead Lake and determine the impacts of the historic and present operations of Kerr and Hungry Horse dams. An investigation of the quantity and quality of groundwater and other factors affecting kokanee reproductive success in Flathead Lake began in the spring of 1982. A total of 719 redds were counted in 17 shoreline areas of Flathead Lake in1983 compared to 592 in 1981 and 1,029 in 1982. Shoreline spawning contributed three percent to the total kokanee spawning in the Flathead drainage in 1983. Fifty-nine percent of the redds were located above 2883 ft, the operational minimum pool. The majority of those redds were constructed between 2885 and 2889 ft. In areas above minimum pool, intergravel dissolved oxygen concentrations were adequate for embryo survival and exhibited a decrease with depth. Limited data indicated apparent velocity may be the key in determining redd distribution. Seventy-five percent of the redds located below minimum pool were constructed in a zone between 2869 and 2883 ft. In individual areas, apparent velocity measurements and intergravel dissolved oxygen concentrations were related to redd density. The variation in intergravel dissolved oxygen concentrations in the Yellow Bay spawning area was partially explained by lake stage fluctuation. As lake stage declined, groundwater apparent velocity increased which increased intergravel dissolved oxygen concentrations. Mean survival to the eyed stage in the three areas below minimum pool was 43 percent. Prior to exposure by lake drawdown, mean survival to the eyed stage in spawning areas above minimum pool was 87 percent. This indicated habitat most conducive to successful embryo survival was in gravels above 2883 ft. prior to significant exposure. Survival in redds exposed to either extended periods of drawdown or to temperatures less than -10% was significantly reduced to a mean of 20-30 percent. Survival in individual spawning areas exposed by lake drawdown varied from 0 to 65 percent. Groundwater reaction to lake stage explained some of the variation in individual spawning area survival. Three types of groundwater reaction to lake stage were identified. Increased survival in exposed redds resulted from two of the three types. A significant statistical relationship was determined between embryo survival and the number of days exposed by lake drawdown. The operation of Kerr Dam in 1983-84 was characterized by an early decline in lake stage, a longer period near minimum pool and a later and more rapid filling compared to the operation seen in 1981-82 and 1982-83. Based on the survival relationship observed in natural redds exposed by drawdown in 1983-84, complete mortality from exposure would have occurred to all redds constructed above 2884.7 ftor 90 percent of all redds constructed above minimum pool. Emergence traps placed over redds below minimum pool in Gravel, Blue, and Yellow bays captured fry in Gravel and Blue bays only. Duration of fry emergence in1984 was three weeks longer than in 1982 or 1983, but was not related to the date of initial redd construction. Survival to fry emergence in Gravel Bay was calculated to be 28.9 percent of egg deposition or 57,484 fry. Survival to fry emergence above and below the zone of greatest redd density was 33.6 and 245 percent, respectively, indicating a relationship between survival and spawner site selection. After analysis of the historic operation of Kerr Dam, it is believed that the dam has, and is continuing to have, a significant impact on successful shoreline spawning of kokanee salmon in Flathead Lake. Based on the evidence that prolonged exposure of salmonid embryo by dewatering causes significant mortality, the number of days the lake was held below various foot increments (2884 ft to 2888 ft) during the incubation period was investigated. The annual change in the number of days the lake was held below 2885 ft was further investigated because 80-90 percent of the redds cons

Decker-Hess, Janet; Clancey, Patrick (Montana Department of Fish, Wildlife and Parks, Kalispell, MT)

1984-03-01T23:59:59.000Z

387

Lake Whitney Comprehensive Water Quality Assessment, Phase 1B- Physical and Biological Assessment (USDOE)  

SciTech Connect

Baylor University Center for Reservoir and Aquatic Systems Research (CRASR) has conducted a phased, comprehensive evaluation of Lake Whitney to determine its suitability for use as a regional water supply reservoir. The area along the Interstate 35 corridor between Dallas / Fort Worth Metroplex and the Waco / Temple Centroplex represents one of the fastest growth areas in the State of Texas and reliable water supplies are critical to sustainable growth. Lake Whitney is situated midway between these two metropolitan areas. Currently, the City of Whitney as well as all of Bosque and Hill counties obtain their potable water from the Trinity Sands aquifer. Additionally, parts of the adjoining McLennan and Burleson counties utilize the Trinity sands aquifer system as a supplement to their surface water supplies. Population growth coupled with increasing demands on this aquifer system in both the Metroplex and Centroplex have resulted in a rapid depletion of groundwater in these rural areas. The Lake Whitney reservoir represents both a potentially local and regional solution for an area experiencing high levels of growth. Because of the large scope of this project as well as the local, regional and national implications, we have designed a multifaceted approach that will lead to the solution of numerous issues related to the feasibility of using Lake Whitney as a water resource to the region. Phase IA (USEPA, QAPP Study Elements 1-4) of this research focused on the physical limnology of the reservoir (bathymetry and fine scale salinity determination) and develops hydrodynamic watershed and reservoir models to evaluate how salinity would be expected to change with varying hydrologic and climatic factors. To this end, we implemented a basic water quality modeling program in collaboration with the Texas Parks and Wildlife Department and the Texas Commission on Environmental Quality to add to the developing long-term database on Lake Whitney. Finally, we conducted an initial assessment of knowledge of watershed and water quality related issues by local residents and stakeholders of Lake Whitney and design an intervention educational program to address any deficiencies discovered. Phase IA was funded primarily from EPA Cooperative Agreement X7-9769 8901-0. Phase IC (USEPA, QAPP Study Element 5) of this research focused on the ambient toxicity of the reservoir with respect to periodic blooms of golden algae. Phase IC was funded primarily from Cooperative Agreement EM-96638001. Phase 1B (USDOE, Study Elements 6-11) complemented work being done via EPA funding on study elements 1-5 and added five new study elements: 6) Salinity Transport in the Brazos Watershed to Lake Whitney; 7) Bacterial Assessment; 8) Organic Contaminant Analysis on Lake Whitney; 9) Plankton Photosynthesis; 10) Lake Whitney Resident Knowledge Assessment; and 11) Engineering Scoping Perspective: Recommendations for Use.

Doyle, Robert D; Byars, Bruce W

2009-11-24T23:59:59.000Z

388

Effect of Lake Surface Temperature on the Spatial Distribution and Intensity of the Precipitation over Lake Victoria Basin  

Science Journals Connector (OSTI)

A series of sensitivity experiments are performed to investigate the response of precipitation over the Lake Victoria Basin (LVB) to the changes of lake surface temperature (LST) using the Weather Research and Forecast (WRF) model. It is shown ...

