Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-0995: Drum Storage Facility for Interim Storage of Materials Generated by Environmental Restoration Operations, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to construct and operate a drum storage facility at the U.S. Department of Energy's Rocky Flats Environmental Technology Site in Golden,...

2

CRAD, Management - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho MF-628 Drum Treatment Facility Idaho MF-628 Drum Treatment Facility CRAD, Management - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May, 2007 readiness assessment of the Management at the MF-628 Drum Treatment Facility at the Idaho National Laboratory, Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility

3

CRAD, Training - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho MF-628 Drum Treatment Facility Idaho MF-628 Drum Treatment Facility CRAD, Training - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Training Program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility

4

CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MF-628 Drum Treatment Facility MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Engineering program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility

5

CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance - Idaho MF-628 Drum Treatment Facility Quality Assurance - Idaho MF-628 Drum Treatment Facility CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Quality Assurance Program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Engineering - Idaho MF-628 Drum Treatment Facility

6

L AREA WASTEWATER STORAGE DRUM EVALUATION  

DOE Green Energy (OSTI)

This report documents the determination of the cause of pressurization that led to bulging deformation of a 55 gallon wastewater drum stored in L-Area. Drum samples were sent to SRNL for evaluation. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

Vormelker, P; Cynthia Foreman, C; Zane Nelson, Z; David Hathcock, D; Dennis Vinson, D

2007-11-30T23:59:59.000Z

7

Radiogenic gas accumulation in TRU waste storage drums  

DOE Green Energy (OSTI)

A field experiment was conducted over a four-year time span to determine the effect of high-activity transuranic (TRU) waste on the atmosphere within TRU waste storage drums typical of those generated in Savannah River Plant operation. Routine gas composition analyses showed that a significant amount of hydrogen can accumulate in drums that contain high alpha activity, and that flammable gas mixtures could form in such drums in spite of the radiolytic consumption of oxygen. According to this study, gas pressure accumulation does not pose a threat to the integrity of the TRU waste containers that are now being stored at the Savannah River Plant. Therefore, the 20-year storage criterion is still viable. However, the continued avoidance of a perfectly gas-tight drum seal (e.g., epoxy, metal welding) is recommended. The test drums will continue to be monitored.

Ryan, J.P.

1982-01-01T23:59:59.000Z

8

Degradation of transuranic waste drums in underground storage  

Science Conference Proceedings (OSTI)

The Hanford site is one of several U.S. Department of Energy locations that has transuranic radioactive Waste in storage, resulting from nuclear weapons material production. Transuranic waste has extremely long-lived radionuclides requiring great care in management; such waste is slated for eventual disposal in the Waste Isolation Pilot Plant in New Mexico. Most of this waste is stored in 208-{ell} (55-gal) drums below ground. At the Hanford site 37 641 drums are stored in several trenches. The drums were stacked up to five high with plywood sheeting between the layers and on top of the stacks. Plastic tarps were used to cover the drums and the plywood, with several feet of earth backfilled on top of the plastic. A fraction of the drums ({approximately}20%) were covered only with earth, not with plywood and plastic. The drums are either painted low-carbon steel or galvanized low-carbon steel. They have been placed in storage from 1970 to 1988, resulting in between 7 and 25 yr of storage. The environment is either soil or air atmosphere. The air atmosphere environment also includes, for some drum surfaces, contact with the underside of the tarp. The temperature of the air atmosphere is relatively uniform. Year-round measurements have not been taken, but available data suggest that the temperature span should be from {approximately} 10 to 30{degrees}C (50 to 86{degrees}F). Humidity in underground storage module mock-ups has been measured at nearly 90% during testing in the summer months. Subsequent tests have shown that the humidity probably drops to 50 to 60% during other seasons. This report describes results of a project to inspect the condition of the waste drums.

Duncan, D.; DeRosa, D.C.; Demiter, J.A. [Westinghouse Hanford Company, Richland, WA (United States)

1995-12-31T23:59:59.000Z

9

CSER 96-027: storage of cemented plutonium residue containers in 55 gallon drums  

Science Conference Proceedings (OSTI)

A nuclear criticality safety analysis has been performed for the storage of residual plutonium cementation containers, produced at the Plutonium Finishing Plant, in 55 gallon drums. This CSER increases the limit of total plutonium stored in each 55 gallon drum from 100 to 200 grams.

Watson, W.T.

1997-01-20T23:59:59.000Z

10

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the DTF, its support systems, tools, and drum treatment activities identified in ORPS corrective actions, NCRs or CARS have been adequately resolved. b. Lessons learned from...

11

Analytical and experimental evaluation of solid waste drum fire performance volumes I and II  

Science Conference Proceedings (OSTI)

Fire hazards associated with drum storage of radioactively contaminated wastes are a major concern in DOE facilities design for long term storage of solid wastes in drums. These facilities include drums stored in pallet arrays and in rack storage systems. This report details testing in this area

Hecker, C.F., [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Rhodes, B.T.; Beitel, J.J.; Gottuk, D.T.; Beyler, C.L.; Rosenbaum, E.R., [Hughes Associates, Inc., Columbia, MD (United States)

1995-04-28T23:59:59.000Z

12

Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2  

SciTech Connect

Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

Rabin, M.S.

1992-08-01T23:59:59.000Z

13

Nondestructive testing methods for 55-gallon, waste storage drums  

Science Conference Proceedings (OSTI)

The Westinghouse Hanford Company (WHC) authorized Pacific Northwest Laboratory (PNL) to conduct a feasibility study to identify promising nondestructive testing (NDT) methods for detecting general and localized (both pitting and pinhole) corrosion in the 55-gal drums that are used to store solid waste materials at the Hanford Site. This document presents results obtained during a literature survey, identifies the relevant reference materials that were reviewed, provides a technical description of the methods that were evaluated, describes the laboratory tests that were conducted and their results, identifies the most promising candidate methods along with the rationale for these selections, and includes a work plan for recommended follow-on activities. This report contains a brief overview and technical description for each of the following NDT methods: magnetic testing techniques; eddy current testing; shearography; ultrasonic testing; radiographic computed tomography; thermography; and leak testing with acoustic detection.

Ferris, R.H.; Hildebrand, B.P.; Hockey, R.L.; Riechers, D.M.; Spanner, J.C. [Pacific Northwest Lab., Richland, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-06-01T23:59:59.000Z

14

THERMAL EVALUATION OF DRUM TYPE RADIOACTIVE MATERIAL PACKAGING ARRAYS IN STORAGE  

SciTech Connect

Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR 71.[1] In recent years, there has been a greater need to use these packagings to store the excess fissile material, especially plutonium for long term storage. While the design requirements for safe transportation of these packagings are well defined, the requirements for safe long term storage are not well established. Since the RAM contents in the packagings produce decay heat, it is important that they are stored carefully to prevent overheating of the containment vessel (CV) seals to prevent any leakage and the impact limiter to maintain the package structural integrity. This paper analyzes different storage arrays for a typical 9977 packaging for thermal considerations and makes recommendations for their safe storage under normal operating conditions.

Gupta, N

2009-04-27T23:59:59.000Z

15

Results for the Independent Sampling and Analysis of Used Oil Drums at the Impact Services Facility in Oak Ridge, TN  

SciTech Connect

The U.S. Department of Energy (DOE) requested that Oak Ridge Associated Universities (ORAU), via the Oak Ridge Institute for Science and Education (ORISE) contract, perform independent sampling and analysis of used oils contained within eight 55 gallon drums stored at the former IMPACT Services facility, located at the East Tennessee Technology Park in Oak Ridge, Tennessee. These drums were originally delivered by LATA Sharp Remediation Services (LSRS) to IMPACT Services on January 11, 2011 as part of the Bldg. K-33 demolition project, and the drums plus contents should have been processed as non-hazardous non-radiological waste by IMPACT Services. LSRS received a certificate of destruction on August 29, 2012 (LSRS 2012a). However, IMPACT Services declared bankruptcy and abandoned the site later in 2012, and eight of the original eleven K-33 drums are currently stored at the facility. The content of these drums is the subject of this investigation. The original drum contents were sampled by LSRS in 2010 and analyzed for gross alpha, gross beta, and polychlorinated biphenyls (PCBs), using both compositing and grab sampling techniques. The objective of this 2013 sample and analysis effort was to duplicate, to the extent possible, the 2010 sampling and analysis event to support final disposition decisions. Part of that decision process includes either verifying or refuting the assertion that oils that are currently stored in drums at the IMPACT Services facility originated from Bldg. K-33 equipment.

none,

2013-04-25T23:59:59.000Z

16

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project Â… 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR SAFETY (NS) NUCLEAR SAFETY (NS) Objective: NS.1 Facility safety documentation is in place and has been implemented that describes the "safety envelope" of the facility. (CR 7) Criterion: An unreviewed safety question (USQ) screen/evaluation has been completed and approved for the installation and use of the DTF for drum treatment in the DTF. Objective: NS.2 The facility systems and procedures, for the DTF and drum treatment activities, are consistent with the description of the facility, procedures, and accident analysis included in the safety basis. (CR9) Criterion: The DTF and drum treatment activities are adequately described in the documented safety analysis (DSA) or changes have been identified for inclusion in the next annual update.

17

Type B Drum packages  

Science Conference Proceedings (OSTI)

The Type B Drum package is a container in which a single drum containing Type B quantities of radioactive material will be packaged for shipment. The Type B Drum containers are being developed to fill a void in the packaging and transportation capabilities of the US Department of Energy (DOE), as no double containment packaging for single drums of Type B radioactive material is currently available. Several multiple-drum containers and shielded casks presently exist. However, the size and weight of these containers present multiple operational challenges for single-drum shipments. The Type B Drum containers will offer one unshielded version and, if needed, two shielded versions, and will provide for the option of either single or double containment. The primary users of the Type B Drum container will be any organization with a need to ship single drums of Type B radioactive material. Those users include laboratories, waste retrieval facilities, emergency response teams, and small facilities.

Edwards, W.S.

1995-11-01T23:59:59.000Z

18

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

19

Upcoming Natural Gas Storage Facilities.  

U.S. Energy Information Administration (EIA)

Kentucky Energy Hub Project Orbit Gas Storage Inc KY Leader One Gas Storage Project Peregrine Midstream Partners WY Tricor Ten Section Storage Project

20

Big storage facilities eyed in Texas, Louisiana  

SciTech Connect

Two large oil natural gas storage facilities are planned in U.S. Gulf Coast states. This paper reports that two Houston companies propose to construct a storage facility in Louisiana with more than 50 bcf of working gas capacity. And units of ARCO and Plains Resources have signed a letter of intent expected to lead to construction of a 600,000 bbl crude oil storage facility on the Houston ship channel.

Not Available

1992-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FAILURE ANALYSIS: WASTEWATER DRUM BULGING  

DOE Green Energy (OSTI)

A 55 gallon wastewater drum lid was found to be bulged during storage in a remote area. Drum samples were obtained for analysis. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

Vormelker, P

2008-09-15T23:59:59.000Z

22

Material handling for the Los Alamos National Laboratory Nuclear Material Storage Facility  

SciTech Connect

This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels.

Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

1999-04-01T23:59:59.000Z

23

President Reagan Calls for a National Spent Fuel Storage Facility...  

National Nuclear Security Administration (NNSA)

for a National Spent Fuel Storage Facility The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

24

Rules and Regulations for Underground Storage Facilities Used...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum...

