National Library of Energy BETA

Sample records for dry cooling systems

  1. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  2. Cooling System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating & Cooling » Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp

  3. Novel Dry Cooling Technology for Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dry Cooling Technology for Power Plants Novel Dry Cooling Technology for Power Plants This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_martin.pdf More Documents & Publications Industrial Steam System Heat-Transfer Solutions Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Distributed Energy Technology Characterization (Desiccant

  4. Data center cooling system

    SciTech Connect (OSTI)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  5. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  6. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  7. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  8. Rotary engine cooling system

    SciTech Connect (OSTI)

    Jones, C.

    1988-07-26

    A rotary internal combustion engine is described comprising: a rotor housing forming a trochoidal cavity therein; an insert of refractory material received in the recess, an element of a fuel injection and ignition system extending through the housing and insert bores, and the housing having cooling passages extending therethrough. The cooling passages are comprised of drilled holes.

  9. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  10. Superconductor rotor cooling system

    DOE Patents [OSTI]

    Gamble, Bruce B. (Wellesley, MA); Sidi-Yekhlef, Ahmed (Framingham, MA); Schwall, Robert E. (Northborough, MA); Driscoll, David I. (South Euclid, OH); Shoykhet, Boris A. (Beachwood, OH)

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  11. Superconductor rotor cooling system

    DOE Patents [OSTI]

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  12. Passive containment cooling system

    DOE Patents [OSTI]

    Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  13. Passive containment cooling system

    DOE Patents [OSTI]

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  14. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology...

    Office of Scientific and Technical Information (OSTI)

    that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. ...

  15. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology...

    Office of Scientific and Technical Information (OSTI)

    Research Center (EERC) is developing a market-focused dry cooling technology that is ... The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an ...

  16. Lamination cooling system

    DOE Patents [OSTI]

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  17. Home Cooling Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fans In many climates, you can use a whole-house fan to meet all or most of your home cooling needs. Evaporative Cooling For homes in dry climates, evaporative cooling or...

  18. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power

    Office of Scientific and Technical Information (OSTI)

    Plants (Technical Report) | SciTech Connect Technical Report: Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants Citation Details In-Document Search Title: Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants The University of North Dakota's Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high

  19. Emergency core cooling system

    DOE Patents [OSTI]

    Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  20. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  1. Combustor liner cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  2. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  3. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  4. User's guide for the BNW-III optimization code for modular dry/wet-cooled power plants

    SciTech Connect (OSTI)

    Braun, D.J.; Faletti, D.W.

    1984-09-01

    This user's guide describes BNW-III, a computer code developed by the Pacific Northwest Laboratory (PNL) as part of the Dry Cooling Enhancement Program sponsored by the US Department of Energy (DOE). The BNW-III code models a modular dry/wet cooling system for a nuclear or fossil fuel power plant. The purpose of this guide is to give the code user a brief description of what the BNW-III code is and how to use it. It describes the cooling system being modeled and the various models used. A detailed description of code input and code output is also included. The BNW-III code was developed to analyze a specific cooling system layout. However, there is a large degree of freedom in the type of cooling modules that can be selected and in the performance of those modules. The costs of the modules are input to the code, giving the user a great deal of flexibility.

  5. Non-intrusive cooling system

    DOE Patents [OSTI]

    Morrison, Edward F. (Burnt Hills, NY); Bergman, John W. (Barrington, NH)

    2001-05-22

    A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

  6. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  7. Hybrid Radiator Cooling System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiator Cooling System Technology available for licensing: Hybrid radiator cooling system uses conventional finned air cooling under most driving conditions that would be sufficient to remove all of the required engine heat, but adds active evaporate cooling under extreme conditions. Enables an existing engine to function with a smaller radiator and cooling system Increases heat removal by 46%, over conventional radiator PDF icon hybrid_radiator-cooling_system

  8. Solar-powered cooling system

    SciTech Connect (OSTI)

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  9. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  10. Home Cooling Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Cooling Systems Home Cooling Systems When it comes to cooling your house, there are a number of options beyond air conditioning. | Photo courtesy of ©iStockphoto/chrisgramly. When it comes to cooling your house, there are a number of options beyond air conditioning. | Photo courtesy of ©iStockphoto/chrisgramly. Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. A combination of proper insulation,

  11. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  12. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  13. Cooling system for electronic components

    DOE Patents [OSTI]

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  14. Lamination cooling system formation method

    DOE Patents [OSTI]

    Rippel, Wally E. (Altadena, CA); Kobayashi, Daryl M. (Monrovia, CA)

    2012-06-19

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  15. Lamination cooling system formation method

    DOE Patents [OSTI]

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  16. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  17. Cooling system for superconducting magnet

    DOE Patents [OSTI]

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  18. Cooling system for superconducting magnet

    DOE Patents [OSTI]

    Gamble, Bruce B. (Wellesley, MA); Sidi-Yekhlef, Ahmed (Framingham, MA)

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  19. Compton Dry-Cask Imaging System

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  20. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  1. Radiant vessel auxiliary cooling system

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1987-01-01

    In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

  2. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  3. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  4. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  5. Heat exchanger with auxiliary cooling system

    DOE Patents [OSTI]

    Coleman, John H. (Salem Township, Westmoreland County, PA)

    1980-01-01

    A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

  6. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Ventilation Systems for Cooling Ventilation Systems for Cooling Proper ventilation helps you save energy and money. | Photo courtesy of <a href="http://www.flickr.com/photos/jdhancock/3802136698/">JD Hancock</a>. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to

  7. High temperature cooling system and method

    DOE Patents [OSTI]

    Loewen, Eric P.

    2006-12-12

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  8. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, Franklin E. (San Jose, CA)

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  9. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  10. Emergency cooling system and method

    DOE Patents [OSTI]

    Oosterkamp, W.J.; Cheung, Y.K.

    1994-01-04

    An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

  11. Electromechanically-cooled germanium radiation detector system...

    Office of Scientific and Technical Information (OSTI)

    Electromechanically-cooled germanium radiation detector system Citation Details ... Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote ...

  12. Compact Thermoelastic Cooling System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Thermoelastic Cooling System Compact Thermoelastic Cooling System Lead Performer: Maryland Energy and Sensor Technologies, LLC - College Park, MD DOE Total Funding: $614,592 Cost Share: $153,648 Project Term: 07/01/2015- 06/30/2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) -2015, DE-FOA-0001166 Project Objective Thermoelastic cooling (TEC) is recognized as one of the most promising non-vapor-compression HVAC technologies because of

  13. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  14. Hot gas path component cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  15. Cooling system for a nuclear reactor

    DOE Patents [OSTI]

    Amtmann, Hans H. (Rancho Santa Fe, CA)

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  16. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  17. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOE Patents [OSTI]

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  18. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  19. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  20. Vehicle Cooling Systems - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Patent Applications ID Number Title and Abstract Primary Lab Date Patent 6,186,886 Patent 6,186,886 Vehicle cabin cooling system for capturing and exhausting heated boundary...

  1. Effectiveness-weighted control of cooling system components

    DOE Patents [OSTI]

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  2. Effectiveness-weighted control method for a cooling system

    DOE Patents [OSTI]

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  3. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  4. NASA Marshall Space Flight Center Improves Cooling System Performance...

    Energy Savers [EERE]

    NASA Marshall Space Flight Center Improves Cooling System Performance NASA Marshall Space Flight Center Improves Cooling System Performance NASA Marshall Space Flight Center...

  5. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  6. Cooling system for continuous metal casting machines

    DOE Patents [OSTI]

    Draper, R.; Sumpman, W.C.; Baker, R.J.; Williams, R.S.

    1988-06-07

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles against the inner surface of rim at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers through return pipes distributed interstitially among the nozzles. 9 figs.

  7. Cooling system for continuous metal casting machines

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); Sumpman, Wayne C. (North Huntingdon, PA); Baker, Robert J. (Wilkins Township, Allegheny County, PA); Williams, Robert S. (Plum Borough, PA)

    1988-01-01

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles 19 against the inner surface of rim 13 at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers 30 through return pipes 25 distributed interstitially among the nozzles.

  8. Passive Cooling System for a Vehicle

    DOE Patents [OSTI]

    Hendricks, T. J.; Thoensen, T.

    2005-11-15

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  9. Passive cooling system for a vehicle

    DOE Patents [OSTI]

    Hendricks, Terry Joseph; Thoensen, Thomas

    2005-11-15

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  10. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  11. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect (OSTI)

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  12. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOE Patents [OSTI]

    Beaufrere, Albert H. (Huntington, NY)

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  13. Method of fabricating a cooled electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  14. Cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Salamah, Samir Armando (Niskayuna, NY); Bylina, Noel Jacob (Niskayuna, NY)

    2003-01-01

    A plurality of arcuate circumferentially spaced supply and return manifold segments are arranged on the rim of a rotor for respectively receiving and distributing cooling steam through exit ports for distribution to first and second-stage buckets and receiving spent cooling steam from the first and second-stage buckets through inlet ports for transmission to axially extending return passages. Each of the supply and return manifold segments has a retention system for precluding substantial axial, radial and circumferential displacement relative to the rotor. The segments also include guide vanes for minimizing pressure losses in the supply and return of the cooling steam. The segments lie substantially equal distances from the centerline of the rotor and crossover tubes extend through each of the segments for communicating steam between the axially adjacent buckets of the first and second stages, respectively.

  15. NASA Marshall Space Flight Center Improves Cooling System Performance |

    Office of Environmental Management (EM)

    Department of Energy Marshall Space Flight Center Improves Cooling System Performance NASA Marshall Space Flight Center Improves Cooling System Performance NASA Marshall Space Flight Center Improves Cooling System Performance Case study details Marshall Space Flight Center's innovative technologies to improve water efficiency and cooling performance for one of its problematic cooling systems. The program saved the facility more than 800,000 gallons of water in eight months. PDF icon

  16. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  17. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  18. Controlled cooling of an electronic system based on projected conditions

    DOE Patents [OSTI]

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  19. Low pressure cooling seal system for a gas turbine engine

    DOE Patents [OSTI]

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  20. Managing Aging Effects on Dry Cask Storage Systems for Extended...

    Office of Environmental Management (EM)

    dry cask storage system designs; and 4) AMPs and TLAAs for the SSCs that are important to safety in the DCSS designs. PDF icon Managing Aging Effects on Dry Cask Storage Systems...

  1. Long Wavelength Catalytic Infrared Drying System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long Wavelength Catalytic Infrared Drying System Long Wavelength Catalytic Infrared Drying System New Infrared Drying System Removes Moisture More Efficiently Without Heating Surrounding Air Conventional drying systems for wood particulates, typically in the form of sawdust or chips, currently employ a rotary drum dryer that shoots a raw flame through a 20' to 30' rotating drum while tumbling the wood product. Product scorching and air emission problems, particularly with carbon, NOx, and

  2. Inclined fluidized bed system for drying fine coal

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  3. Polk power station syngas cooling system

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-01-01

    Tampa Electric Company (TEC) is in the site development and construction phase of the new Polk Power Station Unit No. 1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) Technology. The unit will utilize Texaco`s oxygen-blown, entrained-flow coal gasification, along with combined cycle power generation, to produce nominal 260MW. Integral to the gasification process is the syngas cooling system. The design, integration, fabrication, transportation, and erection of this equipment have provided and continue to provide major challenges for this project.

  4. Integrated exhaust gas recirculation and charge cooling system

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  5. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  6. Geothermal Heating and Cooling Systems Featured on NBC Nightly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cooling systems that are providing 30%-70% energy and cost savings for homeowners in Jordan, New York. Demand for these systems is growing; nationally, shipments of geothermal...

  7. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  8. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  9. Phasing of Debuncher Stochastic Cooling Transverse Systems

    SciTech Connect (OSTI)

    Pasquinelli, Ralph; /Fermilab

    2000-03-09

    With the higher frequency of the cooling systems in the Debuncher, a modified method of making transfer functions has been developed for transverse systems. (Measuring of the momentum systems is unchanged.) Speed in making the measurements is critical, as the beam tends to decelerate due to vacuum lifetime. In the 4-8 GHz band, the harmonics in the Debuncher are 6,700 to 13,400 times the revolution frequency. Every Hertz change in revolution frequency is multiplied by this harmonic number and becomes a frequency measurement error, which is an appreciable percent of the momentum width of the beam. It was originally thought that a momentum cooling system would be phased first so that the beam could be kept from drifting in revolution frequency. As it turned out, the momentum cooling was so effective (even with the gain turned down) that the momentum width normalized to fo became less than one Hertz on the Schottky pickup. A beam this narrow requires very precise measurement of tune and revolution frequency. It was difficult to get repeatable results. For initial measuring of the transverse arrays, relative phase and delay is all that is required, so the measurement settings outlined below will suffice. Once all input and output arrays are phased, a more precise measurement of all pickups to all kickers can be done with more points and both upper and lower side bands, as in figure 1. Settings on the network analyzer were adjusted for maximum measurement speed. Data is not analyzed until a complete set of measurements is taken. Start and stop frequencies should be chosen to be just slightly wider than the band being measured. For transverse systems, select betatron USB for the measurement type. This will make the measurement two times faster. Select 101 for the number of points, sweep time of 5 seconds, IF bandwidth 30 Hz, averages = 1. It is important during the phasing to continually measure the revolution frequency and beam width of the beam for transverse systems. Beam width is defined as the 3 dB bandwidth of the momentum Schottky divided by 127 (the harmonic of the Schottky pickup in the Debuncher.) Every three to five minutes, the beam drifts enough to make a significant change in the data. Knowing the revolution frequency and beam width to 0.5 Hz is important. If the beam width exceeds 10 Hz, the quality of the measurement will be impaired. Large beam widths can be caused by excessive forward proton beam current. There are also signs that the front-end amplifiers saturate with beam currents above several hundred microamps. The cooling systems were designed to be very sensitive, (that's why the front end is at liquid helium temperature) so a hundred microamps will go a long way. It should be possible to phase the systems with Pbars as a signal to noise ratio of 30 dB was observed with 100 microamps of beam current.

  10. Cold vacuum drying system conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W.

    1996-05-01

    This document summarizes the activities involved in the removal of the SNF from the leaking basins and to place it in stable dry storage.

  11. Passive cooling system for nuclear reactor containment structure

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  12. Natural circulating passive cooling system for nuclear reactor containment structure

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  13. Aging Management Program for Stainless Steel Dry Storage System Canisters

    SciTech Connect (OSTI)

    Dunn, Darrell S.; Lin, Bruce P.; Meyer, Ryan M.; Anderson, Michael T.

    2015-06-01

    This is a conference paper presenting an aging management program for stainless steel dry storage system canisters. NRC is lead author of paper. PNNL provided input.

  14. Cedarville School District Retrofit of Heating and Cooling Systems...

    Energy Savers [EERE]

    Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and...

  15. Property:Distributed Generation System Heating-Cooling Application...

    Open Energy Info (EERE)

    This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed...