Xia Sun; Lian Xie; Fredrick Semazzi; Bin Liu

389

Mitochondrial Phylogeography of Rock-Dwelling Cichlid Fishes Reveals Evolutionary Influence of Historical Lake Level Fluctuations of Lake Tanganyika, Africa  

Science Journals Connector (OSTI)

...of Rock-Dwelling Cichlid Fishes Reveals Evolutionary Influence...intermittent lake basins. Seismic data indicate that extreme...of rock-dwelling cichlid fishes reveals evolutionary influence...intermittent lake basins. Seismic data indicate that extreme...

1996-01-01T23:59:59.000Z

390

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

391

Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Details Activities (4) Areas (1) Regions (0) Abstract: The Phase I prototype hot dry rock (HDR) geothermal system was developed in Precambrian basement rocks at Fenton Hill, New Mexico. Core and cuttings samples from the four deep wells indicate that the reservoir of this Phase I HDR system lies within a homogeneous biotite granodiorite body of very low permeability. Natural fractures, although present, are

392

UCR Recreation Department Big Bear Lake House Policies  

E-Print Network (OSTI)

UCR Recreation Department Big Bear Lake House Policies The UCR Recreation Department strives of service animals. 15. The UCR Recreation Department Big Bear Lake House is a non-smoking facility. 16 Agreement with them while staying at the facility. 18. The UCR Recreation Department big Bear Lake House

Mills, Allen P.

393

Contemporary Lake Superior Ice Cover Climatology Raymond A. Assel  

E-Print Network (OSTI)

1973 to 2002) were digitized and analyzed to produce ice charts that portray spatial patterns of datesContemporary Lake Superior Ice Cover Climatology Raymond A. Assel NOAA Great Lakes Environmental Introduction A brief discussion of Lake Superior ice cover climatology (Phillips, 1978) was included

394

The Biomass and Distribution of Organisms in Lake George, Uganda  

Science Journals Connector (OSTI)

...8 December 1973 research-article The Biomass and Distribution of Organisms in Lake...McGowan Ninety-five per cent of the total biomass in the open water of Lake George, a shallow...equatorial lake, is phytoplankton. The biomass of this and the other major groups of...

1973-01-01T23:59:59.000Z

395

Morphology and paleoclimatic significance of Pleistocene Lake Bonneville spits  

E-Print Network (OSTI)

information about the continental interior of North America. Detailed descriptions of Lake Bonneville featuresMorphology and paleoclimatic significance of Pleistocene Lake Bonneville spits Paul W. Jewell Available online 28 August 2007 Abstract Pleistocene Lake Bonneville of western Utah contains a variety

Johnson, Cari

396

Methane in lakes and wetlands Microbiological production, ecosystem  

E-Print Network (OSTI)

Methane in lakes and wetlands Microbiological production, ecosystem uptake, climatological significance LAKES AND WETLANDS ­ A RELEVANT METHANE SOURCE Lakes and other wetlands are an important source methane from wetlands will respond to future climatic change. Dr. Paul Bodelier (Netherlands Institute

Mühlemann, Oliver

397

Lake Palmdale Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Palmdale Wind Farm Lake Palmdale Wind Farm Facility Lake Palmdale Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Palmdale Water District Developer Palmdale Water District Energy Purchaser Palmdale Water District Location Palmdale CA Coordinates 34.555932°, -118.118307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.555932,"lon":-118.118307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Meadow Lake IV | Open Energy Information  

Open Energy Info (EERE)

Meadow Lake IV Meadow Lake IV Facility Meadow Lake IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Why sequence metagenomics in freshwater lakes?  

NLE Websites -- All DOE Office Websites (Extended Search)

metagenomics in freshwater lakes? metagenomics in freshwater lakes? Aquatic microbial communities represent one of the largest reservoirs of genetic and biochemical diversity on the planet, and metagenomic studies have led to the discovery of novel gene families and a deeper understanding of how microbial communities mediate the flow of carbon and energy. However, most of these studies have been based on a static 'snap shot' of genetic diversity found under a particular set of environmental conditions. This study involves a metagenomic time-series to better understand how microbial communities control carbon cycling in freshwater systems. Principal Investigators: Katherine McMahon, University of Wisconsin Program: CSP 2011 Home > Sequencing > Why sequence metagenomics in freshwater lakes

400

Meadow Lake II | Open Energy Information  

Open Energy Info (EERE)

Meadow Lake II Meadow Lake II Facility Meadow Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigans Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: Siting, permitting, and deploying an offshore floating MET facility; Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; Investigation of technology best suited for wireless data transmission from distant offshore structures; Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; Identifying the presence or absence of bird and bat species near wind assessment facilities; Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

402

Rice Lake Utilities | Open Energy Information  

Open Energy Info (EERE)

Rice Lake Utilities Rice Lake Utilities Jump to: navigation, search Name Rice Lake Utilities Place Wisconsin Utility Id 15938 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial

403

Great Lakes | OpenEI  

Open Energy Info (EERE)

Lakes Lakes Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. Source National Renewable Energy Laboratory (NREL) Date Released August 19th, 2010 (4 years ago) Date Updated August 23rd, 2010 (4 years ago) Keywords GIS Great Lakes NREL offshore wind shapefile U.S. wind windspeed Data application/zip icon Download Shapefile (zip, 11.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

404

City of Lake Worth, Florida (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Worth, Florida (Utility Company) Worth, Florida (Utility Company) Jump to: navigation, search Name City of Lake Worth Place Florida Utility Id 10620 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule GS-S: Regular General Service Commercial Schedule GS-S: Regular General Service, Time of Use Commercial Schedule GSD-S: Regular General Service-Demand Industrial Schedule GSD-S: Regular General Service-Demand, Time of Use Commercial Schedule L-P: Private Area Lighting, 1,000 Watt (55,000 Lumen), Mercury

405

Southeast Idaho Area Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

406

Dry-Mass Sensing for Microfluidics  

E-Print Network (OSTI)

We present an approach for interfacing an electromechanical sensor with a microfluidic device for the accurate quantification of the dry mass of analytes within microchannels. We show that depositing solutes onto the active surface of a quartz crystal microbalance by means of an on-chip microfluidic spray nozzle and subsequent solvent removal provides the basis for the real-time determination of dry solute mass. Moreover, this detection scheme does not suffer from the decrease in the sensor quality factor and the viscous drag present if the measurement is performed in a liquid environment, yet allows solutions to be analysed. We demonstrate the sensitivity and reliability of our approach by controlled deposition of nanogram levels of salt and protein from a micrometer-sized channel.

Mller, T; Knowles, T P J

2014-01-01T23:59:59.000Z

407

PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION  

SciTech Connect

Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

Robert States

2006-07-15T23:59:59.000Z

408

Application of Desiccant Drying in Plastic Molding  

E-Print Network (OSTI)

APPLICATION OF DESICCANT DRYING IN PLASTIC MOLDING Michael Brown, P.E. Greg Connors, P.E. Douglas Moore, P.E. Senior Research Engr. Industrial Engr. Senior Research Engr. Ga. Tech Research Inst. Atlanta Gas Light Co. Ga. Tech Research Inst... will condense on refrigerated display doors. In ice rinks, condensation will occur on the ice surface causing it to soften if the humidity too high. In plastic molding, chilled water is provi ed to rapidly cool the finished parts. Cooling incr...