25

Optimal operating strategy for a storage facility  

E-Print Network (OSTI)

In the thesis, I derive the optimal operating strategy to maximize the value of a storage facility by exploiting the properties in the underlying natural gas spot price. To achieve the objective, I investigate the optimal ...

Zhai, Ning

2008-01-01T23:59:59.000Z

26

Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums  

SciTech Connect

Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques.

Bonner, C.; Schanfein, M.; Estep, R. [and others

1999-03-01T23:59:59.000Z

27

Waste Encapsulation Storage Facility, January 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

28

Waste Encapsulation Storage Facility, January 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

29

Calcined solids storage facility closure study  

SciTech Connect

The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

1998-02-01T23:59:59.000Z

30

Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities  

Science Conference Proceedings (OSTI)

In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

Sasser, K.

1994-06-01T23:59:59.000Z

31

Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory  

Science Conference Proceedings (OSTI)

This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

Adkins, H.E.

1996-10-29T23:59:59.000Z

32

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

33

Large electrical-energy storage facilities  

SciTech Connect

Problems associated with the utilization of various types of energy-storage facilities are considered, three areas being singled out: operation during the variable portion of the load curve with double regulation effect, handling of peaks and the filling in of off-peak dips in the load curve; the generation of power impulses through the use of stored energy for short-term supply of load; and the conversion of one form of energy to another. The present-day state of development and introduction of storage facilities of various kinds is described. The conditions for utilization of large-scale storage on the power systems of the USSR are evaluated, and the principles for determining the economic efficiency are formulated.

Ershevich, V.V.

1985-01-01T23:59:59.000Z

34

Y-12 uranium storage facility?a Ťdream come true?  

NLE Websites -- All DOE Office Websites (Extended Search)

ranks and actually provides the first impedance for the just finished highly enriched uranium storage facility. Recently the Highly Enriched Uranium Material Facility was...

35

Drum Ring Tools: Removal/Installation Set  

Container drums and barrels are commonly known and widely used for shipping, storage, etc. They typically have a rigid cylindrical construction, such as steel, and ...

36

EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74: Low-level Waste Drum Staging Building at Weapons 74: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to place a 3 meter (m) by 4.5 m prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility at Technical Area 16, U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico, and to use the building as a staging site for sealed 55-gallon drums of noncompactible waste contaminated with low levels of tritium. PUBLIC COMMENT OPPORTUNITIES

37

Transuranic drum hydrogen explosion tests  

DOE Green Energy (OSTI)

Radiolysis of transuranic (TRU) waste can produce flammable ({gt}4%) mixtures of hydrogen gas in 55 gallon vented waste storage drums. Explosion testing was conducted at the E. I. duPont Explosion Hazards Laboratory to determine the minimum concentration at which a drum lid removal occurs. A secondary objective was to investigate the maximum pressure and rate of pressure rise as a function of hydrogen concentration. Prior to beginning any drum explosion tests, small-scale pressure vessel tests and drum mixing tests were completed. The pressure vessel tests established a relationship between hydrogen concentration and the maximum pressure and pressure rise. These small-scale tests were used to establish the concentration range over which a drum lid removal might occur. Mixing tests were also conducted to determine the equilibration times for two different hydrogen-air mixtures in a TRU drum. Nine successful drum explosion tests were conducted over a hydrogen concentration range of 13--36% (v/v), test results suggest total integrity failure via drum lid removal will not occur below 15% (v/v). Controlled small-scale pressure vessel tests were conducted over a range of 5--50% (v/v) to determine the pressure and pressure rise as a function of hydrogen concentration. No similar relationship could be established for the drum explosion tests due to the variability in drum lid sealing and retaining ring closure. Mixing tests conducted at 5% and 25% (v/v) indicate adding pure hydrogen to the middle of a drum causes some initial stratification along the drum length, but the air and hydrogen become well-mixed after 50 minutes. 4 refs., 11 figs., 2 tabs.

Dykes, K.L.; Meyer, M.L.

1991-06-01T23:59:59.000Z

38

EVALUATION OF RADIOLYSIS INDUCED HYDROGEN GENERATION IN DOT 6M DRUMS FROM INTEC  

DOE Green Energy (OSTI)

Three DOT 6M 30-gallon drums are scheduled to be shipped from the Idaho Nuclear Technology Engineering Center (INTEC) at the Idaho National Laboratory (INL) to L-Area at the Savannah River Site (SRS). These three drums contain radioactive materials that resulted from the material recovery effort following a small explosion that had occurred in the Idaho Chemical Processing Plant (ICPP) hot chemistry laboratory (HCL). In support of the shipment and subsequent storage of the three DOT 6M drums, an evaluation of the potential for molecular hydrogen production in the drums has been completed and documented herein. The potential sources of hydrogen evaluated in the current report include radiolytic decomposition of polymeric materials in the DOT 6M drums No.3031 and No.3598 and the radiolytic decomposition of water in drum No.20102. No other potential sources have been identified based upon reported drum contents and packaging configuration. A parametric approach was used to evaluate the maximum quantity of molecular hydrogen that can be expected to evolve in two DOT 6M 30-gallon drums in support of receipt and subsequent interim storage prior to canyon processing. These drums are two of three drums scheduled for shipment from INTEC to SRS as part of the decommissioning effort of the INTEC facility. The three DOT 6M drums will be received at L-Area in SRS and stored for up to 13-years prior to final disposition at HB-Line in 2020. Results of the current analysis do not include parametric analysis of drum No.20102 containing 114/133 SAL (salvage) which contains UO{sub 3} powder. This drum has not been identified as containing polymeric materials and a conservative calculation indicates that the maximum gross molecular hydrogen production due to the radiolysis of adsorbed moisture would yield a production rate of 5.1-cm{sup 3}/yr, driven primarily by the large surface are to volume ratio of the oxide powder. The remaining two drums, No.3031 and No.3598 contain polymer bags and/or bottles that will be subject to radiolytically induced hydrogen gas generation due to decomposition of the polymers. Conservative values for hydrogen gas generation rates and rates of pressure increase within the drums have been determined based upon a number of inputs and assumptions. The results are that hydrogen will be produced at a rate of 1.93-cm{sup 3}/yr and 1.50-cm{sup 3}/yr, respectively for drums No.3031 and No.3598. Projected molecular hydrogen concentrations at 2020 have been calculated to remain below the lower flammability limit of 4% molecular hydrogen by volume in air.

Vinson, D

2007-06-18T23:59:59.000Z

39

Secretary Moniz Tours Kemper Carbon Capture and Storage Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Addthis 1 of 5 A group including U.S. Secretary of Energy Ernest J. Moniz and Mississippi Gov. Phil Bryant tours the Kemper carbon capture and storage facility in Liberty, Mississippi, on Friday, Nov. 8. Kemper is the largest carbon capture and storage facility in the United States. | Photo Copyright 2013 Southern Company. 2 of 5 Southern Company CEO Tom Fanning, far right, and Mississippi Power CEO Ed Holland, second from right, greet U.S. Secretary of Energy Ernest J. Moniz, left, as he arrives to tour the Kemper carbon capture and storage facility in Liberty, Mississippi. | Photo Copyright 2013 Southern Company. 3 of 5 Southern Company CEO Tom Fanning, left, and U.S. Secretary of Energy Ernest

40

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

Science Conference Proceedings (OSTI)

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, “Radioactive Waste Management Manual.” Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

2003-05-01T23:59:59.000Z

42

EA-0820: Construction of Mixed Waste Storage RCRA Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would...

43

The necessity for permanence : making a nuclear waste storage facility  

E-Print Network (OSTI)

The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

Stupay, Robert Irving

1991-01-01T23:59:59.000Z

44

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

45

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

46

Injection/withdrawal scheduling for natural gas storage facilities  

Science Conference Proceedings (OSTI)

Control decisions for gas storage facilities are made in the face of extreme uncertainty over future natural gas prices on world markets. We examine the problem faced by owners of storage contracts of how to manage the injection/withdrawal schedule of ... Keywords: natural gas storage, optimization, scheduling

Alan Holland

2007-03-01T23:59:59.000Z

47

Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory  

SciTech Connect

This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

Smith, R.J.

1998-03-31T23:59:59.000Z

48

303-K Storage Facility report on FY98 closure activities  

SciTech Connect

This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy.

Adler, J.G.

1998-07-17T23:59:59.000Z

49

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project Â… 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIATION PROTECTION (RP) RADIATION PROTECTION (RP) Objective: RP.1 Adequate and correct contamination control procedures and safety limits are in place for operating the DTF ventilation system and conducting drum treatment operations in the DTF. (CR1, CR10) a. A thorough hazard analysis addressing contamination control and radiation protection has been completed for drum treatment activities in the DTF. b. The design of the DTF and ventilation system is adequate to prevent the spread of contamination. The adequacy has been demonstrated by testing and mockup operations. c. Appropriate limits, contamination control methods, and radiation protection practices have been identified and included in the applicable AMOW, PTW and procedures. d. Adequate radiation monitoring instruments are installed and properly located

50

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

51

Drum inspection robots: Application development  

Science Conference Proceedings (OSTI)

Throughout the Department of Energy (DOE), drums containing mixed and low level stored waste are inspected, as mandated by the Resource Conservation and Recovery Act (RCRA) and other regulations. The inspections are intended to prevent leaks by finding corrosion long before the drums are breached. The DOE Office of Science and Technology (OST) has sponsored efforts towards the development of robotic drum inspectors. This emerging application for mobile and remote sensing has broad applicability for DOE and commercial waste storage areas. Three full scale robot prototypes have been under development, and another project has prototyped a novel technique to analyze robotically collected drum images. In general, the robots consist of a mobile, self-navigating base vehicle, outfitted with sensor packages so that rust and other corrosion cues can be automatically identified. They promise the potential to lower radiation dose and operator effort required, while improving diligence, consistency, and documentation.

Hazen, F.B. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Warner, R.D. [USDOE, Washington, DC (United States)

1996-02-01T23:59:59.000Z

52

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

Laycak, D T

2010-03-05T23:59:59.000Z

53

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

54

Existing and Proposed Underground Storage Facilities  

U.S. Energy Information Administration (EIA)

Energy Information Administration 158 Natural Gas 1996: Issues and Trends Table F1. Summary of Existing Underground Natural Gas Storage, by Region and Type of ...

55

NIST: Neutron Imaging Facility - Hydrogen Storage  

Science Conference Proceedings (OSTI)

Hydrogen Storage. Ultimately if a fuel cell vehicle is to function efficiently it must have an efficient means of storing and delivering hydrogen. ...

56

EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Construction of Mixed Waste Storage RCRA Facilities, 0: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would take place at the U.S. Department of Energy's Oak Ridge National Laboratory in Oak Ridge, Tennessee. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 1994 EA-0820: Finding of No Significant Impact

57

Rules and Regulations for Underground Storage Facilities Used for Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations for Underground Storage Facilities Used for Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to underground storage facilities for petroleum and

58

Safety analysis report for the Waste Storage Facility. Revision 2  

SciTech Connect

This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

Bengston, S.J.

1994-05-01T23:59:59.000Z

59

Pella Drum Opener  

The Pella Drum Opener is a developed and tested tool that facilitates the opening of open-head steel drums and resolves a safety issue with respect to drum handling.

