Sample records for dry gas production

  1. ,"New York Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  2. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:22:39 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SNY2"...

  3. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotal ConsumptionThousand CubicfromDry NaturalDry

  4. Missouri Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet)(Dollars 2012DryDry

  5. U.S. Dry Natural Gas Production (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^602SWPAChargeDry

  6. Alaska--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194 39,008Dry

  7. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYear Jan(Dollars perfromDry

  8. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas, WetReserves

  9. Florida Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 0

  10. Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by

  11. Kansas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base Gas)6 Dollars per301

  12. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31T23:59:59.000Z

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  13. North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated Production (Billion Cubic

  14. California Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpected Future Production

  15. California Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpected Future ProductionDecade

  16. Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProductionExpected Future

  17. Florida Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProductionExpected

  18. New York Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProduction

  19. Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale ProductionExpected Future

  20. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale ProductionExpected

  1. Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProductionExpected Future

  2. Montana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProductionExpected

  3. Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected Future Production (Billion Cubic

  4. Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProvedExpected Future Production

  5. ,"Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,Crude Oil

  6. ,"New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural GasCoalbed MethaneDry

  7. ,"Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, WetCrude Oil +Dry

  8. ,"California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry Natural Gas Expected Future

  9. ,"Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociatedSummary"ShaleCoalbedDry Natural Gas

  10. ,"New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural Gas Expected Future

  11. Production management teachniques for water-drive gas reservoirs. Field No. 3. Offshore gulf coast normally pressured, dry gas reservoir. Topical report, July 1993

    SciTech Connect (OSTI)

    Hower, T.L.; Uttley, S.J.

    1993-07-01T23:59:59.000Z

    To develop improved completion and reservoir management strategies for water-drive gas reservoir, the study conducted on an offshore, normally pressured, dry gas reservoir is reported. The strategies that were particularly effective in increasing both the ultimate recovery and the net present value of the field are high volume water production from strategically located downdip wells and the recompletion of an upstructure well to recover trapped attic gas. High volume water production lowered the average reservoir pressure, which liberated residual gas trapped in the invaded region. Recompleting a new well into the reservoir also lowered the pressure and improved the volumetric displacement efficiency by recovering trapped attic gas. Ultimate recovery is predicted to increase 5-12% of the original gas-in-place.

  12. ,"Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas, WetCoalbed+Dry

  13. ,"Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. UndergroundStateCoalbedDry

  14. ,"California Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil + LeaseDry

  15. ,"California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil +Crude Oil +Dry

  16. ,"New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7, 2008"PricePriceDry Natural Gas

  17. Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0579,766 568,661Dry Production

  18. Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry Production

  19. Texas--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011Dry Production (Million

  20. ,"Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (MillionCrude Oil + LeaseDry

  1. ,"Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrude Oil + LeaseDry

  2. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

    1998-12-31T23:59:59.000Z

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  3. ,"Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDryDry Natural Gas

  4. ,"Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDryDryDry Natural Gas

  5. ,"Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbed Methane Proved+Dry

  6. ,"Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane Proved Reserves (BillionDry

  7. ,"Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease Condensate Proved ReservesDry

  8. ,"Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbedUnitedAssociated-DissolvedDry

  9. ,"Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNGLNGCoalbed Methane+Dry

  10. ,"New York Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlantCoalbed

  11. ,"Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDryDry Natural Gas Expected

  12. ,"Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNatural Gas,Dry Natural

  13. ,"Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry Natural Gas Expected Future

  14. New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B(BillionFeet) Dry

  15. ,"North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPriceCoalbed Methane Proved+Dry

  16. ,"West Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead PriceNetCoalbed MethaneDry

  17. ,"Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (DollarsSummary"Coalbed Methane+Dry

  18. Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame52,051per0 1Dry

  19. California--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590FuelDecadeCalifornia23 46 47 62Dry

  20. Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation,Cubic Feet) Dry

  1. ,"Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolume (MMcf)" ,"ClickCoalbed+Dry

  2. ,"Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbedUnited KingdomShaleDry Natural

  3. ,"Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDry Natural Gas

  4. ,"Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.PlantandCoalbed Methane

  5. ,"Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlantCoalbedExpected

  6. ,"Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrude Oil +

  7. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, Wet AfterDec.Dec.12 12

  8. ,"U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production (Billion Cubic

  9. ,"Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNet

  10. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as anCubic Feet)Production

  11. U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSalesEstimated Production

  12. Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProductionSeparation,

  13. ,"Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDry Natural Gas Expected

  14. ,"Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry Natural Gas Expected Future

  15. ,"Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNaturalADry Natural Gas

  16. Natural Gas Dry Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996) in the

  17. Natural Gas Dry Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996) in the2009

  18. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, January--March 1995

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S. [and others

    1995-04-01T23:59:59.000Z

    On September 30, 1993, the U.S. Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC 30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, as well as the management plan and the test plan for the overall program, and a discussion of these will not be repeated here. Rather, this report, will set forth the technical progress made during the period January 1 through March 31, 1995. The demonstration of the SEEC, Inc. technology for the transporting of coal combustion residues was completed with the unloading and final disposition of the three Collapsible Intermodal Containers (CIC). The loading and transport by rail of the three CIC`s was quire successful; however some difficulties were encountered in the unloading of the containers. A full topical report on the entire SEEC demonstration is being prepared. As a result of the demonstration some modifications of the SEEC concept may be undertaken. Also during the quarter the location of the injection wells at the Peabody No. 10 mine demonstration site were selected. Peabody Coal Company has developed the specifications for the wells and sought bids for the actual drilling. It is expected that the wells will be drilled early in May.

  19. ,"Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural Gas Expected Future

  20. ,"California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbed MethaneDry

  1. ,"Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated Natural Gas, WetDry

  2. ,"U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production+ LeaseDry Natural

  3. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.

    1997-12-31T23:59:59.000Z

    The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

  4. ,"Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry Natural

  5. ,"Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNGLiquids LeaseShaleDry

  6. Production management techniques for water-drive gas reservoirs. Field No. 2, offshore gulf coast over-pressured, dry gas reservoirs. Topical report, July 1993

    SciTech Connect (OSTI)

    Jones, R.E.; Jirik, L.A.; Hower, T.L.

    1993-07-01T23:59:59.000Z

    An investigation of reservoir management strategies for optimization of ultimate hydrocarbon recovery and net present value from an overpressured, high yield gas condensate reservoir with water influx is reported. This field evaluation was based on a reservoir simulation. Volumetric and performance-derived original gas-in-place estimates did not agree: the performance-derived values were significantly lower than those predicted from volumetric analysis. Predicted field gas recovery was improved significantly by methods which accelerated gas withdrawals. Recovery was also influenced by well location. Accelerated withdrawals from wells near the aquifer tended to reduce sweep by cusping and coning water. This offset any benefits of increased gas rates.

  7. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1994-10-01T23:59:59.000Z

    Preliminary environmental risk assessment on the FGD by-products to be placed underground is virtually complete. The initial mixes for pneumatic and hydraulic placement have been selected and are being subject to TCLP, ASTM, and modified SLP shake tests as well as ASTM column leaching. Results of these analyses show that the individual coal combustion residues, and the residues mixes, are non-hazardous in character. Based on available information, including well logs obtained from Peabody Coal Company, a detailed study of the geology of the placement site was completed. The study shows that the disposal site in the abandoned underground mine workings at depths of between 325 and 375 feet are well below potable groundwater resources. This, coupled with the benign nature of the residues and residues mixtures, should alleviate any concern that the underground placement will have adverse effects on groundwater resources. Seven convergence stations were installed in the proposed underground placement area of the Peabody Coal Company No. 10 mine. Several sets of convergence data were obtained from the stations. A study of materials handling and transportation of coal combustion residues from the electric power plant to the injection site has been made. The study evaluated the economics of the transportation of coal combustion residues by pneumatic trucks, by pressure differential rail cars, and by SEEC, Inc. collapsible intermodal containers (CICs) for different annual handling rates and transport distances. The preliminary physico-chemical characteristics and engineering properties of various FBC fly ash-spent bed mixes have been determined, and long-term studies of these properties are continuing.

  8. Predicting Forage Nutritive Value Using an In Vitro Gas Production Technique and Dry Matter Intake of Grazing Animals Using n-Alkanes

    E-Print Network [OSTI]

    Aguiar, Andre D.

    2011-08-08T23:59:59.000Z

    In the first experiment, forage samples (n = 39) were collected during 4 years (2006 ? 2009) from pastures grazed by Santa Gertrudis cattle at the King Ranch, TX. The in vitro gas production technique (IVGP) was performed to understand the pattern...

  9. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10T23:59:59.000Z

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  10. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-07-01T23:59:59.000Z

    Calculations with plotted results presented as confirmation bases for selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying Operations.

  11. ,"New York Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  12. ,"New York Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  13. ,"New York Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  14. ,"New York Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  15. ,"New York Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  16. ,"New York Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  17. ,"New York Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  18. Dry scrubber reduces SO sub 2 in calciner flue gas

    SciTech Connect (OSTI)

    Brown, G.W. (Refining Consulting Services, Englewood, CO (US)); Roderick, D. (Western Slope Refining Co., Fruita, CO (US)); Nastri, A. (NATEC Resources Inc., Dallas, TX (US))

    1991-02-18T23:59:59.000Z

    This paper discusses the installation of a dry sulfur dioxide scrubber for an existing petroleum coke calciner at its Fruita, Colo., refinery. The dry scrubbing process was developed by the power industry to help cope with the acid rain problem. It is the first application of the process in an oil refinery. The process could also remove SO{sub 2} from the flue gas of a fluid catalytic cracker, fluid coker, or other refinery sources.

  19. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  20. Florida Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 01 7

  1. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease,,,"Associated-DissolvedDry

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01T23:59:59.000Z

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  3. Land application uses for dry FGD by-products

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. (Ohio State Univ., Columbus, OH (United States)); Haefner, R. (Geological Survey, Columbus, OH (United States). Water Resources Div.)

    1993-04-01T23:59:59.000Z

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  4. Impes modeling of volumetric dry gas reservoirs with mobile water

    E-Print Network [OSTI]

    Forghany, Saeed

    2004-09-30T23:59:59.000Z

    . For abnormally or geopressured reservoirs, pressure gradients often approach values equal to the overburden pressure gradient (i.e., ~1.0 psi/ft). 8, 9 Among these types of dry gas reservoirs, in this study we will focus on volumetric reservoir. 1... properties of a given reservoir?s gas and water can handle pressures starting from standard conditions up to 4,000 psi and the units for this table are tabulated in Table 3.1. Table 3.1- Units for the PVT properties used in the input file Pressure...

  5. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31T23:59:59.000Z

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  6. Gas Production Tax (Texas)

    Broader source: Energy.gov [DOE]

    A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

  7. Dry Natural Gas Estimated Production (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May 2010 2008Year

  8. Dry Natural Gas Reserves Estimated Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May8,498 3,96820,523

  9. Dry Gas Zone, Elk Hills Field, Kern County, California: General reservoir study: Geologic text and tables: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-29T23:59:59.000Z

    The Dry Gas Zone was defined by US Naval Petroleum Reserve No. 1 Engineering Committee (1957) as ''/hor ellipsis/all sands bearing dry gas above the top of the Lower Scalez marker bed. The term is used to include the stratigraphic interval between the Scalez Sand Zone and the Tulare Formation - the Mya Sand Zone. The reservoirs in this upper zone are thin, lenticular, loosely cemented sandstones with relatively high permeabilities.'' Other than the limited Tulare production in the western part of the field, the Dry Gas Zone is the shallowest productive zone in the Elk Hills Reserve and is not included in the Shallow Oil Zone. It is Pliocene in age and makes up approximately eighty percent of the San Joaquin Formation as is summarized in Exhibit TL-1. The lithologic character of the zone is one of interbedded shales and siltstones with intermittent beds of various thickness sands. The stratigraphic thickness of the Dry Gas Zone ranges from 950 to 1150 feet with a general thickening along the flanks and thinning over the crests of the anticlines. The productive part of the Dry Gas Zone covers portions of 30 sections in an area roughly 10 miles long by 4 miles wide. 4 refs.