Brown, M.; Connors, G.; Moore, D.

409

Cold Vacuum Drying Facility hazard analysis report  

SciTech Connect

This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

Krahn, D.E.

1998-02-23T23:59:59.000Z

410

Changes in Consumption by Alewives and Lake Whitefish after Dreissenid Mussel Invasions in Lakes Michigan and Huron  

E-Print Network (OSTI)

Changes in Consumption by Alewives and Lake Whitefish after Dreissenid Mussel Invasions in Lakes. Bioenergetics modeling was used to determine consumption by the average individual fish before and after. Annual consumption of zooplankton by an average alewife in Lake Michigan was 37% lower and consumption

411

On the dry deposition of submicron particles  

SciTech Connect

The air-surface exchange of particles can have a strong role in determining the amount, size, and chemical composition of particles in the troposphere. Here the authors consider only dry processes (deposition processes not directly aided by precipitation) and mostly address particles less than about 2 {micro}m in diameter (often referred to as submicron particles because most of such particles are less than 1 {micro}m in diameter). The processes that control the dry exchange of particulate material between the atmosphere and the surface of the Earth are numerous, highly varied, and sometimes poorly understood. As a result, determining which of the surface processes to parameterize or simulate in modeling the tropospheric mass budget of a particulate substance can be a significant challenge. Dry deposition, for example, can be controlled by a combination of Brownian diffusion, impaction, interception, and gravitational settling, depending on the size of the particles, the roughness of the surface on both micrometeorological and microscopic scales, the geometrical structure of vegetative canopies, and other surface characteristics such as wetness. Particles can be added to the lower atmosphere by resuspension from land surfaces and sea spray. The roles of rapid gas-to-particle conversion and growth or shrinkage of particles as a result of water condensation or evaporation in the lower few meters of the atmosphere can also have a significant impact on particle concentrations in the lower atmosphere. Here, a few micrometeorological observations and inferences on particle air-surface exchange are briefly addressed.

Wesely, M. L.

1999-10-08T23:59:59.000Z

412

Lake Petn Itz, a 165 m deep lake in northern Guatemala, is the deepest lake in the lowlands of  

E-Print Network (OSTI)

deep- water sites in the central basin. All cores show an abrupt transition from Late Glacial dense gypCONTENTS Lake Petén Itzá 1 Scientific Drillling Project Drilling K-T and Chicxulub 3 Event Strata in Texas Deep Upcoming Conferences 9 Workshops 10 Iceland Deep Drilling 11 Project Congratulations to the 12 2006 DOSECC

Gilli, Adrian

413

Wet and Dry Pollutant Deposition to the Mixed Conifer Forest  

Science Journals Connector (OSTI)

The Mediterranean climate in southern California regulates wet and dry deposition characteristics in the San Bernardino Mountains (SBM). Long dry periods in combination with the large air pollution emissions f...

A. Bytnerowicz; M. E. Fenn; P. R. Miller

1999-01-01T23:59:59.000Z

414

Hadley Cell Dynamics in a Virtually Dry Snowball Earth Atmosphere  

Science Journals Connector (OSTI)

The Hadley cell of a virtually dry snowball Earth atmosphere under equinox insolation is studied in a comprehensive atmospheric general circulation model. In contrast to the Hadley cell of modern Earth, momentum transport by dry convection, which ...

Aiko Voigt; Isaac M. Held; Jochem Marotzke

2012-01-01T23:59:59.000Z

415

High voltage dry-type air-core shunt reactors  

Science Journals Connector (OSTI)

Dry-type air-core shunt reactors are now being ... systems to limit overvoltages. Recently, high voltage dry-type air-core shunt reactors have been designed, ... transient overvoltages and electrical and magnetic...

Klaus Papp; Michael R. Sharp

2014-11-01T23:59:59.000Z

416

Microbial Biogeography of Six Salt Lakes in Inner Mongolia, China, and a Salt Lake in Argentina  

Science Journals Connector (OSTI)

...soda lakes in Kenya and Egypt (26, 36, 44, 53...Junfeng, L. 1997. Renewable energy development in China...mitigation potential. Appl. Energy 56: 381-394. 38 Kulp...the Wadi An Natrun, Egypt. Microb. Ecol. 54...

Eulyn Pagaling; Huanzhi Wang; Madeleine Venables; Andrew Wallace; William D. Grant; Don A. Cowan; Brian E. Jones; Yanhe Ma; Antonio Ventosa; Shaun Heaphy

2009-07-31T23:59:59.000Z

417

Roles of Dry Friction in Fluctuating Motion of Adiabatic Piston  

E-Print Network (OSTI)

The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cusp-like singularity for velocity distribution functions of the piston. We also show that the heat fluctuation relation is modified under dry friction.

Tomohiko G. Sano; Hisao Hayakawa

2014-03-08T23:59:59.000Z

418

Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake; Effects of Operation of Kerr and Hungry Horse Dam on Reproductive Success, 1983 Annual Report.  