60

Documented Safety Analysis for the Waste Storage Facilities March 2010  

SciTech Connect

This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D T

2010-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Documented Safety Analysis for the Waste Storage Facilities  

Science Conference Proceedings (OSTI)

This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D

2008-06-16T23:59:59.000Z

62

Staging and storage facility feasibility study. Final report  

SciTech Connect

This study was performed to investigate the feasibility of adapting the design of the HWVP Canister Storage Building (CSB) to meet the needs of the WHC Spent Nuclear Fuel Project for Staging and Storage Facility (SSF), and to develop Rough Order of Magnitude (ROM) cost and schedule estimates.

Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-01T23:59:59.000Z

63

Final safety analysis report for the irradiated fuels storage facility  

SciTech Connect

A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1$sup 1$/$sub 2$ cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100$sup 0$F is reached. (LK)

Bingham, G.E.; Evans, T.K.

1976-01-01T23:59:59.000Z

64

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project Â… 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONDUCT OF OPERATIONS (OP) CONDUCT OF OPERATIONS (OP) Objective: OP.1 Adequate and correct procedures and safety limits are in place for operating the DTF ventilation system and conducting treatment activities. (CR1, CR-10) Criteria: a. All required procedures, AMOWs, PTWs, and work orders have been prepared, validated, and approved for all routine treatment and support activities. b. Procedures include actions for anticipated abnormal or emergency conditions. c. Workers have demonstrated their familiarity and knowledge of the procedures during interviews and mockup operations. Objective: OP.2 Routine drills have been prepared and conducted for the DTF drum treatment activities. (CR11) Criteria; a. Drills have been prepared that address the anticipated abnormal and

65

303-K Storage Facility closure plan. Revision 2  

SciTech Connect

Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

Not Available

1993-12-15T23:59:59.000Z

66

Thermal Storage Systems at IBM Facilities  

E-Print Network (OSTI)

In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27,000 ton hours. Through reduced chiller plant capacity and annual operating cost savings in primarily electric demand charges the payback will be approximately 3 1/2 years. The water is stored in multiple, insulated tanks, located above the ground. A similar but smaller system at IBM's Charlotte, North Carolina plant has no provisions for heat reclaim. Instead, it uses cooling tower water directly in the chilled water circuit when outside conditions permit. This paper presents system designs, control modes and economic considerations and describes IBM's experience to date with large volume storage systems.

Koch, G.

1981-01-01T23:59:59.000Z

67

President Reagan Calls for a National Spent Fuel Storage Facility |  

National Nuclear Security Administration (NNSA)

Reagan Calls for a National Spent Fuel Storage Facility | Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Reagan Calls for a National Spent ... President Reagan Calls for a National Spent Fuel Storage Facility October 08, 1981

68

Diurnal ice storage cooling systems for Army facilities  

DOE Green Energy (OSTI)

The US Army's experience with diurnal ice storage (DIS) cooling systems for one of its facilities is discussed in this paper. A few favorable characteristics of an Army post for the application of storage cooling systems are identified. A nominal 900 ton-hour (t-h) ice-in-tank DIS cooling system was installed at Ft. Stewart, GA, and has been in operation since March 1987 to demonstrate the applicability of DIS cooling systems to Army facilities. Information on the design, construction, operation, and performance of the Ft. Stewart DIS cooling system is presented. 7 refs., 9 figs., 3 tabs.

Sohn, C.W.; Tomlinson, J.J.

1989-01-01T23:59:59.000Z

69

Waste Encapsulation and Storage Facility mission analysis report  

Science Conference Proceedings (OSTI)

This report defines the mission for the Waste Encapsulation and Storage Facility (WESF). It contains summary information regarding the mission analysis which was performed by holding workshops attended by relevant persons involved in the WESF operations. The scope of the WESF mission is to provide storage of Cesium (Cs) and Strontium (Sr) capsules, previously produced at WESF, until every capsule has been removed from the facility either to another storage location, for disposal or for beneficial use by public or private enterprises. Since the disposition of the capsules has not yet been determined, they may be stored at WESF for many years, even decades. The current condition of the WESF facility must be upgraded and maintained to provide for storage which is safe, cost effective, and fully compliant with DOE direction as well as federal, state, and local laws and regulations. The Cs capsules produced at WESF were originally released to private enterprises for uses such as the sterilization of medical equipment; but because of the leakage of one capsule, all are being returned. The systems, subsystems, and equipment not required for the storage mission will be available for use by other projects or private enterprises. Beyond the storage of the Cs and Sr capsules, no future mission for the WESF has been identified.

Lund, D.P.

1995-05-24T23:59:59.000Z

70

Lessons Learned from Radioactive Waste Storage and Disposal Facilities  

Science Conference Proceedings (OSTI)

The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.

Esh, David W.; Bradford, Anna H. [U.S. Nuclear Regulatory Commission, Two White Flint North, MS T7J8, 11545 Rockville Pike, Rockville, MD 20852 (United States)

2008-01-15T23:59:59.000Z

71

Cool Storage Economic Feasibility Analysis for a Large Industrial Facility  

E-Print Network (OSTI)

The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis. The aggregation of building information for predicting central plant behavior at the site is discussed. The dollar benefits and costs for the project are favorable, providing a payback in the neighborhood of 4 to 5 years.

Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

1988-01-01T23:59:59.000Z

72

Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan  

SciTech Connect

This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

Shank, D.R.

1994-12-29T23:59:59.000Z

73

Intelligent Mobile Sensor System for drum inspection and monitoring -- Volume 2. Final report, October 1, 1993--April 22, 1995  

Science Conference Proceedings (OSTI)

The objective of the Intelligent Mobile Sensor System (IMSS) project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort was a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The system has an integrated sensor suite for problem-drum detection, and creates and maintains a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort was separated into three phases of which phase three is now complete. The first phase demonstrated an integrated system (maturity level IVa) for monitoring and inspection activities for waste storage facility operations. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype employed an integrated design that considered operational requirements, hardware costs, maintenance, safety, and robustness. The final phase has demonstrated the commercial viability of the vehicle in operating waste storage facilities at Fernald, Ohio and the Idaho National Engineering Laboratory (INEL). This report summarizes the system upgrades performed in phase 3 and the evaluation of the IMSS Phase 3 system and vehicle.

NONE

1995-12-31T23:59:59.000Z

74

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project Â… 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRITICALITY SAFETY CRITICALITY SAFETY OBJECTIVE CS.1 Facility safety documentation that describes the "safety envelope" for the AR Project II activities is in place and has been implemented and administrative and engineering controls to prevent and mitigate hazards associated with commencing the AR Project II activities are tailored to the work being performed and the associated hazards to meet the following criteria: CRITERIA: CS. 1.1 Criticality safety requirements are current, approved, and properly controlled. CS. 1.2 Facility safety and criticality requirements have been incorporated into applicable procedures and documents. REVIEW APPROACH: Document Reviews: * Review applicable CSEs for identification of facility hazards and development

75

Commercial experience with facility deactivation to safe storage  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

Sype, T.T. [Sandia National Labs., Albuquerque, NM (United States); Fischer, S.R. [Los Alamos National Lab., NM (United States); Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

76

Drum-boiler dynamics  

Science Conference Proceedings (OSTI)

A nonlinear dynamic model for natural circulation drum-boilers is presented. The model describes the complicated dynamics of the drum, downcomer, and riser components. It is derived from first principles, and is characterized by a few physical parameters. ...

K. J. íStröM; R. D. Bell

2000-03-01T23:59:59.000Z

77

Hydrogen Trailer Storage Facility (Building 878). Consequence analysis  

DOE Green Energy (OSTI)

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This consequence analysis documents the impact that a hydrogen accident could have to employees, the general public, and nearby facilities. The computer model ARCHIE was utilized to determine discharge rates, toxic vapor dispersion analyses, flammable vapor cloud hazards, explosion hazards, and flame jets for the Hydrogen Trailer Storage Facility located at Building 878. To determine over pressurization effects, hand calculations derived from the Department of the Air Force Manual, ``Structures to Resist the Effects of Accidental Explosions,`` were utilized. The greatest distances at which a postulated facility event will produce the Lower Flammability and the Lower Detonation Levels are 1,721 feet and 882 feet, respectively. The greatest distance at which 10.0 psi overpressure (i.e., total building destruction) is reached is 153 feet.

Banda, Z.; Wood, C.L.

1994-12-01T23:59:59.000Z

78

Recommendations on the proposed Monitored Retrievable Storage Facility  

SciTech Connect

Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

Not Available

1985-10-01T23:59:59.000Z

79

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project Â… 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations (OP) Conduct of Operations (OP) OBJECTIVE OP.1 Resources are effectively allocated to address environmental, safety, health, and quality (ESH&Q), programmatic, and operational considerations required for commencing AR Project II activities to meet the following criteria: CRITERIA: OP.1.1. There are sufficient numbers of trained/qualified operations personnel to conduct and support the activity. OP. 1.2 There are adequate facilities and equipment available to ensure operational support is adequate for the activity. (Such support services include operations, training, maintenance, waste management, environmental protection, industrial safety and hygiene, radiological protection and health physics, emergency preparedness, fire protection, quality assurance, criticality safety, and

80

Hanford facility dangerous waste permit application, PUREX storage tunnels  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

Price, S.M.

1997-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Occupational dose estimates for a monitored retrievable storage facility  

SciTech Connect

Occupational doses were estimated for radiation workers at the monitored retrievable storage (MRS) facility. This study provides an estimate of the occupational dose based on the current MRS facility design, examines the extent that various design parameters and assumptions affect the dose estimates, and identifies the areas and activities where exposures can be reduced most effectively. Occupational doses were estimated for both the primary storage concept and the alternate storage concept. The dose estimates indicate the annual dose to all radiation workers will be below the 5 rem/yr federal dose equivalent limit. However, the estimated dose to most of the receiving and storage crew (the workers responsible for the receipt, storage, and surveillance of the spent fuel and its subsequent retrieval), to the crane maintenance technicians, and to the cold and remote maintenance technicians is above the design objective of 1 rem/yr. The highest annual dose is received by the riggers (4.7 rem) in the receiving and storage crew. An indication of the extent to which various design parameters and assumptions affect the dose estimates was obtained by changing various design-based assumptions such as work procedures, background dose rates in radiation zones, and the amount of fuel received and stored annually. The study indicated that a combination of remote operations, increased shielding, and additional personnel (for specific jobs) or changes in operating procedures will be necessary to reduce worker doses below 1.0 rem/yr. Operations that could be made at least partially remote include the removal and replacement of the tiedowns, impact limiters, and personnel barriers from the shipping casks and the removal or installation of the inner closure bolts. Reductions of the background dose rates in the receiving/shipping and the transfer/discharge areas may be accomplished with additional shielding.

Harty, R.; Stoetzel, G.A.

1986-06-01T23:59:59.000Z

82

Intelligent mobile sensor system for drum inspection and monitoring: Phase 1. Topical report, October 1, 1992--June 8, 1993  

SciTech Connect

The objective of this project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in narrow aisles and interpolating the free aisle space between rows of stacked drums. The system has an integrated sensor suite for leak detection, and is interfaced with a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which positions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 90% of all drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase one is now complete. The first phase has demonstrated an integrated system for monitoring and inspection activities for waste storage facility operations. This demonstration system was quickly fielded and evaluated by leveraging technologies developed from previous NASA and DARPA contracts and internal research. The second phase will demonstrate a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project.

Not Available

1993-06-01T23:59:59.000Z

83

DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS  

SciTech Connect

Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

Mickalonis, J.; Vormelker, P.