  16. Debris trap in a turbine cooling system

    DOE Patents [OSTI]

    Wilson, Ian David (Clifton Park, NY)

    2002-01-01

    In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

  17. Nuclear reactor cooling system decontamination reagent regeneration

    DOE Patents [OSTI]

    Anstine, Larry D. (San Jose, CA); James, Dean B. (Saratoga, CA); Melaika, Edward A. (Berkeley, CA); Peterson, Jr., John P. (Livermore, CA)

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  18. Nanofluid Development for Engine Cooling Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Systems Nanofluid Development for Engine Cooling Systems 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_21_timofeeva.pdf More Documents & Publications Overview of Thermal Management Erosion of Radiator Materials by Nanofluids Vehicle Technologies Office Merit Review 2014: Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

  19. Energy Efficient HVAC System for Distributed Cooling/Heating with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Devices | Department of Energy Efficient HVAC System for Distributed Cooling/Heating with Thermoelectric Devices Energy Efficient HVAC System for Distributed Cooling/Heating with Thermoelectric Devices 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace048_bozeman_2012_o.pdf More Documents & Publications Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating

  20. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation can help keep your home cool during hot days. To avoid heat buildup in your home, plan ahead by landscaping your lot to shade your house. If you replace your roof,...

  1. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  2. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  3. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  4. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  5. Two stage indirect evaporative cooling system

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  6. Cryogenic cooling system for the Ground Test Accelerator

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1994-12-31

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  7. Cryogenic cooling system for the ground test accelerator

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F. ); Spulgis, I. )

    1993-01-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH[sub 2]) storage Dewar with a transfer line to an LH[sub 2] run tank containing an LH[sub 2]/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  8. Cryogenic cooling system for the ground test accelerator

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1993-06-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  9. Cooling system for three hook ring segment

    DOE Patents [OSTI]

    Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang; Patat, Harry

    2014-08-26

    A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in the midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.

  10. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  11. Geothermal Heating and Cooling Systems Featured on NBC Nightly News

    Broader source: Energy.gov [DOE]

    NBC Nightly News recently featured a story on geothermal heating and cooling systems that are providing 30%-70% energy and cost savings for homeowners in Jordan, New York.

  12. THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM (Conference...

    Office of Scientific and Technical Information (OSTI)

    the cooling system is described in detail, and RELAP5 results are presented. Two parallel pumpheat exchanger trains comprise the design one train is for full-power operation and...

  13. System and method for pre-cooling of buildings

    DOE Patents [OSTI]

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  14. Efficient Thermally Variable Cooling System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Variable Cooling System Efficient Thermally Variable Cooling System Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-07_fulton.pdf More Documents & Publications CX-003867: Categorical Exclusion Determination EA-1704: Final Environmental Assessment Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates

  15. Heating and Cooling System Support Equipment Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated

  16. Rotary engine cooling system with flow balancing

    SciTech Connect (OSTI)

    Jones, C.

    1987-05-12

    This patent describes a rotary internal combustion engine having a trochoid rotor housing section and having a group of cooling passages extending through a top-dead-center (TDC) region. The engine is characterized by: at least one passage of the group following a curved path which extends through a first hotter portion of the TDC region, by at least one further passage of the group following a substantially uncurved path through a second cooler portion of the TDC region, and by a fluid restriction for restricting fluid flow through the at least one further passage to balance coolant flow between the passages.

  17. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  18. Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2

    SciTech Connect (OSTI)

    Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

    2006-10-01

    The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

  19. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  20. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOE Patents [OSTI]

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  1. American Indian Complex to Cool Off Using Ice Storage System

    Broader source: Energy.gov [DOE]

    In Oklahoma City, summer temperatures can get above 100 degrees, making cooling more of a necessity than a luxury. But the designers of the American Indian Cultural Center and Museum (AICCM) wanted to make cooling choices that reflect American Indian cultures' respect for the land. So, rather than using conventional air-conditioning, the museum's main complex will use an ice storage system estimated to save 644,000 kilowatt hours of electricity a year.

  2. System and method for cooling a combustion gas charge

    DOE Patents [OSTI]

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  3. Closed-loop air cooling system for a turbine engine

    DOE Patents [OSTI]

    North, William Edward (Winter Springs, FL)

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  4. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  5. Systems Evaluation at the Cool Energy House

    SciTech Connect (OSTI)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  6. Standard review plan for dry cask storage systems. Final report

    SciTech Connect (OSTI)

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  7. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  8. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL/TP-5500-48765 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for

  9. Wind turbine generators having wind assisted cooling systems and cooling methods

    DOE Patents [OSTI]

    Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  10. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  11. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    SciTech Connect (OSTI)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  12. The integration of cryogenic cooling systems with superconducting electronic systems

    SciTech Connect (OSTI)

    Green, Michael A.

    2003-07-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  13. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  14. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    SciTech Connect (OSTI)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  15. Hydraulic tests of emergency cooling system: L-Area

    SciTech Connect (OSTI)

    Hinton, J H

    1988-01-01

    The delay in L-Area startup provided an opportunity to obtain valuable data on the Emergency Cooling System (ECS) which will permit reactor operation at the highest safe power level. ECS flow is a major input to the FLOOD code which calculates reactor ECS power limits. The FLOOD code assesses the effectiveness of the ECS cooling capacity by modeling the core and plenum hydraulics under accident conditions. Presently, reactor power is not limited by the ECS cooling capacity (power limit). However, the manual calculations of ECS flows had been recently updated to include piping changes (debris strainer, valve changes, pressure release systems) and update fitting losses. Both updates resulted in reduced calculated ECS flows. Upon completion of the current program to update, validate, and document, reactor power may be limited under certain situations by ECS cooling capacity for some present reactor charge designs. A series of special hydraulic tests (Reference 1, 3) were conducted in L-Area using all sources of emergency coolant including the ECS pumps (Reference 2). The tests provided empirical hydraulic data on the ECS piping. These data will be used in computer models of the system as well as manual calculations of ECS flows. The improved modeling and accuracy of the flow calculations will permit reactor operation at the highest safe power level with respect to an ECS power limit.

  16. Turbine airfoil with an internal cooling system having vortex forming turbulators

    DOE Patents [OSTI]

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  17. Method and system for powering and cooling semiconductor lasers

    DOE Patents [OSTI]

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  18. The hydro nuclear services dry active waste processing system

    SciTech Connect (OSTI)

    Bunker, A.S.

    1985-04-01

    There is a real need for a dry active waste processing system that can separate clean trash and recoverable items from radwaste safely and efficiently. This paper reports that Hydro Nuclear Services has produced just such a system and is marketing it as a DAW Segregation/Volume Reduction Process. The system is a unique, semi-automated package of sensitive monitoring instruments of volume reduction equipment that separates clean trash from contaminated and recoverable items in the waste stream and prepares the clean trash for unrestricted release. What makes the HNS system truly unique is its end product - clean trash.

  19. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    SciTech Connect (OSTI)

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  20. NASA's Marshall Space Flight Center Improves Cooling System Performance

    SciTech Connect (OSTI)

    2011-02-22

    National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  1. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOE Patents [OSTI]

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  2. Organic additive systems for spray-drying and dry pressing silicon nitride

    SciTech Connect (OSTI)

    Walker, W.J. Jr.; Reed, J.S.

    1996-06-01

    Silicon nitride granules for dry pressing were prepared by spray-drying slurries containing polyethylene glycol as the primary binder combined with other organic additives. Differences in slurry viscosity, granule character, pressing behavior and green strength were found to depend on the choice of deflocculant.

  3. System and method for cooling a super-conducting device

    DOE Patents [OSTI]

    Bray, James William (Niskayuna, NY); Steinbach, Albert Eugene (Schenectady, NY); Dawson, Richard Nils (Voorheesville, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrul (Clifton Park, NY)

    2008-01-08

    A system and method for cooling a superconductive rotor coil. The system comprises a rotatable shaft coupled to the superconductive rotor coil. The rotatable shaft may comprise an axial passageway extending through the rotatable shaft and a first passageway extending through a wall of the rotatable shaft to the axial passageway. The axial passageway and the first passageway are operable to convey a cryogenic fluid to the superconductive rotor coil through the wall of the rotatable shaft. A cryogenic transfer coupling may be provided to supply cryogenic fluid to the first passageway.

  4. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  5. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  6. System Study: Reactor Core Isolation Cooling 19982012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

  7. A Gas-Cooled Reactor Surface Power System

    SciTech Connect (OSTI)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  8. The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid

    SciTech Connect (OSTI)

    Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

    2007-08-27

    The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

  9. System and method for cooling a superconducting rotary machine

    DOE Patents [OSTI]

    Ackermann, Robert Adolf (Schenectady, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrui (Clifton Park, NY); Bray, James William (Niskayuna, NY)

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  10. Thermoelectric generator cooling system and method of control

    DOE Patents [OSTI]

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  11. Sealed Battery Block Provided With A Cooling System

    DOE Patents [OSTI]

    Verhoog, Roelof (Bordeaux, FR); Barbotin, Jean-Loup (Pompignac, FR)

    1999-11-16

    The present invention relates to a sealed battery block operating at a pressure of at least 1 bar relative, the battery including a container made of a plastics material and made up of a lid and of a case subdivided into wells by at least one partition, said battery being provided with a cooling system including two cheek plates made of a plastics material and co-operating with the outside faces of respective ones of two opposite walls of said case, each cheek plate co-operating with the corresponding wall to define a compartment provided with a plurality of ribs forming baffles for fluid flow purposes, and with an inlet orifice and an outlet orifice for the fluid, said battery being characterized in that each of said ribs extends in a direction that forms an angle relative to the plane of said partition lying in the range 60.degree. to 90.degree..

  12. Preliminary description of the ground test accelerator cryogenic cooling system

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Stewart, W.F.

    1988-01-01

    The Ground Test Accelerator (GTA) under construction at the Los Alamos National Laboratory is part of the Neutral Particle Beam Program supported by the Strategic Defense Initiative Office. The GTA is a full-sized test facility to evaluate the feasibility of using a negative ion accelerator to produce a neutral particle beam (NPB). The NPB would ultimately be used outside the earth's atmosphere as a target discriminator or as a directed energy weapon. The operation of the GTA at cryogenic temperature is advantageous for two reasons: first, the decrease of temperature caused a corresponding decrease in the rf heating of the copper in the various units of the accelerator, and second, at the lower temperature the decrease in the thermal expansion coefficient also provides greater thermal stability and consequently, better operating stability for the accelerator. This paper discusses the cryogenic cooling system needed to achieve these advantages. 5 figs., 3 tabs.

  13. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  14. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  15. BSU GHP District Heating and Cooling System (Phase I) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy BSU GHP District Heating and Cooling System (Phase I) BSU GHP District Heating and Cooling System (Phase I) Project objectives: Create a campus geothermal heating and cooling system; Validate the cost savings associated with a geothermal system; Reduce emissions of CO2, CO, PM, SO2, NOx. PDF icon gshp_lowe_ball_state.pdf More Documents & Publications Retrofit of the Local 150 of International Union of Operating Engineers Analysis & Tools to Spur Increased Deployment Klamath

  16. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  17. Cooling system for a bearing of a turbine rotor

    DOE Patents [OSTI]

    Schmidt, Mark Christopher

    2002-01-01

    In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

  18. Air-cooled Condensers in Next-generation Conversion Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

  19. Federspiel Controls Data Center Energy Efficient Cooling Control System

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet about combining artificial intelligence with variable flow control, direct temperature measurement, and best practices that can reduce cooling energy use by up to 50%.

  20. Cooling system having reduced mass pin fins for components in a gas turbine engine

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  1. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

  2. Air cooled turbine component having an internal filtration system

    DOE Patents [OSTI]

    Beeck, Alexander R. (Orlando, FL)

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  3. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOE Patents [OSTI]

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  4. Drying '84

    SciTech Connect (OSTI)

    Baunack, F.

    1984-01-01

    This book covers the following topics: mechanism of water sorption-desorption in polymers; progress in freeze drying; on drying of materials in through circulation system; safety aspects of spray drying; dewatering process enhanced by electroosmosis; pressure drop and particle circulation studies in modified slot spouted beds; and experience in drying coal slurries.

  5. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

  6. System and method for regulating EGR cooling using a rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  7. Energy-Efficient Cooling Control Systems for Data Centers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Energy-Efficient Cooling Control Systems for Data Centers Energy-Efficient Cooling Control Systems for Data Centers Novel Data Center Cooling and Control Save Energy and Optimize Utility U.S. energy consumption from information technology (IT) equipment has risen by ~36% since 2005, an increase driven by the growth of internet usage by individuals and businesses. Data centers provide the IT infrastructure, which totals millions of servers and computing devices for data processing and

  8. Hollow-Fiber Membrane Compressed Air Drying System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hollow-Fiber Membrane Compressed Air Drying System Hollow-Fiber Membrane Compressed Air Drying System New Membrane Allows Drying of Compressed Air at Lower Energy and Higher Productivity With the support of a NICE3 grant, a new hollow-fiber membrane for dehydrating gases has been developed by Air Products and Chemicals, Inc. The membrane has 5 times higher water vapor permeation coefficient and 25 times higher water vapor/air selectivity compared with first-generation membrane dryers. The

  9. Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system

    SciTech Connect (OSTI)

    Carpenter, S.C.; Kokko, J.P.

    1998-12-31

    This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

  10. Monitoring system for a liquid-cooled nuclear fission reactor

    DOE Patents [OSTI]

    DeVolpi, Alexander (Bolingbrook, IL)

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  11. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect (OSTI)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  12. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  13. Second survey of dry SO/sub 2/ control systems. Final report Mar-Sep 80

    SciTech Connect (OSTI)

    Kelly, M.E.; Shareef, S.A.

    1981-02-01

    The report is an updated assessment of dry flue gas desulfurization (FGD) systems. Current and recently completed research, development, and commercial activities in the U.S. since October 1979, are reviewed including: (1) spray dryers with a fabric filter or an electrostatic precipitator (ESP), (2) dry injection of alkaline material into flue gas combined with particulate collection in an ESP or fabric filter, and (3) combustion of coal/alkali fuel mixtures. Spray drying remains the only commercially applied dry FGD process. Since the last survey, completed late in 1979, eight utility and two industrial spray drying systems have been sold. Nine of them use lime as the sorbent, and nine use a fabric filter for particulate collection. Removal guarantees for so/sub 2/ range from 62 to 85%, depending on coal sulfur content. Two full-scale industrial spray drying systems are currently operating. The first large utility system is scheduled for startup early in 1981. Several publicly and privately funded pilot-scale programs have been completed in the past year. EPA is currently funding three such programs (two spray drying and one dry injection), as well as development of two combustion modification processes for SO2 control (combustion of coal/limestone pellets and of a pulverized coal/alkali mixture in a low-NOx burner). The DoE and others are studying dry injection on a pilot scale.