SciTech Connect

Koktneesalmon (Oncorhvnchusnerka), the land-locked form of sockeye salmon, were originally introduced to Flathead Lake in 1916. My 1933, kokanee had become established in the lake and provided a popular summer trolling fishery as well as a fall snagging fishery in shoreline areas. Presently, Flathead Lake supports the second highest fishing pressure of any lake or reservoir in Montana (Montana Department of Fish and Game 1976). During 1981-82, the lake provided 168,792 man-days of fishing pressure. Ninety-two percent of the estimated 536,870 fish caught in Flathead Lake in 1981-82 were kokanee salmon. Kokanee also provided forage for bull trout seasonally and year round for lake trout. Kokanee rear to maturity in Flathead Lake, then return to various total grounds to spawn. Spawning occurred in lake outlet streams, springs, larger rivers and lake shoreline areas in suitable but often limited habitat. Shoreline spawning in Flathead Lake was first documented in the mid-1930's. Spawning kokanee were seized from shoreline areas in 1933 and 21,000 cans were processed and packed for distribution to the needy. Stefanich (1953 and 1954) later documented extensive but an unquantified amount of spawning along the shoreline as well as runs in Whitefish River and McDonald Creek in the 1950's. A creel census conducted in 1962-63 determined 11 to 13 percent of the kokanee caught annually were taken during the spawning period (Robbins 1966). During a 1981-82 creel census, less than one percent of the fishermen on Flathead Lake were snagging kokanee (Graham and Fredenberg 1982). The operation of Kerr Dam, located below Flathead Lake on the Flathead River, has altered seasonal fluctuations of Flathead Lake. Lake levels presently remain high during kokanee spawning in November and decline during the incubation and emergence periods. Groundwater plays an important role in embryo and fry survival in redds of shoreline areas exposed by lake drawdown. Stefanich (1954) and Domrose (1968) found live eggs and fry only in shoreline spawning areas wetted by groundwater seeps. Impacts of the operation of Kerr Dam on lakeshore spawning have not been quantified. Recent studies have revealed that operation of Hungry Horse Dam severely impacted successful kokanee spawning and incubation in the Flathead River above Flathead Lake (Graham et al. 1980, McMullin and Graham 1981, Fraley and Graham 1982 and Fraley and McMullin 1983). Flows from Hungry Horse Dam to enhance kokanee reproduction in the river system have been voluntarily met by the Bureau of Reclamation since 1981. In lakeshore spawning areas in other Pacific Northwest systems, spawning habitat for kokanee and sockeye salmon was characterized by seepage or groundwater flow where suitable substrate composition existed (Foerster 1968). Spawning primarily occurred in shallower depths (<6 m) where gravels were cleaned by wave action (Hassemer and Rieman 1979 and 1980, Stober et al. 1979a). Seasonal drawdown of reservoirs can adversely affect survival of incubating kokanee eggs and fry spawned in shallow shoreline areas. Jeppon (1955 and 1960) and Whitt (1957) estimated 10-75 percent kokanee egg loss in shoreline areas of Pend Oreille Lake, Idaho after regulation of the upper three meters occurred in 1952. After 20 years of operation, Bowler (1979) found Pend Oreille shoreline spawning to occur in fewer areas with generally lower numbers of adults. In studies on Priest Lake, Idaho, Bjornn (1957) attributed frozen eggs and stranded fry to winter fluctuations of the upper three meters of the lake. Eggs and fry frozen during winter drawdown accounted for a 90 percent loss to shoreline spawning kokanee in Donner Lake, California (Kimsey 1951). Stober et al. (1979a) determined irrigation drawdown of Banks Lake, Washington reduced shoreline survival during five of the seven years the system was studied. The goal of this phase of the study was to evaluate and document effects of the operation of Kerr Dam on kokanee shoreline reproduction in Flathead Lake. Specific objectives to meet this goal are: (1) Del

Decker-Hess, Janet; McMullin, Steve L.

1983-11-01T23:59:59.000Z

419

Survey of hybrid solar heat pump drying systems  

Science Journals Connector (OSTI)

Solar drying is in practice since the ancient time for preservation of food and agriculture crops. The objective of most drying processes is to reduce the moisture content of the product to a specified value. Solar dryers used in agriculture for food ... Keywords: coefficient of performance (COP), direct expansion SAHD, drying chamber, heat pump, solar assisted heat pumps dryer (SAHPD), solar fraction

R. Daghigh; K. Sopian; M. H. Ruslan; M. A. Alghoul; C. H. Lim; S. Mat; B. Ali; M. Yahya; A. Zaharim; M. Y. Sulaiman

2009-02-01T23:59:59.000Z

420

Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a  

E-Print Network (OSTI)

in the coal without chemical decomposition and pyrolysis converts dry coal into gas and coke [1]. The final1 Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a , Eric Blond1, b , Alain Gasser1 Forbach, France a damintode.kolani@univ-orleans.fr, b eric.blond@univ-orleans.fr Keywords: coal, drying

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sediment resuspension in the Lake Erie nearshore  

Science Journals Connector (OSTI)

Abstract A decline in water quality in Lake Erie during the last decade, despite increased efforts to limit nutrient loading, may be better understood by examining internal processes in the lake. We employed 7Be, 210Pb and 137Cs measurements of suspended matter in tributaries, in the lake water column, in atmospheric precipitation, in sediment traps and in bottom sediments collected in June and August/September 2011 to estimate the fraction of the suspended matter that is resuspended from the bottom. Mass balances on 7Be and 210Pb using sediment trap material indicated that at the nearshore site ~8394% of suspended matter in the water column was resuspended bottom sediment, while, offshore, resuspended sediment made up only ~6275%. A mass balance using the 7Be/210Pb ratio for each sediment source indicated that resuspension of bottom sediment accounted for 5297% of the suspended material in the nearshore and from 53 to 86% of the suspended matter in the offshore and was greater after the fall overturn. The amount of nutrients delivered to the water column by resuspension indicates that the resuspension loading of particle-bound P to the lake is about the same as the tributary loading, although the resuspended P is likely to be significantly less bioavailable.

Gerald Matisoff; Mary Lou Carson

2014-01-01T23:59:59.000Z

422

Elevated Concentrations of Actinides in Mono Lake  

Science Journals Connector (OSTI)

...DISEQUILIBRIUM IN THE NEW-YORK BIGHT AND ITS IMPLICATIONS FOR COASTAL...WATERS FROM SEVERAL CLOSED-BASIN LAKES AND THEIR TRIBUTARIES...21'N, 81 53'W in the Panama Basin. This sta-tion, which is...the center ofa small, deep basin between the Coiba and Malpelo...

R. F. ANDERSON; M. P. BACON; P. G. BREWER

1982-04-30T23:59:59.000Z

423

LAKE ST. CLAIR PHYSICAL AND HYDRAULIC CHARACTERISTICS'  

E-Print Network (OSTI)

movements under various wind stresses from Ayers' (1964) physical model. 3. Lake St. Clair vertically averaged water movements under various wind stresses from the numerical model developed by Schwab et at month, with somewhat larger extremes (lower and higher) for shorter periods. Periodic long-term low

424

Comparative Analysis of Microbial Community Composition Throughout Three Perennially Ice-Covered Lake Systems in the McMurdo Dry Valleys, Antarctica and its Relationship With Lake Geochemistry  

E-Print Network (OSTI)

Paleolimnology 10: 85-114. Farman, J.C. , Gardiner, B.G. ,such as the ozone hole (Farman et al. , 1985) and global

Foo, Wilson

2009-01-01T23:59:59.000Z

425

Comparative Analysis of Microbial Community Composition Throughout Three Perennially Ice-Covered Lake Systems in the McMurdo Dry Valleys, Antarctica and its Relationship With Lake Geochemistry  

E-Print Network (OSTI)

Delta Proteobacteria F12, F18 Uncultured eubacterium AB16 (Delta Proteobacteria F12, F18 Rhodoferax antarcticus strainDelta Proteobacteria F12, F18 Uncultured bacterium clone

Foo, Wilson

2009-01-01T23:59:59.000Z

426

Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: A long-term geomorphological experiment  

Science Journals Connector (OSTI)

The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow for 6 to 12weeks during the austral summer and link the glaciers to the lakes on the valley floors. Dry valley streams gain solutes longitudinally through weathering reactions and microbial processes occurring in the hyporheic zone. Some streams have thriving cyanobacterial mats. In streams with regular summer flow, the mats are freeze-dried through the winter and begin photosynthesizing with the onset of flow. To evaluate the longer term persistence of cyanobacterial mats, we diverted flow to an abandoned channel, which had not received substantial flow for approximately two decades. Monitoring of specific conductance showed that for the first 3years after the diversion, the solute concentrations were greater in the reactivated channel than in most other dry valley streams. We observed that cyanobacterial mats became abundant in the reactivated channel within a week, indicating that the mats had been preserved in a cryptobiotic state in the channel. Over the next several years, these mats had high rates of productivity and nitrogen fixation compared to mats from other streams. Experiments in which mats from the reactivated channel and another stream were incubated in water from both of the streams indicated that the greater solute concentrations in the reactivated channel stimulated net primary productivity of mats from both streams. These stream-scale experimental results indicate that the cryptobiotic preservation of cyanobacterial mats in abandoned channels in the dry valleys allows for rapid response of these stream ecosystems to climatic and geomorphological change, similar to other arid zone stream ecosystems.