  10. 1997 DRY BEAN VARIETY CANNING TRIALS MICHIGAN DRY BEAN PRODUCTION RESEARCH ADVISORY BOARD

    E-Print Network [OSTI]

    1997 DRY BEAN VARIETY CANNING TRIALS MICHIGAN DRY BEAN PRODUCTION RESEARCH ADVISORY BOARD Rating 1=poor, 2=fair, 3=good, 4=above average, 5=excellent NAVY LIGHT RED KIDNEY BEANS VARIETY GRATIOT HURON 8.4 3.3 ASG96YT8 2.1 1.8 DARK RED KIDNEY BEANS ASG96YT37 3.4 2.1 VARIETY MONTCALM BAY 7 YEAR AVE ASG96YT

  11. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30T23:59:59.000Z

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  12. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01T23:59:59.000Z

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  13. Distributed Hydrogen Production from Natural Gas: Independent...

    Energy Savers [EERE]

    Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Independent...

  14. Monthly Natural Gas Gross Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Report Monthly Natural Gas Gross Production Report Data Files Methodology and Analysis Form and Instructions Monthly Natural Gas Gross Production Report with data for February 2015...

  15. ,"New York Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01T23:59:59.000Z

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  17. Shale Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a eviequestionnairesMillionNovember 200061:WaterGas

  18. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  19. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential

  20. Land application uses for dry FGD by-products. Phase 2 report

    SciTech Connect (OSTI)

    Stehouwer, R.; Dick, W.; Bigham, J. [Ohio State Univ., Columbus, OH (United States)] [and others

    1996-03-01T23:59:59.000Z

    A study was initiated in December 1990 to demonstrate large volume beneficial uses of flue gas desulfurization (FGD) by-products. A Phase 1 report provided results of an extensive characterization of chemical, physical, mineralogical and engineering properties of 58 dry FGD by-product samples. The Phase 1 report concluded that high volume beneficial reuses will depend on the economics related to their ability to substitute for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mine lands). Phase 2 objectives were (1) to conduct laboratory and greenhouse studies of FGD and soil (spoil) mixtures for agronomic and engineering applications, (2) to initiate field studies related to high volume agronomic and engineering uses, and (3) to develop the basic methodological framework for estimation of the financial and economic costs and benefits to society of several FGD reuse options and to make some preliminary runs of economic models. High volume beneficial reuses of dry FGD by-products have been successfully demonstrated. Adverse environmental impacts have been negligible. Although few sources of dry FGD by-products currently exist in Ohio and the United States there is potential for smaller coal-fired facilities to adopt S0{sub 2} scrubbing technologies that produce dry FGD material. Also much of what we have learned from studies on dry FGD by-products is applicable to the more prevalent wet FGD by-products. The adaptation of the technologies demonstrated in this project seem to be not only limited by economic constraints, but even more so, by the need to create awareness of the market potential of using these FGD by-products.

  1. Autothermal production of synthesis gas

    SciTech Connect (OSTI)

    Lewis, J.L.

    1987-05-19T23:59:59.000Z

    An autothermal reactor is described for the production of a synthesis gas in which both primary reforming and secondary reforming are achieved at a high level of efficiency. The method comprises a heat exchange chamber having a first portion and a second portion, a first inlet connected to the heat exchange chamber for the introduction of steam and feed gas to the heat exchange chamber, reaction tubes mounted within the first portion of the heat exchanger chamber at a location spaced longitudinally from the first inlet in communication with the first inlet and in non-concentric relationship therewith so as to provide a flow path for the steam and feed gas from the first inlet through the plurality of reaction tubes.

  2. Natural gas hydrates - issues for gas production and geomechanical stability

    E-Print Network [OSTI]

    Grover, Tarun

    2008-10-10T23:59:59.000Z

    NATURAL GAS HYDRATES – ISSUES FOR GAS PRODUCTION AND GEOMECHANICAL STABILITY A Dissertation by TARUN GROVER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY August 2008 Major Subject: Petroleum Engineering NATURAL GAS HYDRATES – ISSUES FOR GAS PRODUCTION AND GEOMECHANICAL STABILITY A Dissertation by TARUN GROVER Submitted to the Office of Graduate...

  3. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    of Gas Price ($/Mscf) for Offshore Gas Hydrate StudyEvaluation of deepwater gas-hydrate systems. The Leadingfor Gas Production from Gas Hydrates Reservoirs. J. Canadian

  4. Production Trends of Shale Gas Wells

    E-Print Network [OSTI]

    Khan, Waqar A.

    2010-01-14T23:59:59.000Z

    To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

  5. Freeze drying for gas chromatography stationary phase deposition

    DOE Patents [OSTI]

    Sylwester, Alan P. (Livermore, CA)

    2007-01-02T23:59:59.000Z

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  6. Adjusted Estimates of Texas Natural Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Energy Information Administration Adjusted Estimates of Texas Natural Gas Production Background The Energy Information Administration (EIA) is adjusting its estimates of natural...

  7. U.S. Dry Natural Gas Proved Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^602SWPAChargeDryArea:

  8. Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (Billion Cubic Feet) Arkansas Dry

  9. Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming Dry

  10. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry Natural

  11. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry

  12. Analysis of well test data from gas condensate reservoirs using single-phase dry gas methods: guidelines and examples

    E-Print Network [OSTI]

    Bonilla Kalil, Jose Ricardo

    1998-01-01T23:59:59.000Z

    drop functions versus flowing time, Arun Well A-70 (second drawdown). . 141 A-49 Early-time plot: pseudopressure versus flowing time, Arun Well A-70 (third drawdown). . 145 A-50 Semilog plot: pseudopressure versus flowing time, Arun Well A-70... due to its simplicity (the saturation history is not required). Our desire is to successfully demonstrate the analysis and interpretation of well test data in gas condensate systems using the "dry gas" analog. The primary deliverable of this thesis...

  13. Land application uses for dry FGD by-products, Phase 1 report

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.

    1993-04-01T23:59:59.000Z

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. FGD by-product materials are treated as solid wastes and must be landfilled. It is highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. The results indicated the chemical composition of the FGD by-product materials were dominated by Ca, S, Al, and Si. Many of the elements regulated by the US Environmental Protection Agency reside primarily in the fly ash. Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD by-product materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  14. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01T23:59:59.000Z

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  15. Powering the World: Offshore Oil & Gas Production

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The globalPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek that it may be on call for a further ordering." Technology is a "standing-reserve" of energy for humans

  16. Florida Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 01

  17. Florida Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0

  18. Florida Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers byExtensions

  19. Florida Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers

  20. Florida Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial ConsumersIncreases

  1. Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial ConsumersIncreasesSales

  2. North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated Production (Billion

  3. North Dakota Dry Natural Gas Reserves Revision Decreases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated Production

  4. North Dakota Dry Natural Gas Reserves Revision Increases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated ProductionFeet)

  5. North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated ProductionFeet)Sales

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01T23:59:59.000Z

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

  7. TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes, and Production

  8. California - Coastal Region Onshore Dry Natural Gas Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0ProvedGrossFeet)Production (Billion

  9. Data on production and use of DRI: World and U. S. [Direct Reduced Iron

    SciTech Connect (OSTI)

    Jensen, H.B.

    1993-01-01T23:59:59.000Z

    This paper will present data on the production and use direct-reduced iron (DRI) worldwide, focusing primarily on its use in the United States. The author is indebted to the Midrex Corporation for the data on world production of DRI. The U.S. data is his own and he will explain later how it was collected. He uses the term DRI to include all forms of direct-reduced iron, whether briquettes, pellets or lump.

  10. Covered Product Category: Residential Gas Storage Water Heaters...

    Energy Savers [EERE]

    Gas Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

  11. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, Sorption-Enhanced Synthetic Natural Gas (SNG)...

  12. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect (OSTI)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30T23:59:59.000Z

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  13. Dry Gas Zone, Elk Hills field, Kern County, California: General reservoir study: Engineering text and exhibits: (Final report)

    SciTech Connect (OSTI)

    Not Available

    1988-08-01T23:59:59.000Z

    The Dry Gas Zone in the Elk Hills field is comprised of fourteen separate productive horizons deposited in the MYA Group of the San Joaquin Formation of Pliocene Age. Eighty-six separate Reservoir Units have been identified within the interval over an area roughly ten miles long and four miles wide. One basal Tulare sand, the Tulare B, was also included in the geologic study. Five earlier studies have been made of the Dry Gas Zone; each is referenced in the Appendix of this report. Most of these studies were geologic in nature, and none provided in-depth reservoir analyses. This report is made up of ten (10) separate volumes which include: engineering text and exhibits (white dot); engineering data (black dot); geologic text and tables (green dot); structure and isochore maps (light blue dot); structural cross sections (dark blue dot); stratigraphic cross sections (brown dot); geologic data sheets -book 1 (yellow dot); geologic data sheets - book 2 (orange dot); geologic data sheets - book 3 (red dot); and geologic data sheets - book 4 (pink or coral dot). Basic production, injection, pressure, and other assorted technical data were provided by the US Department of Energy engineering staff at Elk Hills. These data were accepted as furnished with no attempt being made at independent verification.

  14. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  15. Natural gas product and strategic analysis

    SciTech Connect (OSTI)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31T23:59:59.000Z

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  16. 90-day Interim Report on Shale Gas Production - Secretary of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas...

  17. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A. (Chesterfield, MO); Keller, Fred A. (Lakewood, CO); Tucker, Melvin P. (Lakewood, CO)

    2003-12-09T23:59:59.000Z

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  18. Gas and liquid fuel system test facilities for research, development, and production

    SciTech Connect (OSTI)

    Ehrlich, L.

    1995-09-01T23:59:59.000Z

    Meeting the challenges associated with the support of both mature product lines and new high flow, high accuracy DLE (dry low emissions) control valves and systems has been complex. This paper deals with the design and capabilities of the gas and liquid test facility at the Woodward Governor Company Turbomachinery Controls in Loveland, Colorado.

  19. Simultaneous Saccharification and Fermentation of Dry-grind Highly Digestible Grain Sorghum Lines for Ethanol Production

    E-Print Network [OSTI]

    Hernandez, Joan R.

    2010-07-14T23:59:59.000Z

    The potential of high digestible grain sorghum (HDGS) with a modified starch protein endosperm matrix to replace corn in ethanol production was investigated using dry grind simultaneous saccharification and fermentation (SSF). Preliminary...

  20. CONTENT ANR @ MSU AgBioResearch Michigan Dry Bean Crop Protection Products

    E-Print Network [OSTI]

    SKIP TO CONTENT ANR @ MSU AgBioResearch Home Bean Info Beet Info Directions History InfoVideos Links Michigan Dry Bean Crop Protection Products Common Chemical Name Brand Name Company Crop Use Seed

  1. Method for the production of synthesis gas

    SciTech Connect (OSTI)

    Escher, G.; Harjung, J.; Wenning, H.P.

    1981-11-24T23:59:59.000Z

    A method is claimed for the continuous production of synthesis gas comprising of carbon monoxide and hydrogen through the autothermal gasification of solid combustibles in a pressure reactor. The method involves the following: introducing into a screw machine containing two parallely ordered shafts, a finely divided solid combustible; moistening and intimately mixing the solid combustible with 2 to 30% by weight of water, degasing and compressing the moist solid combustible to a pressure higher than that of the reactor; adding the gas-tight compressed and moist solid combustible to a reaction chamber-through a burner where the combustible is brought into contact with the gasification medium; evaporating the water in the compressed and moist solid combustible and producing a comminuted dispersion of the solid combustible in the mixture of the gasification medium and water vapor; reacting the combustible dispersion to give a raw synthesis gas; and removing the raw synthesis gas from the reactor.