2009-07-31T23:59:59.000Z

84

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

85

EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico EA-0874: Low-level Waste Drum...

86

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

Science Conference Proceedings (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

87

Hot air drum evaporator  

DOE Patents (OSTI)

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, Roger L. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

88

Viability of Existing INL Facilities for Dry Storage Cask Handling  

SciTech Connect

This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

2013-04-01T23:59:59.000Z

89

Hazards assessment for the Hazardous Waste Storage Facility  

SciTech Connect

This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

Knudsen, J.K.; Calley, M.B.

1994-04-01T23:59:59.000Z

90

Recommendations on the proposed Monitored Retrievable Storage Facility  

Science Conference Proceedings (OSTI)

Following the Department of Energy`s announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE`s primary and secondary sites, were invited to participate in the state`s review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor`s Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

Not Available

1985-10-01T23:59:59.000Z

91

Recommendations on the proposed Monitored Retrievable Storage Facility  

SciTech Connect

Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

1985-10-01T23:59:59.000Z

92

Optimal Design of Storage Facility in BioOptimal Design of Storage Facility in Bio--ethanol Supply Chain under Uncertaintyethanol Supply Chain under Uncertainty Yongxi (Eric) Huang, Prof. Yueyue Fan  

E-Print Network (OSTI)

Optimal Design of Storage Facility in BioOptimal Design of Storage Facility in Bio--ethanol Supply facility. A case study based on the California is included, in which the bio-ethanol is produced via

California at Davis, University of

93

Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage Facility - Revision 1  

Science Conference Proceedings (OSTI)

The majority of commercial USA nuclear stations have constructed on-site LLW storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. These Guidelines focus on operational considerations and incorporate many of the lessons learned while operating various types of LLW storage facilities. This document was reviewed by the USNRC. Subsequently, the USNRC issued RIS 2008-32, Interim LLRW Storage at NPPs, which recognizes the meth...

2009-02-23T23:59:59.000Z

94

Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities  

SciTech Connect

This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

1989-01-01T23:59:59.000Z

95

Maximizing Gross Margin of a Pumped Storage Hydroelectric Facility Under Uncertainty in Price and Water Inflow.  

E-Print Network (OSTI)

??The operation of a pumped storage hydroelectric facility is subject to uncertainty. This is especially true in today’s energy markets. Published models to achieve optimal… (more)

Ikudo, Akina

2009-01-01T23:59:59.000Z

96

Guide for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility  

Science Conference Proceedings (OSTI)

As a result of increasing low-level waste (LLW) disposal site uncertainty, the industry expects that utilities will have to rely on their own on-site storage LLW storage programs in the near future. This report captures essential information related to the operation of an on-site LLW storage program. The report is a comprehensive reference to which utilities can routinely refer throughout the development and implementation of the storage program and operation of the storage facility.

2004-11-16T23:59:59.000Z

97

Battery Energy Storage Test (BEST) Facility: Summary report, 1976-1986: Final report  

SciTech Connect

This report summarizes the development, operations, and contributions of the Battery Energy Storage Test Facility. Providing direction for the nation's battery technology research, the facility has generated a better understanding of the work involved in operating energy storage systems and has been instrumental in demonstrating lead-acid battery applications for utilities worldwide.

Hyman, E.A.

1986-12-01T23:59:59.000Z

98

Viability of Existing INL Facilities for Dry Storage Cask Handling R1 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Viability of Existing INL Facilities for Dry Storage Cask Handling Viability of Existing INL Facilities for Dry Storage Cask Handling R1 Viability of Existing INL Facilities for Dry Storage Cask Handling R1 While dry storage technologies are some of the safest in the world, the U.S. Department of Energy is planning a confirmatory dry storage project for high burnup fuel. This report evaluates existing capabilities at Idaho National Laboratory (INL) to determine if a practical and cost effective method could be developed for handling and opening full-sized dry storage casks. Existing facilities at the Idaho Nuclear Technology and Engineering Center provide the infrastructure to support handling and examining of casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal

99

Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1  

SciTech Connect

The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

King, J.W.

1993-08-01T23:59:59.000Z

100

Fort Drum integrated resource assessment  

Science Conference Proceedings (OSTI)

The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)  

SciTech Connect

Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

CHASTAIN, S.A.

2005-10-24T23:59:59.000Z

102

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

103

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network (OSTI)

Texas Utilities Electric Company has been actively encouraging installations of thermal storage since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either constructing thermal storage or using it on a day-by-day basis. This presentation will discuss three technologies for thermal storage systems noting the particular advantages of each. Thermal storage technologies are selected by the temperature range of the storage media. This is not a design-oriented presentation, but an overview of what one utility sees taking place in the commercial and industrial refrigeration market place.

Knipp, R. L.

1986-06-01T23:59:59.000Z

104

THERMAL PERFORMANCE ANALYSIS FOR WSB DRUM  

SciTech Connect

The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum.

Lee, S

2008-06-26T23:59:59.000Z

105

Conceptual design statement of work for the immobilized low-activity waste interim storage facility project  

SciTech Connect

The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

Carlson, T.A., Fluor Daniel Hanford

1997-02-06T23:59:59.000Z

106

Criticality Safety Controls for 55-Gallon Drums with a Mass Limit of 200 grams Pu-239  

DOE Green Energy (OSTI)

The following 200-gram Pu drum criticality safety controls are applicable to RHWM drum storage operations: (1) Mass (Fissile/Pu) - each 55-gallon drum or its equivalent shall be limited to 200 gram Pu or Pu equivalent; (2) Moderation - Hydrogen materials with a hydrogen density greater than that (0.133 g H/cc) of polyethylene and paraffin are not allowed and hydrogen materials with a hydrogen density no greater than that of polyethylene and paraffin are allowed with unlimited amounts; (3) Interaction - a spacing of 30-inches (76 cm) is required between arrays and 200-gram Pu drums shall be placed in arrays for 200-gram Pu drums only (no mingling of 200-gram Pu drums with other drums not meeting the drum controls associated with the 200-gram limit); (4) Reflection - no beryllium and carbon/graphite (other than the 50-gram waiver amount) is allowed, (note that Nat-U exceeding the waiver amount is allowed when its U-235 content is included in the fissile mass limit of 200 grams); and (5) Geometry - drum geometry, only 55-gallon drum or its equivalent shall be used and array geometry, 55-gallon drums are allowed for 2-high stacking. Steel waste boxes may be stacked 3-high if constraint.

Chou, P

2011-12-14T23:59:59.000Z

107

Federal Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August 8, 1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August.. Page 1 of 18 Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August.. Page 1 of 18 EM Home | Regulatory Compliance | Environmental Compliance Agreements Federal Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August 8, 1996 NOTE: As of December 16, 1996, for the Oak Ridge Reservation this National Agreement was superseded by the Oak Ridge Reservation Polychlorinated Biphenyl Federal Facilities Compliance Agreement (ORR-PCB-FFCA). The ORR-PCB-FFCA will be available soon. Table of Contents I. Introduction II. Definitions III. Covered Materials IV. Statement of Facts & Conclusions of Law V. Compliance Requirements VI. Submittal and Review of Annual Status Report VII. Notification VIII. Dispute Resolution IX. Extensions

108

Hanford Site existing irradiated fuel storage facilities description  

SciTech Connect

This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

Willis, W.L.

1995-01-11T23:59:59.000Z

109

Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums  

Science Conference Proceedings (OSTI)

Since beginning operations in 1954, the Department of Energy's Savannah River Site FB-Line conducted atomic energy defense activities consistent with the listing in Section 10101(3) of the Nuclear Waste Policy Act of 1982. The facility mission was to process and convert dilute plutonium solution into highly purified weapons grade plutonium metal. As a result of various activities conducted in support of the mission (e.g., operation, maintenance, repair, clean up, and facility modifications), the facility generated transuranic waste. This document, along with referenced supporting documents, provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration,equipment, process operations, and waste management practices.

Lunsford, G.F.

1999-08-23T23:59:59.000Z

110

Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, J.W.; Nenni, J.A.

2003-05-22T23:59:59.000Z

111

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

112

NIST Physicists 'Entangle' Microscopic Drum's Beat with ...  

Science Conference Proceedings (OSTI)

... entangled” a microscopic mechanical drum with electrical signals ... Entanglement has technological uses. ... cooled" the drum to a very low energy level ...

2013-10-22T23:59:59.000Z

113

Assay of Drums with Unknown Content Stored in 247-41F  

Science Conference Proceedings (OSTI)

The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decontamination and Decommissioning Program (FDD) to determine the radionuclide content in two drums that were stored in an inactive warehouse of the Naval Fuels facility. The drums were labeled as containing fissile material and were placed in a critically safe arrangement, but it was not known whether they still contained the fissile material. Our g-PHA assay results indicate that the unknown highly enriched uranium (HEU) content of the two drums is one and 0.5 grams of surface contamination. Our neutron measurements confirmed that there are no significant lumps of 235U present in these drums and that only surface contamination is present. The results confirmed that the facility was in compliance with administrative controls for fissile materials and that it is safe to open the drums for visual inspection.

Dewberry, R.

2002-12-05T23:59:59.000Z

114

Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study  

SciTech Connect

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.

1995-07-14T23:59:59.000Z

115

Data Storage and Access Policy for C-CAMP facilities Experimental Data  

E-Print Network (OSTI)

Data Storage and Access Policy for C-CAMP facilities Experimental Data At the conclusion of a project, data given to clients will NOT include raw data files. a) In the case of Genomics, base call) In the case of Proteomics, LC spectra and *.raw files will NOT be provided. Only processed data files (in

Udgaonkar, Jayant B.

116

Site selection and assessment for a nuclear storage facility  

SciTech Connect

We investigate the structure and accuracy of the decision making process in finding an optimal location for stored nuclear materials for 25-50 years. Using a well-documented facility design, benefit hierarchy is set up for different sites to rank a given site for different options. Criteria involve safeguards standards, technical viability, environmental effects, economics, political impact, and public acceptance. Problem faced here is multi-criterion decision making. Two approaches are investigated: analytic hierarchy process (AHP) of Saaty, and fuzzy logic approach of Yager. Whereas AHP requires a pairwise comparison of criteria and pairwise comparison of alternatives, in Yager`s approach each alternative is considered independently, allowing one to extend the analysis without performing time-consuming computation.

Rutherford, D.A.; Zardecki, A.

1996-09-01T23:59:59.000Z

117

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage for Scientific Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility-Wide Management and Storage for Scientific Data Facility-Wide Management and Storage for Scientific Data Project Start Date: Summer 2008 EMSL Lead Investigator Ken Auberry Instrumentation Development Laboratory, EMSL, PNNL As greater numbers of collaborators, journals, and funding agencies require data retention associated with a given project, preservation of experimentally generated results has become an increasingly important challenge in science. In many small- to medium-scale laboratory environments, this task has traditionally been carried out using offline optical media (recordable CDs and DVDs) or externally connected commercial hard drive units. Along with the raw storage issues that must be addressed, additional challenges await in the correlation of stored data to contextual information about the experiments and

118

PROJECT MANGEMENT PLAN EXAMPLES Facility End State Decisions Examples  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility End State Decisions Examples Facility End State Decisions Examples Example 3 3.0 POST DEACTIVATION END STATE VISION The Heavy Water Facility is scheduled to cease moderator operations and commence final shutdown of moderator processing and processing support systems. The Heavy Water Facility and supporting facilities will be declared excess. Deactivation will place the facilities into a passively safe, minimal cost, long term S&M mode. At the end of the deactivation period, the facilities will be categorized "Radiological" and "Other Industrial Use". The following deactivation end state is envisioned: Moderator Processing and Moderator Storage Buildings The deactivation of the moderator processing and storage buildings will remove the moderator storage drums

119

Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information  

SciTech Connect

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

NONE

1995-07-14T23:59:59.000Z

120

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management  

Science Conference Proceedings (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

NONE

1995-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report  

SciTech Connect

This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

Pickett, W.W.