D.M. McKnight; C.M. Tate; E.D. Andrews; D.K. Niyogi; K. Cozzetto; K. Welch; W.B. Lyons; D.G. Capone

2007-01-01T23:59:59.000Z

427

Property:Geothermal/AboutArea | Open Energy Information  

Open Energy Info (EERE)

AboutArea AboutArea Jump to: navigation, search Property Name Geothermal/AboutArea Property Type Text Description About the Area Pages using the property "Geothermal/AboutArea" Showing 18 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Churchill County, NV Alum Innovative Exploration Project Geothermal Project + Alum geothermal project is located in Nevada ~150 miles SE of Reno. It consists of federal geothermal leases that are 100% owned by SGP. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + Humboldt House-Rye Patch (HH-RP) geothermal resource area

428

An experimental investigation of high temperature, high pressure paper drying  

E-Print Network (OSTI)

CONCLUSIONS RECOMMENDATIONS 50 51 REFERENCES APPENDIX A EXPERIMENTAL DATA 52 54 VITA 105 vail LIST OF FIGURES Page Fig. 1 Schematic of test facility 13 Fig. 2 Comparison of Texas A&M drying facility operating ranges to other drying processes... of number of drying passes for drying temperatures of 93, 149, and 204 'C (200, 300, and 400 'F), a contact pressure of 1. 4 MPa (200 psi), a basis weight of 25 g/m' (0. 005 lb/ft'), and contact times between 20 to 180 msec with same side drying...

Patel, Kamal Raoji

2012-06-07T23:59:59.000Z

429

Drying Fruits and Vegetables at Home.  

E-Print Network (OSTI)

all fresh produce thoroughly to re move any dirt or spray. Sort and discard any defective food. Decay, bruises or mold on any piece may affect an entire batch of food being dried. Peel, pit and/or cut the food into uniform sized pieces. A stainless.... (See charts on pages 6 to 9 for specific times .) ? Set the dmtainer of sulfur beside the stacked trays. 2 Ignite the sulfur. Do not leave burned matches in the container; they may keep the sulfur from burning completely. Because of the flame...

Putnam, Peggy H.

1981-01-01T23:59:59.000Z

430

Kangley - Echo Lake Transmission Line Project, Supplemental Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bonneville Power Administration Bonneville Power Administration P.O. Box 491 Vancouver, Washington 98666-0491 TRANSMISSION BUSINESS LINE January 14, 2003 In reply refer to: T-DITT-2 To: People Interested in the Kangley-Echo Lake Transmission Line Project Bonneville Power Administration (BPA) has completed a supplemental draft Environmental Impact Statement (SDEIS) for the proposed Kangley-Echo Lake Transmission Line Project. The proposed line in central King County, Washington is needed to accommodate electrical growth and reliability concerns in the Puget Sound area. The SDEIS analyzes four additional transmission alternatives not analyzed in detail in the draft Environmental Impact Statement (DEIS) issued in June 2001, and a number of non-transmission alternatives. This letter provides

431

HEAVY METAL POLLUTION IN A TROPICAL LAGOON CHILIKA LAKE, ORISSA, INDIA 1  

E-Print Network (OSTI)

Chilika lake, the largest costal lagoon of Asia is one of the most dynamic ecosystems along the Indian coast. The lagoon has undergone a considerable reduction in surface area due to input from natural process and human activities. The purpose of this investigation is to document the heavy metal concentration in sediment, surface water and possible entry to food chain. Concentration of all elements increase in the sediments in comparison to surface water. Metal ions are in the following order Mn> Mg> Ni> Cu>Zn> Cu> Pb> Cr. In the sediments heavy metals like Pb, Cd, Mn, Ni, Zn, Co are present in surface water and Mg was below detection limits. Metal concentrations in the sediment indicate an increase in the pollution load due to movement of fertilizers, agricultural water, prawn cultivation and Motor Boat operations. An immediate attention from the concerned authorities is required in order to protect the lake from further pollution.

Sagarika Nayak; Gayatri Nahak; Debyani Samantray; Rajani Kanta Sahu

432

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

433

Site Monitoring Area Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

434

M-Area Hazardous Waste Management Facility. Fourth Quarter 1994, Groundwater Monitoring Report  

SciTech Connect

The unlined settling basin operated from 1958 until 1985, receiving waste water that contained volatile organic solvents used for metal degreasing and chemical constituents and depleted uranium from fuel fabrication process in M Area. The underground process sewer line transported M-Area process waste waters to the basin. Water periodically overflowed from the basin through the ditch to the seepage area adjacent to the ditch and to Lost Lake.

Chase, J.A.

1995-04-20T23:59:59.000Z

435

Raft River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Raft River Geothermal Area Raft River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Raft River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 DOE Involvement 4 Timeline 5 Regulatory and Environmental Issues 6 Future Plans 7 Raft River Unit II (26 MW) and Raft River Unit III (32 MW) 8 Enhanced Geothermal System Demonstration 9 Exploration History 10 Well Field Description 11 Technical Problems and Solutions 12 Geology of the Area 12.1 Regional Setting 12.2 Structure 12.3 Stratigraphy 12.3.1 Raft River Formation 12.3.2 Salt Lake Formation 12.3.3 Precambrian Rocks 13 Hydrothermal System 14 Heat Source 15 Geofluid Geochemistry 16 NEPA-Related Analyses (1) 17 Exploration Activities (77) 18 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.10166667,"lon":-113.38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

The limnology of L Lake: Results of the L-Lake monitoring program, 1986--1989  

SciTech Connect

L Lake was constructed in 1985 on the upper regions of Steel Creek, SRS to mitigate the heated effluents from L Reactor. In addition to the NPDES permit specifications (Outfall L-007) for the L-Reactor outfall, DOE-SR executed an agreement with the South Carolina Department of Health and Environmental Control (SCDHEC), that thermal effluents from L-Reactor will not substantially alter ecosystem components in the approximate lower half of L Lake. This region should be inhabited by Balanced (Indigenous) Biological Communities (BBCs) in accordance with Section 316(a) of the Pollution Control (Clean Water) Act (Public Law 92-500). In response to this requirement the Environmental Sciences Section/Ecology Group initiated a comprehensive biomonitoring program which documented the development of BBCs in L Lake from January 1986 through December 1989. This report summarizes the principal results of the program with regards to BBC compliance issues and community succession in L Lake. The results are divided into six sections: water quality, macronutrients, and phytoplankton, aquatic macrophytes, zooplankton, benthic macroinvertebrates, fish, and community succession. One of the prime goals of the program was to detect potential reactor impacts on L Lake.