  14. IMPACTS OF REFRIGERANTLINE LENGTH ON SYSTEM EFFICIENCY IN RESIDENTIAL HEATING AND COOLING SYSTEMS USING REFRIGERANT DISTRIBUTION.

    SciTech Connect (OSTI)

    ANDREWS, J.W.

    2001-04-01

    The effects on system efficiency of excess refrigerant line length are calculated for an idealized residential heating and cooling system. By excess line length is meant refrigerant tubing in excess of the 25 R provided for in standard equipment efficiency test methods. The purpose of the calculation is to provide input for a proposed method for evaluating refrigerant distribution system efficiency. A refrigerant distribution system uses refrigerant (instead of ducts or pipes) to carry heat and/or cooling effect from the equipment to the spaces in the building in which it is used. Such systems would include so-called mini-splits as well as more conventional split systems that for one reason or another have the indoor and outdoor coils separated by more than 25 ft. This report performs first-order calculations of the effects on system efficiency, in both the heating and cooling modes, of pressure drops within the refrigerant lines and of heat transfer between the refrigerant lines and the space surrounding them.

  15. Comparative study of different solar cooling systems for buildings in subtropical city

    SciTech Connect (OSTI)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2010-02-15

    In recent years, more and more attention has been paid on the application potential of solar cooling for buildings. Due to the fact that the efficiency of solar collectors is generally low at the time being, the effectiveness of solar cooling would be closely related to the availability of solar irradiation, climatic conditions and geographical location of a place. In this paper, five types of solar cooling systems were involved in a comparative study for subtropical city, which is commonly featured with long hot and humid summer. The solar cooling systems included the solar electric compression refrigeration, solar mechanical compression refrigeration, solar absorption refrigeration, solar adsorption refrigeration and solar solid desiccant cooling. Component-based simulation models of these systems were developed, and their performances were evaluated throughout a year. The key performance indicators are solar fraction, coefficient of performance, solar thermal gain, and primary energy consumption. In addition, different installation strategies and types of solar collectors were compared for each kind of solar cooling system. Through this comparative study, it was found that solar electric compression refrigeration and solar absorption refrigeration had the highest energy saving potential in the subtropical Hong Kong. The former is to make use of the solar electric gain, while the latter is to adopt the solar thermal gain. These two solar cooling systems would have even better performances through the continual advancement of the solar collectors. It will provide a promising application potential of solar cooling for buildings in the subtropical region. (author)

  16. Microsoft Word - DOE-ID-11-002 DOE Direct cooling system [1].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 SECTION A. Project Title: Cooling System for Substation Bldg CPP-613 SECTION B. Project Description The scope of work includes the purchase and installation of an Energy Star compliant 208V three phase staged cooling system capable of maintaining CPP-613 at a temperature below 85 degrees F. The system shall be designed to operate at an elevation of 5000 feet with outside environmental temperatures ranging from -20°F to 100°F. The cooling system shall be pad mounted on the east side of the

  17. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  18. System and method of active vibration control for an electro-mechanically cooled device

    DOE Patents [OSTI]

    Lavietes, Anthony D. (Hayward, CA); Mauger, Joseph (Livermore, CA); Anderson, Eric H. (Mountain View, CA)

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  19. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  20. Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2

    SciTech Connect (OSTI)

    Hull, E.L.

    2006-10-30

    Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

  1. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. A computer simulation appraisal of non-residential low energy cooling systems in California

    SciTech Connect (OSTI)

    Bourassa, Norman; Haves, Philip; Huang, Joe

    2002-05-17

    An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit.

  3. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems

    Broader source: Energy.gov [DOE]

    The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

  4. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang T.

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  5. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    SciTech Connect (OSTI)

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  6. Propellant feed system of a regeneratively cooled scramjet

    SciTech Connect (OSTI)

    Kanda, Takeshi; Masuya, Goro; Wakamatsu, Yoshio )

    1991-04-01

    An expander cycle for an airframe-integrated hydrogen-fueled scramjet is analyzed to study regenerative cooling characteristics and overall specific impulse. Below Mach 10, the specific impulse and thrust coincide with the reference values. At Mach numbers above 10, a reduction of the specific impulse occurs due to the coolant flow rate requirement, which is accompanied by an increase of thrust. It is shown that the thrust may be increased by injecting excess fuel into the combustor to compensate for the decrease of the specific impulse. 9 refs.

  7. Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected passive, modular localized cooling solution provided by vendor 4. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a passive, modular, scalable liquid cooling system in this study. The scope is to quantify energy performance of the modular cooling unit corresponding to various server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  8. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 3. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable liquid-rack cooling system in this study. The scope is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  9. Performance Evaluation of Radiant Cooling System Integrated with Air System under Different Operational Strategies

    SciTech Connect (OSTI)

    Khare, Vaibhav; Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2015-01-01

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. The energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  10. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    SciTech Connect (OSTI)

    Adams, Barbara J

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 2. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable pair of chilled water cooling modules that were tested in a hot/cold aisle environment with hot aisle containment. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  11. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  12. CTR Fuel recovery system using regeneration of a molecular sieve drying bed

    DOE Patents [OSTI]

    Folkers, Charles L. (Livermore, CA)

    1981-01-01

    A primary molecular sieve drying bed is regenerated by circulating a hot inert gas through the heated primary bed to desorb water held on the bed. The inert gas plus water vapor is then cooled and passed through an auxiliary molecular sieve bed which adsorbs the water originally desorbed from the primary bed. The main advantage of the regeneration technique is that the partial pressure of water can be reduced to the 10.sup.-9 atm. range. This is significant in certain CTR applications where tritiated water (T.sub.2 O, HTO) must be collected and kept at very low partial pressure.

  13. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOE Patents [OSTI]

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  14. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators at Pacific Northwest National Laboratory (PNNL) will evaluate these detector systems on the bench top and eventually in RASA systems to insure reliable and practical operation.

  15. Dry low combustion system with means for eliminating combustion noise

    DOE Patents [OSTI]

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  16. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  17. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report

    SciTech Connect (OSTI)

    Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

  18. Micro-Modular Biopower System for Cooling, Heating and Power

    SciTech Connect (OSTI)

    2006-08-01

    This Congressionally-mandated project seeks to test a micro-modular biopower system for use on the Mount Wachusett Community College (MWCC) campus.

  19. Design and Construction of the NSTX Bakeout, Cooling and Vacuum Systems

    SciTech Connect (OSTI)

    L.E. Dudek; M. Kalish; R. Gernhardt; R.F. Parsells; W. Blanchard

    1999-11-01

    This paper will describe the design, construction and initial operation of the NSTX bakeout, water cooling and vacuum systems. The bakeout system is designed for two modes of operation. The first mode allows heating of the first wall components to 350 degrees C while the external vessel is cooled to 150 degrees C. The second mode cools the first wall to 150 degrees C and the external vessel to 50 degrees C. The system uses a low viscosity heat transfer oil which is capable of high temperature low pressure operation. The NSTX Torus Vacuum Pumping System (TVPS) is designed to achieve a base pressure of approximately 1x10 (superscript -8) Torr and to evacuate the plasma fuel gas loads in less than 5 minutes between discharges. The vacuum pumping system is capable of a pumping speed of approximately 3400 l/s for deuterium. The hardware consists of two turbo molecular pumps (TMPs) and a mechanical pump set consisting of a mechanical and a Roots blower pump. A PLC is used as the control system to provide remote monitoring, control and software interlock capability. The NSTX cooling water provides chilled, de ionized water for heat removal in the TF, OH and PF, power supplies, bus bar systems, and various diagnostics. The system provides flow monitoring via a PLC to prevent damage due to loss of flow.

  20. Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term

    Office of Environmental Management (EM)

    Storage and Transportation of Used Fuel Rev0 | Department of Energy Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0 Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0 The report is intended to help assess and establish the technical basis for extended long-term storage and transportation of used nuclear fuel. It provides: 1) an overview of the ISFSI

  1. Standby cooling system for a fluidized bed boiler

    DOE Patents [OSTI]

    Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

    1990-01-01

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  2. Comparison of heating and cooling energy consumption by HVAC system with mixing and displacement air distribution for a restaurant dining area in different climates

    SciTech Connect (OSTI)

    Zhivov, A.M.; Rymkevich, A.A.

    1998-12-31

    Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.

  3. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOE Patents [OSTI]

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  4. Radiant Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Systems » Radiant Cooling Radiant Cooling Radiant cooling cools a floor or ceiling by absorbing the heat radiated from the rest of the room. When the floor is cooled, it is often referred to as radiant floor cooling; cooling the ceiling is usually done in homes with radiant panels. Although potentially suitable for arid climates, radiant cooling is problematic for homes in more humid climates. Most radiant cooling home applications in North America have been based on aluminum panels

  5. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  6. EIS-0121: Alternative Cooling Water Systems, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of cooling water systems for thermal discharges from K– and C-Reactors and from a coal-fired powerhouse in the D-Area at the Savannah River Plant (SRP)

  7. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    SciTech Connect (OSTI)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  8. Method and apparatus for enhancing reactor air-cooling system performance

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA)

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  9. Method and apparatus for enhancing reactor air-cooling system performance

    DOE Patents [OSTI]

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  10. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  11. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  12. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  13. Development of a dry-feed system for a coal-fired gas turbine

    SciTech Connect (OSTI)

    Rothrock, J.W. Jr.; Smith, C.F.

    1993-11-01

    The objective of the reported of the reported work is to develop a dry coal feed system that provides smooth, controllable flow of coal solids into the high pressure combustor of the engine and all test rigs. The system must start quickly and easily, run continuously with automatic transfer of coal from low pressure hoppers to the high pressure delivery system, and offer at least a 3:1 smooth turn-down ratio. cost of the equipment must be minimized to maintain the economic attractiveness of the whole system. Before the current contract started some work was done with dry powder coal. For safety and convenience reasons, coal water slurry was selected as the fuel for all work on the program. Much of the experimental work, including running the Allison 501-KM engine was done with coal slurry. Recent economic analysis led to a change to powdered coal.

  14. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  15. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  16. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  17. Integrated dry NO{sub x}/SO{sub 2} emissions control system performance summary

    SciTech Connect (OSTI)

    Hunt, T.; Muzio, L.J.; Smith, R.; Jones, D.; Hebb, J.L.; Stallings, J.

    1997-12-31

    The Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System was installed at Public Service Company of Colorado`s Arapahoe 4 generating station in 1992 in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). This full-scale 100 MWe demonstration combines low-NO{sub x} burners, overfire, air, and selective non-catalytic reduction (SNCR) for NO{sub x} control and dry sorbent injection (DSI) with or without humidification for SO{sub 2} control. Operation and testing of the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System began in August 1992 and will continue through 1996. Results of the NO{sub x} control technologies show that the original system goal of 70% NO{sub x} removal has been easily met and the combustion and SNCR systems can achieve NO{sub x} removals of up to 80% at full load. Duct injection of commercial calcium hydroxide has achieved a maximum SO{sub 2} removal of nearly 40% while humidifying the flue gas to a 20 F approach to saturation. Sodium-based dry sorbent injection has provided SO{sub 2} removal of over 70% without the occurrence of a visible NO{sub 2} plume. Recent test work has improved SNCR performance at low loads and has demonstrated that combined dry sodium injection and SNCR yields both lower NO{sub 2} levels and NH{sub 3} slip than either technology alone.

  18. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    SciTech Connect (OSTI)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-09

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  19. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    SciTech Connect (OSTI)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-01

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  20. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90[degrees]C and effective additives fore district cooling systems with temperatures of 5 to 15[degrees]C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  1. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90{degrees}C and effective additives fore district cooling systems with temperatures of 5 to 15{degrees}C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  2. Summary of Field Measurement on UF6 Cylinders Using Electro-Mechanically Cooled Systems

    SciTech Connect (OSTI)

    McGinnis, Brent R; Smith, Steven E; Solodov, Alexander A; Whitaker, J Michael; Morgan, James B; MayerII, Richard L.; Montgomery, J. Brent

    2009-01-01

    Measurement of the enrichment of solid state UF6 stored within large metal cylinders is a task commonly performed by plant operators and inspectors. The measurement technologies typically used range from low-resolution, high-efficiency sodium iodide detectors to high-resolution, moderate-efficiency high-purity germanium (HPGe) detectors. The technology used and methods deployed are dependent upon the material being measured, environmental conditions, time constraints, and measurement-precision requirements. Operators and inspectors typically use specially designed, HPGe detectors that are cooled with liquid nitrogen in situations where high-resolution measurements are required. However, the requirement for periodically refilling the system with liquid nitrogen makes remote usage cumbersome and slow. The task of cooling the detector reduces the available time for the inspector to perform other safeguards activities while on site. If the inspector has to reduce the count time for each selected cylinder to ensure that all preselected cylinders are measured during the inspection, the resulting measurement uncertainties may be increased, making it more difficult to detect and verify potential discrepancies in the operator's declarations. However, recent advances in electromechanically cooled HPGe detectors may provide the inspector with an improved verification tool by eliminating the need for liquid nitrogen. This report provides a summary of test results for field measurements performed using electromechanically cooled HPGe detectors on depleted, natural, and low-enriched uranium cylinders. The results of the study provide valuable information to inspectors and operators regarding the capabilities and limitations of electromechanically cooled systems based on true field-measurement conditions.

  3. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions between the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power and power density can be significantly increased, without losing the passive heat removal feature. This paper will introduce the concept of using DRACS to enhance VHTR passive safety and economics. Three design options will be discussed, depending on the cooling pipe locations. Analysis results from a lumped volume based model and CFD simulations will be presented.

  4. Status of dry SO/sub 2/ control systems: Fall 1983. Final report August 1983-July 1984

    SciTech Connect (OSTI)

    Palazzolo, M.A.; Baviello, M.A.

    1984-08-01

    The report, on the status of dry SO/sub 2/ control for utility and industrial boilers in the U.S., reviews curent and recently completed research, development, and commercial activities. Dry SO/sub 2/ control systems covered include: (1) spray dryers with a fabric filter or an electrostatic precipitator (ESP), (2) dry injection of alkaline material into flue gas accompanied by collection of product solids and fly ash in a fabric filter or an ESP, and (3) electron-beam (E-beam) irradiation. Spray drying and dry injection systems generally include a fabric filter or an ESP and control SO/sub 2/ and particulate matter simultaneously; E-beam technology is designed to also control NOx. Spray drying continues to be the only technology commercially applied to utility and industrial boilers. The two new utility systems sold since the last status report (Fall 1982) bring the total utility spray drying flue gas desulfurization (FGD) capacity to about 7200 MWe. Also, 10 recently sold new industrial units bring the total of commercial industrial boiler unit sales to 21. Performance data for five utility systems and three industrial systems were recently published. Some full-scale systems that have come on-line since the last survey have experienced atomization problems and solids buildup on the dryer walls during initial operation. The first trona dry injection application has been announced for a 500 MWe unit.