1997-12-30T23:59:59.000Z

122

Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

Science Conference Proceedings (OSTI)

DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1994-06-01T23:59:59.000Z

123

'Tuning' Graphene Drums Might Turn Conductors to ...  

Science Conference Proceedings (OSTI)

'Tuning' Graphene Drums Might Turn Conductors to Semiconductors. From NIST Tech Beat: June 27, 2012. ...

2013-07-08T23:59:59.000Z

124

Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations  

SciTech Connect

This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-gram Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.

Chou, P

2011-12-14T23:59:59.000Z

125

Federal Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August 8, 1996 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Storage of on Storage of Polychlorinated Biphenyls, August 8, 1996 State Washington Agreement Type Federal Facility Compliance Agreement Legal Driver(s) TSCA Scope Summary Address DOE and the NNPP's inability to comply at this time with the regulations in 40 Parties DOE; US EPA; US Naval Nuclear Propulsion Program (NNPP) Date 8/8/1996 SCOPE * Address DOE and the NNPP's inability to comply at this time with the regulations in 40 CFR 761.65(a), which require polychlorinated biphenyls (PCBs) stored for disposal to be removed from storage and disposed of within one year of being placed in storage, and the Department of Transportation (DOT) container specifications in 40 CFR 761.65(c)(6). ESTABLISHING MILESTONES * Annually, starting six months after the effective date of this Agreement, DOE and the

126

Drum tie-down apparatus  

DOE Patents (OSTI)

A drum tie-down apparatus for securing drum-like containers in an upright position to a floor or platform of a transportation vehicle having spaced apart cargo tie-down points. The apparatus comprises a pair of cylindrical, hollow tube segments horizontally oriented and engageable with a drum lid adjacent opposite rim edges, flexible strap segments for connecting upper and lower central portions of the tube segments together across the drum lid and a pair of elongated flexible tie-down segments, one extending horizontally through each of the tube segments, the ends thereof being attached to said spaced apart tie-down points such that end portions of the pair of tie-down segments extend downwardly and radially outwardly from the tube segments to the tie-down points.

Morse, Harvey E. (Albuquerque, NM)

1984-01-01T23:59:59.000Z

127

Spar buoy construction having production and oil storage facilities and method of operation  

SciTech Connect

This patent describes a floating structure including oil storage capacity and production facilities and adapted to be anchored by catenary mooring lines at a subsea well location, the combination of: a vertical elongated hull means having means to maintain the hull means in vertical position; the hull means including a vertical oil storage chamber means for storing oil and extending for a major portion of the height of the floating structure; vertical variable ballast chamber means extending from the bottom of the storage chamber means to above the top of the oil storage chamber means and selectively filled with ballast to maintain the center of gravity of the structure a selected distance from the center of buoyancy of the structure; work chamber means in the hull means above the oil storage chamber means; means in the work chamber means and in the variable ballast chamber means for controlling the amount of ballast in the variable ballast means; means in the oil storage chamber means and in the work chamber means for feeding oil to the oil storage chamber means and for removing water therefrom as oil is introduced therein; a central longitudinal passageway through the hull means; a riser means extending into the passageway from the subsea well location and terminating at the work chamber means; means on the riser buoyant tank means and on the hull means in the central passageway for guiding relative movement between the hull means and the riser means.

Daniell, A.F.

1986-08-19T23:59:59.000Z

128

Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List  

Science Conference Proceedings (OSTI)

The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 ''Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff.

SHANNON, W.R.

1999-08-31T23:59:59.000Z

129

Additional Steam Traps Increase Production of a Drum Oven at a Petroleum Jelly Plant  

Science Conference Proceedings (OSTI)

Additional steam traps were installed on the drum oven at a petroleum jelly production facility at an ExxonMobil plant in Nigeria. The installation improved heat transfer and saved energy.

Not Available

2002-03-01T23:59:59.000Z

130

High Purity Germanium Gamma-PHA Assay of Uranium Storage Pigs for 321-M Facility  

Science Conference Proceedings (OSTI)

The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report describes and documents the use of a portable HPGe detector and EG and G Dart system that contains a high voltage power supply, signal processing electronics, a personal computer with Gamma-Vision software, and space to store and manipulate multiple 4096-channel g-ray spectra to assay for 235U content in 268 uranium shipping and storage pigs. This report includes a description of three efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

Dewberry, R.A.

2001-09-18T23:59:59.000Z

131

616 Nonradioactive Dangerous Waste Storage Facility -- Essential/support drawing list. Revision 2  

SciTech Connect

This document identifies the essential and supporting engineering drawings for the 616 Nonradioactive Dangerous Waste Storage Facility. The purpose of the documents is to describe the criteria used to identify and the plan for updating and maintaining their accuracy. Drawings are designated as essential if they relate to safety systems, environmental monitoring systems, effluents, and facility HVAC, electrical, and plumbing systems. Support drawings are those which are frequently used or describe a greater level of detail for equipment, components, or systems shown on essential drawings. A listing of drawings identified as essential or support is provided in Table A.

Busching, K.R.

1994-09-29T23:59:59.000Z

132

State-of-the-Art Thermal Energy Storage Retrofit at a Large Manufacturing Facility  

E-Print Network (OSTI)

This paper will describe the existing conditions, strategic planning, feasibility study, economic analysis, design, specification, construction, and project management for the 2.9 megawatt “full shift” chilled water thermal energy storage retrofit project currently underway at Texas Instruments’ 1,142,000 square foot Electro-Optics manufacturing facility in Dallas, Texas. A subsequent paper will describe commissioning, operation, maintenance, and savings resulting from the project.

Fiorino, D.

1989-09-01T23:59:59.000Z

133

Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility  

SciTech Connect

This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

JANIN, L.F.

2000-08-30T23:59:59.000Z

134

Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, J.W.; Nenni, J.A.

2003-05-22T23:59:59.000Z

135

NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.  

Science Conference Proceedings (OSTI)

Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

PARSA,Z.

2001-06-18T23:59:59.000Z

136

Vapor generator steam drum spray head  

DOE Patents (OSTI)

A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

Fasnacht, Jr., Floyd A. (Massillon, OH)

1978-07-18T23:59:59.000Z

137

Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)  

SciTech Connect

The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

COVEY, L.I.

2000-11-28T23:59:59.000Z

138

Environmental Assessment for the Ammunition Storage Facility at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

t30. t30. U.S. DEPARTHEHT OF EMERCT , FXNIDIIG OF It0 SIONI~ICAMT. IMPACT -1TIOH STORAGE E'ACXLITX AT THE SAVAxmAa RI-R iIT@ " Afl[EN, 6OtfTE CAROLXNA AGEYCT: U.S. Department of Energy ACTIOR: Finding of No Significant Impact s-r: The Department of Energy (DOE1 hqe prepared an Environmental ~Asscssx~ent (EA), DOE/EA-0820, for the proposed construction and operation of ~rl Ammunition Storage Facility at the Savannah River Site (SRS), Aiken, South Carolina. Based on the analyses in the &A, DOE ha8 determined that the propoeed action ie aot a major Federal action significantly affecting the quality of the human environment, within the meaning of the Natioaal Eavironmcatal Policy Act (NEPA) of 1969. Therefore, the preparatioa of an environruents~,impaCt Statement iS not required

139

Recommended Changes to Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility - For NRC Review  

Science Conference Proceedings (OSTI)

The majority of commercial U.S. nuclear stations have constructed on-site low-level waste (LLW) storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. EPRI has issued two revisions of Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility. Revision 1 of these Guidelines focused on operational considerations and incorporated many of the lessons learned while operating various types of LLW s...

2011-12-19T23:59:59.000Z

140

Considerations in siting long-term radioactive noble gas storage facilities  

SciTech Connect

Cost-benefit analysis indicates that it would be prudent policy to require the prevention of /sup 85/Kr release from fuel reprocessing plants at the present time, assuming this can be accomplished at a cost amounting to less than 00/Ci. Options are discussed for accomplishment of /sup 85/Kr release prevention from fuel reprocessing plants. No value judgments have been attempted in evaluating these options. However, it has been assumed that a policy of concentrating effluent noble gases, retaining them in pressurized storage tanks, and storing them for long periods at some centralized facility will be adopted. Such a policy would appear to be consistent with current AEC policy on high-level waste management. Criteria for siting a long-term noble gas storage facility should include assurance that in the event of a containment failure: (a) maximum permissible dose guidelines (0.5 rem/yr for whole body and 3.0 rem/yr for skin) are not exceeded, and (b) resultant population doses (man-rem) are minimized. Five hypothetical sites have been evaluated to estimate population doses in the event of leakage. From this analysis it appears that geographic siting may be considered relatively unimportant. Site selection should be based on cost- benefit studies considering: (a) transportation and handling costs, (b) maintenance and surveillance costs, and resultant health benefits derived in terms of potential population dose averted. (auth)

Cohen, J.J.; Peterson, K.R.

1973-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

142

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

DOE Green Energy (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

143

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

DOE Green Energy (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

144

DOE/EA-0820 ENVIRONMENTAL ASSESSMENT Construction of Mixed Waste Storage RCRA Facilities,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20 20 ENVIRONMENTAL ASSESSMENT Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669 u.s. Department of Energy Oak Ridge National Laboratory Oak Ridge, Tennessee April 1994 ER t>ISTRf8UT!Q~~ Or-~I-:r8 DOCUMENT IS UNLlMIT~ DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

145

Hot air drum evaporator. [Patent application  

DOE Patents (OSTI)

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, R.L.

1980-11-12T23:59:59.000Z

146

PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE  

SciTech Connect

In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.

Gupta, N.

2012-03-26T23:59:59.000Z

147

Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities  

Science Conference Proceedings (OSTI)

Thermal energy storage reduces electric costs by shifting chilling activities to off-peak times. Water is chilled or ice is made during the night to either replace or augment operation of cooling equipment during the day. Off-peak demand and consumption rates produce significant dollar savings. TES requires favorable electric rate structures, available space to house the associated equipment, and either variation in buildings cooling loads or favorable climatic conditions. TES can be implemented anywhere cooling loads can be shifted to off-peak hours with the best applications being office buildings, hospitals, and schools. Most TES projects are implemented in conjunction with an existing cooling system expansion, replacement of older cooling equipment, or new construction, thus reducing energy costs, consumption, and demand. Various options are available for funding TES projects in Federal facilities, including direct agency funding, capital improvement funds, utility financing, and alternative financing. The Federal Energy Management Program (FEMP) should promote TES through demonstrations, success stories, and by distributing the FEMP Technology Alert (March 2000). Federal Facilities should, as standard practice, evaluate TES options whenever a chiller retrofit or replacement is performed.

Chvala, William D.