Bowers, J.A.

1991-12-15T23:59:59.000Z

437

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Cooperative Cooperative (Redirected from Lake Region Coop Elec Assn) Jump to: navigation, search Name Lake Region Electric Cooperative Place Minnesota Utility Id 10618 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2013 Residential and Farm Rates Residential Interruptible Heating(Domestic Use) Interruptible Heating(Non-Domestic Use) Residential Irrigation Rate Commercial Large Commercial Commercial Offpeak Storage Residential Simultaneous Purchase and Sale Small Commercial Commercial

438

Iowa Lakes Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Iowa Lakes Electric Cooperative Iowa Lakes Electric Cooperative Place Estherville, Iowa Zip 51334 Sector Wind energy Product Iowa-based consumer-owned electric cooperative. The entity is a project developer for two wind farms. Coordinates 43.401935°, -94.838594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.401935,"lon":-94.838594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Carson Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Carson Lake Geothermal Project Carson Lake Geothermal Project Project Location Information Coordinates 39.321111111111°, -118.70388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.321111111111,"lon":-118.70388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Great Lakes Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Great Lakes Biofuels LLC Great Lakes Biofuels LLC Place Madison, Wisconsin Zip 53704 Sector Services Product Biodiesel research, consulting, management distribution and services company. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building Technologies Office: Guides and Case Studies for Hot-Dry and  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry and Mixed-Dry Climates to someone by E-mail Dry and Mixed-Dry Climates to someone by E-mail Share Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Facebook Tweet about Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Twitter Bookmark Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Google Bookmark Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Delicious Rank Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Digg Find More places to share Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on AddThis.com... About Take Action to Save Energy Partner With DOE

442

Spirit Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Spirit Lake II Wind Farm Facility Spirit Lake II Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Spirit Lake School Dist Developer Spirit Lake School District Energy Purchaser Spirit Lake School District Location Spirit Lake IA Coordinates 43.411412°, -95.09914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.411412,"lon":-95.09914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Star Lakes and Rivers (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district

444

Great Lakes Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $250 Geothermal Heat Pumps: $500 Provider Great Lakes Energy Great Lakes Energy offers rebates to residential customers for the purchase of efficiency air-source heat pumps or geothermal heat pumps. A rebate of $250 is available for air-source heat pumps, and a $500 rebate is available for geothermal heat pumps. View the program website listed above to view program and efficiency specifics. A variety of rebates may also be available to Great Lake Energy residential

445

Iowa Lakes Superior Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lakes Superior Wind Farm Lakes Superior Wind Farm Jump to: navigation, search Name Iowa Lakes Superior Wind Farm Facility Iowa Lakes Superior Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes Electric Cooperative Developer Iowa Lakes Electric Cooperative Location West of Superior IA Coordinates 43.447756°, -94.980719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.447756,"lon":-94.980719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Simulating Flood Propagation in Urban Areas using a Two-Dimensional Numerical Model.  

E-Print Network (OSTI)

??A two-dimensional numerical model (RiverFLO-2D) has been enhanced to simulate flooding of urban areas by developing an innovative wet and dry surface algorithm, accounting for (more)

Gonzalez-Ramirez, Noemi

2010-01-01T23:59:59.000Z

447

The potential for increasing rubber production by matching tapping intensity to leaf area index  

Science Journals Connector (OSTI)

Understanding resource capture can help design appropriate species combinations, planting designs and management. Leaf area index (LAI) and its longevity are the most important factors defining dry matter production

Ciro Abbud Righi; Marcos Silveira Bernardes

2008-01-01T23:59:59.000Z

448

Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions  

E-Print Network (OSTI)

crystals. These effects drive sublimation/condensation cycles that modify the sizes and shapes of snow through sublimation/condensation and adsorption/desorption cycles. Adsorbed gases can diffuse inside snow variations must be described in models of snow physics and chemistry [Flin et al., 2003; Legagneux and Domine

Domine, Florent

449

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

450

Lost lake - restoration of a Carolina bay  

SciTech Connect

Carolina bays are shallow wetland depressions found only on the Atlantic Coastal Plain. Although these isolated interstream wetlands support many types of communities, they share the common features of having a sandy margin, a fluctuating water level, an elliptical shape, and a northwest to southeast orientation. Lost Lake, an 11.3 hectare Carolina bay, was ditched and drained for agricultural production before establishment of the Savannah River Site in 1950. Later it received overflow from a seepage basin containing a variety of chemicals, primarily solvents and some heavy metals. In 1990 a plan was developed for the restoration of Lost Lake, and restoration activities were complete by mid-1991. Lost Lake is the first known project designed for the restoration and recovery of a Carolina bay. The bay was divided into eight soil treatment zones, allowing four treatments in duplicate. Each of the eight zones was planted with eight species of native wetland plants. Recolonization of the bay by amphibians and reptiles is being evaluated by using drift fences with pitfall traps and coverboard arrays in each of the treatment zones. Additional drift fences in five upland habitats were also established. Hoop turtle traps, funnel minnow traps, and dip nets were utilized for aquatic sampling. The presence of 43 species common to the region has been documented at Lost Lake. More than one-third of these species show evidence of breeding populations being established. Three species found prior to the restoration activity and a number of species common to undisturbed Carolina bays were not encountered. Colonization by additional species is anticipated as the wetland undergoes further succession.

Hanlin, H.G.; McLendon, J.P. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; Wike, L.D. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Dietsch, B.M. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; [Univ. of Georgia, Aiken, SC (United States)

1994-09-01T23:59:59.000Z

451

Salt Lake County Residential Solar Financing Study  

Energy.gov (U.S. Department of Energy (DOE))

As part of our engagement with the National Renewable Energy Laboratories conducting the Salt Lake County Solar America Residential Finance Study, we have drafted this report summarizing the tools and mechanisms available for residential solar projects. These include the financial incentives available, possible financing models that could be used in the County, and a review of the community-scale solar project in St. George, Utah. We have also provided cost estimates for each system.