  5. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  6. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOE Patents [OSTI]

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  7. Cooled railplug

    DOE Patents [OSTI]

    Weldon, William F. (Austin, TX)

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  8. Turbine systems and methods for using internal leakage flow for cooling

    DOE Patents [OSTI]

    Hernandez, Nestor (Schenectady, NY); Gazzillo, Clement (Schenectady, NY); Boss, Michael J. (Ballston Spa, NY); Parry, William (Rexford, NY); Tyler, Karen J. (Burnt Hills, NY)

    2010-02-09

    A cooling system for a turbine with a first section and a second section. The first section may include a first line for diverting a first flow with a first temperature from the first section, a second line for diverting a second flow with a second temperature less than the first temperature from the first section, and a merged line for directing a merged flow of the first flow and the second flow to the second section.

  9. Transient analysis and energy optimization of solar heating and cooling systems in various configurations

    SciTech Connect (OSTI)

    Calise, F.; Dentice d'Accadia, M.; Palombo, A.

    2010-03-15

    In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H{sub 2}O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used as the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation. The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis. The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems. (author)

  10. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    SciTech Connect (OSTI)

    Perkins, R. M.

    1980-06-01

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  11. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. , Carlson; Bryan J. , Wingo; Robert M. , Robison; Thomas W.

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  12. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOE Patents [OSTI]

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  13. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    SciTech Connect (OSTI)

    Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  14. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  15. Drying '86. Volume 1-2

    SciTech Connect (OSTI)

    Mujumdar, A.S. )

    1986-01-01

    These proceedings contain 123 papers grouped under the headings of: Drying theory and modelling; Drying of granular materials; Spray drying; Drying of paper and wood products; Drying of foodstuff and biomaterials; Drying of agricultural products and grains; Superheated steam drying; Industrial drying systems and novel dryers; Use of solar energy in drying; Measurement and control of humidity and moisture; and Dewatering.

  16. Hybrid Radiator-Cooling System (ANL-IN-11-096) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Hybrid Radiator-Cooling System (ANL-IN-11-096) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Coolant radiators in highway trucks are designed to transfer maximum heat at a "design condition." The current standard design condition is a fully-loaded truck climbing up Baker Grade on the hottest summer day. The coolant system, including radiator, is sized to remove 100% of the required heat from the engine

  17. Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Home Cooling Energy Saver 101 Energy Saver 101 We're covering everything you need to know about home cooling to help you save energy and money. Read more Ventilation Systems for Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read

  18. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect (OSTI)

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  19. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  20. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect (OSTI)

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  1. Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies

    SciTech Connect (OSTI)

    Ren, Jianbo; Wang, Yiping; Wang, Congrong; Xiong, Weicheng; Zhu, Li

    2010-06-15

    Solar or solar-assisted space heating systems are becoming more and more popular. The solar energy utilization efficiency is high when the collector is coupled with indoor radiant heating suppliers, since in principle, lower supply temperature means lower demand temperature and then the system heat loss is less. A new type radiant end system is put forward for even lower supply temperature compared to the conventional radiant floor heating systems. A three dimensional model was established to investigate its energy supply capacities. Simulation results show that 50 W per meter length tube can be achieved with the medium temperature of 30 C for heating and 15 C for cooling. The predicted results agree well with the actual data from a demonstration building. Furthermore, it is demonstrated that a supply temperature of 22 C in winter and of 17 C in summer already met the indoor requirements. The new end system has good prospects for effective use of local renewable resources. (author)

  2. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

  3. Beyond-Design-Basis-Accidents Passive Containment-Cooling Spray System

    SciTech Connect (OSTI)

    Karameldin, Aly; Temraz, Hassan M. Elsawy; Ibrahim, Nady Attia [Atomic Energy Authority (Egypt)

    2001-10-15

    The proposed safety feature considered in this study aims to increase the safety margins of nuclear power plants by proposed water tanks located inside or outside the upper zone of the containment to be utilized for (a) residual heat removal of the reactor in case of station blackout or in case of normal reactor shutdown and (b) beyond-design-basis accidents, in which core melt and debris-concrete interaction take place, associated with accumulative containment pressure increase and partial loss of the active systems. The proposed passive containment system can be implemented by a special mechanism, which can allow the pressurization of the water in the tanks and therefore can enable an additional spray system to start in case of increasing the containment pressure over a certain value just below the design pressure. A conservative case study is that of a Westinghouse 3411-MW(thermal) power station, where the proposed passive containment cooling spray system (PCCSS) will start at a pressure of 6 bars and terminate at a pressure of 3 bars. A one-dimensional lumped model is postulated to describe the thermal and hydraulic process behavior inside the containment after a beyond-design-basis accident. The considered parameters are the spray mass flow rate, the initial droplet diameters, fuel-cooling time, and the ultimate containment pressure. The overall heat and mass balance inside the containment are carried out, during both the containment depressurization (by the spraying system) and pressurization (by the residual energies). The results show that the design of the PCCSS is viable and has a capability to maintain the containment below the design pressure passively for the required grace period of 72 h. Design curves of the proposed PCCSS indicate the effect of the spray flow rate and cooling time on the total sprayed volume during the grace period of 72 h. From these curves it can be concluded that for the grace period of 72 h, the required tank volumes are 3800 and 4700 m{sup 3}, corresponding to fuel-cooling times (time after shutdown) of two weeks and one week, respectively. This large quantity of water serves as an ultimate heat sink available for the residual heat removal in the case of station blackout. The optimal spraying droplet diameter, travel, and mass flow rate are 3 mm, 30 m, and 100 to 125 kg/s, respectively.

  4. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  5. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    SciTech Connect (OSTI)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb) and comparing the numerical outcomes with the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.

  6. Integrated dry NO{sub x}/SO{sub 2} emissions control system calcium-based dry sorbent injection. Test report, April 30--November 2, 1993

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-12-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO{sub 2} removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO{sub 2} reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30{degrees}F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO{sub 2} removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO{sub 2} removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

  7. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  8. Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs

    DOE Patents [OSTI]

    Grondahl, Clayton M.; Germain, Malcolm R.

    1981-01-01

    An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

  9. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  10. Mid-section of a can-annular gas turbine engine with a cooling system for the transition

    DOE Patents [OSTI]

    Weibe, David J.; Rodriguez, Jose L.

    2015-12-08

    A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.

  11. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  12. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  13. Mist/steam cooling in a heated horizontal tube -- Part 1: Experimental system

    SciTech Connect (OSTI)

    Guo, T.; Wang, T.; Gaddis, J.L.

    2000-04-01

    To improve the airfoil cooling significantly for the future generation of advanced turbine systems (ATS), a fundamental experimental program has been developed to study the heat transfer mechanisms of mist/steam cooling under highly superheated wall temperatures. The mist/steam mixture was obtained by blending fine water droplets (3 {approximately} 15 {micro}m in diameter) with the saturated steam at 1.5 bars. Two mist generation systems were tested by using the pressure atomizer and the steam-assisted pneumatic atomizer, respectively. The test section, heated directly by a DC power supply, consisted of a thin-walled ({approximately} 0.9 mm), circular stainless steel tube with an ID of 20 mm and a length of 203 mm. Droplet size and distribution were measured by a phase Doppler particle analyzer (PDPA) system through view ports grafted at the inlet and the outlet of the test section. Mist transportation and droplet dynamics were studied in addition to the heat transfer measurements. The experiment was conducted with steam Reynolds numbers ranging from 10,000 to 35,000, wall superheat up to 300 C, and droplet mass ratios ranging from 1 {approximately} 6%.

  14. Regulatory analysis for the resolution of Generic Issue 143: Availability of chilled water system and room cooling

    SciTech Connect (OSTI)

    Leung, V.T.

    1993-12-01

    This report presents the regulatory analysis for Generic Issue (GI-143), {open_quotes}Availability of Chilled Water System and Room Cooling.{close_quotes} The heating, ventilating, and air conditioning (HVAC) systems and related auxiliaries are required to provide control of environmental conditions in areas in light water reactor (LWR) plants that contain safety-related equipment. In some plants, the HVAC and chilled water systems serve to maintain a suitable environment for both safety and non-safety-related areas. Although some plants have an independent chilled water system for the safety-related areas, the heat removal capability often depends on the operability of other supporting systems such as the service water system or the component cooling water system. The operability of safety-related components depends upon operation of the HVAC and chilled water systems to remove heat from areas containing the equipment. If cooling to dissipate the heat generated is unavailable, the ability of the safety-related equipment to operate as intended cannot be assured. Typical components or areas in the nuclear power plant that could be affected by the failure of cooling from HVAC or chilled water systems include the (1) emergency switchgear and battery rooms, (2) emergency diesel generator room, (3) pump rooms for residual heat removal, reactor core isolation cooling, high-pressure core spray, and low-pressure core spray, and (4) control room. The unavailability of such safety-related equipment or areas could cause the core damage frequency (CDF) to increase significantly.

  15. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  16. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  17. A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design

    SciTech Connect (OSTI)

    Qu, Ming; Yin, Hongxi; Archer, David H.

    2010-02-15

    A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

  18. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. ); Silverstein, C.C. )

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  19. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  20. Gas pollution control apparatus and method and wood drying system employing same

    SciTech Connect (OSTI)

    Eatherton, J.R.

    1984-02-14

    Pollution control apparatus and method are disclosed in which hot exhaust gas containing pollutants including solid particles and hydrocarbon vapors is treated by transmitting such exhaust gas through a container containing wood members, such as wood chips, which serve as a filter media for filtering out such pollutants by causing such solids to deposit and such hydrocarbon vapors to condense upon the surface of the wood members. The contaminated wood chips are discharged from the filter and further processed into chip board or other commercial wood products thereby disposing of the pollutants. Lumber may be used as the wood members of the filter in a lumber kiln by deposition of solid particles on the rough surface of such lumber. The contaminated surfaces of the lumber are removed by a planer which produces a smooth finished lumber and contaminated wood chips that may be processed into chip board or other commercial wood products. A wood drying system employing such pollution control apparatus and method includes a hot air dryer for wood or other organic material, such as a wood chip rotary dryer or a wood veneer dryer, which produces hot exhaust gases containing pollutants including hydrocarbon vapors and solid particles. This hot exhaust air is transmitted through a lumber kiln to dry lumber thereby conserving heat energy and causing solid particle pollutants to deposit on the surface of the lumber. The kiln exhaust air containing solid and hydrocarbon vapor pollutants is then transmitted up through a filter stack of wood chips.

  1. Cooled railplug

    DOE Patents [OSTI]

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  2. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect (OSTI)

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  3. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  4. Scaling analysis for the direct reactor auxiliary cooling system for FHRs

    SciTech Connect (OSTI)

    Lv, Q.; Kim, I. H.; Sun, X.; Christensen, R. N.; Blue, T. E.; Yoder, G.; Wilson, D.; Sabharwall, P.

    2015-04-01

    The Direct Reactor Auxiliary Cooling System (DRACS) is a passive residual heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three natural circulation/convection loops that rely on buoyancy as the driving force and are coupled via two heat exchangers, namely, the DRACS heat exchanger and the natural draft heat exchanger. A fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during reactor normal operation, and to activate the DRACS in accidents when the reactor is shut down. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has been developed, which consists of a core scaling and a loop scaling. The consistency between the core and loop scaling is examined via the reference volume ratio, which can be obtained from both the core and loop scaling processes. The scaling methodology and similarity laws have been applied to obtain a scientific design of a scaled-down high-temperature DRACS test facility.

  5. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; Florida Solar Energy Center; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  6. Radiant Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cooling is appropriate for homes, particularly in the arid Southwest. Radiant cooling systems have been embedded in the ceilings of adobe homes, taking advantage of the thermal...

  7. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOE Patents [OSTI]

    Farrington, Robert B. (Golden, CO); Anderson, Ren (Broomfield, CO)

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  8. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  9. Final draft: IEA Task 1. Report on Subtask D, optimization of solar heating and cooling systems

    SciTech Connect (OSTI)

    Freeman, T.L.

    1981-03-01

    A review of general techniques and specific methods useful in the optimization of solar heating and cooling systems is undertaken. A discussion of the state-of-the-art and the principal problems in both the simplified thermal performance analysis and economic analysis portions of the optimization problem are presented. Sample economic analyses are performed using several widely used economic criteria. The predicted thermal results of one typical, widely used simplified method is compared to detailed simulation results. A methodology for and the results of a sensitivity study of key economic parameters in the life cycle cost method are presented. Finally, a simple graphical optimization technique based on the life cycle cost method is proposed.

  10. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, Paul R. (Tucson, AZ)

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  11. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  12. Compliance of the Savannah River Site D-Area cooling system with environmental regulations

    SciTech Connect (OSTI)

    Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wike, L.D.; Wilde, E.W. (eds.)

    1990-08-01

    This document presents information relating to a demonstration under Section 316(a) of the Clean Water Act for the 400-D Area cooling system at the Savannah River Site (SRS) near Aiken, South Carolina. The demonstration was mandated because the National Pollution Discharge Elimination System (NPDES) permit for SRS (SC0000175), granted on January 1, 1984, specified in-stream temperature limits in SRS streams of 32.2{degree}C and a {Delta}T limit of 2.8{degree}C above ambient. To achieve compliance with in-stream temperature limits, the Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC) entered into a Consent Order (84-4-W) which temporarily superseded the temperature requirements and identified a process for attaining compliance. The preferred option for achieving thermal compliance in Beaver Dam Creek consisted of increased flow, with mixing of the raw water basin overflow with the cooling water discharge during the summer months. Although this action can achieve instream temperatures of less than 32.2{degree}C, {Delta}T's still exceed 2.8{degree}C. Therefore, a 316 (a) Demonstration was initiated to determine whether a balanced indigenous biological community can be supported in the receiving stream with {Delta}T's in excess of 2.8{degree}C. A Biological Monitoring Program for Beaver Dam Creek was approved by SCDHEC in June 1988 and implemented in September 1988. The program monitored the water quality, habitat formers, zooplankton, macroinvertebrates, fish, other vertebrate wildlife and threatened and endangered species in Beaver Dam Creek for an 18-month period (September 1988-February 1990). This document summarizes information collected during the monitoring program and evaluates the data to determine whether Beaver Dam Creek presently supports a balanced indigenous biological community. 97 refs., 32 figs., 51 tabs.

  13. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  14. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  15. Initial Requirements for Gas-Cooled Fast Reactor (GFR) System Design, Performance, and Safety Analysis Models

    SciTech Connect (OSTI)

    Kevan D. Weaver; Thomas Y. C. Wei

    2004-08-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  16. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  17. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  18. Operating experience with the integrated dry NO{sub x}/SO{sub 2} emissions control system

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Shiomoto, G.H.