  2. Kansas Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base7 3 2 1301 163Year Jan

  3. Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base7 3 2

  4. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AK LiquefiedCubic Feet) NewYear

  5. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AK

  6. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0 0 0 0 2005-2013480Year

  7. Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0 0 0Feet) Estimated

  8. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0579,766 568,661

  9. Maryland Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 SCommercialYear

  10. Michigan Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet)Year JanYear52 55 59 71Year

  11. Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet)Year JanYear52Estimated

  12. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70 349252 254 245Year

  13. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70

  14. Missouri Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)Same 2011 2012 2013 View

  15. Montana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889 11,502 13,84575 37 64 25Year

  16. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889 11,502 13,84575 37Estimated

  17. South Dakota Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6 0.6 0.7 0.6 0.6 0.6Year Jan

  18. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot,EffectiveYear

  19. Texas Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559 8,762 10,130 13,507Year Jan

  20. Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559 8,762

  1. North Dakota Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 2013A4. CensusFeet)

  2. Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3+

  3. Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0ProvedExpected Future

  4. Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year Jan FebFullProved+Feet)

  5. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w3,290

  6. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame52,051per0 1

  7. Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear Jan Feb

  8. California Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate FuelsCubic Feet) NewYear Jan

  9. California Federal Offshore Dry Natural Gas Expected Future Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpected Future(Million(Billion

  10. California State Offshore Dry Natural Gas Expected Future Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb Mar Aprper(Million(Billion

  11. Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+ LeaseExpected

  12. Colorado Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+

  13. Illinois Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet) Year

  14. Indiana Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 Independent

  15. Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear JanProvedExpected Future

  16. Kansas Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear JanProvedExpected

  17. Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0 Year-1Expected

  18. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0

  19. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31 22Estimated

  20. Calif--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan Feb Mar Apr

  1. California Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan,835 2,939Year

  2. California Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYearFeet) Estimated

  3. Colorado Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan

  4. Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year

  5. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3, 2011Crude

  6. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002DecadeYear JanN E B R ADry

  7. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar AprYear JanFeet)

  8. Ohio Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb(BillionDecade

  9. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan FebProved

  10. Oregon Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear JanYearCubicDecade Year-0 Year-1

  11. Pennsylvania Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYear Jan8,859ProvedDecade Year-0

  12. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade217523,552.1 Table 5.1. PAD District I

  13. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade217523,552.1 Table 5.1. PAD District IYear

  14. Texas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun Jul5,496 6,356 8,108Decade

  15. Texas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun Jul5,496 6,356 8,108DecadeYear

  16. Utah Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1 andCubic Feet)2009893 725Decade

  17. Utah Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1 andCubic Feet)2009893

  18. Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane,Thousand CubicSeparation 5Decade Year-0

  19. Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane,Thousand CubicSeparation 5Decade

  20. West Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0 0Feet)Same4,48620 21 51 57Decade

  1. West Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0 0Feet)Same4,48620 21 51

  2. Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves

  3. Alabama Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecade Year-0

  4. Alabama Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecade

  5. Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed

  6. Alaska Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1 Year-2 Year-3

  7. Alaska Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1 Year-2

  8. Arizona Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1

  9. Arizona Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan Feb Mar Apr May Jun Jul Aug

  10. Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecadeExpected Future

  11. Arkansas Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecadeExpected FutureDecade

  12. Arkansas Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecadeExpected

  13. West Virginia Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810Year Jan Feb39,28720 21 51 57Year

  14. West Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810Year Jan Feb39,28720

  15. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicleTrading,781Year Jan

  16. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming

  17. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011

  18. U.S. Dry Natural Gas Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,39720Sales1 DomesticDecade

  19. U.S. Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,39720Sales1

  20. Utah Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecadeFour-Dimensional2009893 725 718Year Jan

  1. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecadeFour-Dimensional2009893

  2. Virginia Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers35,9291 2

  3. Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers35,9291Estimated

  4. Colorado Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric andIndustrialSan(Million

  5. Florida Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles, 1975-2004 ModelDecade Year-0

  6. Illinois Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade Year-0 Year-1DecadeYear Jan FebYear Jan Feb

  7. Indiana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,775 898,864 835,335 777,231. 61,7078 8Year

  8. Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet)Expected Future

  9. Michigan Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet)Expected FutureDecade

  10. Miscellaneous States Dry Natural Gas Expected Future Production (Billion

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.Year Jan FebBarrels)Cubic

  11. Missouri Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73Thousand Cubic

  12. Natural Gas Dry Production (Annual Supply & Disposition)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996) in

  13. Texas State Offshore Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReservesBarrels) Crude

  14. U.S. Dry Natural Gas Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England (PADD 1A)20,798 18,57820092009Year Jan

  15. U.S. Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England (PADD 1A)20,798 18,57820092009Year

  16. Illinois Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million CubicThousand0.6

  17. Indiana Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumptionper Thousand Cubic4 15.8 8 7 13

  18. Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,1978. Number ofCoalbedExpected

  19. Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan FebProvedCrude

  20. West Virginia Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet)ProvedFeet) Expected

  1. Natural Gas Dry Production (Annual Supply & Disposition)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through

  2. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,19580 14 21 20

  3. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1Lease Separation780Year

  4. New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1LeaseAcquisitionsFeet)

  5. Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan FebOECD/IEAExpected

  6. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan FebOECD/IEAExpectedDecade

  7. South Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0TotalH BV C

  8. South Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0TotalH BV CYear Jan Feb Mar Apr May

  9. Natural Gas Dry Production (Annual Supply & Disposition)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration22)May£661.Data Monthly Annual

  10. New York Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousand CubicSeparation 29 0 10 8 6 6 1979-20130 0 0 0

  11. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousand CubicSeparationTotalper Thousand,058 1,887Year Jan

  12. Ohio Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0Separation 9 97 90 74 223 3145Year Jan

  13. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0Separation3,262,7160 0

  14. Oregon Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecadeSales (Billion,121,999 1,282,707

  15. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in Delaware (Million3,751,360 3,740,7578 2009 20100 14

  16. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand Cubic Feet) (MilliontotalThousand780Year Jan

  17. New York Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)per ThousandDecade Year-0

  18. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire" "Unit","SummerperDecade

  19. Ohio Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul AugFeet) Year Jan5

  20. Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul AugFeet) Year Jan5985Estimated

  1. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9Thousand Cubic Feet)7Year Jan

  2. Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9Thousand CubicAdjustments

  3. Oregon Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May Jun JulDecadeYear

  4. Pennsylvania Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan MonthlyCubic17 34 44 67Year Jan

  5. Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan MonthlyCubic17 34

  6. Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will beProvedShaleBarrels)

  7. Louisiana - South Onshore Dry Natural Gas Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProved Reserves

  8. Louisiana State Offshore Dry Natural Gas Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECSInputTexas (Million(Billion Cubic

  9. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base6Thousand4 16 22 13Year Jan Feb

  10. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0 Year-1480 530 525 584 622Decade

  11. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0 Year-1480 530 525 584 622DecadeYear

  12. Maryland Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecadePublication10.99 12.28EA9. TotalDecade

  13. Maryland Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecadePublication10.99 12.28EA9. TotalDecadeYear

  14. Michigan Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Millionper ThousandCubic Feet) NewYear Jan Feb

  15. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895 6,559 6,303 5,952 5,94622 35

  16. Montana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 (Million Cubic Feet)Year14,061

  17. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  18. Pennsylvania Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet)17 34 44 67 58

  19. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  20. Covered Product Category: Commercial Gas Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  1. Covered Product Category: Residential Whole-Home Gas Tankless...

    Energy Savers [EERE]

    Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition...

  2. The U.S. Natural Gas and Shale Production Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas and Shale Production Outlook for North American Gas Forum September 29, 2014 by Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas...

  3. Oil and Gas Gross Production Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from...

  4. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  5. EIA-914 Monthly Natural Gas Production Report Data Analysis...

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-914: Monthly Natural Gas Production Report Data Analysis October 2006 Page 1 of 38 EIA-914 Monthly Natural...

  6. Oil and Gas Production Optimization; Lost Potential due to Uncertainty

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

  7. Annual report of the origin of natural gas liquids production form EIA-64A

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The collection of basic, verifiable information on the Nation`s reserves and production of natural gas liquids (NGL) is mandated by the Federal Energy Administration Act of 1974 (FEAA) (Public Law 93-275) and the Department of Energy Organization Act of 1977 (Public Law 95-91). Gas shrinkage volumes reported on Form EIA-64A by natural gas processing plant operators are used with natural gas data collected on a {open_quotes}wet after lease separation{close_quotes} basis on Form EIA-23, Annual Survey of Domestic Oil and Gas Reserves, to estimate {open_quotes}dry{close_quotes} natural gas reserves and production volumes regionally and nationally. The shrinkage data are also used, along with the plant liquids production data reported on Form EIA-64A, and lease condensate data reported on Form EIA-23, to estimate regional and national gas liquids reserves and production volumes. This information is the only comprehensive source of credible natural gas liquids data, and is required by DOE to assist in the formulation of national energy policies.

  8. STEO September 2012 - natural gas production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q Unatural gas production

  9. Land application uses for dry FGD by-products. Phase 1, [Annual report], December 1, 1991--November 30, 1992

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. [Ohio State Univ., Columbus, OH (United States); Haefner, R. [Geological Survey, Columbus, OH (United States). Water Resources Div.

    1993-04-01T23:59:59.000Z

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  10. A fleet leader experience with dry low emissions aeroderivative gas turbines (LM6000PB and PD)

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Witte, M.

    1998-07-01T23:59:59.000Z

    In January 1995, the world's first LM6000 dry low emissions (DLE) aeroderivative gas turbine supplied by GE M and I was successfully started up at Gent power plant. In November 1997, the world's first uprated LM6000, also equipped with the DLE combustion system, began commercial operation at Geel cogeneration facility. TEE handled the engineering, procurement, construction and commissioning of these projects as well as for several other repowering and cogeneration facilities based on high efficiency DLE aeroderivative gas turbines. By mid 1998, seven LM6000 DLE and one LM2500 DLE will be in commercial operation at several cogeneration and power plants in Belgium. The results of three years of experience with the LM engines are presented: the reasons why the LM engines were selected, the history of the different units, the maintenance organization, the fleet fired hours and availability, and the main technical issues like DLE combustor, LPT5 failures. The conclusion is that after having experienced several serious problems, the LM6000 and the DLE combustion system have matured and now seem sufficiently reliable. The actual performance data of the uprated engine are significantly better than initially expected.

  11. Production casing for hot-dry-rock wells EE-2 and EE-3

    SciTech Connect (OSTI)

    Nicholson, R.W.; Pettitt, R.; Sims, J.

    1982-01-01T23:59:59.000Z

    The production casing for a pair of hot dry rock (HDR) energy extraction wells had to be designed for unique conditions. Two hot dry rock wells (EE-2 and EE-3) were drilled and production casing installed at Fenton Hill, NM for the Los Alamos National Laboratory HDR program. The design of the production casing and subsequent completion operations in these wells revealed that thermal cycling, anticipated operating pressures, and wear during downhole operations are major considerations for both casing specifications and installation procedures. The first well (Energy Extraction No. 2; EE-2) is intended to be the injection well and EE-3 the production well. The top joint strain in EE-3 was monitored during installation, cementing and tensioning.

  12. Measurements of Methane Emissions at Natural Gas Production Sites

    E-Print Network [OSTI]

    Lightsey, Glenn

    Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

  13. Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects

    E-Print Network [OSTI]

    Lopez Hernandez, Henry De Jesus

    2004-11-15T23:59:59.000Z

    to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2004 Major Subject: Petroleum Engineering...) _______________________________ Guy L. Curry (Member) _______________________________ Stephen A. Holditch (Head of Department) August 2004 Major Subject: Petroleum Engineering iii ABSTRACT Optimal Fracture Treatment Design for Dry Gas Wells Maximizes...