452

Spatiotemporal nutrient loading to Cultus Lake: Context for eutrophication and implications for  

E-Print Network (OSTI)

Spatiotemporal nutrient loading to Cultus Lake: Context for eutrophication and implications of Thesis: Spatiotemporal nutrient loading to Cultus Lake: Context for eutrophication and implications Stelmack from the Cultus Lake Parks Board, Binny Sivia from Fraser Health, Erika Lok from Environment

453

Accretion of ferromanganese nodules that form pavement in Second Connecticut Lake, New Hampshire  

Science Journals Connector (OSTI)

...W) in Pittsburg, Coos County, in northern New Hampshire...including Lake Michigan, MI (3); Oneida Lake...and microprobe, and in Lake Oneida samples with atomic-absorption...biogenic structures chromium Coos County New Hampshire ferromanganese...

Celeste A. Asikainen; Sean F. Werle

2007-01-01T23:59:59.000Z

454

Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal  

E-Print Network (OSTI)

Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

R. Cathcart; A. Bolonkin

2007-03-19T23:59:59.000Z

455

Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal  

E-Print Network (OSTI)

Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

Cathcart, R

2007-01-01T23:59:59.000Z

456

Sediment resuspension in Lake St. Clair  

SciTech Connect

Time-series measurements of water transparency, wave conditions, and current speed were made at several different sites in Lake St. Clair during five different 1-month periods in 1985 and 1986. Observed changes in suspended sediment concentration were modeled with a simple zero-dimensional, spatially averaged, mass balance model in which local bottom erosion was expressed as a linear function of the bottom shear stress. Estimates of the three parameters required by the model (particle settling velocity, resuspension concentration, and background suspended material concentration) are reasonably consistent for the various data sets, suggesting that the properties of the lake bottom do not change significantly through either space or time. The modeled settling velocities agree with the observed suspended particle size data and the erosion rates are comparable to laboratory results for freshwater sediments. The results show that a simple mass flux model can be used to model local sediment resuspension events in Lake St. Clair with reasonable accuracy. 23 refs., 5 figs., 3 tabs.

Hawley, N. (National Oceanic and Atmospheric Administration, Ann Arbor, MI (United States)); Lesht, B.M. (Argonne National Lab., IL (United States))

1992-12-01T23:59:59.000Z

457

Artificial neural networks: Principle and application to model based control of drying systems -- A review  

SciTech Connect

This paper reviews the developments in the model based control of drying systems using Artificial Neural Networks (ANNs). Survey of current research works reveals the growing interest in the application of ANN in modeling and control of non-linear, dynamic and time-variant systems. Over 115 articles published in this area are reviewed. All landmark papers are systematically classified in chronological order, in three distinct categories; namely, conventional feedback controllers, model based controllers using conventional methods and model based controllers using ANN for drying process. The principles of ANN are presented in detail. The problems and issues of the drying system and the features of various ANN models are dealt with up-to-date. ANN based controllers lead to smoother controller outputs, which would increase actuator life. The paper concludes with suggestions for improving the existing modeling techniques as applied to predicting the performance characteristics of dryers. The hybridization techniques, namely, neural with fuzzy logic and genetic algorithms, presented, provide, directions for pursuing further research for the implementation of appropriate control strategies. The authors opine that the information presented here would be highly beneficial for pursuing research in modeling and control of drying process using ANN. 118 refs.

Thyagarajan, T.; Ponnavaikko, M. [Crescent Engineering Coll., Madras (India); Shanmugam, J. [Madras Inst. of Tech. (India); Panda, R.C.; Rao, P.G. [Central Leather Research Inst., Madras (India)

1998-07-01T23:59:59.000Z

458

Lake-level rise in the late Pleistocene and active subaquatic volcanism since the Holocene in Lake Kivu, East African Rift  

E-Print Network (OSTI)

in the stratified depths of the lake. Lake Kivu's large size and population density extend the risk of a limnic Department of Earth Sciences, Royal Museum for Central Africa, Belgium f Renard Centre of Marine Geology for being one of the three `exploding lakes' in Africa (Kling et al., 1987; Halbwachs et al., 2004). Lakes

Gilli, Adrian

459

Managing Aging Effects on Dry Cask Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Aging Effects Managing Aging Effects on Dry Cask Storage Systems for Extended Long-Term Storage and Transportation of Used Fuel Rev. 0 Prepared for U.S. Department of Energy Used Fuel Disposition Campaign O.K. Chopra, D. Diercks, R. Fabian, D. Ma, V. Shah, S-W Tam, and Y.Y. Liu Argonne National Laboratory June 30, 2012 FCRD-USED-2012-000119 ANL-12/29 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

460

White Bear Lake Conservation District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This statute establishes the White Bear Lake Conservation District, which

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Recreational Lake and Water Quality Districts (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Territory contiguous to a recreational lake may be incorporated into a

462

Lake George Park Commission: Stormwater Management (New York) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Environmental Regulations Provider Lake George Park Commission

463

EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91: Lake Charles Liquefaction Project, Calcasieu Parish, 91: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation capabilities. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2013 EIS-0491: Supplemental Notice of Intent to Prepare an Environmental Impact Statement Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana September 25, 2012

464

Natural Lakes: Drainage: Diversion: Application (Nebraska) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes: Drainage: Diversion: Application (Nebraska) Lakes: Drainage: Diversion: Application (Nebraska) Natural Lakes: Drainage: Diversion: Application (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This section provides limitations on water withdrawals and diversions from natural lakes. Any such activity requires a permit from the Department of Natural Resources

465

The City of Lake Charles Bicycle and Pedestrian Master Plan.  

E-Print Network (OSTI)

?? This thesis was done in the professional project format. It was completed as a deliverable to the City of Lake Charles, Louisiana. It was (more)

Adams, Anthony

2011-01-01T23:59:59.000Z

466

Pine Lake Corn Processors LLC | Open Energy Information  

Open Energy Info (EERE)

Processors LLC Jump to: navigation, search Name: Pine Lake Corn Processors LLC Place: Steamboat Rock, Iowa Zip: 50672 Product: Farmer owned investment and management team which...

467

The global abundance and size distribution of lakes, ponds, and ...  

Science Journals Connector (OSTI)

United States Geological Survey, National Research Program, Box 25046 MS 413, Denver, Colorado 80025 ..... Western Lakes Survey (U.S.A.). 20.78. 0.01. 752.

2006-08-16T23:59:59.000Z

468

Price of Lake Charles, LA Liquefied Natural Gas Total Imports...  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

469

Changing Weather and Climate in the Great Lakes Region | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

covering Great Lakes weather, observed changes in the climate, and societal impacts of climate change. Along with sharing our passion for weather and climate, we'll convey...

470

CHEMICAL AND ISOTOPIC BALANCES FOR A MEROMICTIC LAKE  

Science Journals Connector (OSTI)

Green Lakes State Park, Fayetteville, New. York, have ... 4 Queens College, City University of New York,. Flushing ... by US. Atomic Energy Commission Con-.