    1994-12-31

    This paper presents the results to date from the Public Service Company of Colorado (PSCC), U.S. Department of Energy (DOE), and Electric Power Research Institute (EPRI), sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System project. This DOE Clean Coal Technology III demonstration project is being conducted at PSCC`s Arapahoe Generating Station Unit 4, located in Denver, Colorado. The Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System consists of five major control technologies that are combined to form an integrated system to control both NO{sub x} and SO{sub 2} emissions. NO{sub x} reduction is obtained through the use of low-NO{sub x} burners, overfire air, and urea-based Selective Non-Catalytic Reduction (SNCR), while dry sorbent injection using either sodium- or calcium-based reagents with humidification is used to control SO{sub 2} emissions. The project goal is to provide up to a 70% reduction of both NO{sub x} and SO{sub 2} emissions. The combustion modifications were expected to reduce NO{sub x} by 50% with the expectation that the SNCR system would provide the remaining 20% reduction. Dry Sorbent Injection was expected to provide 50% removal of the SO{sub 2} emissions while using calcium-based reagents. As sodium is much more reactive than calcium, it was expected to provide SO{sub 2} removals of up to 70%.

  19. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    SciTech Connect (OSTI)

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-02-06

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24 diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18 in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24 in diameter and ~11 feet long from a dry transfer cask to the basin. The 18 and 24 applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.

  20. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

    2009-06-30

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.

  1. System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect (OSTI)

    Jeffrey Bryan

    2009-06-01

    This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

  2. Scaling Analysis for the Direct Reactor Auxillary Cooling System For AHTRS

    SciTech Connect (OSTI)

    Lv, Q. NMN; Wang, X. NMN; Sun, X NMN; Christensen, R. N.; Blue, T. E.; Yoder Jr, Graydon L; Wilson, Dane F; Subharwall, Piyush; Adams, I.

    2013-01-01

    The Direct Reactor Auxiliary Cooling System (DRACS) is a passive heat removal system proposed for the Advanced High-Temperature Reactor (AHTR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops relying completely on buoyancy as the driving force. In the DRACS, two heat exchangers, namely, the DRACS Heat Exchanger (DHX) and the Natural Draft Heat Exchanger (NDHX) are used to couple these loops. In addition, a fluidic diode is employed to minimize the parasitic flow during normal operation of the reactor and to activate the DRACS in accidents. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for AHTRs built and tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of the scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained straightforwardly from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has also been developed, which consists of the core scaling and loop scaling. The consistence between the core and loop scaling is examined through the reference volume ratio, which can be obtained from the core and loop scaling processes. The scaling methodology and similarity laws have been applied to obtain a design of the scaled-down high-temperature DRACS test facility (HTDF).

  3. The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems

    SciTech Connect (OSTI)

    Green, Michael A.

    2003-07-09

    The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoring and controlling the cooling is discussed.

  4. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    SciTech Connect (OSTI)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Qualls, A L.; Borum, Robert C.; Chaleff, Ethan S.; Rogerson, Doug W.; Batteh, John J.; Tiller, Michael M.

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  5. Analysis of fission product revaporization in a BWR reactor cooling system during a station blackout accident

    SciTech Connect (OSTI)

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This report presents a preliminary analysis of fission product revaporization in the Reactor Cooling System (RCS) after the vessel failure. The station blackout transient for BWR Mark I Power Plant is considered. The TRAPMELT3 models of evaporization, chemisorption, and the decay heating of RCS structures and gases are adopted in the analysis. The RCS flow models based on the density-difference between the RCS and containment pedestal region are developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP is developed for the analysis. The REVAP is incorporated with the MARCH, TRAPMELT3 and NAUA codes of the Source Term Code Pack Package (STCP). The NAUA code is used to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors determining the magnitude of revaporization and subsequent release of the volatile fission product. 8 figs., 1 tab.

  6. Hydrogen cooling options for MgB{sub 2}-based superconducting systems

    SciTech Connect (OSTI)

    Stautner, W.; Xu, M.; Mine, S.; Amm, K.

    2014-01-29

    With the arrival of MgB{sub 2} for low-cost superconducting magnets, hydrogen cooling has become an interesting alternative to costly liquid helium. Hydrogen is generally regarded as the most efficient coolant in cryogenics and, in particular, is well suited for cooling superconducting magnets. Cooling methods need to take into account the specific quench propagation in the MgB{sub 2} magnet winding and facilitate a cryogenically reliable and safe cooling environment. The authors propose three different multi-coolant options for MRI scanners using helium or hydrogen within the same design framework. Furthermore, a design option for whole-body scanners which employs technology, components, fueling techniques and safety devices from the hydrogen automotive industry is presented, continuing the trend towards replacing helium with hydrogen as a safe and cost efficient coolant.

  7. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect (OSTI)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  8. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems

    SciTech Connect (OSTI)

    Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C. [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL, 60439 (United States)

    2013-01-25

    With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 Degree-Sign C accuracy, tested at temperatures of up to 400 Degree-Sign C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.

  9. Analysis of large scale tests for AP-600 passive containment cooling system

    SciTech Connect (OSTI)

    Sha, W.T.; Chien, T.H.; Sun, J.G.; Chao, B.T.

    1997-07-01

    One unique feature of the AP-600 is its passive containment cooling system (PCCS), which is designed to maintain containment pressure below the design limit for 72 hours without action by the reactor operator. During a design-basis accident, i.e., either a loss-of-coolant or a main steam-line break accident, steam escapes and comes in contact with the much cooler containment vessel wall. Heat is transferred to the inside surface of the steel containment wall by convection and condensation of steam and through the containment steel wall by conduction. Heat is then transferred from the outside of the containment surface by heating and evaporation of a thin liquid film that is formed by applying water at the top of the containment vessel dome. Air in the annual space is heated by both convection and injection of steam from the evaporating liquid film. The heated air and vapor rise as a result of natural circulation and exit the shield building through the outlets above the containment shell. All of the analytical models that are developed for and used in the COMMIX-ID code for predicting performance of the PCCS will be described. These models cover governing conservation equations for multicomponents single phase flow, transport equations for the {kappa}-{epsilon} two-equation turbulence model, auxiliary equations, liquid-film tracking model for both inside (condensate) and outside (evaporating liquid film) surfaces of the containment vessel wall, thermal coupling between flow domains inside and outside the containment vessel, and heat and mass transfer models. Various key parameters of the COMMIX-ID results and corresponding AP-600 PCCS experimental data are compared and the agreement is good. Significant findings from this study are summarized.

  10. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  11. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOE Patents [OSTI]

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  12. Don`t overlook natural gas cooling equipment

    SciTech Connect (OSTI)

    Katzel, J.

    1997-03-01

    If one thought the confusion surrounding chiller specification and operation ended with the availability of CFC-free refrigerant alternatives, think again. Plant engineers involved in the selection and installation of cooling equipment are facing yet another complicated task, this time thanks to deregulation of the electric utility industry. Still in its early stages, deregulation is a process that could take up to a decade. However, deregulation is also bringing about changing pricing structures. Electric power costs may not always be low for everyone. For plants paying $0.02/kwh for electricity, an electric-powered chiller is a must. But those paying $0.35 or $0.40/kwh, even for a few hours, cannot afford NOT to consider something besides an electric-motor-driven chiller. Among the most viable, yet often overlooked, options available is natural gas cooling. Gas cooling equipment gives industrial users the flexibility to choose either gas or electricity to drive their cooling systems. Natural gas cooling is defined here as the use of absorption cooling systems and engine-driven chillers, as alternatives to electric-driven equipment, to deliver chilled water in a conventional manner. Desiccant systems can also be gas fired and are used primarily for providing dry air for process control. Because of their specialized applications, desiccant cooling is not covered in this article.

  13. Integrated Dry NO sub x /SO sub 2 Emissions Control System baseline test report, November 11--December 15, 1991

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.

    1992-03-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

  14. District cooling gets hot

    SciTech Connect (OSTI)

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  15. Active cooling-based surface confinement system for thermal soil treatment

    DOE Patents [OSTI]

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  16. Active cooling-based surface confinement system for thermal soil treatment

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Pleasanton, CA)

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  17. 1999 Commercial Buildings Characteristics--Cooling Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey Packaged air conditioning units were the main cooling system for 20,504 million square feet of cooled floorspace, more than twice the...

  18. Cooling supply system for stage 3 bucket of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Quentin (Saratoga Springs, NY); Burns, James Lee (Schenectady, NY); Palmer, Gene David (Clifton Park, NY); Leone, Sal Albert (Scotia, NY); Drlik, Gary Joseph (Fairfield, OH); Gibler, Edward Eugene (Cincinnati, OH)

    2002-01-01

    In a land based gas turbine including a compressor, a combustor and turbine section including at least three stages, an improvement comprising an inlet into a third stage nozzle from the compressor for feeding cooling air from the compressor to the third stage nozzle; at least one passageway running substantially radially through each airfoil of the third stage nozzle and an associated diaphragm, into an annular space between the rotor and the diaphragm; and passageways communicating between the annular space and individual buckets of the third stage.

  19. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  20. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  1. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  2. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect (OSTI)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  3. Coherent electron cooling

    SciTech Connect (OSTI)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  4. Integrated dry NO{sub x}/SO{sub 2} emissions control system. Final report, Volume 1: Public design

    SciTech Connect (OSTI)

    Hunt, T.; Hanley, T.J.

    1997-11-01

    The U.S. Department of Energy (DOE)/Pittsburgh Energy Technology Center (PETC) and the Public Services Company of Colorado (PSCo) signed the cooperative agreement for the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System in March 1991. This project integrates various combinations of five existing and emerging technologies onto a 100 MWe, down-fired, load-following unit that burns pulverized coal. The project is expected to achieve up to 70% reductions in both oxides of nitrogen (NO{sub x}) and sulfur dioxide (SO{sub 2}) emissions. Various combinations of low-NO{sub x} burners (LNBs), overfire air (OFA) ports, selective non-catalytic reduction (SNCR), dry sorbent injection (DSI) using both calcium- and sodium-based reagents, and flue-gas humidification are expected to integrate synergistically and control both NO{sub x} and SO{sub 2} emissions better than if each technology were used alone. For instance, ammonia emissions from the SNCR system are expected to reduce NO{sub 2} emissions and allow the DSI system (sodium-based reagents) to achieve higher removals of SO{sub 2}. Unlike tangentially or wall-fired units, down-fired require substantial modification to their pressure parts to retrofit LNBs and OFA ports, substantially increasing the cost of retrofit. Conversely, the retrofitting of SNCR, DSI, or humidification systems does not require any major boiler modifications and are easily retrofitted to all boiler types. However, existing furnace geometry and flue-gas temperatures can limit their placement and effectiveness. In particular, SNCR requires injecting the SNCR chemicals into the furnace where the temperature is within a very narrow temperature range.

  5. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    SciTech Connect (OSTI)

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

  6. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect (OSTI)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  7. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOE Patents [OSTI]

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  8. Performance Spec. for Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shipping Port Spent Fuel Canisters

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-03-14

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders.

  9. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  10. cooling | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  11. Strategic planning for and implementation of reclaimed municipal waste water as make-up to a refinery cooling system

    SciTech Connect (OSTI)

    Francis, W.R.; Mazur, J.J.; Rao, N.M.

    1996-08-01

    This paper discusses the successful use of treated municipal plant waste water effluent (Title 22) in a refinery cooling water system. Conversion from well water to this make-up water source was preceded by developing a carefully crafted transition plan. Steps were taken to identify key system performance indicators, establish desired performance goals, and implement stringent monitoring and control protocols. In addition, all possible contingencies were considered and solutions developed. Treating Title 22 waters is very challenging and entails risks not associated with normal makeup waters. Several novel on-line monitoring and control tools are available which help minimize these risks while enhancing tower operation. Performance monitoring of critical system parameters is essential in order to provide early warning of problems so that corrective measures can be implemented. In addition, a high level of system automation enhances reliable operation. Corrosion, scaling and microbiological performance of the system with Title 22 water is discussed in comparison to previous well water make-up.

  12. DRI Companies | Open Energy Information

    Open Energy Info (EERE)

    Irvine, California Zip: 92614 Sector: Solar Product: US-based residential and commercial installer of turnkey solar systems, through subsidiary iDRI Energy. Coordinates:...

  13. Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

    Office of Environmental Management (EM)

    Computing Center | Department of Energy Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Study evaluates the energy efficiency of a new, liquid-cooled computing system applied in a retrofit project compared to the previously used air-cooled system. PDF icon cs_maui_high_pcc.pdf More Documents & Publications Energy Efficiency Opportunities in Federal High

  14. Freeze drying method

    SciTech Connect (OSTI)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-12-07

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  15. Freeze drying apparatus

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  16. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  17. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five locations--Delaware River Basin (Philadelphia), Michigan/Great Lakes (Detroit), Ohio River Valley (Indianapolis), South (Atlanta), and Southwest (Yuma)--were modeled using an ASPEN simulator model. The model evaluated the performance and energy penalty for hypothetical 400-MW coal-fired plants that were retrofitted from using once-through cooling systems to wet- and dry-recirculating systems. The modeling was initially done to simulate the hottest time of the year using temperature input values that are exceeded only 1 percent of the time between June through September at each modeled location. These are the same temperature inputs commonly used by cooling tower designers to ensure that towers perform properly under most climatic conditions.

  18. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    DOE Patents [OSTI]

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  19. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect (OSTI)

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  20. Guide to Home Heating and Cooling

    SciTech Connect (OSTI)

    2010-10-01

    Get the most out of your heating and cooling systems, including types, how to choose, and performing maintenance.

  1. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    SciTech Connect (OSTI)

    Bowden, Gordon B.; Langton, Brian J.; Little, William A.; Powers, Jacob R; Schindler, Rafe H.; Spektor, Sam; /MMR-Technologies, Mountain View, CA

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

  2. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  3. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect (OSTI)

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5 sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  4. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael

    2010-05-15

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  5. Hybrid and Advanced Air Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Geothermal Program Peer Review 2010 - Presentation. This project will identify and analyze advanced air cooling strategies thatallow air-cooled geothermal power plants to maintain a high electric power output during periods of high air dry bulb temperatures while minimizing water consumption. PDF icon specialized_bharathan_advanced_cooling.pdf More Documents & Publications Hybird Geothemal-Solar Air-Cooled Condensers for Next Generation Power Plants Geothermal Resources and Transmission

  6. Evaporative Cooling Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Hawaii Marine Base Installs Solar Roofs Cooling System Basics Home cooling accounts for 6 percent of the average household's energy use. To help you save money by saving energy, ...

  7. A practical application for the chemical treatment of Southern California`s reclaimed, Title 22 water for use as makeup water for recirculating cooling water systems

    SciTech Connect (OSTI)

    Zakrzewski, J.; Cosulich, J.; Bartling, E.