  14. Technical and environmental effects of concrete production: dry batch versus central mixed plant

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    governing the truck to truck variation. The addition of a mixer is effectively found to contribute to cement gas emissions. Whereas developments of new constituents of cement accelerate, cement concrete the difference in energy consumptions and greenhouse gas emissions. 2. Concrete production processes 2

  15. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    E-Print Network [OSTI]

    Moridis, George J.; Sloan, E. Dendy

    2006-01-01T23:59:59.000Z

    to economically Page viable gas production. The overallare not promising targets for gas production. AcknowledgmentEnergy, Office of Natural Gas and Petroleum Technology,

  16. Method for lowering the VOCS emitted during drying of wood products

    DOE Patents [OSTI]

    Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

    2000-01-01T23:59:59.000Z

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  17. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","12015","1151989"...

  18. Land application uses of dry FGD by-products. [Quarterly] report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Dick, W.A.; Beeghly, J.H.

    1993-12-31T23:59:59.000Z

    Reclamation of mine-sites with acid overburden requires the use of alkaline amendments and represents a potential high-volume use of alkaline dry flue gas desulfurization (FGD) by products. In a greenhouse study, 25-cm columns of acid mine spoil were amended with two FGD by-products; lime injection multistage burners (LIMB) fly ash or pressurized fluidized bed (PFBC) fly ash at rates of 0, 4, 8, 16, and 32% by weight (0, 40, 80, 160, and 320 tons/acre). Amended spoil was covered with 20 cm of acid topsoil amended with the corresponding FGD by-product to pH 7. Column leachate pH increased with FGD amendment rate while leachate Fe, Mn, and Zn decreased, Leachate Ca, S, and Mg decreased with LIMB amendment rate and increased with PFBC amendment. Leachate concentrations of regulated metals were decreased or unaffected by FGD amendment except for Se which was increased by PFBC. Spoil pH was increased up to 8.9 by PFBC, and up to 9.2 by LIMB amendment. Spoil pH also increased with depth with FGD amendments of 16 and 32%, Yield of fescue was increased by FGD amendment of 4 to 8%. Plant tissue content of most elements was unaffected by FGD amendment rate, and no toxicity symptoms were observed. Plant Ca and Mg were increased by LIMB and PFBC respectively, while plant S, Mn and Sr were decreased. Plant Ca and B was increased by LIMB, and plant Mg and S by PFBC amendment. These results indicate dry FGD by-products are effective in ameliorating acid, spoils and have a low potential for creating adverse environmental impacts.

  19. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    price for a condensing commercial water heater is $1,579.For condensing commercial water heaters with a thermalFound products for water heater in any product field and gas

  20. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  1. DPA and Gas Production from Protons on W and Be

    E-Print Network [OSTI]

    McDonald, Kirk

    Production in Tungsten · Ran the Mu2e target in MARS15 using the following parameters: ­ 8 GeV protonsDPA and Gas Production from Protons on W and Be Brian Hartsell FNAL March 20, 2013 #12;DPA and Gas on Tungsten target ­ Gaussian distribution with 1mm X and Y sigma ­ 6mm diameter, 160mm length target ­ 3 bins

  2. Field evaluation of natural gas and dry sorbent injection for MWC emissions control

    SciTech Connect (OSTI)

    Wohadlo, S.; Abbasi, H.; Cygan, D. [Institute of Gas Technology, Chicago, IL (United States)] Institute of Gas Technology, Chicago, IL (United States)

    1993-10-01T23:59:59.000Z

    The Institute of Gas Technology (IGT), in cooperation with the Olmsted Waste-to-Energy Facility (OWEF) and with subcontracted engineering services from the Energy and Environmental Research Corporation (EER), has completed the detailed engineering and preparation of construction specifications for an Emissions Reduction Testing System (ERTS). The ERTS has been designed for retrofit to one of two 100-ton/day municipal waste combustors at the OWEF, located in Rochester, Minnesota. The purpose of the retrofit is to conduct a field evaluation of a combined natural gas and sorbent injection process (IGT`s METHANE de-TOX{sup SM}, IGT Patent No. 5,105,747) for reducing the emissions of oxides of nitrogen (NO{sub x}), hydrochloric acid (HCI), oxides of sulfur (SO{sub x}), carbon monoxide (CO), total hydrocarbons (THC), and chlorinated hydrocarbons (dioxin/furans). In addition, the design includes modifications for the control of heavy metals (HM). Development of the process should allow the waste-to-energy industry to meet the Federal New Source Performance Standards for these pollutants at significantly lower costs when compared to existing technology of Thermal deNO{sub x} combined with spray dryer scrubber/fabric filters. Additionally, the process should reduce boiler corrosion and increase both the thermal and power production efficiency of the facility.

  3. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

    1995-01-01T23:59:59.000Z

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  4. Methane hydrate gas production: evaluating and exploiting the solid gas resource

    SciTech Connect (OSTI)

    McGuire, P.L.

    1981-01-01T23:59:59.000Z

    Methane hydrate gas could be a tremendous energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs and a system for coring hydrate reservoirs are also described.

  5. The Use of Horizontal Wells in Gas Production from Hydrate Accumulations

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    E.D. Toward Production From Gas Hydrates: Current Status,International Conference on Gas Hydrates, Trondheim, Norway,for Gas Production from Gas Hydrate Reservoirs, J. Can. Pet.

  6. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01T23:59:59.000Z

    Toward Production from Gas Hydrates: Current Status,Facing Gas Production From Gas-Hydrate Deposits. Society ofConference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland,

  7. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost

    E-Print Network [OSTI]

    Reagan, M. T.

    2010-01-01T23:59:59.000Z

    Spatial distributions of gas and hydrate phase saturations (from the Mallik 2002 Gas Hydrate Production Research Wellsimulating the behavior of gas hydrates, Energy Conversion

  8. Strategies for gas production from oceanic Class 3 hydrateaccumulations

    SciTech Connect (OSTI)

    Moridis, George J.; Reagan, Matthew T.

    2007-05-01T23:59:59.000Z

    Gas hydrates are solid crystalline compounds in which gasmolecules are lodged within the lattices of ice crystals. Vast amounts ofCH4 are trapped in gas hydrates, and a significant effort has recentlybegun to evaluate hydrate deposits as a potential energy source. Class 3hydrate deposits are characterized by an isolated Hydrate-Bearing Layer(HBL) that is not in contact with any hydrate-free zone of mobile fluids.The base of the HBL in Class 3 deposits may occur within or at the edgeof the zone of thermodynamic hydrate stability.In this numerical study oflong-term gas production from typical representatives of unfracturedClass 3 deposits, we determine that simple thermal stimulation appears tobe a slow and inefficient production method. Electrical heating and warmwater injection result in very low production rates (4 and 12 MSCFD,respectively) that are orders of magnitude lower than generallyacceptable standards of commercial viability of gas production fromoceanic reservoirs. However, production from depressurization-baseddissociation based on a constant well pressure appears to be a promisingapproach even in deposits characterized by high hydrate saturations. Thisapproach allows the production of very large volumes ofhydrate-originating gas at high rates (>15 MMSCFD, with a long-termaverage of about 8.1 MMSCFD for the reference case) for long times usingconventional technology. Gas production from hydrates is accompanied by asignificant production of water. However, unlike conventional gasreservoirs, the water production rate declines with time. The lowsalinity of the produced water may require care in its disposal. Becauseof the overwhelming advantage of depressurization-based methods, thesensitivity analysis was not extendedto thermal stimulation methods. Thesimulation results indicate that depressurization-induced gas productionfrom oceanic Class 3 deposits increases (and the corresponding waterto-gas ratio decreases) with increasing hydrate temperature (whichdefines the hydrate stability), increasing intrinsic permeability of theHBL, and decreasing hydrate saturation although depletion of the hydratemay complicate the picture in the latter case.

  9. ESP/rotary gas separator duo found to optimize production

    SciTech Connect (OSTI)

    Jacobs, G.H.

    1986-11-01T23:59:59.000Z

    A field test conducted on a low-volume waterflood well in West Texas equipped with an electric submersible pump (ESP) proved to rotary gas separator (RGS) to be more efficient than conventional reverse flow gas separators, achieving gas separation efficiencies close to 90%. Further, the RGS increased the run time of the ESP, thus lowering the wellbore fluid level and increasing oil production. The one drawback found is that RGSs can be susceptible to fluid erosion.

  10. Montana Oil and Natural Gas Production Tax Act (Montana)

    Broader source: Energy.gov [DOE]

    The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

  11. The U.S. Oil and Natural Gas Production Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Natural Gas Production Outlook for PRG Energy Outlook Conference September 22, 2014 by Adam Sieminski, Administrator 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005...

  12. Data Files Monthly Natural Gas Gross Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Data Files Data Files 1 EIA Best Estimate of Gross Withdrawals: Combination of historical production data from the Natural Gas Annual and current estimates based on data from the...

  13. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect (OSTI)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01T23:59:59.000Z

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  14. Precision directional drilling of hot-dry-rock geothermal production well EE-3

    SciTech Connect (OSTI)

    Carden, R.S.; Rowley, J.C.; Helmick, C.

    1982-01-01T23:59:59.000Z

    The deviated directional drilling of the hot dry rock (HDR) geothermal production well EE-3 (Energy Extraction No. 3) was successfully completed on August 1981. The injection well, EE-2, previously had been drilled with its lower part at an inclination of 35/sup 0/ to the vertical. It reached an on-line depth of 15,292 feet and its bottom-hole temperature was 608/sup 0/F (320/sup 0/C). The production well EE-3 was required to be drilled 1200 feet (370 m) above and parallel to the injection well. This necessitated high precision, controlled-trajectory directional drilling operations. The directional drilling of EE-3 was accomplished within the required tolerances at a depth of 13,933 feet and a bottom-hole temperature of 580/sup 0/F (280/sup 0/C).

  15. 90-day Second Report on Shale Gas Production - Secretary of Energy...

    Broader source: Energy.gov (indexed) [DOE]

    90-day Second Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Second Report on Shale Gas Production - Secretary of Energy Advisory Board Novemeber 18,...

  16. Process for production desulfurized of synthesis gas

    DOE Patents [OSTI]

    Wolfenbarger, James K. (Torrance, CA); Najjar, Mitri S. (Wappingers Falls, NY)

    1993-01-01T23:59:59.000Z

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  17. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    SciTech Connect (OSTI)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01T23:59:59.000Z

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  18. Elemental Fluorine-18 Gas: Enhanced Production and Availability

    SciTech Connect (OSTI)

    VanBrocklin, Henry F. [Department of Radiology and Biomedical Imaging

    2011-12-01T23:59:59.000Z

    The overall objective of this project was to develop an efficient, reproducible and reliable process for the preparation of fluorine-18 labeled fluorine gas ([¹?F]F?) from readily available cyclotron-produced [¹?F]fluoride ion. The two step process entailed the production of [¹?F]fluoromethane with subsequent conversion to [¹?F]F? by electric discharge of [¹?F]fluoromethane in the presence of carrier nonradioactive F? gas. The specific goals of this project were i) to optimize the preparation of [¹?F]fluoromethane from [¹?F]fluoride ion; ii) to develop a prototype automated system for the production of [¹?F]F? from [¹?F]fluoride ion and iii) develop a compact user friendly automated system for the preparation of [¹?F]F? with initial synthesis of fluorine-18 labeled radiotracers. Over the last decade there has been an increased interest in the production of "non-standard" positron-emitting isotopes for the preparation of new radiotracers for a variety of applications including medical imaging and therapy. The increased availability of these isotopes from small biomedical cyclotrons has prompted their use in labeling radiotracers. In much the same way the production of [¹?F]F? gas has been known for several decades. However, access to [¹?F]F? gas has been limited to those laboratories with the means (e.g. F? targetry for the cyclotron) and the project-based need to work with [¹?F]F? gas. Relatively few laboratories, compared to those that produce [¹?F]fluoride ion on a daily basis, possess the capability to produce and use [¹?F]F? gas. A simplified, reliable system employing [¹?F]fluoride ion from cyclotron targetry systems that are already in place coupled with on-demand production of the [¹?F]F? gas would greatly enhance its availability. This would improve the availability of [¹?F]F? gas and promote further work with a valuable precursor. The major goals of the project were accomplished over the funding period. The preparation of ¹?F]fluoromethane has been automated with reproducible yields greater than 90% conversion from [¹?F]fluoride ion. A trap and release system was established for the [¹?F]fluoride ion concentration and direct elution of the [¹?F]fluoride ion into the reaction vial with the appropriate base and precursor in DMSO. Other solvents were also investigated. The production time for [¹?F]fluoromethane is less than 10 minutes. An automated system for the [¹?F]F? gas production from the [18F]fluoromethane has been developed. The unit coupled to the [¹?F]fluoromethane system permits the on demand production of [¹?F]F? gas. In less than 30 minutes, mCi quantities of [¹?F]F? gas were produced. Several variables for the [¹?F]F? gas production were investigated and a set of parameters for reproducible operation were determined. These parameters included discharge chamber size, carrier gas (He, Ne, Ar), discharge time, discharge current, mass of F? gas added to the chamber. FDOPA and EF5 were used to test the reactivity of the [¹?F]F? gas. Both products were produced in low to modest yield. The ready availability of [¹?F]F? gas has potential impact to advance both DOE mission-driven initiatives and nuclear medicine initiatives through other federally funded agencies such as NIH and DoD. New reactions involving the use of [¹?F]F? gas will lead to direct labeling of new radiotracers and intermediates as well as new fluorine-18 labeled synthons that may be further reacted with other reagents to provide useful fluorine-18 labeled compounds. New tracers to understand and follow plant and microbial metabolism as well as new tracers for nuclear medicine applications, that have been either difficult to obtain or never produced due to the limited availability of [¹?F]F? gas, may be prepared using the techniques developed .