2002-01-01T23:59:59.000Z

148

Thermal and flow analyses of the Nuclear Materials Storage Facility Renovation Title I 60% design  

Science Conference Proceedings (OSTI)

The authors are continuing to use the computational fluid dynamics code CFX-4.2 to evaluate the steady-state thermal-hydraulic conditions in the Nuclear Material Storage Facility Renovation Title 1 60% Design. The analyses build on those performed for the 30% design. They have run an additional 9 cases to investigate both the performance of the passive vault and of an individual drywell. These cases investigated the effect of wind on the inlet tower, the importance of resolving boundary layers in the analyses, and modifications to the porous-medium approach used in the earlier analyses to represent better the temperature fields resulting from the detailed modeling of the boundary layers. The difference between maximum temperatures of the bulk air inside the vault for the two approaches is small. They continued the analyses of the wind effects around the inflector fixture, a canopy and cruciform device, on the inlet tower by running a case with the wind blowing diagonally across the inflector. The earlier analyses had investigated a wind that was blowing parallel to one set of vanes on the inflector. Several subcases for these analyses investigated coupling the analysis to the facility analysis and design changes for the inflector.

Knight, T.D.; Steinke, R.G.; Mueller, C.

1998-08-01T23:59:59.000Z

149

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

150

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

151

Criticality Safety Analysis on the Mixed Be, Nat-U, and C (Graphite) Reflectors in 55-Gallon Waste Drums and Their Equivalents for HWM Applications  

DOE Green Energy (OSTI)

The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 grams is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their criticality safety prior to their deployment and implementation.

Chou, P

2011-12-14T23:59:59.000Z

152

CFD analysis and experimental investigation associated with the design of the Los Alamos nuclear materials storage facility  

Science Conference Proceedings (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory is being renovated for long-term storage of canisters designed to hold heat-generating nuclear materials, such as powders, ingots, and other components. The continual heat generation within the canisters necessitates a reliable cooling scheme of sufficient magnitude which maintains the stored material temperatures within acceptable limits. The primary goal of this study was to develop both an experimental facility and a computational fluid dynamics (CFD) model of a subsection of the NMSF which could be used to observe general performance trends of a proposed passive cooling scheme and serve as a design tool for canister holding fixtures. Comparisons of numerical temperature and velocity predictions with empirical data indicate that the CFD model provides an accurate representation of the NMSF experimental facility. Minor modifications in the model geometry and boundary conditions are needed to enhance its accuracy, however, the various fluid and thermal models correctly capture the basic physics.

Bernardin, J.D.; Hopkins, S.; Gregory, W.S.; Martin, R.A. [and others

1997-06-01T23:59:59.000Z

153

Determining site-specific drum loading criteria for storing combustible {sup 238}Pu waste  

DOE Green Energy (OSTI)

Waste containing hydrogenous-combustible material contaminated with {sup 238}Pu can generate hydrogen gas at appreciable rates through alpha radiolysis. To ensure safe transportation of WIPP drums, the limit for {sup 238}Pu-combustible waste published in the WIPP TRUPACT-11 CONTENT (TRUCON) CODES is 21 milliwafts per 55 gallon drum. This corresponds to about 45 milligrams of {sup 238}PuO{sub 2} used for satellite heat source-electrical generators. The Los Alamos waste storage site adopted a {sup 238}Pu waste storage criteria based on these TRCUCON codes. However, reviews of the content in drums of combustible waste generated during heat source assembly at Los Alamos showed the amount of {sup 238}Pu is typically much greater than 45 milligrams. It is not feasible to appreciably reduce Los Alamos {sup 238}Pu waste drum loadings without significantly increasing waste volumes or introducing unsafe practices. To address this concern, a series of studies were implemented to evaluate the applicability of the TRUCON limits for storage of this specific waste. Addressed in these evaluations were determination of the hydrogen generation rate, hydrogen diffusion rates through confinement layers and vent filters, and packaging requirements specific to Los Alamos generated {sup 238}Pu contaminated combustible waste. These studies also showed that the multiple-layer packaging practices in use at Los Alamos could be relaxed without significantly increasing the risk of contamination. Based on a model developed to predict H{sub 2} concentrations in packages and drum headspace, the site specific effective hydrogen generation rate, and hydrogen-diffusion values, and revising the waste packaging practices, we were able to raise the safe loading limit for {sup 238}Pu waste drums for on site storage to the gram levels typical of currently generated {sup 238}Pu waste.

Marshall, R.S.; Callis, E.L.; Cappis, J.H.; Espinoza, J.M.; Foltyn, E.M.; Reich, B.T. [Los Alamos National Lab., NM (United States); Smith, M.C. [Benchmark Environmental Corp., Albuquerque, NM (United States)

1994-02-01T23:59:59.000Z

154

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

155

Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year  

SciTech Connect

This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

1985-06-01T23:59:59.000Z

156

EA-0995: Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Drum Storage Facility for Interim Storage of Materials Generated by Environmental Restoration Operations

157

Aquifer thermal energy storage at Mid-Island postal facility: Phase 1 final report  

DOE Green Energy (OSTI)

The successful widespread commercialization of aquifer thermal energy storage (ATES) in the United States will depend on how experiences gained from early full-scale projects are used as guides in the design, installation, and operation of future projects. One early system, built in the mid-1980s, is the US Postal Service (USPS) Mid-Island Mail Processing Facility (MPF), in Melville, New York. The heating, ventilation, and air conditioning (HVAC) of the MPF's workroom is provided by an ATES system, which is operated year-round to provide a source for both heating and cooling, in combination with a triethylene glycol (TEG) liquid-desiccant system for humidity control. Because the facility affords a unique opportunity to study this innovative system, the US Department of Energy's (DOE) Pacific Northwest Laboratory (PNL) entered into agreements with the USPS, the US Geological Survey (USGS), and the New York State Energy Research and Development Authority (the Energy Authority) to assess the operation and performance of the system. Two essentially independent questions were to be addressed by the project. The first question was: How does the MPF ATES/TEG technology compare to conventional technologies '' The second was: What can be done to make operation of the USPS MPF more economical '' Modelling of the MPF ATES/TEG HVAC system and its loads helped to address both of these questions by showing how much energy is used by the different system components. This report is divided into six sections. Section 1 is an introduction. Section 2 provides system background. Section 3 describes PNL's technical performance assessment of the system. Section 4 discusses the life-cycle cost assessment. An operational assessment of the liquid-desiccant system is discussed in Section 5. Section 6 contains conclusions of this study.

Marseille, T.J.; Armstrong, P.R.; Brown, D.R.; Vail, L.W.; Kannberg, L.D.

1993-05-01T23:59:59.000Z

158

Aquifer thermal energy storage at Mid-Island postal facility: Phase 1 final report  

DOE Green Energy (OSTI)

The successful widespread commercialization of aquifer thermal energy storage (ATES) in the United States will depend on how experiences gained from early full-scale projects are used as guides in the design, installation, and operation of future projects. One early system, built in the mid-1980s, is the US Postal Service (USPS) Mid-Island Mail Processing Facility (MPF), in Melville, New York. The heating, ventilation, and air conditioning (HVAC) of the MPF`s workroom is provided by an ATES system, which is operated year-round to provide a source for both heating and cooling, in combination with a triethylene glycol (TEG) liquid-desiccant system for humidity control. Because the facility affords a unique opportunity to study this innovative system, the US Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL) entered into agreements with the USPS, the US Geological Survey (USGS), and the New York State Energy Research and Development Authority (the Energy Authority) to assess the operation and performance of the system. Two essentially independent questions were to be addressed by the project. The first question was: ``How does the MPF ATES/TEG technology compare to conventional technologies?`` The second was: ``What can be done to make operation of the USPS MPF more economical?`` Modelling of the MPF ATES/TEG HVAC system and its loads helped to address both of these questions by showing how much energy is used by the different system components. This report is divided into six sections. Section 1 is an introduction. Section 2 provides system background. Section 3 describes PNL`s technical performance assessment of the system. Section 4 discusses the life-cycle cost assessment. An operational assessment of the liquid-desiccant system is discussed in Section 5. Section 6 contains conclusions of this study.

Marseille, T.J.; Armstrong, P.R.; Brown, D.R.; Vail, L.W.; Kannberg, L.D.

1993-05-01T23:59:59.000Z

159

CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL  

SciTech Connect

RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

Farfan, E.; Coleman, R.

2011-03-31T23:59:59.000Z

160

Y-12 uranium storage facility?a Ťdream come true,? part 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Shirley to transfer to a new organization and build a program called the Nuclear Materials Management and Storage Program. She had to find safe, secure storage space for the...

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Engineering Technical Letter (ETL) 11-28: Mandatory Review and Update of Record Drawings for Nuclear-Capable Weapons and Munitions Storage and Maintenance Facilities  

E-Print Network (OSTI)

1. Purpose. This ETL provides criteria for munitions and nuclear weapons-capable maintenance and storage facilities (munitions storage areas [MSA] and weapons storage areas [WSA]) which are existing, under design, or under contract, and located in the continental United States (CONUS). It addresses requirements for reviewing and updating record drawings and requirements for as-built drawings for projects under design or under contract. Future project requirements will be addressed in a revision of Air Force instruction (AFI) 32-1065, Grounding Systems. 2. Application: Air Force installations with munitions and nuclear weapons-capable maintenance and storage facilities. The requirements in this ETL are mandatory.

Major Comm; Majcom Electrical Engineers

2011-01-01T23:59:59.000Z

162

Regulators Experiences in Licensing and Inspection of Dry Cask Storage Facilities  

SciTech Connect

The United States Nuclear Regulatory Commission (NRC), through the combination of a rigorous licensing and inspection program, ensures the safety and security of dry cask storage. NRC authorizes the storage of spent fuel at an independent spent fuel storage installation (ISFSI) under two licensing options: site-specific licensing and general licensing. In July 1986, the NRC issued the first site-specific license to the Surry Nuclear Power Plant in Virginia authorizing the interim storage of spent fuel in a dry storage cask configuration. Today, there are over 30 ISFSIs currently licensed by the NRC with over 700 loaded dry casks. Current projections identify over 50 ISFSIs by the year 2010. No releases of spent fuel dry storage cask contents or other significant safety problems from the storage systems in use today have been reported. This paper discusses the NRC licensing and inspection experiences. (authors)

Baggett, S.; Brach, E.W. [Spent Fuel Project Office, U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

2006-07-01T23:59:59.000Z

163

Design of the Uranium Storage Facility at the Y-12 National Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In 1998, the Department of Energy determined that a new facility to store highly enriched uranium materials at the Y-12 National Security Complex was needed. The new facility...

164

Energy Storage Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Power conversion equipment for energy storage Power conversion equipment for energy storage * Ultra- and super-capacitor systems * DC systems, such as commercial microgrids Partner with Us Work with NREL experts and take advantage of the state-of-the-art capabilities at the ESIF to make progress on your projects, which may range from fundamental research to applications engineering. Partners at the ESIF's Energy Storage Laboratory

165

Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)  

SciTech Connect

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units, and the < 90 day accumulation areas.

LEBARON, G.J.

1999-12-03T23:59:59.000Z

166

Fort Drum integrated resource assessment. Volume 3, Resource assessment  

Science Conference Proceedings (OSTI)

The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

1992-12-01T23:59:59.000Z

167

Los Alamos National Laboratory ships last of high-activity drums to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

ships last ff high-activity drums to WIPP ships last ff high-activity drums to WIPP Los Alamos National Laboratory ships last of high-activity drums to WIPP The November shipment was the final delivery this year to the Carlsbad plant, which is scheduled to undergo facility maintenance through mid-January. November 25, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

168

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-04-09T23:59:59.000Z

169

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-06-02T23:59:59.000Z

170

Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report  

Science Conference Proceedings (OSTI)

This report outlines the design and total estimated cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW).