    1998-12-31

    Pilot cooling water studies conducted at a Southern California landfill/cogeneration station demonstrated a successful chemical treatment program for recirculating cooling water that used unnitrified, reclaimed, Title 22 water as the primary makeup water source. The constituents in the reclaimed water are supplied by variety of residential and waste water sources resulting in a water quality that may vary to a greater degree than domestic water supplies. This water contains high concentrations of orthophosphate, ammonia, chlorides and suspended solids. The impact of which, under cycled conditions is calcium orthophosphate scaling, high corrosion of yellow metal and mild steel, stress cracking of copper alloys and stainless steel and rapidly growing biological activity. A mobile cooling water testing laboratory with two pilot recirculating water systems modeled the cogeneration station`s cooling tower operating conditions and parameters. The tube and shell, tube side cooling heat exchangers were fitted with 443 admiralty, 90/10 copper nickel, 316 stainless steel and 1202 mild steel heat exchanger tubes. Coupons and Corrater electrodes were also installed. A chemical treatment program consisting of 60/40 AA/AMPS copolymer for scale, deposits and dispersion, sodium tolyltriazole for yellow metal corrosion, and a bromination program to control the biological activity was utilized in the pilot systems. Recirculating water orthophosphate concentrations reached levels of 70 mg/L as PO, and ammonia concentrations reached levels of 35 mg/L, as total NH3. The study successfully demonstrated a chemical treatment program to control scale and deposition, minimize admiralty, 90/10 copper nickel and carbon steel corrosion rates, prevent non-heat transfer yellow metal and stainless steel stress cracking, and control the biological activity in this high nutrient water.

  8. Novel Controls for Economic Dispatch of Combined Cooling, Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power ...

  9. Picture of the Week: Cooling new Trinity supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    millions of gallons of well water per year. March 2, 2015 supercomputing hardware for cooling system . Installation of the cooling infrastructure to support the new Trinity...

  10. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  11. Users guide for the conversion of Navy paint-spray-booth particulate emission-control systems from wet to dry operation. Final report, January-September 1989

    SciTech Connect (OSTI)

    Ayer, J.; Tate, D.

    1990-03-01

    The report is a guide for converting U.S. Navy paint-spray-booth particulate emission control systems from wet to dry operation. The use of water curtains for air-pollution-control of paint-spray booths is considered a major source of water and solid-waste pollution from industrial painting operations. It is possible, however, to eliminate this water-pollution problem and significantly reduce the solid-waste load by converting the booth to utilize a dry-filter pollution-control system. The conversion, however, requires extensive planning prior to actual facility modification. The report describes requirements to facilitate the planning and preparation for conversion of typical spray booths. Although the report addresses modifications of Navy spray booths, the basic engineering requirements discussed apply also to other Department of Defense installations and to commercial industrial facilities.

  12. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect (OSTI)

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of primary energy saving than conventional systems fed by vapour compression chillers and coupled with PV cells. All SAC systems present good figures for primary energy consumption. The best performances are seen in systems with integrated heat pumps and small solar collector areas. The economics of these SAC systems at current equipment costs and energy prices are acceptable. They become more interesting in the case of public incentives of up to 30% of the investment cost (Simple Payback Time from 5 to 10 years) and doubled energy prices. (author)

  13. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating Systems Heat Pump Systems Supporting Equipment for

  14. Cab Heating and Cooling

    SciTech Connect (OSTI)

    Damman, Dennis

    2005-10-31

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  15. Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops

    Broader source: Energy.gov [DOE]

    Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

  16. Fans for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Fans for Cooling Fans for Cooling Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Circulating fans include ceiling fans, table fans, floor fans, and fans mounted to poles or walls. These fans create a wind chill effect that will make you more comfortable in your home, even if it's

  17. Evaporative Cooling | Open Energy Information

    Open Energy Info (EERE)

    By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the footprint required for an air cooling system. Evaporative...

  18. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline test report, November 11--December 15, 1991

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.

    1992-03-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

  19. Energy Efficient Electronics Cooling Project

    SciTech Connect (OSTI)

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  20. Engineered design of SSC cooling ponds

    SciTech Connect (OSTI)

    Bear, J.B.

    1993-05-01

    The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project`s successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency.

  1. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOE Patents [OSTI]

    Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  2. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    SciTech Connect (OSTI)

    Sanders, W.J.; Harter, J.W.; Snyder, M.K.

    1983-12-06

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  3. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  4. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  5. New Cool Roof Coatings and Affordable Cool Color Asphalt | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Cool Roof Coatings and Affordable Cool Color Asphalt New Cool Roof Coatings and Affordable Cool Color Asphalt Emerging Technologies Project for the 2013 Building Technologies...

  6. Dry scrubbing of SO/sub 2/

    SciTech Connect (OSTI)

    Shah, N.D.

    1982-06-01

    The advantages of dry scrubbing over wet scrubbing or spray drying are considered. One of the problem areas is that of waste disposal. The most cost-effective solutions are land disposal or landfill in clay cells. The factors influencing the selection of an SO/sub 2/ scrubbing system are discussed. Nahcolite appears to be the most promising agent for dry scrubbing.

  7. Passive containment cooling water distribution device

    DOE Patents [OSTI]

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  8. Water Cooled Mirror Design

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  9. Technical Evaluation of Side Stream Filtration for Cooling Towers

    SciTech Connect (OSTI)

    2012-10-01

    Cooling towers are an integral component of many refrigeration systems, providing comfort or process cooling across a broad range of applications. Cooling towers represent the point in a cooling system where heat is dissipated to the atmosphere through evaporation. Cooling towers are commonly used in industrial applications and in large commercial buildings to release waste heat extracted from a process or building system through evaporation of water.

  10. Property:Cooling Capacity | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation Study615 kW Waukesha Packaged System + 90 + Distributed Generation...

  11. Promising Technology: Cool Roofs

    Broader source: Energy.gov [DOE]

    A cool roof increases the solar reflectance of the roof surface. By reflecting more sunlight, the roof surface maintains a cooler temperature. This decrease in temperature leads to less heat transfer through the roof into the building below. During the cooling season, the addition of a cool roof can decrease the cooling load of the building.

  12. CoolEarth formerly Cool Earth Solar | Open Energy Information

    Open Energy Info (EERE)

    CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name: CoolEarth (formerly Cool Earth Solar) Place: Livermore, California Zip: 94550 Product: CoolEarth is a...

  13. Improving Data Center Efficiency with Rack or Row Cooling Devices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-foors that are used for cooling air distribution. Such under-foor air distribution is not required by the new rack/row-mounted

  14. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  15. Nanofluid Development for Engine Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Nanofluid Development for Engine Cooling An experimental approach was used to optimize material properties for nanofluid manufacturing PDF icon deer09_timofeeva.pdf More Documents & Publications Nanofluid Development for Engine Cooling Systems Erosion of Radiator Materials by Nanofluids Assessment of Nanofluids for HEV Cooling Applications

  16. Cooling apparatus and method

    DOE Patents [OSTI]

    Mayes, James C. (Sugar Land, TX)

    2009-05-05

    A device and method provide for cooling of a system having an energy source, one or more devices that actively consume energy, and one or more devices that generate heat. The device may include one or more thermoelectric coolers ("TECs") in conductive engagement with at least one of the heat-generating devices, and an energy diverter for diverting at least a portion of the energy from the energy source that is not consumed by the active energy-consuming devices to the TECs.

  17. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  18. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  19. Guide to Cool Roofs

    Energy Savers [EERE]

    beautify your home. The immediate and long-term benefits of roofs that stay cool in the sun have made cool roofing the fastest growing sector of the building industry. Studies...

  20. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost

  1. Earth coupled cooling techniques

    SciTech Connect (OSTI)

    Grondzik, W.T.; Boyer, L.L.; Johnston, T.L.

    1981-01-01

    Earth coupled cooling is an important consideration for residential and commercial designers, owners, and builders in many regions of the country. The potential benefits which can be expected from passive earth contact cooling are reviewed. Recommendations for the design of earth sheltered structures incorporating earth coupled cooling strategies are also presented.

  2. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  3. Cooling of superconducting devices by liquid storage and refrigeration unit

    SciTech Connect (OSTI)

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  4. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially MWW_NF) better treatment alternatives from the environmental sustainability perspective since they exhibited minimal contribution to environmental damage from emissions.

  5. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    SciTech Connect (OSTI)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  6. New "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment New "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment April 24, 2015 - 4:21pm Addthis Berkeley Lab...

  7. Elastic Metal Alloy Refrigerants: Thermoelastic Cooling (Program Document)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Elastic Metal Alloy Refrigerants: Thermoelastic Cooling Citation Details In-Document Search Title: Elastic Metal Alloy Refrigerants: Thermoelastic Cooling BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic

  8. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  9. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    SciTech Connect (OSTI)

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y.

    2012-07-06

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for dry storage of used fuel to date. The goal of this report is to help establish the technical basis for extended long-term storage and transportation of used fuel.

  10. TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2011-05-01

    This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.0510-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

  11. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline SNCR test report, February 4--March 6, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Shiomoto, G.H.; Muzio, L.J.; Hunt, T.

    1993-09-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the second test phase of the program. This second test phase was comprised of the start up of the SNCR system followed by a brief parametric test series. Time constraints due to the retrofit schedule precluded optimizing the SNCR system. Testing investigated both urea and aqueous ammonia as SNCR chemicals. Other parameters investigated included boiler load, the amount of chemical injected, as well as injection parameters (injection location, amount of mixing air, dilution water flow, and injector orifice sizes). NO{sub x} removals of nominally 35 percent could be obtained with both chemicals while maintaining ammonia slip levels less than 10 ppM at full load. At higher chemical injection rates (nominal N/NO molar ratios of 1.5 to 2.0), NO{sub x} reductions in the range of 60 to 70 percent were achieved, but with unacceptable levels of NH{sub 3} slip. For a given level of NO{sub x} reduction, ammonia slip was lower with aqueous ammonia injection than with urea. The test program also confirmed prior observations that (1) the optimum temperature for NO{sub x} reduction with ammonia is lower than with urea, and (2) N{sub 2}O emissions as a by-product of the SNCR process are lower for ammonia compared to urea.

  12. Hydrogeologic Evaluation of a Ground-Source Cooling System at the BSF/CSF on the Battelle Campus: Final Report

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.; Moon, Thomas W.; Newcomer, Darrell R.; DeSmet, Darrell J.; Lindsey, K. A.; Porcello, J. J.

    2010-05-12

    This report documents both the field characterization activities and the numerical modeling effort at the BSF/CSF site to determine the viability of an open-loop ground source heat pump (GSHP). The primary purpose of the integrated field and modeling study was to determine far-field impacts related to a non-consumptive use water right for the well field containing four extraction and four injection wells. In the field, boreholes were logged and used to develop the geologic conceptual model. Hydraulic testing was performed to identify hydraulic properties and determine sustainable pumping rates. Estimates of the Ringold hydraulic conductivity (60-150 m/d) at the BSF/CSF site were consistent with the local and regional hydrogeology as well as estimates previously published by other investigators. Sustainable pumping rates at the extraction wells were variable (100 700 gpm), and confirmed field observations of aquifer heterogeneity. Field data were used to develop a numerical model of the site. Simulations assessed the potential of the well field to impact nearby contaminant plumes, neighboring water rights, and the thermal regime of nearby surface water bodies. Using steady-state flow scenarios in conjunction with particle tracking, a radius of influence of 400600 m was identified around the well field. This distance was considerably shorter than the distance to the closest contaminant plume (~1.2 km northwest to the DOE Horn Rapids Landfill) and the nearest water right holder (~1.2 km southeast to the City of Richland Well Field). Results demonstrated that current trajectories for nearby contaminant plumes will not be impacted by the operation of the GSHP well field. The objective of the energy transport analysis was to identify potential thermal impacts to the Columbia River under likely operational scenarios for the BSF/CSF well field. Estimated pumping rates and injection temperatures were used to simulate heat transport for a range of hydraulic conductivity estimates for the Ringold Formation. Two different operational scenarios were simulated using conservative assumptions, such as the absence of river water intrusion in the near shore groundwater. When seasonal injection of warm and cool water occurred, temperature impacts were insignificant at the Columbia River (< +0.2C), irrespective of the hydraulic conductivity estimate. The second operational scenario simulated continuous heat rejection, a condition anticipated once the BSF/CSF is fully loaded with laboratory and computer equipment. For the continuous heat rejection case, where hourly peak conditions were simulated as month-long peaks, the maximum change in temperature along the shoreline was ~1C. If this were to be interpreted as an absolute change in a static river temperature, it could be considered significant. However, the warmer-than-ambient groundwater flux that would potentially discharge to the Columbia River is very small relative to the flow in the river. For temperatures greater than 17.0C, the flow relative to a low-flow condition in the river is only 0.012%. Moreover, field data has shown that diurnal fluctuations in temperature are as high as 5C along the shoreline.

  13. Personal cooling apparatus and method

    DOE Patents [OSTI]

    Siman-Tov, Moshe (Knoxville, TN); Crabtree, Jerry Allen (Knoxville, TN)

    2001-01-01

    A portable lightweight cooling apparatus for cooling a human body is disclosed, having a channeled sheet which absorbs sweat and/or evaporative liquid, a layer of highly conductive fibers adjacent the channeled sheet; and, an air-moving device for moving air through the channeled sheet, wherein the layer of fibers redistributes heat uniformly across the object being cooled, while the air moving within the channeled sheet evaporates sweat and/or other evaporative liquid, absorbs evaporated moisture and the uniformly distributed heat generated by the human body, and discharges them into the environment. Also disclosed is a method for removing heat generated by the human body, comprising the steps of providing a garment to be placed in thermal communication with the body; placing a layer of highly conductive fibers within the garment adjacent the body for uniformly distributing the heat generated by the body; attaching an air-moving device in communication with the garment for forcing air into the garment; removably positioning an exchangeable heat sink in communication with the air-moving device for cooling the air prior to the air entering the garment; and, equipping the garment with a channeled sheet in communication with the air-moving device so that air can be directed into the channeled sheet and adjacent the layer of fibers to expell heat and moisture from the body by the air being directed out of the channeled sheet and into the environment. The cooling system may be configured to operate in both sealed and unsealed garments.

  14. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system SNCR test report. Test period, January 11--April 9, 1993

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2}, Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the fourth phase of the test program, where the performance of the SNCR system, after the low-NO{sub x} combustion system retrofit, was assessed. Previous to this phase of testing, a subsystem was added to the existing SNCR system which allowed on-line conversion of a urea solution to aqueous ammonium compounds. Both convened and unconverted urea were investigated as SNCR chemicals.

  15. Dephosphorization when using DRI

    SciTech Connect (OSTI)

    2005-09-21

    The increase in high quality steel production in electric arc furnaces (EAFs) requires the use of scrap substitute materials, such as Direct Reduced Iron (DRI) and Hot Briquetted Iron (HBI). Although DRI and HBI products have lower copper and nickel contents than most scrap materials, they can contain up to ten times more phosphorus. This project, led by Carnegie Mellon Universitys Center for Iron and Steelmaking Research, improves the understanding of how phosphorus behaves when DRI and HBI melt.