  19. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    from soils amended with biogas waste compared to otherCrutzen et al. 2008). Biogas production from organicamounts of fermentation effluent (biogas waste) remain after

  20. Greenhouse gas budgets of crop production current

    E-Print Network [OSTI]

    Levi, Ran

    production and distribution 16 2.7.2 Emissions associated with other agrochemicals 17 2.7.3 On-farm energy

  1. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01T23:59:59.000Z

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  2. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  3. Covered Product Category: Residential Gas Storage Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  4. Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation of Gas Diffusion in Kerogen, Langmuir Desorption from

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 159250 Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation algorithm to forecast gas production in organic shale that simultaneously takes into account gas diffusion-than-expected permeability in shale-gas formations, while Langmuir desorption maintains pore pressure. Simulations confirm

  5. Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas

    E-Print Network [OSTI]

    Ge, Zigang

    Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

  6. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil

    SciTech Connect (OSTI)

    Wickramarachchi, Praneeth, E-mail: praneeth1977@yahoo.co.uk [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Kawamoto, Ken; Hamamoto, Shoichiro [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Nagamori, Masanao [Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115 (Japan); Moldrup, Per [Environmental Engineering Section, Dept. of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg (Denmark); Komatsu, Toshiko [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan)

    2011-12-15T23:59:59.000Z

    Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D{sub p}({epsilon}/f) and k{sub a}({epsilon}/f) models were developed based on a single parameter (water blockage factor M for D{sub p} and P for k{sub a}). The water blockage factors, M and P, were found to be linearly correlated to {rho}{sub b} values, and the effects of dry bulk density on D{sub p} and k{sub a} for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

  7. Canadian offshore oil production solution gas utilization alternatives

    SciTech Connect (OSTI)

    Wagner, J.V.

    1999-07-01T23:59:59.000Z

    Oil and gas development in the Province of Newfoundland and Labrador is in its early stage and the offshore industry emphasis is almost exclusively on oil production. At the Hibernia field, the Gravity Base Structure (GBS) is installed and the first wells are in production. The Terra Nova project, based on a Floating Production Storage Offloading (FPSO) ship shaped concept, is in its engineering and construction stage and first oil is expected by late 2000. Several other projects, such as Husky's White Rose and Chevron's Hebron, have significant potential for future development in the same area. It is highly probably that these projects will employ the FPSO concept. It is also expected that the solution gas disposal issues of such second generation projects will be of more significance in their regulatory approval process and of such second generation projects will be of more significance in their regulatory approval process and the operators may be forced to look for alternatives to gas reinjection. Three gas utilization alternatives for a FPSO concept based project have been considered and evaluated in this paper: liquefied natural gas (LNG), compressed natural gas (CNG), and gas-to-liquids conversion (GTL). The evaluation and the relative ranking of these alternatives is based on a first pass screening type of study which considers the technical and economical merits of each alternative. Publicly available information and in-house data, compiled within Fluor Daniel's various offices, was used to establish the basic parameters.

  8. Gas Production from Hydrate-Bearing Sediments - Emergent Phenomena -

    SciTech Connect (OSTI)

    Jung, J.W. [Georgia Institute of Technology; Jang, J.W. [Georgia Institute of Technology; Tsouris, Costas [ORNL; Phelps, Tommy Joe [ORNL; Rawn, Claudia J [ORNL; Santamarina, Carlos [Georgia Institute of Technology

    2012-01-01T23:59:59.000Z

    Even a small fraction of fine particles can have a significant effect on gas production from hydrate-bearing sediments and sediment stability. Experiments were conducted to investigate the role of fine particles on gas production using a soil chamber that allows for the application of an effective stress to the sediment. This chamber was instrumented to monitor shear-wave velocity, temperature, pressure, and volume change during CO{sub 2} hydrate formation and gas production. The instrumented chamber was placed inside the Oak Ridge National Laboratory Seafloor Process Simulator (SPS), which was used to control the fluid pressure and temperature. Experiments were conducted with different sediment types and pressure-temperature histories. Fines migrated within the sediment in the direction of fluid flow. A vuggy structure formed in the sand; these small cavities or vuggs were precursors to the development of gas-driven fractures during depressurization under a constant effective stress boundary condition. We define the critical fines fraction as the clay-to-sand mass ratio when clays fill the pore space in the sand. Fines migration, clogging, vugs, and gas-driven fracture formation developed even when the fines content was significantly lower than the critical fines fraction. These results show the importance of fines in gas production from hydrate-bearing sediments, even when the fines content is relatively low.

  9. On-Board Hydrogen Gas Production System For Stirling Engines

    SciTech Connect (OSTI)

    Johansson, Lennart N. (Ann Arbor, MI)

    2004-06-29T23:59:59.000Z

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  10. Low VOC drying of lumber and wood panel products. Progress report No. 8

    SciTech Connect (OSTI)

    Su, W.; Yan, H.; Hooda, U.; Wild, M.P.; Banerjee, S. [Inst. of Paper Science and Technology, Atlanta, GA (United States)] [Inst. of Paper Science and Technology, Atlanta, GA (United States); Shmulsky, R.; Thompson, A.; Ingram, L.; Conners, T. [Mississippi State Univ., MS (United States)] [Mississippi State Univ., MS (United States)

    1998-07-01T23:59:59.000Z

    This study was initiated by an Institute of Paper Science and Technology finding that heating softwood in a low-headspace environment removed much of the VOCs without removing the water. This offered the possibility of removing VOCs from wet wood, capturing them as a product, and then drying the VOC-depleted wood conventionally with little or no VOC controls. Two means of low-headspace heating were explored: steam and radiofrequency (RF). It was found in the previous year, that while both steam and RF were able to drive out VOCs, steam was impracticably slow for lumber. Hence the effect of RF or microwave on wood was the principal focus of the work reported here. Finally, in order to understand the mechanism of VOC release, the transport of the VOCs in wood was studied, together with the seasonal effects that influence VOC concentration in trees.

  11. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09T23:59:59.000Z

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

  12. Dry effluent

    SciTech Connect (OSTI)

    Brady, J.D. (Anderson, 2000 Inc., Peachtree City, GA (US))

    1988-01-01T23:59:59.000Z

    The available choices of pollution control systems depend on what is being burned and how stringent the regulations are. The common systems are gas cooling by a waste heat boiler or an air-air heat exchanger followed by fabric filtration or electrostatic precipitation for particulate removal; alkaline spray absorbers followed by fabric filters (dry scrubbers) for particulate and acid gas removal; wet scrubbers for simultaneous particulate and acid gas removal, and; the newest - spray evaporation, followed by wet scrubbing for particulate and acid gas removal. Each has advantages and each has disadvantages. This paper discusses the advantages and disadvantages of the spray evaporator and wet scrubber combination.

  13. Florida Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercialNov-14U.S. Offshore U.S.

  14. Florida Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercialNov-14U.S. Offshore

  15. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    E-Print Network [OSTI]

    Rutqvist, J.

    2009-01-01T23:59:59.000Z

    Conference on Gas Hydrates (ICGH 2008), Vancouver, BritishGSC et al. Mallik 5L-38 gas hydrate production research wellfrom the Mallik 2002 Gas Hydrate Production Research Well

  16. New inflow performance relationships for gas condensate reservoirs

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) production. These correlations...

  17. Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

  18. Alternative Fuels Data Center: Natural Gas Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce OperatingPropaneStationProduction to

  19. Taxation of oil and gas payments received independent of production

    SciTech Connect (OSTI)

    Fambrough, J.

    1983-06-01T23:59:59.000Z

    Several economic incentives are offered to mineral owners for entering into an oil and gas lease. These are: (1) a bonus; (2) a delay rental; (3) a royalty. This article is intended to aid in the understanding of the tax treatment for these oil and gas payments, received independent of production, in order to avoid any tax penalties and to elucidate a tax-minimization strategy. 11 references, 7 tables. (NLG)

  20. Natural gas production from hydrate dissociation: An axisymmetric model

    SciTech Connect (OSTI)

    Ahmadi, G. (Clarkson Univ., Pottsdam, NY); Ji, Chuang (Clarkson Univ., Pottsdam, NY); Smith, D.H.

    2007-08-01T23:59:59.000Z

    This paper describes an axisymmetric model for natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing well. During the hydrate dissociation, heat and mass transfer in the reservoir are analyzed. The system of governing equations is solved by a finite difference scheme. For different well pressures and reservoir temperatures, distributions of temperature and pressure in the reservoir, as well as the natural gas production from the well are evaluated. The numerical results are compared with those obtained by a linearization method. It is shown that the gas production rate is a sensitive function of well pressure. The simulation results are compared with the linearization approach and the shortcomings of the earlier approach are discussed.

  1. The production of activated silica with carbon dioxide gas

    E-Print Network [OSTI]

    Hayes, William Bell

    1956-01-01T23:59:59.000Z

    Ional to the per cent of carbon dioxi. de 1n the flue gas for a constant total gas flow rate. REFE REN CES l. Andrews, R. V, , Hanford Works Eocument (1952), 2. Andrews, R. V. & J. A. W. W. A, , ~46 82 (1954). 3. Andrews, R. V, , Personal Communication 4... of the reciuire . ents for the dedree of iliASTER OF SCIENCE Janus', 1956 Major Subject: Chemi. cal Engineering TH PRODUCTION OP ACTIVATED SILICA 7iIITH CARBON DIOXIDE GAS A Thesis William Bell Hayes III Approved as to style and content by: Chairmen...

  2. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOE Patents [OSTI]

    Nataraj, Shankar (Allentown, PA); Russek, Steven Lee (Allentown, PA); Dyer, Paul Nigel (Allentown, PA)

    2000-01-01T23:59:59.000Z

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  3. Physical stability of spray dried solid dispersions of amorphous tolfenamic acid and polyvinylpyrolidone K30

    E-Print Network [OSTI]

    Thybo, Pia

    2006-10-25T23:59:59.000Z

    Droplet-Gas Contact mixing and flow pattern Drying of Droplets moisture / volatiles evaporation (~ 10 sec.) Product Recovery separation of particles from the gas GPEN October 2006 Side 8 Pia Thybo The Danish University of Pharmaceutical Sciences... Formation of surface GPEN October 2006 Side 11 Pia Thybo The Danish University of Pharmaceutical Sciences Schematic picture of spray drying process Feed Heater 2 fluid nozzle Feed flow Nozzle gas flow Drying chamber Cyclone Collection vessel Bag filter...