Pickett, W.W.

1998-03-02T23:59:59.000Z

171

The market for self-storage in Greater Boston : an analysis of facilities, management and potential  

E-Print Network (OSTI)

The core objective of this thesis was to undertake a comprehensive study of the Boston-area self-storage market and determine where and what to build in order to achieve the highest profitability. The study begins with a ...

DeNunzio, Dustin J. (Dustin James), 1976-

2003-01-01T23:59:59.000Z

172

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

174

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

175

U-drumwave: an interactive performance system for drumming  

Science Conference Proceedings (OSTI)

In this paper, we share our experience of applying the modern multimedia technologies to the traditional performing art in a drumming performance project, U-Drumwave. By deploying an interactive system on the drumming stage, the audience will see augmented ... Keywords: drumming performance, interactive art, spatial AR

Yin-Tzu Lin; Shuen-Huei Guan; Yuan-Chang Yao; Wen-Huang Cheng; Ja-Ling Wu

2012-01-01T23:59:59.000Z

176

Passivity based control of drum boiler  

Science Conference Proceedings (OSTI)

This paper proposes a novel state space model for the drum boilers with natural recirculation. This model uses the total mass and energy inventories of the boiler as the state variables, and has an affine structure in the control variables. A passivity ...

Chengtao Wen; B. Erik Ydstie

2009-06-01T23:59:59.000Z

177

ANALYSIS OF AVAILABLE HYDROGEN DATA & ACCUMULATION OF HYDROGEN IN UNVENTED TRANSURANIC (TRU) DRUMS  

DOE Green Energy (OSTI)

This document provides a response to the second action required in the approval for the Justification for Continued Operations (JCO) Assay and Shipment of Transuranic (TRU) Waste Containers in 218-W-4C. The Waste Management Project continues to make progress toward shipping certified TRU waste to the Waste Isolation Pilot Plant (WIPP). As the existing inventory of TRU waste in the Central Waste Complex (CWC) storage buildings is shipped, and the uncovered inventory is removed from the trenches and prepared for shipment from the Hanford Site, the covered inventory of suspect TRU wastes must be retrieved and prepared for processing for shipment to WIPP. Accumulation of hydrogen in unvented TRU waste containers is a concern due to the possibility of explosive mixtures of hydrogen and oxygen. The frequency and consequence of these gas mixtures resulting in an explosion must be addressed. The purpose of this study is to recommend an approach and schedule for venting TRU waste containers in the low-level burial ground (LLBG) trenches in conjunction with TRU Retrieval Project activities. This study provides a detailed analysis of the expected probability of hydrogen gas accumulation in significant quantities in unvented drums. Hydrogen gas accumulation in TRU drums is presented and evaluated in the following three categories: Hydrogen concentrations less than 5 vol%; Hydrogen between 5-15 vol%; and Hydrogen concentrations above 15 vol%. This analysis is based on complex-wide experience with TRU waste drums, available experimental data, and evaluations of storage conditions. Data reviewed in this report includes experience from the Idaho National Environmental Engineering Laboratories (INEEL), Savannah River Site (SRS), Los Alamos National Laboratories (LANL), Oak Ridge National Laboratories, (ORNL), Rocky Flats sites, Matrix Depletion Program and the National Transportation and Packaging Program. Based on this analysis, as well as an assessment of the probability and frequency of postulated credible accident scenarios, this study presents a plan and schedule for accomplishing necessary venting for segregated unvented TRU drums. A recommended method for venting TRU drums is proposed. Upon revision of the authorization basis document to include TRU drum venting, and successful completion of readiness activities; TRU drum venting will be implemented in the LLBG.

DAYLEY, L.

2004-06-24T23:59:59.000Z

178

Machine studies for the development of storage cells at the ANKE facility of COSY  

E-Print Network (OSTI)

We present a measurement of the transverse intensity distributions of the COSY proton beam at the target interaction point at ANKE at the injection energy of 45 MeV, and after acceleration at 2.65 GeV. At 2.65 GeV, the machine acceptance was determined as well. From the intensity distributions the beam size is determined, and together with the measured machine acceptance, the dimensions of a storage cell for the double-polarized experiments with the polarized internal gas target at the ANKE spectrometer are specified. An optimum storage cell for the ANKE experiments should have dimensions of 15mm x 20mm x 390mm (vertical x horizontal x longitudinal), whereby a luminosity of about 2.5*10^29 cm^-2*s^-1 with beams of 10^10 particles stored in COSY could be reached.

K. Grigoryev; F. Rathmann; R. Engels; A. Kacharava; F. Klehr; B. Lorentz; S. Martin; M. Mikirtytchiants; D. Prasuhn; J. Sarkadi; H. Seyfarth; H. J. Stein; H. Ströher; A. Vasilyev

2008-05-14T23:59:59.000Z

179

Design and operation of an inert gas facility for thermoelectric generator storage  

DOE Green Energy (OSTI)

While the flight hardware is protected by design from the harsh environments of space, its in-air storage often requires special protection from contaminants such as dust, moisture and other gases. One of these components, the radioisotope thermoelectric generator (RTG) which powers the missions, was deemed particularly vulnerable to pre-launch aging because the generators remain operational at core temperatures in excess of 1000 degrees centigrade throughout the storage period. Any oxygen permitted to enter the devices will react with thermally hot components, preferentially with molybdenum in the insulating foils, and with graphites to form CO/CO{sub 2} gases which are corrosive to the thermopile. It was important therefore to minimize the amount of oxygen which could enter, by either limiting the effective in-leakage areas on the generators themselves, or by reducing the relative amount of oxygen within the environment around the generators, or both. With the generators already assembled and procedures in place to assure minimal in-leakage in handling, the approach of choice was to provide a storage environment which contains significantly less oxygen than normal air. 2 refs.

Goebel, C.J.

1990-01-01T23:59:59.000Z

180

Advanced conceptual design report solid waste retrieval facility, phase I, project W-113  

SciTech Connect

Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

Smith, K.E.

1994-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comprehensive monitoring report for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1  

SciTech Connect

The purpose of this document is to provide hydrogeologic, geochemical, and vapor monitoring data required for comprehensive monitoring of underground storage tanks at the Rust Garage Facility.

Not Available

1994-06-01T23:59:59.000Z

182

Final report : phase I investigation at the former CCC/USDA grain storage facility in Savannah, Missouri.  

SciTech Connect

From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri (Figure 1.1). During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of state-wide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MoDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well (on property currently owned and occupied by the Missouri Department of Transportation [MoDOT]), described as being approximately 400 ft east of the former CCC/USDA facility. The identified concentrations in these two wells were above the EPA maximum contaminant level (MCL) and the default target level (DTL) values of 5.0 {micro}g/L for carbon tetrachloride in water used for domestic purposes (EPA 1999; MoDNR 2000a,b, 2006). (The DTL is defined in Section 4.) Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA is conducting an investigation to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride at Savannah and (2) evaluate the potential risks to human health, public welfare, and the environment posed by the contamination. This work is being performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and the MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The site characterization at Savannah is being conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A phased approach is being employed by the CCC/USDA and Argonne, with the approval of the MoDNR, so that information obtained and interpretations developed during each incremental stage of the study can be used most effectively to guide subsequent aspects of the program. This report presents the technical findings of Phase I of Argonne's studies. The Phase I investigation was undertaken in accord with the final site-specific Phase I Work Plan for Savannah (Argonne 2007), as well as with the Master Work Plan (MWPK) for CCC/USDAArgonne operations in the state of Kansas (Argonne 2002), which the MoDNR reviewed and approved (with minor revisions) for temporary use in Missouri to facilitate the start-up of the CCC/USDA's activities at Savannah. (Argonne is developing a similar Master Work Plan for operations in Missouri that is based on the existing MWPK, with the approval of the MoDNR. The Missouri document has not been finalized, however, at this time.) The site-specific Savannah Work Plan (Argonne 2007; approved by the MoDNR [2007a]) (1) summarized the pre-existing knowledge base for the Savannah investigation site compiled by Argonne and (2) described the site-specific technical objectives and the intended scope of work developed for this phase of the investigation. Four primary technical objectives were identified for the Phase I studies, as follows: (1) Update the previous (MoDNR 2000a,b) inventory and status of private wells in the immediate vicinity of the former CCC/USDA grain storage facility, and sample the identified wells for analyses for volatile organic compounds (VOCs) and geochemical constituents. (2) Investigate for possible evidence of a soil source of carbon tetrachloride contamination to groundwater beneath the former CCC/USDA fa

LaFreniere, L. M.; Environmental Science Division

2010-08-05T23:59:59.000Z

183

Summary of treatment, storage, and disposal facility usage data collected from U.S. Department of Energy sites  

SciTech Connect

This report presents an analysis for the US Department of Energy (DOE) to determine the level and extent of treatment, storage, and disposal facility (TSDF) assessment duplication. Commercial TSDFs are used as an integral part of the hazardous waste management process for those DOE sites that generate hazardous waste. Data regarding the DOE sites` usage have been extracted from three sets of data and analyzed in this report. The data are presented both qualitatively and quantitatively, as appropriate. This information provides the basis for further analysis of assessment duplication to be documented in issue papers as appropriate. Once the issues have been identified and adequately defined, corrective measures will be proposed and subsequently implemented.

Jacobs, A.; Oswald, K. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Trump, C. [EG and G Rocky Flats, Golden, CO (United States)

1995-04-01T23:59:59.000Z

184

Dose reduction through automation of nuclear weapons dismantlement and storage procedures at the Department of Energy`s Pantex Facility  

SciTech Connect

With the end of the Cold War and the subsequent break up of the Soviet Union, the number of weapons in the nuclear stockpile now greatly exceeds any foreseeable future need. To compensate for this excess an estimated 20,000 nuclear warheads have been earmarked for dismantlement and storage at the Department of Energy`s Pantex Plant near Amarillo, Texas. It is anticipated that the majority of these warheads will arrive at the Pantex facility by the year 2000. At that time, it is estimated that current dismantlement and inventory procedures will not be adequate to control worker radiation exposure within administrative and federal dose limits. To control these exposures alternate approaches to dismantlement and inventory must be developed. One attractive approach is to automate as many activities as possible, thus reducing worker exposure. To facilitate automation of dismantlement and storage procedures, current procedures were investigated in terms of collective dose to workers, time to completion, ease of completion, and cost of automation for each task. A cost-benefit comparison was then performed in order to determine which procedures would be most cost-effective to automate.

Thompson, D.A.; Poston, J.W. [Texas A& M Univ., College Station, TX (United States)

1996-06-01T23:59:59.000Z

185

Potential VOC Deflagrations in a Vented TRU Drum  

DOE Green Energy (OSTI)

The objective of the analysis is to examine the potential for lid ejection from a vented transuranic (TRU) waste drum due to pressure buildup caused by the deflagration of hydrogen and volatile organic compounds (VOCs) inside the drum. In this analysis, the AICC pressure for a stoichiometric mixture of VOCs is calculated and then compared against the experimental peak pressure of stoichiometric combustion of propane and hexane in a combustion chamber. The experimental peak pressures of propane and hexane are about 12 percent lower than the calculated AICC pressure. Additional losses in the drum are calculated due to venting of the gases, drum bulging, waste compaction, and heat losses from the presence of waste in the drum. After accounting for these losses, the final pressures are compared to the minimum observed pressure that ejects the lid from a TRU drum. The ejection pressure of 105 psig is derived from data that was recorded for a series of tests where hydrogen-air mixtures were ignited inside sealed TRU drums. Since the calculated pressures are below the minimum lid ejection pressure, none of the VOCs and the hydrogen (up to 4 percent) mixtures present in the TRU waste drum is expected to cause lid ejection if ignited. The analysis of potential VOC deflagrations in a vented TRU drum can be applied across the DOE-Complex since TRU waste is stored in drums throughout the complex.