  16. Cooling with a Whole House Fan | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in hot weather. In addition to whole house fans, the ducts of your central heating and cooling system can be modified to provide whole house cooling. How Whole House Fans Work...

  17. 5 Cool Things about Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Cool Things about Solar Heating 5 Cool Things about Solar Heating March 26, 2013 - 3:08pm Addthis Solar heating systems can be a cost-effective way to heat your home. | Photo...

  18. Energy savings from indirect evaporative pre-cooling: Control strategies and commissioning

    SciTech Connect (OSTI)

    Felts, D.; Jump, D.A.

    1998-07-01

    Package rooftop air conditioning units (RTU) with evaporative pre-cooling systems were installed at an Agricultural History Museum and conference center in the northern Sacramento Valley in California, a hot and dry summer climate region. The evaporative pre-coolers serve to extend the economizer range of the RTU's. A commissioning team monitored the performance of the RTU evaporative pre-coolers. The purpose of the monitoring was to determine if changes were warranted to optimize the system's energy efficiency. The commissioning process revealed that the RTU evaporative pre-coolers were being controlled by the economizer control cycle. With this control cycle, the evaporative pre-cooler operates when the outdoor air temperature is falling below the space return air temperature. This means that the pre-cooler will never operate at peak load conditions. The conference center is an assembly occupancy. Building codes require significant levels of outdoor air for ventilation. The evaporative pre-cooler system provides the means to significantly offset the energy requirements for cooling down and heating up this ventilation air. A DOE2 energy simulation analysis indicated that the evaporative pre-cooler could cut energy use by over 50% if it were working correctly. Investigation concludes that in buildings with high outdoor air requirements, evaporative pre-cooling, using building exhaust air as the indirect evaporative cooling source, significantly reduce building energy consumption. This evaporative pre-cooling technology works in any climate, regardless of outdoor conditions, since the return air stream exhausted from the building provides a relatively constant temperature and humidity source for evaporative cooling. An added benefit is that the evaporative pre-cooler heat exchanger recovers heat from the exhausted air stream in cold weather.

  19. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Technical progress report, April 1-June 30, 1983

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.; Konrad, K.

    1983-01-01

    The objective of this project is to experimentally develop and demonstrate a novel dry fluidized-bed reactor system (called heat tray) for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The new reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. Experimental work was initiated on the unsteady-state Fischer-Tropsch synthesis using a fully-automated vibrofluidized microreactor system and a computer-controlled on-line gas chromatographic (GC) system for product analysis. Both the reactor and GC systems performed well in all experiments, and no mechanical problems were observed throughout the experiments lasting as long as twenty hours. Preliminary estimates indicated that the conversion of CO to carbon was only on the order of one-tenth of one percent. This encouraging result provided evidence that it should be possible to experimentally identify cycling conditions which could prevent carbon deposits on the catalyst while treating a synthesis gas of low H/sub 2/:CO ratio.

  20. Desiccant Cooling Poised for Entry into Mainstream Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desiccant Cooling Poised for Entry into Mainstream Markets For more information contact: Kerry Masson, (303) 275-4083 Golden, Colo., March 24, 1997 -- Heating and cooling systems manufacturers and members of the emerging desiccant cooling industry recently gathered at the U.S. Department of Energy's National Renewable Energy Laboratory to assess progress in a two-year research program aimed at expanding markets for gas-fired desiccant cooling and dehumidifying systems. The new technology

  1. Guide to Minimizing Compressor-Based Cooling | Department of Energy

    Office of Environmental Management (EM)

    Minimizing Compressor-Based Cooling Guide to Minimizing Compressor-Based Cooling Guide describes best practices for reducing energy use and total cost of ownership for data center cooling systems.. PDF icon dc_compressorguide.pdf More Documents & Publications Credit: Oak Ridge National Lab Advanced HVAC Systems Yahoo! Compute Coop Next Generation Passive Cooling Design for Data Centers Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share

  2. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  3. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  4. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  5. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  6. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  7. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  8. Cooling and solidification of heavy hydrocarbon liquid streams

    DOE Patents [OSTI]

    Antieri, Salvatore J. (Trenton, NJ); Comolli, Alfred G. (Yardley, PA)

    1983-01-01

    A process and apparatus for cooling and solidifying a stream of heavy hydrocarbon material normally boiling above about 850.degree. F., such as vacuum bottoms material from a coal liquefaction process. The hydrocarbon stream is dropped into a liquid bath, preferably water, which contains a screw conveyor device and the stream is rapidly cooled, solidified and broken therein to form discrete elongated particles. The solid extrudates or prills are then dried separately to remove substantially all surface moisture, and passed to further usage.

  9. Subcooled Boiling Heat Transfer for Cooling of Power Electronics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiator and associated pumping system are still required in HEVs. This additional cooling system adds weight and cost while decreasing the efficiency of HEVs. With the...

  10. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  11. Cool Roofs: An Introduction

    Broader source: Energy.gov [DOE]

    I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar.

  12. Energy 101: Cool Roofs

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  13. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  14. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  15. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  16. Chapter 4, Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 4 - 1 Chapter 4 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application

  17. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  18. Cooling energy performance and installation of a retrofitted exterior insulation and finish system on masonry residences in the southwestern United States

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.; McLain, H.A.

    1992-12-31

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls using a site-fabricated (non-commercially available) insulation and finish system. The exterior insulation system developed for the field test was easily performed and should result in a durable installation. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation offers the greatest potential for air-conditioning electricity savings and peak demand reductions in hot, dry climates similar to that of Phoenix. Retrofit economics need to be thoroughly examined from societal, utility, and consumer perspectives and must consider other benefits such as space-heating energy savings and improved house value.

  19. Why Cool Roofs?

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  20. One Cool Roof

    Broader source: Energy.gov [DOE]

    The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight.

  1. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  2. Data center cooling method

    DOE Patents [OSTI]

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  3. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  4. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  5. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  6. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  7. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  8. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Cooling Tips: Heating and Cooling Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy

  9. No Heat Spray Drying Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charles Beetz, Chief Scientist, ZoomEssence, Inc. U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Advance research from prototype dryer to integrated pilot system for our ambient temperature spray drying technology  Several objectives:  Improve emulsion formulation  Develop an industrialized atomizer  Develop a

  10. Gelcasting compositions having improved drying characteristics and machinability

    DOE Patents [OSTI]

    Janney, Mark A.; Walls, Claudia A. H.

    2001-01-01

    A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.

  11. Wind Concurrent Cooling Could Increase Power Transmission Potential by as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Much as 40% | Department of Energy Concurrent Cooling Could Increase Power Transmission Potential by as Much as 40% Wind Concurrent Cooling Could Increase Power Transmission Potential by as Much as 40% May 18, 2015 - 5:40pm Addthis Researchers at the U.S. Department of Energy's (DOE's) Idaho National Laboratory (INL) are working with industry to model wind's cooling effects on power transmission lines to dynamically couple transmission systems with concurrent cooling processes. In areas

  12. MEIC electron cooling program

    SciTech Connect (OSTI)

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.

  13. MEIC electron cooling program

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore » high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  14. Cooling system for rotating machine

    DOE Patents [OSTI]

    Gerstler, William Dwight (Niskayuna, NY); El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Alexander, James Pellegrino (Ballston Lake, NY); Quirion, Owen Scott (Clifton Park, NY); Palafox, Pepe (Schenectady, NY); Shen, Xiaochun (Schenectady, NY); Salasoo, Lembit (Schenectady, NY)

    2011-08-09

    An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

  15. Cool Roofs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of 150F or more in the summer sun. A cool roof under the same conditions could stay more than 50F cooler. Benefits of Cool Roofs A cool roof can benefit a building and...

  16. Water Cooling | Open Energy Information

    Open Energy Info (EERE)

    Water Cooling Jump to: navigation, search Dictionary.png Water Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an...

  17. Dew Point Evaporative Comfort Cooling: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Herrmann, L.; Kozubal, E.; Geiger, J.; Eastment, M.; Slayzak, S.

    2012-11-01

    The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado.

  18. Why Cool Roofs?

    Broader source: Energy.gov [DOE]

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple,...

  19. Global Cool Cities Alliance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the...

  20. Air Cooling | Open Energy Information

    Open Energy Info (EERE)

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  1. Laser cooling of solids

    SciTech Connect (OSTI)

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  2. ARM - Cool Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sites Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cool Sites The ARM friends have been searching the Internet to locate the best resources to help you! The websites that they found (and gave their official stamp of approval) are broken into three areas: Climate Change, Weather, and Other

  3. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system retrofit test report. Test report, August 6--October 29, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1993-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology M demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective NonCatalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the third phase of the test program, where the performance of the retrofit low-NO{sub x} combustion system is compared to that of the original combustion system. This third test phase was comprised of an optimization of the operating conditions and settings for the burners and overfire air ports, followed by an investigation of the performance of the low-NO{sub x} combustion system as a function of various operating parameters. These parameters included boiler load, excess air level, overfire air flow rate and number of mills in service. In addition, emissions under normal load following operation were compared to those collected during the optimization and parametric performance tests under baseloaded conditions. The low-NO{sub x} combustion system retrofit resulted in NO{sub x} reductions of 63 to 69 percent, depending on boiler load. The majority of the NO{sub x} reduction was obtained with the low-NO{sub x} burners, as it was shown that the overfire air system provided little additional NO{sub x} reduction for a fixed excess air level. CO emissions and flyash carbon levels did not increase as a result of the retrofit.

  4. CoolCab Truck Testing Project Update (Presentation)

    SciTech Connect (OSTI)

    Proc, K.

    2007-10-31

    Presentation describes the CoolCab project, a DOE/NREL initiative to design efficient thermal management systems in heavy trucks to eliminate idling and reduce petroleum consumption.

  5. Cooling, Heating and Power in the Nation's Colleges and Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This 2002 study presents data on cooling, heating, and power in the collegeuniversity ... Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005

  6. Design Construction and Operation of a Supercritical Carbon Dioxide (sCO2) Loop for Investigation of Dry Cooling and Natural Circulation Potential for Use in Advanced Small Modular Reactors Utilizing sCO2 Power Conversion Cycles.

    SciTech Connect (OSTI)

    Middleton, Bobby D.; Rodriguez, Salvador B.; Carlson, Matthew David

    2015-11-01

    This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows for measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.

  7. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect (OSTI)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  8. Full containment spray drying

    SciTech Connect (OSTI)

    Masters, K.

    1999-11-01

    Aspects of safety, environmental protection, and powder quality will continue to influence advances within spray dryer design and operation, and the concept of full containment spray drying offers a means to meet future industrial requirements. Process air recycle and powder containment within the drying chamber leads to no process air discharge to atmosphere, provides a more favorable operator environment around the spray dryer installation, reduces regions within the dryer layout where potential explosive powder/air mixtures can exist, improves yields, reduces powder losses, and provides easier cleaning operations with reduced wash water requirements.

  9. Cooling with a Whole House Fan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Cooling with a Whole House Fan Cooling with a Whole House Fan This whole-house fan is installed on the ceiling between the attic and living space. The louvers close when the fan is not operating. | Photo courtesy of Allison Casey. This whole-house fan is installed on the ceiling between the attic and living space. The louvers close when the fan is not operating. | Photo courtesy of Allison Casey. Whole house cooling using a whole house fan can

  10. Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  11. Vehicle Technologies Office Merit Review 2015: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  12. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  13. Spray-drying FGD

    SciTech Connect (OSTI)

    Yeager, K.

    1984-05-01

    Limited data are available on spray drying for SO/SUB/2 and particulate control to enable utilities to evaluate the claims of vendors. EPRI is sponsoring pilot- and full-scale testing of this technology and some results are presented.

  14. HomeCooling101

    Office of Environmental Management (EM)

    Saver 101: Everything You Need to Know About 6% $11B The percentage of the average household's energy use that goes to space cooling. 2/3 of all U.S. homes have air conditioners. #DidYouKnow: The amount it costs homeowners every year to power their air conditioners. You can reduce air conditioning energy use by 20-50 percent by switching to high-efficiency air conditioners and taking other actions to lower your home cooling costs. 20-50% Ventilation Ventilation is the least expensive and most

  15. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect (OSTI)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  16. Advanced dry scrubbing on Ohio coals

    SciTech Connect (OSTI)

    Amrhein, G.T.; Kudlac, G.A.; Smith, P.V.

    1994-12-31

    The objective of this project is to demonstrate, at pilot scale, that advanced dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} emissions while burning high-sulfur Ohio coal, and that these technologies are economically competitive with wet scrubber systems. Dry scrubbing involves injecting an atomized mist of sorbent-containing slurry droplets into hot flue gas. The reaction products exit the scrubber as a dry powder that can be filtered from the gas and recycled or disposed. The project consists of testing an advanced dry scrubber system on two high sulfur Ohio coals. All testing will be conducted in the 5 MBtu pilot facility at B and W`s Alliance Research Center. The facility consists of a test furnace, a dry scrubber using a B and W DuraJet{trademark} two fluid atomizer, a pulse-jet baghouse, and an ash slaking system. Tests were conducted with and without recycling the solids collected from the baghouse. During recycle operation the solids were slurried with water and injected into the dry scrubber with the fresh lime slurry. Test results will be presented, including SO{sub 2} removal (70--99%), calcium to sulfur ratios (1.1--1.9), dry scrubber outlet temperatures (10--30 F), and system performance. An advanced feature of the project was the use of the B and W patented Droplet Impingement Device which removes large slurry droplets from the gas stream prior to the baghouse to prevent baghouse deposition. This allows operation at low approach temperatures.

  17. Draft dry year tools (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA White Book Dry Year Tools Firstgov Dry Year Tools November 9, 2006 - Final Dry Year Guide: The Final Dry Year Guide (PDF, 5 pages, 44 kb) and Figure 1 - Dry Year Strategy (PDF,...

  18. Guide to Cool Roofs

    SciTech Connect (OSTI)

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  19. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  20. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  1. Dry-vault storage of spent fuel at the CASCAD facility

    SciTech Connect (OSTI)

    Baillif, L.; Guay, M.

    1989-01-01

    A new modular dry storage vault concept using vertical metallic wells cooled by natural convection has been developed by the Commissariat a l'Energie Atomique and Societe Generale pour les Techniques Nouvelles to accommodate special fuels for high-level wastes. Basic specifications and design criteria have been followed to guarantee a double containment system and cooling to maintain the fuel below an acceptable temperature. The double containment is provided by two static barriers: At the reactor, fuels are placed in containers playing the role of the first barrier; the storage wells constitute the second barrier. Spent fuel placed in wells is cooled by natural convection: a boundary layer is created along the outer side of the well. The heated air rises along the well leading to a thermosiphon flow that extracts the heat released. For heat transfer, studies, computations, and experimental tests have been carried out to calculate and determine the temperature of the containers and the fuel rod temperatures in various situations. The CASCAD vault storage can be applied to light water reactor (LWR) fuels without any difficulties if two requirements are satisfied: (1) Spend fuels have to be inserted in tight canisters. (2) Spent fuels have to be received only after a minimum decay time of 5 yr.