  4. Production of low BTU gas from biomass 

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    for combustion is simple relative to the gasification or pyrolysis and construc- tion and operation of the necessary equipment should also be easier. However, the final product of com- bustion, steam energy, cannot be stored for long periods of time.... Lee, B. S. , Washington University, St. Louis, Mo. Chairman of Advisory Committee: Dr. R. G. Anthony An experimental study was conducted to examine the gasification of agricultural residues as an alter- nate energy source. The agricultural residues...

  5. Gas production from oceanic Class 2 hydrate accumulations

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.

    2007-02-01T23:59:59.000Z

    Gas hydrates are solid crystalline compounds in which gasmolecules are lodged within the lattices of ice crystals. The vastamounts of hydrocarbon gases that are trapped in hydrate deposits in thepermafrost and in deep ocean sediments may constitute a promising energysource. Class 2 hydrate deposits are characterized by a Hydrate-BearingLayer (HBL) that is underlain by a saturated zone of mobile water. Inthis study we investigated three methods of gas production via verticalwell designs. A long perforated interval (covering the hydrate layer andextending into the underlying water zone) yields the highest gasproduction rates (up to 20 MMSCFD), but is not recommended for long-termproduction because of severe flow blockage caused by secondary hydrateand ice. A short perforated interval entirely within the water zoneallows long-term production, but only at rates of 4.5 7 MMSCFD. A newwell design involving localized heating appears to be the most promising,alleviating possible blockage by secondary hydrate and/or ice near thewellbore) and delivering sustainably large, long-term rates (10-15MMSCFD).The production strategy involves a cyclical process. During eachcycle, gas production continuously increases, while the correspondingwater production continuously decreases. Each cycle is concluded by acavitation event (marked by a precipitous pressure drop at the well),brought about by the inability of thesystem to satisfy the constant massproduction rate QM imposed at the well. This is caused by the increasinggas contribution to the production stream, and/or flow inhibition causedby secondary hydrate and/or ice. In the latter case, short-term thermalstimulation removes the blockage. The results show that gas productionincreases (and the corresponding water-to-gas ratio RWGC decreases) withan increasing(a) QM, (b) hydrate temperature (which defines its stabilityfor a given pressure), and (c) intrinsic permeability. Lower initialhydrate saturations lead initially to higher gas production and a lowerRWGC, but the effect is later reversed as the hydrate is depleted. Thedisposal of the large amounts of produced water does not appear to pose asignificant environmental problem. Production from Class 2 hydrates ischaracterized by (a) the need for confining boundaries, (b) thecontinuously improving RWGC over time (opposite to conventional gasreservoirs), and (c) the development of a free gas zone at the top of thehydrate layer (necessitating the existence of a gas cap forproduction).

  6. Simulation of Gas Dynamic Behavior in Dry-Wall Inertial Fusion Energy Chambers

    E-Print Network [OSTI]

    Tillack, Mark

    . In this work, the code TSUNAMI [2] was used to model chamber gas dynamics for different shapes, sizes of size scaling. Previous- ly, TSUNAMI was used primarily for studying liquid protec- ted chambers which the basic response charac- teristics (with emphasis on the evolution towards a quiescent state

  7. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

    1986-01-01T23:59:59.000Z

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  8. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14T23:59:59.000Z

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  9. EIA - Analysis of Natural Gas Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8Stone,923Production 2010

  10. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear JanProduction 1980

  11. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear JanProduction 1980Alaska Arkansas

  12. Depressurization-induced gas production from Class 1 hydratedeposits

    SciTech Connect (OSTI)

    Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2005-11-01T23:59:59.000Z

    Class 1 hydrate deposits are characterized by ahydratebearing layer underlain by a two-phase zone involving mobile gas.Two kinds of deposits are investigated. The first involves water andhydrate in the hydrate zone (Class 1W), while the second involves gas andhydrate (Class 1G). We introduce new models to describe the effect of thepresence of hydrates on the wettability properties of porous media. Wedetermine that large volumes of gas can be readily produced at high ratesfor long times from Class 1 gas hydrate accumulations by means ofdepressurization-induced dissociation using conventional technology.Dissociation in Class 1W deposits proceeds in distinct stages, while itis continuous in Class 1G deposits. To avoid blockage caused by hydrateformation in the vicinity of the well, wellbore heating is a necessity inproduction from Class 1 hydrates. Class 1W hydrates are shown tocontribute up to 65 percent of the production rate and up to 45 percentof the cumulative volume of produced gas; the corresponding numbers forClass 1G hydrates are 75 percent and 54 percent. Production from bothClass 1W and Class 1G deposits leads to the emergence of a seconddissociation front (in addition to the original ascending hydrateinterface) that forms at the top of the hydrate interval and advancesdownward. Inboth kinds of deposits, capillary pressure effects lead tohydrate lensing, i.e., the emergence of distinct banded structures ofalternating high-low hydrate saturation, which form channels and shellsand have a significant effect on production.

  13. Texas--State Offshore Natural Gas Plant Liquids Production, Gaseous

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011Dry Production

  14. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 0 0

  15. Florida Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers byExtensionsNew

  16. ,"U.S. Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production (Billion

  17. North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated Production (BillionFeet)

  18. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01T23:59:59.000Z

    2012. 14. Pless, J. , Natural Gas Development and HydraulicProduction of Substituted Natural Gas from the Wet OrganicU.S.E.I.A), California Natural Gas Consumption. 2012. 116.

  19. Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361

    SciTech Connect (OSTI)

    NONE

    1992-05-01T23:59:59.000Z

    A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

  20. Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)Proved ReservesNaturalProduction

  1. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,ProductionMarketed18,736Revision DecreasesWells

  2. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,ProductionMarketed18,736Revision DecreasesWellsDrilled (Feet

  3. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,ProductionMarketed18,736Revision DecreasesWellsDrilled

  4. Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent

    SciTech Connect (OSTI)

    Yannick J. Heintz; Laurent Sehabiague; Badie I. Morsi; Kenneth L. Jones; David R. Luebke; Henry W. Pennline [United States Department of Energy (U.S. DOE), Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15T23:59:59.000Z

    The mole fraction solubilities (x{asterisk}) and volumetric liquid-side mass-transfer coefficients (kLa) for H{sub 2}S and CO{sub 2} in the ionic liquid, TEGO IL K5, (a quaternary ammonium polyether) were measured under different pressures (up to 30 bar) and temperatures (up to 500 K) in a 4 L ZipperClave agitated reactor. CO{sub 2} and N{sub 2}, as single gases, and a H{sub 2}S/N{sub 2} gaseous mixture were used in the experiments. The solubilities of H{sub 2}S and CO{sub 2} were found to increase with pressure and decrease with temperature within the experimental conditions used. The H{sub 2}S solubilities in the ionic liquid (IL) were greater than those of CO{sub 2} within the temperature range investigated (300-500 K) up to a H{sub 2}S partial pressure of 2.33 bar. Hence, the IL can be effectively used to capture both H{sub 2}S and CO{sub 2} from dry fuel gas stream within the temperature range from 300 to 500 K under a total pressure up to 30 bar. The presence of H{sub 2}S in the H{sub 2}S/N{sub 2} mixture created mass-transfer resistance, which decreased k{sub L}{alpha} values for N{sub 2}. The k{sub L}{alpha} and x{asterisk} values of CO{sub 2} were found to be greater than those of N{sub 2} in the IL, which highlight the stronger selectivity of this physical solvent toward CO{sub 2} than toward N{sub 2}. In addition, within the temperature range from 300 to 500 K, the solubility and k{sub L}{alpha} of H{sub 2}S in the IL were greater than those of CO{sub 2}, suggesting that not only can H{sub 2}S be more easily captured from dry fuel gas streams but also a shorter absorber can be employed for H{sub 2}S capture than that for CO{sub 2}. 56 refs., 8 figs., 4 tabs.

  5. Geomechanical Development of Fractured Reservoirs During Gas Production

    E-Print Network [OSTI]

    Huang, Jian

    2013-04-05T23:59:59.000Z

    GEOMECHANICAL DEVELOPMENT OF FRACTURED RESERVOIRS DURING GAS PRODUCTION A Dissertation by JIAN HUANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... this research work. I would also want to extend my appreciation to my friends and colleagues, Jun Ge, Chakra Rawal, Reza Safari, Sonia Wang, Vahid Serajian, Wenxu Xue and other members in the geomechanics group, who were always willing to help and offer...

  6. Low permeability gas reservoir production using large hydraulic fractures

    E-Print Network [OSTI]

    Holditch, Stephen A

    1970-01-01T23:59:59.000Z

    extending up to three thousand feet from the producing well. Also, a model simulating a nuclear cavity was designed. This model simulated a well containing an eighty foot radius cavity with a fractured zone of one hundred times the reservoir permeability... of each system was prepared. The results of this study showed that all fractures of greater than one thousand foot radius had greater productivity and greater cumu- lative gas produced than did the nuclear cavity. It appears that large hydraulic...

  7. Gas production response to price signals: Implications for electric power generators

    SciTech Connect (OSTI)

    Ferrell, M.L.

    1995-12-31T23:59:59.000Z

    Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

  8. Process for the production of fuel gas from coal

    DOE Patents [OSTI]

    Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

    1982-01-01T23:59:59.000Z

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  9. New inflow performance relationships for gas condensate reservoirs 

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) ...

  10. Strategies for gas production from oceanic Class 3 hydrate accumulations

    E-Print Network [OSTI]

    Moridis, George J.; Reagan, Matthew T.

    2007-01-01T23:59:59.000Z

    coexistence of aqueous, gas and hydrate phases, indicatingIntrinsic Rate of Methane Gas Hydrate Decomposition”, Chem.Makogon, Y.F. , “Gas hydrates: frozen energy,” Recherche

  11. Summary We investigated hydraulic conductance charac-teristics and associated dry matter production and distribution

    E-Print Network [OSTI]

    DeJong, Theodore

    Summary We investigated hydraulic conductance charac- teristics and associated dry matter') vigor rootstock. `K146-43' and `Hiawatha' rootstocks had 27 and 52% lower mean leaf-specific hydraulic and rootstock, which may be a compensatory response to the differences in leaf specific hydraulic conduc- tance

  12. NATURE OF FREE RADICALS IN FREEZE-DRIED FISHERY PRODUCTS AND OTHER LIPID-PROTEIN SYSTEMS

    E-Print Network [OSTI]

    are the same as those that are responsible for damage at the molecular lpvel in oxygpnated lipid-protein-water freeze-dried materials were stored at -600 C in the dark under nitrogen prior to exposure to air. Lipid of the migration of energy over comparatively long distances in cells; such transfer of electrons is implicated

  13. U.S. Natural Gas Gross Withdrawals and Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoal ProductionLiquefiedNatural Gas Exports

  14. Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation – Eagle Ford Shale Example

    E-Print Network [OSTI]

    Tian, Yao

    2014-04-29T23:59:59.000Z

    production data. Well deliverability was modeled to optimize oil production rate by designing appropriate operational parameters. From NW to SE, Eagle Ford fluids evolve from oil, to gas condensate and, finally, to dry gas, reflecting greater depth...

  15. Forecasting long-term gas production of dewatered coal seams and fractured gas shales

    SciTech Connect (OSTI)

    Spivey, J.P.; Semmelbeck, M.E.

    1995-12-31T23:59:59.000Z

    Production decline curves are routinely used by engineers to predict the future performance of oil and gas wells. Because the results of decline curve predictions are used for calculating asset value and estimating future revenue, they are one of the most important tools reservoir engineers use. There are numerous variations on the basic exponential or hyperbolic decline analysis method. Fetkovitch and other have extended the decline curve analysis method to handle gas wells properly and to be able to estimate reservoir properties from the analysis of these data. However, there has been considerable drilling activity in the last 10 years into unconventional reservoirs whose wells do not follow the traditional production decline characteristic shapes. Among these problem reservoirs are coalbed methane and fractured shale reservoirs. A procedure is presented which allows forecasting long range performance of dewatered coal and fractured gas shale reservoirs having nonlinear adsorption isotherms, using constant pressure solutions to the flow equation for slightly compressible liquids. A correlation is presented to show the range of applicability of this procedure.