471

Some Limnological Features of a Shallow Saline Meromictic Lake  

Science Journals Connector (OSTI)

high temperatures at subsurface depths of the lake. ..... sun was stored in the saline waters im- mediately below .... A typical profile of salt distribution in 1955 is

472

Wild-induced resuspension in a small shallow lake  

Science Journals Connector (OSTI)

Resuspension of inorganic sediments in a very shallow ... measurements of suspended matter. Theoretical aspects of resuspension dynamics is discussed emphasizing special shallow lake...

Lars Bengtsson; Thomas Hellstrm

1992-09-01T23:59:59.000Z

473

GRANINA, LIBA. The chemical budget of Lake Baikal: A review.  

Science Journals Connector (OSTI)

individual chemical elements includes this important term. Lake Baikal, the ... jor input of many substances entering Baikal occurs in the soluble form. Next in...

474

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

electric utilization of geothermal power. Then, of course,are pertinent to geothermal power and life in Lake County.issues relative to geothermal power. Thank you. Sincerely ,

Churchman, C.W.

2011-01-01T23:59:59.000Z

475

Lake Region Electric Cooperative- Commercial Energy Efficiency Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for new and existing...

476

coprecipitation of phosphate with carbonates in a marl lake  

Science Journals Connector (OSTI)

natural body of water modified by dams and canals ... power and irrigation. ... Marl lake waters are characterized by inorganic and organic nutrients and car-.

1999-12-26T23:59:59.000Z

477

Cloud Lake, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cloud Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6761772, -80.0739308 Show Map Loading map... "minzoom":false,"mappingse...

478

Kraemer, Thomas F.. Radium isotopes in Cayuga Lake, New York ...  

Science Journals Connector (OSTI)

Cayuga Lake, New York, during the course of a vernal inflow event in the .... located in central New York. ...... Series 310, International Atomic Energy Agency.

2004-12-14T23:59:59.000Z

479

Mechanical mastication thins Lake Tahoe forest with few adverse impacts  

E-Print Network (OSTI)

RESEARCH ARTICLE Mechanical mastication thins Lake Tahoetrack, as well as Mechanical mastication is a promisingtreatment employing a mechanical masticator to potentially

Hatchett, B.; Hogan, Michael P.; Grismer, Mark E.

2006-01-01T23:59:59.000Z

480

Modeling circulation in lakes: Spatial and temporal variations  

Science Journals Connector (OSTI)

ABSTRACT: The influence of spatial and temporal variations in wind forcing on the circulation in lakes is investigated using field data and the three-dimensional

Note: This page contains sample records for the topic "dry lake area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Frostbite Theater - Liquid Nitrogen Experiments - Dry Ice vs. Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Egg + Liquid Nitrogen + Time-lapse! Egg + Liquid Nitrogen + Time-lapse! Previous Video (Egg + Liquid Nitrogen + Time-lapse!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Cooled Dry Ice in Water!) Liquid Nitrogen Cooled Dry Ice in Water! Dry Ice vs. Liquid Nitrogen! Dry ice is cold. Liquid nitrogen is cold, too. What happens when the two are mixed together? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Have you ever wondered what happens when you mix dry ice and liquid nitrogen? Steve: Well, we just happen to have a chunk of dry ice left over from when we filmed 'How to Make a Cloud Chamber,' and here at Jefferson Lab, liquid nitrogen flows like water, so we're going to find out!

482

California - Coastal Region Onshore Dry Natural Gas Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 350 365 1980's 299 306 362 381 265 256 255 238 215 222 1990's 217 216 203 189 194 153 156 164 106 192 2000's 234 177 190 167 189 268 206 205 146 163 2010's 173 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Coastal Region Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

483

California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Los Angeles Basin Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

484

E-Print Network 3.0 - arrow lakes reservoir Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

water releases at Blue Marsh Lake following... an emergency declaration status for the project. The lake is located on the Tulpehocken Creek, a tributary Source: US Army Corps...

485

A Lipid Biomarker Investigation of Organic Matter Sources and Methane Cycling in Alaskan Thaw Lake Sediments  

E-Print Network (OSTI)

in anoxic cold seep sediments. PNAS. 11. 7663-7668.Cycling in Alaskan Thaw Lake Sediments A Thesis submitted inin Alaskan Thaw Lake Sediments by Mark Richard Williams

Williams, Mark

2012-01-01T23:59:59.000Z

486

E-Print Network 3.0 - amazonian floodplain lake Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

diversity and population structure of Amazonian... and Purus Rivers, Lake Janauaca; French Guiana: Kaw River swamps), and Caiman crocodilus (Brazil: Purus... River, Lake...

487

E-Print Network 3.0 - allard lake quebec Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of Ecosystem Studies Collection: Environmental Sciences and Ecology ; Geosciences 36 Water Levels of the Great Lakes Who is Affected by Changing Lake Levels? Summary: Water...

488

Standard guide for drying behavior of spent nuclear fuel  

E-Print Network (OSTI)

1.1 This guide is organized to discuss the three major components of significance in the drying behavior of spent nuclear fuel: evaluating the need for drying, drying spent nuclear fuel, and confirmation of adequate dryness. 1.1.1 The guide addresses drying methods and their limitations in drying spent nuclear fuels that have been in storage at water pools. The guide discusses sources and forms of water that remain in SNF, its container, or both, after the drying process and discusses the importance and potential effects they may have on fuel integrity, and container materials. The effects of residual water are discussed mechanistically as a function of the container thermal and radiological environment to provide guidance on situations that may require extraordinary drying methods, specialized handling, or other treatments. 1.1.2 The basic issue in drying is to determine how dry the SNF must be in order to prevent issues with fuel retrievability, container pressurization, or container corrosion. Adequate d...

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

489

Dry dig: Ethics and alcohol in Middle Eastern archaeological practice  

E-Print Network (OSTI)

ARTICLE DRY DIG ETHICS AND ALCOHOL IN MIDDLE EASTERNhad encountered discussions of ethics, archaeology, andtower discussions regarding ethics and archaeology can ring

Porter, Benjamin W.

2010-01-01T23:59:59.000Z

490

Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Navitas Systems at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

491

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301981"...

492

,"New York Dry Natural Gas Expected Future Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2013...

493

,"California State Offshore Dry Natural Gas Expected Future Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2013...

494

,"Texas State Offshore Dry Natural Gas Expected Future Production...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2013...

495

,"Louisiana State Offshore Dry Natural Gas Expected Future Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2013...

496

,"California Federal Offshore Dry Natural Gas Expected Future...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2013...

497

,"Federal Offshore California Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","4...

498

,"U.S. Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Proved Reserves",10,"Annual",2013,"6301925" ,"Release Date:","1242014" ,"Next...

499

Hydrogen storage materials and method of making by dry homogenation  

DOE Patents (OSTI)

Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

Jensen, Craig M. (Kailua, HI); Zidan, Ragaiy A. (Honolulu, HI)

2002-01-01T23:59:59.000Z

500

,"New York Dry Natural Gas Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2012 ,"Release...