  2. Dry Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic feet billion cubic feet Alaska 6,805 241 6,745 Lower 48 States 382,036 14,788 361,959 Alabama 2,121 59 2,036 Arkansas 12,795 5 12,789 California 2,260 112 2,107 Coastal Region Onshore 277 12 261 Los Angeles Basin Onshore 84 4 80 San Joaquin Basin Onshore 1,823 96 1,690 State Offshore 76 0 76 Colorado 21,992 813 20,851

  3. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  4. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  5. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  6. Methods and apparatus for cooling electronics

    DOE Patents [OSTI]

    Hall, Shawn Anthony; Kopcsay, Gerard Vincent

    2014-12-02

    Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.

  7. ELECTRON COOLING STUDY FOR MEIC

    SciTech Connect (OSTI)

    He, Zhang; Douglas, David R.; Derbenev, Yaroslav S.; Zhang, Yuhong

    2015-09-01

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  8. Cool Roofs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Design for Efficiency » Cool Roofs Cool Roofs Learn how switching to a cool roof can save you money and benefit the environment. A cool roof is one that has been designed to reflect more sunlight and absorb less heat than a standard roof. Cool roofs can be made of a highly reflective type of paint, a sheet covering, or highly reflective tiles or shingles. Nearly any type of building can benefit from a cool roof, but consider the climate and other factors before deciding to install

  9. Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency of Refrigerators | Department of Energy Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy Efficiency of Refrigerators Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy Efficiency of Refrigerators July 29, 2014 - 2:13pm Addthis Researchers demonstrate General Electric's magnetocaloric system. | Photo courtesy of General Electric Researchers demonstrate General Electric's magnetocaloric system. | Photo courtesy of General Electric Antonio Bouza

  10. Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy

    Energy Savers [EERE]

    Efficiency of Refrigerators | Department of Energy Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy Efficiency of Refrigerators Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy Efficiency of Refrigerators July 29, 2014 - 2:13pm Addthis Researchers demonstrate General Electric's magnetocaloric system. | Photo courtesy of General Electric Researchers demonstrate General Electric's magnetocaloric system. | Photo courtesy of General Electric Antonio Bouza

  11. Microchannel Cooled Edge Cladding to Establish an Adiabatic Boundary Condition in a Slab Laser

    DOE Patents [OSTI]

    Albrecht, Georg F.; Beach, Raymond J.; Solarz, Richard W.

    2004-05-18

    The present invention provides an edge cladding for a slab laser, the edge cladding comprising a cooling channel system therein.

  12. Effects of Multiple Drying Cycles on HBU PWR Cladding Alloys | Department

    Office of Environmental Management (EM)

    of Energy Effects of Multiple Drying Cycles on HBU PWR Cladding Alloys Effects of Multiple Drying Cycles on HBU PWR Cladding Alloys The purpose of this research effort is to determine the effects of canister/cask vacuum drying and storage on radial hydride precipitation in high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures, internal gas pressures, and hoop stresses. The HBU PWR cladding alloys have a wide range of

  13. Maintaining gas cooling equipment

    SciTech Connect (OSTI)

    Rector, J.D.

    1997-05-01

    An often overlooked key to satisfactory operation and longevity of any mechanical device is proper operation and maintenance in accordance with the manufacturer`s written instructions. Absorption chillers, although they use a different technology than the more familiar vapor compression cycle to produce chilled water, operate successfully in a variety of applications if operated and maintained properly. Maintenance procedures may be more frequent than those required for vapor compression chillers, but they are also typically less complex. The goal of this article is to describe the basic operation of an absorption chiller to provide an understanding of the relatively simple tasks required to keep the machine operating at maximum efficiency for its design life and beyond. A good starting point is definitions. Gas cooling equipment is generally defined as alternative energy, non-electric cooling products. This includes absorption chillers, engine-drive chillers and packaged desiccant units, among others. Natural gas combustion drives the equipment.

  14. Conduction cooled tube supports

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  15. Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Cooling Tower Controls Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls The Federal Energy Management Program (FEMP) identified advanced cooling tower controls as a water-saving technology that is relevant to the federal sector, is commercially available, and offers significant water-savings potential. This overview provides agencies with key information to deploy innovative products and systems that may otherwise be overlooked. It also

  16. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  17. Dry borax applicator operator's manual.

    SciTech Connect (OSTI)

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.

  18. Method of drying articles

    DOE Patents [OSTI]

    Janney, Mark A. (Knoxville, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    1999-01-01

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  19. Method of drying articles

    DOE Patents [OSTI]

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  20. Cool Farm Tool | Open Energy Information

    Open Energy Info (EERE)

    aboutussuppliersustainablesourcingtools?WT.LHNAV Cost: Free Language: English Cool Farm Tool Screenshot References: Cool Farm Tool 1 Overview "The Cool Farm Tool...

  1. Western Cooling Efficiency Center | Open Energy Information

    Open Energy Info (EERE)

    Cooling Efficiency Center Jump to: navigation, search Name: Western Cooling Efficiency Center Place: Davis, CA Website: http: References: Western Cooling Efficiency Center 1...

  2. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

  3. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  4. Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus

    Office of Environmental Management (EM)

    District Energy Systems, May 2005 | Department of Energy Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005 Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005 A survey was conducted to develop a database documenting and quantifying the use of Thermal Energy Storage (TES) in campus applications. PDF icon cool_trends_on_campus.pdf More Documents & Publications Cool Trends in

  5. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

    2012-07-01

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  6. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  7. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  8. Power electronics substrate for direct substrate cooling

    DOE Patents [OSTI]

    Le, Khiet (Mission Viejo, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA); Yankoski, Edward P. (Corona, CA); Smith, Gregory S. (Woodland Hills, CA)

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  9. Commercial Scale Coal to F-T Liquid Plant Using a Dry Feed Gasifier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tower or steam systems. However, most of the water loss is evaporative loss from the cooling towers. More air- cooled heat exchangers could be added to reduce the load on the...

  10. Compressor ported shroud for foil bearing cooling

    DOE Patents [OSTI]

    Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  11. Two stage serial impingement cooling for isogrid structures

    DOE Patents [OSTI]

    Lee, Ching-Pang; Morrison, Jay A.

    2014-09-09

    A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.

  12. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phnix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  13. Helium Loop Cooling Channel Hydraulic Characterization

    SciTech Connect (OSTI)

    Olivas, Eric Richard; Morgan, Robert Vaughn; Woloshun, Keith Albert

    2015-07-02

    New methods for generating ??Mo are being explored in an effort to eliminate proliferation issues and provide a domestic supply of ??mTc for medical imaging. Electron accelerating technology is used by sending an electron beam through a series of ??Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature set for the system. In order to maintain the required temperature range, helium gas is used to serve as a cooling agent that flows through narrow channels between the target disks. Currently we are tailoring the cooling channel entrance and exits to decrease the pressure drop through the targets. Currently all hardware has be procured and manufactured to conduct flow measurements and visualization via solid particle seeder. Pressure drop will be studied as a function of mass flow and diffuser angle. The results from these experiments will help in determining target cooling geometry and validate CFD code results.

  14. Design and operating experience of the Holcomb Station dry scrubber

    SciTech Connect (OSTI)

    Emerson, R.D.

    1985-01-01

    The Holcomb Station dry flue gas desulfurization system has been operational since May, 1983. The lime based system, consisting of three spray drying absorbers and two baghouses, has met all regulatory compliance requirements and contractual guarantee values. Some serious operational problems were encountered during the startup of this system. This paper discusses these problems and subsequent solutions along with testing experience to-date. The availability of this system for the first quarter of 1985 was 99.51 percent.

  15. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore » of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  16. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore »of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  17. Cooled turbine vane with endcaps

    DOE Patents [OSTI]

    Cunha, Frank J. (Avon, CT); Schiavo, Jr., Anthony L. (Ovideo, FL); Nordlund, Raymond Scott (Orlando, FL); Malow, Thomas (Oviedo, FL); McKinley, Barry L. (Chuluota, FL)

    2002-01-01

    A turbine vane assembly which includes an outer endcap having a plurality of generally straight passages and passage segments therethrough, an inner endcap having a plurality of passages and passage segments therethrough, and a vane assembly having an outer shroud, an airfoil body, and an inner shroud. The outer shroud, airfoil body and inner shroud each have a plurality of generally straight passages and passage segments therethrough as well. The outer endcap is coupled to the outer shroud so that outer endcap passages and said outer shroud passages form a fluid circuit. The inner endcap is coupled to the inner shroud so that the inner end cap passages and the inner shroud passages from a fluid circuit. Passages in the vane casting are in fluid communication with both the outer shroud passages and the inner shroud passages. Passages in the outer endcap may be coupled to a cooling system that supplies a coolant and takes away the heated exhaust.

  18. Evaluation of the NightCool Nocturnal Radiation Cooling Concept: Annual Performance Assessment in Scale Test Buildings Stage Gate 1B

    SciTech Connect (OSTI)

    Parker, Danny S.; Sherwin, John R.

    2008-03-01

    In this report, data is presented on the long-term comparative with all of NightCool system fully operational, with circulating fans when attic conditions are favorable for nocturnal cooling and with conventional air conditioning at other times. Data is included for a full year of the cooling season in Central Florida, which stretches from April to November of 2007.

  19. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  20. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  1. Cool Trends on Campus: A Survey of Thermal Energy Storage Use...

    Office of Environmental Management (EM)

    Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005 Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus ...

  2. New AMO Consortium Focuses on Energy Efficient and Environmentally Friendly Materials for Cooling

    Broader source: Energy.gov [DOE]

    At least one out of every five kilowatt-hours of energy in the U.S. is used by cooling systems. Cooling technologies are a vital part of everyday life for Americans including food storage,...

  3. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    SciTech Connect (OSTI)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  4. Cooling Towers: Understanding Key Components of Cooling Towers...

    Broader source: Energy.gov (indexed) [DOE]

    terfscoolingtowers.pdf More Documents & Publications Guidelines for Estimating Unmetered Industrial Water Use Side Stream Filtration for Cooling Towers Install an Automatic...

  5. No Heat Spray Drying Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Objective Advance research from prototype dryer ... First commercial market is dry flavors designed to ... change from existing practice Requires novel dryer ...

  6. Air-Cooled Condensers for Next Generation Power Plants | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Air-Cooled Condensers for Next Generation Power Plants Air-Cooled Condensers for Next Generation Power Plants Power plants presentation by Greg Mines at the 2013 Annual Peer Review in Colorado. PDF icon aircooledcondensers_peerreview2013.pdf More Documents & Publications Hybrid and Advanced Air Cooling Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems Air-cooled Condensers in Next-generation Conversion Systems

  7. Best Management Practice #9: Single-Pass Cooling Equipment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9: Single-Pass Cooling Equipment Best Management Practice #9: Single-Pass Cooling Equipment Single-pass or once-through cooling systems provide an opportunity for significant water savings. In these systems, water is circulated once through a piece of equipment and is then disposed down the drain. Types of equipment that typically use single-pass cooling include CAT scanners, degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines,

  8. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  9. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA)

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  10. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge National Laboratory (ORNL) is leading the research on a novel floating refrigerant loop that cools high-power electronic devices and the motor/generator with very low cooling energy. The loop can be operated independently or attached to the air conditioning system of the vehicle to share the condenser and other mutually needed components. The ability to achieve low cooling energy in the floating loop is attributable to the liquid refrigerant operating at its hot saturated temperature (around 50 C+). In an air conditioning system, the liquid refrigerant is sub-cooled for producing cool air to the passenger compartment. The ORNL floating loop avoids the sub-cooling of the liquid refrigerant and saves significant cooling energy. It can raise the coefficient of performance (COP) more than 10 fold from that of the existing air-conditioning system, where the COP is the ratio of the cooled power and the input power for dissipating the cooled power. In order to thoroughly investigate emerging two-phase cooling technologies, ORNL subcontracted three university/companies to look into three leading two-phase cooling technologies. ORNL's assessments on these technologies are summarized in Section I. Detailed descriptions of the reports by the three university/companies (subcontractors) are in Section II.

  11. Mathematical models of cocurrent spray drying

    SciTech Connect (OSTI)

    Negiz, A.; Lagergren, E.S.; Cinar, A.

    1995-10-01

    A steady state mathematical model for a cocurrent spray dryer is developed. The model includes the mass, momentum, and energy balances for a single drying droplet as well as the total energy and mass balances of the drying medium. A log normal droplet size distribution is assumed to hold at the exit of the twin-fluid atomizer located at the top of the drying chamber. The discretization of this log normal distribution with a certain number of bins yields a system of nonlinear coupled first-order differential equations as a function of the axial distance of the drying chamber. This system of equations is used to compute the axial changes in droplet diameter, density, velocity, moisture, and temperature for the droplets at each representative bin. Furthermore, the distributions of important process parameters such as droplet moisture content, diameter, density, and temperature are also obtainable along the length of the chamber. On the basis of the developed model, a constrained nonlinear optimization problem is solved, where the exit particle moisture content is minimized with respect to the process inputs subjected to a fixed mean particle diameter at the chamber exit. Response surface studies based on empirical models are also performed to illustrate the effectiveness of these techniques in achieving the optimal solution when an a priori model is not available. The structure of empirical models obtained from the model is shown to be in agreement with the structure of the empirical models obtained from the experimental studies.

  12. GAS COOLED NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Rodwell, W.

    1958-06-10

    A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

  13. Fluid cooled electrical assembly

    DOE Patents [OSTI]

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  14. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect (OSTI)

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  15. Geothermal Heat Pumps- Cooling Mode

    Broader source: Energy.gov [DOE]

    In summer, the fluid removes heat from the building and transfers it to the relatively cooler ground in order to cool the building.

  16. Cooling Technologies | Open Energy Information

    Open Energy Info (EERE)

    generation facilities that rely on thermal sources as their energy inputs such as Coal, Natural Gas, Geothermal, Concentrates Solar Power, and Nuclear require cooling...

  17. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. [Kingston, TN; Lowe, Kirk T. [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  18. HMX Cooling Core Optimization Software

    Energy Science and Technology Software Center (OSTI)

    2006-08-31

    The Software consists of code which is used to determine the optimal configuration of an HMX cooling core in a heat exchanger.

  19. Cool Roofs | Department of Energy

    Office of Environmental Management (EM)

    power plant emissions, including carbon dioxide, sulfur dioxide, nitrous oxides, and mercury, by reducing cooling energy use in buildings. Types of Roofs and How They Can Be Made...

  20. Film cooling for a closed loop cooled airfoil

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.