  16. Determination of Water Saturation in Relatively Dry Porous Media...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests....

  17. Effects of drinking water temperature on respiration rates, body temperatures, dry matter intake, and milk production in lactating Holstein cows in summer 

    E-Print Network [OSTI]

    Milam, Kyle Zohn

    1985-01-01T23:59:59.000Z

    EFFECTS OF DRINKING WATER TEMPERATURE ON RESPIRATION RATES, BODY TEMPERATURES, DRY MATTER INTAKE, AND MILK PRODUCTION IN LACTATING HOLSTEIN COWS IN SUMMER A Thesis by KYLE ZOHN MILAM Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Nutrition EFFECTS OF DRINKING WATER TEMPERATURE ON RESPIRATION RATES, BODY TEMPERATURES, DRY MATTER INTAKE, AND MILK PRODUCTION IN LACTATING HOLSTEIN...

  18. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    Collett, T.S. , 1993. Natural gas hydrates of the Prudhoe2008. Mechanical Properties of Natural Gas Hydrate Bearinggas hydrate reservoir. Natural Gas Hydrate: In Oceanic and

  19. GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

  20. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect (OSTI)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de; Sachs, M., E-mail: karl-ernst.wirth@fau.de; Winzer, B., E-mail: karl-ernst.wirth@fau.de; Peukert, W., E-mail: karl-ernst.wirth@fau.de; Wirth, K.-E., E-mail: karl-ernst.wirth@fau.de [Institute of Particle Technology, University of Erlangen-Nuremberg (Germany)

    2014-05-15T23:59:59.000Z

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  1. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01T23:59:59.000Z

    and arctic onshore gas hydrate production wells. OTC-21015.Bay Unit L-106 Well Unit C gas hydrate deposit in Alaska.Toward Production from Gas Hydrates: Current Status,

  2. Production and Pressure Decline Curves for Wet Gas Sands With Closed Outer Boundaries

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . SPE SPE 23442 Production and Pressure Decline Curves for Wet Gas Sands With Closed Outer, Richardson, TX 7S0834S36 U.5A. Telex, 730989 SPEDAL. ABSTRACT A family of pressure and production decline as gas reservoirs which produce substan- tial amounts of water together with ~as. Production of water

  3. Exploring the Optimum Role of Natural Gas in Biofuels Production

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Vann Bush, Managing Director, Energy Conversion, Gas Technology Institute

  4. Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska

    E-Print Network [OSTI]

    Kim, J.

    2014-01-01T23:59:59.000Z

    2009. Toward Production From Gas Hydrates: Current Status,Geologic Controls on Gas Hydrate Occurrence in the MountCollett T.S. 1993. Natural Gas Hydrates of the Prudhoe Bay

  5. Calculation of CO2 column heights in depleted gas fields from known pre-production gas column heights

    E-Print Network [OSTI]

    Calculation of CO2 column heights in depleted gas fields from known pre-production gas column that the CO2 is in a dense phase (either liquid or supercritical). Accurate assessment of the storage capacity also requires an estimation of the amount of CO2 that can be safely stored beneath the reservoir seal

  6. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model. [Cyclic thermal injection

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01T23:59:59.000Z

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  7. New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B

  8. New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN ECoalbed MethaneExpected

  9. New York Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) LiquidsCoalbed Methane

  10. ,"Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate Proved Reserves (Million

  11. Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter LeaseMeters200(Billion

  12. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter

  13. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfterthan 200 Meters Deep

  14. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfterthan 200 Meters Deep200

  15. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200 Meters DeepProvedGreater thanfrom

  16. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSalesVehicleYearProved56 125 102 52 3412Feet)

  17. Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr May Jun JulShale

  18. Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr May JunSeparation,Cubic

  19. Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr MayLease Separation,(Billion

  20. Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr MayLeaseSeparation,(Billion

  1. Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar AprSeparation, Proved(Billion Cubic

  2. Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar AprSeparation,Separation,Cubic

  3. Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation, Proved

  4. Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation,Cubic(Million

  5. Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation, Proved ReservesCubic

  6. Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation, ProvedSeparation,Cubic

  7. Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation,Separation,

  8. U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England (PADD 1A)20,798 18,57820092009

  9. U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England

  10. New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)per ThousandDecadeEstimated

  11. ,"Alabama Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural

  12. ,"Alabama Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region

  13. ,"Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrude Oil +

  14. ,"Alaska Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrude Oil

  15. ,"Alaska Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrude

  16. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net Withdrawals (MMcf)" ,"ClickAnnual",2013

  17. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net Withdrawals (MMcf)"

  18. ,"Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead Price (Dollars per

  19. ,"Arkansas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead Price (Dollars perAnnual",2013

  20. ,"Arkansas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead Price (Dollars

  1. ,"Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbed Methane Proved Reserves+

  2. ,"Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbed Methane Proved

  3. By Terry Engelder and Gary G. Lash UNIVERSITY PARK, PA.The shale gas rush is on. Excitement over natural gas production from a

    E-Print Network [OSTI]

    Engelder, Terry

    natural gas production from a number of Devonian-Mississippian black shales such as the Barnett by the Eastern Gas Shales Project (EGSP), a U.S. Department of Energy-sponsored investigation of gas potential. Economic gas production from black shale often requires stimulation by hydraulic fracturing

  4. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    of United States oil and gas resources on CD-ROM: U.S.of United States Oil and Gas Resources conducted by the U.S.assess conventional oil and gas resources. In order to use

  5. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    None

    1999-10-01T23:59:59.000Z

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  6. Parameter identification in large-scale models for oil and gas production

    E-Print Network [OSTI]

    Van den Hof, Paul

    Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

  7. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia 

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  8. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  9. Prediction of gas-hydrate formation conditions in production and surface facilities

    E-Print Network [OSTI]

    Ameripour, Sharareh

    2006-10-30T23:59:59.000Z

    Gas hydrates are a well-known problem in the oil and gas industry and cost millions of dollars in production and transmission pipelines. To prevent this problem, it is important to predict the temperature and pressure under which gas hydrates...

  10. Textile Drying Via Wood Gasification 

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  11. Textile Drying Via Wood Gasification

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  12. Forecasting long-term gas production from shale

    E-Print Network [OSTI]

    Cueto-Felgueroso, Luis

    Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

  13. Direct estimation of gas reserves using production data 

    E-Print Network [OSTI]

    Buba, Ibrahim Muhammad

    2004-09-30T23:59:59.000Z

    This thesis presents the development of a semi-analytical technique that can be used to estimate the gas-in-place for volumetric gas reservoirs. This new methodology utilizes plotting functions, plots, extrapolations, ...

  14. U.S. Natural Gas Supply to 2030 Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    LNG Total Figure 1: U.S. natural gas supply (reference case) It should be noted that this is the reference case; the "side cases", based upon the volume of projected LNG (liquefied natural gas) imports gas supply projections for 2030 (TCF) Production Low LNG Reference High LNG Dry gas 21.99 20.83 19

  15. Forecasting long-term gas production Luis Cueto-Felguerosoa

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    by increasing the length of a single well within the gas-bearing shale. Hydraulic fracturing, or "fracking" (9

  16. Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen cosmetic and food products (such as whipped cream) or in oil recovery processes. Depending on the a of oil droplets and gas bubbles and show that the oil can have two very different roles, either

  17. Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    on the moon and on Mars for the generation of oxygen along with the production of structural metalsProduction of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful

  18. Gas production potential of disperse low-saturation hydrateaccumulations in oceanic sediments

    SciTech Connect (OSTI)

    Moridis, George J.; Sloan, E. Dendy

    2006-07-19T23:59:59.000Z

    In this paper we evaluate the gas production potential ofdisperse, low-saturation (SH<0.1) hydrate accumulations in oceanicsediments. Such hydrate-bearing sediments constitute a significantportion of the global hydrate inventory. Using numerical simulation, weestimate (a) the rates of gas production and gas release from hydratedissociation, (b) the corresponding cumulative volumes of released andproduced gas, as well as (c) the water production rate and the mass ofproduced water from disperse, low-SH hydrate-bearing sediments subject todepressurization-induced dissociation over a 10-year production period.We investigate the sensitivity of items (a) to (c) to the followinghydraulic properties, reservoir conditions, and operational parameters:intrinsic permeability, porosity, pressure, temperature, hydratesaturation, and constant pressure at which the production well is kept.The results of this study indicate that, despite wide variations in theaforementioned parameters (covering the entire spectrum of suchdeposits), gas production is very limited, never exceeding a few thousandcubic meters of gas during the 10-year production period. Such lowproduction volumes are orders of magnitude below commonly acceptedstandards of economic viability, and are further burdened with veryunfavorable gas-to-water ratios. The unequivocal conclusion from thisstudy is that disperse, low-SH hydrate accumulations in oceanic sedimentsare not promising targets for gas production by means ofdepressurization-induced dissociation, and resources for early hydrateexploitation should be focused elsewhere.

  19. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    models as com- pletely as possible prior to making the gas injection simulations. One validation test involved simulating a horizontal gas drive ex- cluding gravity effects by using the same densities for gas and oil. Shown in Figure 6 is the GOR...THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  20. lehigh-logo Models and Simulation for Bulk Gas Production and

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    lehigh-logo Models and Simulation for Bulk Gas Production and Distribution Wasu Glankwamdee Jeff/Distribution ()Lehigh/Air Products Pittsburgh, PA 1 / 1 lehigh-logo In Our Last Episode(s)... Our project is studying;lehigh-logo Entities in the Production/Distribution Simulation Sites Location, Production Capacity

  1. Accounting for Adsorbed gas and its effect on production bahavior of Shale Gas Reservoirs

    E-Print Network [OSTI]

    Mengal, Salman Akram

    2010-10-12T23:59:59.000Z

    pressures )( p by conventional well tests due to very low permeabilities. Decline curves for conventional gas, when applied on shale gas reservoirs, can not be validated by material balance due to unavailability of average reservoir pressure. However...* variable rate gas BDF including adsorbed gas exhibiting exponential decline (b = 1)................. 25 4.6 Plot of [m(pi )? m(pwf )] / qg(t) vs material balance pseudo time tca*, xii FIGURE...

  2. Distributed Hydrogen Production from Natural Gas: Independent Review

    SciTech Connect (OSTI)

    Fletcher, J.; Callaghan, V.

    2006-10-01T23:59:59.000Z

    Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

  3. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. 27637.pdf More Documents & Publications...

  4. Separation, fractionation, concentration, and drying of food products: A technical case study

    SciTech Connect (OSTI)

    Not Available

    1989-12-01T23:59:59.000Z

    Researchers have investigated a new approach that separates juice into pulp and serum (liquid) fractions. The fractions are then processed individually and more efficiently to reduce the water content. Finally, the fractions are recombined at the site of use to obtain conventional or new products. Efforts to date have included laboratory and on-site studies of several fractionation schemes using energy-efficient membrane-based microfiltration, ultrafiltration, and hyperfiltration processes. These processes are used in combination with more conventional separation, concentration, and recombination methods such as centrifugation, vacuum evaporation, and homogenization. This technical case study provides an overview of the entire DOE/NFPA R D project and highlights the on-site testing of an advanced processing scheme for tomato juice. This scheme involves separation (centrifugation), concentration (hyperfiltration and evaporation), and recombination (homogenization) processes. The document is aimed at making field test and data analysis results available to other researchers and to private industry in a timely manner. The case study discusses project status; summarizes field testing efforts; and reviews potential technology impacts in terms of applications, energy savings, and preliminary economics.

  5. Depressurization-induced gas production from Class 1 and Class 2hydrate deposits

    SciTech Connect (OSTI)

    Moridis, George J.; Kowalsky, Michael

    2006-05-12T23:59:59.000Z

    Class 1 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) underlain by a two-phase zone involving mobile gas. Such deposits are further divided to Class 1W (involving water and hydrate in the HBL) and Class 1G (involving gas and hydrate in the HBL). In Class 2 deposits, a mobile water zone underlies the hydrate zone. Methane is the main hydrate-forming gas in natural accumulations. Using TOUGH-FX/HYDRATE to study the depressurization-induced gas production from such deposits, we determine that large volumes of gas could be readily produced at high rates for long times using conventional technology. Dissociation in Class 1W deposits proceeds in distinct stages, but is continuous in Class 1G deposits. Hydrates are shown to contribute significantly to the production rate (up to 65 percent and 75 percent in Class 1W and 1G, respectively) and to the cumulative volume of produced gas (up to 45 percent and 54 percent in Class 1W and 1G, respectively). Large volumes of hydrate-originating CH4 could be produced from Class 2 hydrates, but a relatively long lead time would be needed before gas production (which continuously increases over time) attains a substantial level. The permeability of the confining boundaries plays a significant role in gas production from Class 2 deposits. In general, long-term production is needed to realize the full potential of the very promising Class 1 and Class 2 hydrate deposits.

  6. Help for declining natural gas production seen in the unconventional sources of natural gas. [Eastern shales, tight sands, coal beds, geopressured zones

    SciTech Connect (OSTI)

    Staats, E.B.

    1980-01-10T23:59:59.000Z

    Oil imports could be reduced and domestic gas production increased if additional gas production is obtained from four unconventional resources-eastern Devonian shales, tight sands, coal beds, and geopressured zones. Gas produced from these resources can help maintain overall production levels as supplies from conventional gas sources gradually decline. The eastern shales and western sands are the chief potential contributors in the near term. Further demonstrations of coal bed methane's recovery feasibility could improve the prospects for its production while future geopressured methane production remains speculative at this time.

  7. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    1999-01-01T23:59:59.000Z

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  8. Freeze drying apparatus

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    2001-01-01T23:59:59.000Z

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  9. Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6

    E-Print Network [OSTI]

    George, Steven M.

    Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6 R. K; published 23 July 2004 The gas phase reaction products during tungsten W atomic layer deposition ALD using WF6 and Si2H6 were studied using quadrupole mass spectrometry. The gas phase reactions products were

  10. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31T23:59:59.000Z

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  11. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    gas releases during drilling, and well integrity issuesNext, drilling of exploration wells and conducting wellal. , 2006a), as well as the 1998 and 2005 drilling programs

  12. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    releases during drilling, and well integrity issues duringand ? Ensuring well structural integrity with subsidence inat nearby wells, seal integrity loss and associated gas

  13. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    collection of additional reservoir data to support reservoirflow (drawdown) data for those hydrate reservoirs that aregeologic data on gas-hydrate-bearing sand reservoirs in the

  14. Production-management techniques for water-drive gas reservoirs. Annual Report, August 1990-December 1991

    SciTech Connect (OSTI)

    Hower, T.L.; Abbott, W.A.; Arsenault, J.W.; Jones, R.E.

    1992-01-01T23:59:59.000Z

    The project was designed to investigate production management strategies through a field study approach. The initial task was to prepare a summary of industry experience with water-drive gas and water-drive gas storage reservoirs. This activity was necessary to define the variety of reservoir situations in which water influx occurs, to identify those cases where alternative production practices will increase ultimate recovery, and to develop techniques to better characterize these reservoirs for further analysis. Four fields were selected for study: 1 onshore Gulf Coast gas reservoir, 2 offshore Gulf Coast reservoirs, and 1 mid-continent aquifier gas storage field. A modified material balance technique was developed and validated which predicts the pressure and production performance of water-drive gas reservoirs. This method yields more accurate results than conventional water influx techniques.

  15. Mining and Gas and Oil Production (North Dakota)

    Broader source: Energy.gov [DOE]

    This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter addresses claims to mines, licensing and control of...

  16. Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to...

  17. Compressed Gas Cylinder Policy

    E-Print Network [OSTI]

    contained in cylinders display chemical hazards that include toxic, flammable, corrosive, pyrophoric on their side but stored in a way to prevent damage to the product label. In a free standing gas cylinder the height of the cylinder. So that the cylinder label is easily viewed. On a dry surface allowing no contact

  18. Minimizing Water Production from Unconventional Gas Wells Using a Novel Environmentally Benign Polymer Gel System 

    E-Print Network [OSTI]

    Gakhar, Kush

    2012-02-14T23:59:59.000Z

    Excess water production is a major economic and environmental problem for the oil and gas industry. The cost of processing excess water runs into billions of dollars. Polymer gel technology has been successfully used in controlling water influx...

  19. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  20. Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)

    Broader source: Energy.gov [DOE]

    The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production.  Any such leases shall...

  1. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses 

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  2. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  3. Study of gas production potential of New Albany Shale (group) in the Illinois basin

    SciTech Connect (OSTI)

    Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01T23:59:59.000Z

    The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

  4. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs 

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1972 Major Subject: PETROLEUM ENGINEERING THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Approved as. to style...

  5. Natural gas monthly, November 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-31T23:59:59.000Z

    Gross withdrawals of natural gas (wet, after lease separation) from gas and oil wells in the United States during November 1988, were estimated at 1755 billion cubic feet, 1.3 percent above withdrawals during November 1987. Of the total quantity, an estimated 215 billion cubic feet were returned to gas and oil reservoirs for repressuring, pressure maintenance, and cycling; 35 billion cubic feet of nonhydrocarbon gases were removed; and 13 billion cubic feet were vented or flared. The remaining wet marketed production totaled 1492 billion cubic feet. Dry gas production (wet marketed production minus 70 billion cubic feet of extraction loss) totaled an estimated 1422 billion cubic feet, similar to the November 1987 level. The total dry gas supply available for disposition in November 1988 was estimated at 1702 billion cubic feet, including 173 billion cubic feet withdrawn from storage, 12 billion cubic feet of supplemental supplies, and 95 billion cubic feet that were imported. In November 1987, dry gas available for disposition totaled 1684 billion cubic feet. Of the total dry gas supply available for disposition in November 1988, an estimated 1467 billion cubic feet were consumed, 148 billion cubic feet were injected into underground storage reservoirs, and 5 billion cubic feet were exported, leaving 82 billion cubic feet unaccounted for.

  6. Natural gas monthly, March 1989

    SciTech Connect (OSTI)

    Not Available

    1989-05-23T23:59:59.000Z

    Gross withdrawals of natural gas (wet, after lease separation) from gas and oil wells in the United States during March 1989, were estimated at 1777 billion cubic feet, 0.4 percent below withdrawals during March 1988. Of the total quantity, an estimated 211 billion cubic feet were returned to gas and oil reservoirs for repressuring, pressure maintenance, and cycling; 36 billion cubic feet of nonhydrocarbon gases were removed; and 12 billion cubic feet were vented or flared. The remaining wet marketed production totaled 1518 billion cubic feet. Dry gas production (wet marketed production minus 71 billion cubic feet of extraction loss) totaled an estimated 1447 billion cubic feet, similar to the March 1988 level. The total dry gas supply available for disposition in March 1989 was estimated at 1881 billion cubic feet, including 319 billion cubic feet withdrawn from storage, 14 billion cubic feet of supplemental supplies, and 101 billion cubic feet that were imported. In March 1988, dry gas available for disposition totaled 1841 billion cubic feet. Of the total dry gas supply available for disposition in March 1989, an estimated 1837 billion cubic feet were consumed, 93 billion cubic feet were injected into underground storage reservoirs and 8 billion cubic feet were exported, leaving 57 billion cubic feet unaccounted for.

  7. Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry

  8. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

    1989-01-01T23:59:59.000Z

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  9. Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

  10. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14 EarlyNatural Gas

  11. Western Gas Sands Project: production histories of the Piceance and Uinta basins of Colorado and Utah

    SciTech Connect (OSTI)

    Anderson, S.; Kohout, J. (comp.)

    1980-11-20T23:59:59.000Z

    Current United States geological tight sand designations in the Piceance and Uinta Basins' Western Gas Sands Project include the Mesaverde Group, Fort Union and Wasatch Formations. Others, such as the Dakota, Cedar Mountain, Morrison and Mancos may eventually be included. Future production from these formations will probably be closely associated with existing trends. Cumulative gas production through December 1979, of the Mesaverde Group, Fort Union and Wasatch Formations in the Piceance and Uinta Basins is less than 275 billion cubic feet. This contrasts dramatically with potential gas in place estimates of 360 trillion cubic feet. If the geology can be fully understood and engineering problems surmounted, significant potential reserves can be exploited.

  12. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    require some form of artificial lift (typically gas lift forGH development will require artificial lift such as electriclow pressure at surface. Artificial lift will be required to

  13. Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge

    E-Print Network [OSTI]

    Mallinson, Richard

    depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problem

  14. The mineral content of water as a variable in the quality control of reconstituted non-fat dry milk products

    E-Print Network [OSTI]

    Kapsalis, John G.

    1959-01-01T23:59:59.000Z

    ...................... ....... 57 2 Treatment of Water and Reconstituted Milk (Mixed Commercial Lactic Cultures)........................... 16 3 The Effect of NaCl and CaS0^.2H20 of Synthetic Water on the Renneting Time and Curd Characteristics of Reconstituted Nonfat Dry... of Synthetic Water on the Renneting Time and Curd Char? acteristics of Reconstituted Nonfat Dry Milk........... 64 6 The Effect of CaCl2 and NallCC^ of Synthetic Water on the Renneting Time and Curd Characteristics of Reconstituted Nonfat Dry Milk...

  15. Simulation of production and injection performance of gas storage caverns in salt formations

    SciTech Connect (OSTI)

    Hagoort, J. (Delft Univ. of Technology (Netherlands))

    1994-11-01T23:59:59.000Z

    This paper presents a simple yet comprehensive mathematical model for simulation of injection and production performance of gas storage caverns in salt formations. The model predicts the pressure and temperature of the gas in the cavern and at the wellhead for an arbitrary sequence of production and injection cycles. The model incorporates nonideal gas properties, thermodynamic heat effects associated with gas expansion and compression in the cavern and tubing, heat exchange with the surrounding salt formation, and non-uniform initial temperatures but does not include rock-mechanical effects. The model is based on a mass and energy balance for the gas-filled cavern and on the Bernoulli equation and energy balance for flow in the wellbore. Cavern equations are solved iteratively at successive timesteps, and wellbore equations are solved within an iteration cycle of the cavern equations. Gas properties are calculated internally with generally accepted correlations and basic thermodynamic relations. Example calculations show that the initial temperature distribution has a strong effect on production performance of a typical gas storage cavern. The primary application of the model is in the design, planning, and operation of gas storage projects.

  16. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10T23:59:59.000Z

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  17. 2010 Dry Bean Research Report

    E-Print Network [OSTI]

    2010 Dry Bean Research Report Assessment of Narrow Row Technology Michigan Dry Edible Bean Production RESEARCH ADVISORY BOARD #12;The Michigan Bean Commission was awarded a grant from the MDA Technology for the Michigan Dry Bean Industry". Expected outcomes from this project are: 1. Identification

  18. 2012 Dry Bean Research Report

    E-Print Network [OSTI]

    2012 Dry Bean Research Report Assessment of Narrow Row Technology Michigan Dry Edible Bean Production Research Advisory Board #12;The Michigan Bean Commission was awarded a grant from the MDA Technology for the Michigan Dry Bean Industry". Expected outcomes from this project are: 1. Identification

  19. Production of natural gas from methane hydrate by a constant downhole pressure well

    SciTech Connect (OSTI)

    Ahmadi, G. (Clarkson Univ., Potsdam, NY); Ji, C. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2007-07-01T23:59:59.000Z

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied.

  20. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect (OSTI)

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27T23:59:59.000Z

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.