Mukesh, GUPTA

2005-04-07T23:59:59.000Z

186

Guideline to good practices for material receipt, inspection, handling, storage, retrieval, and issuance at DOE nuclear facilities  

Science Conference Proceedings (OSTI)

This guide is intended to assist facility maintenance organization in the review of existing methods and in the development of new methods for establishing a material receipt, inspection, handling, storage, retrieval, and issuance process/system which ensures timely delivery of the proper parts and materials, in the condition required for effective maintenance activities, and periodic services which provide unique and/or supplemental maintenance support. It is expected that each DOE facility may use approaches or methods different from those defined in this guide. The specific guidelines that follow reflect generally accepted industry practices. Therefore, deviation from any particular guideline would not, in itself, indicate a problem. If substantive differences exist between the intent of this guideline and actual practice, management should evaluate current practice to determine the meed to include/exclude proposed features. A change in maintenance practice would be appropriate if a performance weakness were determined to exist. The development, documentation, and implementation of other features that further enhance these guidelines for specific applications are encouraged.

Not Available

1994-06-01T23:59:59.000Z

187

Techniques and Facilities for Handling and Packaging Tritiated Liquid Wastes for Burial  

SciTech Connect

Methods and facilities have been developed for the collection, storage, measurement, assay, solidification, and packaging of tritiated liquid wastes (concentrations up to 5 Ci/ml) for disposal by land burial. Tritium losses to the environment from these operations are less than 1 ppm. All operations are performed in an inert gas-purged glovebox system vented to an effluent removal system which permits nearly complete removal of tritium from the exhaust gases prior to their dischardge to the environment. Waste oil and water from tritium processing areas are vacuum-transferred to glovebox storage tanks through double-walled lines. Accommodations are also available for emptying portable liquid waste containers and for removing tritiated water from molecular sieve beds with heat and vacuum. The tritium concentration of the collected liquids is measured by an in-line calorimeter. A low-volume metering pump is used to transfer liquids from holding tanks to heavy walled polyethylene drums filled with an absorbent or cement for solidification. Final packaging of the sealed polyethylene drums is in either an asphalt-filled combination 30- and 55- gallon metal drum package or a 30-gallon welded stainless steel container.

Rhinehammer, T. B.; Mershad, E. A.

1974-06-01T23:59:59.000Z

188

Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities  

DOE Green Energy (OSTI)

Thermal energy storage (TES) reduces electric costs by shifting chilling activities to off-peak times. Water is chilled or ice is made during the night to either replace or augment operation of cooling equipment during the day. Off-peak demand and consumption rates produce significant dollar savings. TES requires favorable electric rate structures, available space to house the associated equipment, and either variation in buildings cooling loads or favorable climatic conditions. TES can be implemented anywhere cooling loads can be shifted to off-peak housrs with the best applications being office buildings, hospitals, and schools. Most TES projects are implemented inconjunction with an existing cooling system expansion, replacement of older cooling equipment, or new construction, thus reducing energy costs, consumption, and demand.

Chvala, William D.

2002-07-08T23:59:59.000Z

189

Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation  

Science Conference Proceedings (OSTI)

The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

West, K.A.

1988-11-01T23:59:59.000Z

190

Safety analysis report for packaging (onsite) steel drum  

SciTech Connect

This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

McCormick, W.A.

1998-09-29T23:59:59.000Z

191

Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities  

SciTech Connect

A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

NONE

1997-12-31T23:59:59.000Z

192

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Objective: ENV.1 Adequate and correct environmental permit requirements and hazardous waste procedures and limits are in place for operating the DTF ventilation system and...

193

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRITERIA: QA.2.1 Any open ICARE or Occurrence Reporting and Processing System (ORPS) corrective actions that may impact the activity have been closed prior to commencement...

194

NIST Mechanical Micro-Drum Used as Quantum Memory  

Science Conference Proceedings (OSTI)

... a micro-drum and later retrieved with 65 percent efficiency, a good ... achieve rapid, reliable exchanges between the circuit's electrical energy, in the ...

2013-03-20T23:59:59.000Z

195

Cooler Than Ever: NIST Mechanical Micro-Drum Chilled to ...  

Science Conference Proceedings (OSTI)

... Each departing photon takes with it one mechanical unit of energy—one phonon—from the drum motion. At a drive intensity that corresponds to ...

2011-10-14T23:59:59.000Z

196

Modeling of a Drum Boiler Using MATLAB/Simulink.  

E-Print Network (OSTI)

??A dynamic simulator was developed for a natural circulation drum type boiler through a joint Youngstown State University/The Babcock and Wilcox Company cooperative agreement. The… (more)

Anderson, Scott B.

2008-01-01T23:59:59.000Z

197

85-GAL DRUM AND NUCFIL-007LS FILTERS  

DOE Green Energy (OSTI)

{sm_bullet} 55-gallon drums were overpacked into 85-gallon drums {sm_bullet} ANucFiI-007LS long-stem filter was installed- NucFiI certified the use of NucFiI-007LS filters in 8S-gallon drums as DOT 7AType A - Wood wedges were used during the tests to center and . stabilize the inner 55-gallon drums {sm_bullet} During inspection, afew filters were found to be loose, canted, and/or with RTV seals broken - No contamination or loss of container integrity {sm_bullet} Discovered in November 2008 U.

JB WOODBURY

2009-06-30T23:59:59.000Z

198

Experimental study of elastoplastic mechanical properties of coke drum materials.  

E-Print Network (OSTI)

??Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes the… (more)

Chen, Jie

2010-01-01T23:59:59.000Z

199

Federal Energy Decision Screening (FEDS) process at Fort Drum, New York  

SciTech Connect

The federal energy manager has been directed by the Comprehensive Energy Policy Act of 1992 (EPAct) to reduce energy consumption by 20% from 1985 levels, by the year 2000. However, the tools and funding to capture this resource in a cost-effective manner have not been provided. In an effort to assist federal agencies in meeting EPAct requirements, the Pacific Northwest Laboratory (PNL) has been tasked by the US Army Forces Command (FORSCOM) to identify, evaluate, and acquire all cost-effective energy projects at selected federal facilities. PNL has developed and applied the Federal Energy Decision Screening (FEDS) methodology at the Fort Drum FORSCOM facility near Watertown, New York. The FEDS methodology is a systematic approach to evaluating energy opportunities that result in a roadmap to significantly reduce energy use in a planned, rational, cost justified fashion over a 5 to 10 year period. At Fort Drum, the net present value (NPV) of the installed cost of all cost-effective energy resource opportunities (EROS) is over $16 million (1992 $). The NPV of the savings associated with this investment is nearly $47 million (1992 $), for an overall NPV of approximately $31 million. By implementing all the cost-effective EROS, Fort Drum will reduce annual energy use by over 230,000 MBtu, or 15%. Annual energy expenditures will decrease by over $2.4 million, or a 20% reduction.

Dixon, D.R.; Daellenbach, K.K. [Pacific Northwest Lab., Richland, WA (United States); Rowley, S.E. [Directorate of Engineering & Housing, Ft. Drum, NY (United States); Gillespie, A.H. [Army Forces Command, Ft. McPherson, GA (United States)

1993-10-01T23:59:59.000Z

200

U.S. Weekly Natural Gas Storage Data  

U.S. Energy Information Administration (EIA)

... Production and Net Imports Natural Gas Storage Storage Reservoirs by Type Underground Natural Gas Storage Facilities in the ... (written copies ...

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of ...

2009-05-20T23:59:59.000Z

202

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics  

NLE Websites -- All DOE Office Websites (Extended Search)

US Army Corps US Army Corps of Engineers ® Engineer Research and Development Center U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen Facility Locations and Hydrogen Storage/Delivery Logistics Nicholas M. Josefik 217-373-4436 N-josefik@cecer.army.mil www.dodfuelcell.com Franklin H. Holcomb Project Leader, Fuel Cell Team 27 OCT 08 Distributed Generation H 2 Generation & Storage Material Handling H2 Vehicles 2 US Army Corps of Engineers ® Engineer Research and Development Center Presentation Outline * DoD Energy Use * Federal Facilities Goals and Requirements * Federal Vehicles and Fuel Goals * Opportunities & Conclusions 3 US Army Corps of Engineers ® Engineer Research and Development Center Where Does the Energy Go? * Tactical and Combat Vehicles (Jets,

203

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities...

204

Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)  

Science Conference Proceedings (OSTI)

This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weld station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.

KESSLER, S.F.

1999-10-20T23:59:59.000Z

205

Drum Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Doc.384, 'Lali drums/gongs and davui shell trumpets'  

E-Print Network (OSTI)

lali drums/gongs and davui shell trumpets Translation of title Description (to be used in archive entry) Lali drum/gong beats and davui triton-shell trumpets, recorded at Serua Island in July 1957. 12 min 42 seconds. 1) Lali ni soqo ni vaka turaga... Fijian Musical instruments and / or other objects used in performance Lali drums/gongs, davui shell trumpets Level of public access (fully closed, fully open) Fully open last updated on Monday, 4 April 2011 Notes and context (include reference...

Roth, George Kingsley

207

Hydrogen explosion testing with a simulated transuranic drum  

DOE Green Energy (OSTI)

Transuranic (TRU) waste generated at the Savannah River Site (SRS) is currently stored onsite for future retrieval and permanent disposal at the Waste Isolation Pilot Plant (WIPP). Some of the TRU waste is stored in vented 210-liter (55-gallon) drums and consists of gloves, wipes, plastic valves, tools, etc. Gas generation caused by radiolysis and biodegradation of these organic waste materials may produce a flammable hydrogen-air mixture (>4% v/v) in the multi-layer plastic waste bags. Using a worst case scenario, a drum explosion test program was carried out to determine the hydrogen concentration necessary to cause removal of the drum lid. Test results indicate an explosive mixture up to 15% v/v of hydrogen can be contained in an SRS TRU drum without total integrity failure via lid removal.

Dykes, K.L.; Meyer, M.L.

1990-12-31T23:59:59.000Z

208

Hydrogen explosion testing with a simulated transuranic drum  

DOE Green Energy (OSTI)

Transuranic (TRU) waste generated at the Savannah River Site (SRS) is currently stored onsite for future retrieval and permanent disposal at the Waste Isolation Pilot Plant (WIPP). Some of the TRU waste is stored in vented 210-liter (55-gallon) drums and consists of gloves, wipes, plastic valves, tools, etc. Gas generation caused by radiolysis and biodegradation of these organic waste materials may produce a flammable hydrogen-air mixture (>4% v/v) in the multi-layer plastic waste bags. Using a worst case scenario, a drum explosion test program was carried out to determine the hydrogen concentration necessary to cause removal of the drum lid. Test results indicate an explosive mixture up to 15% v/v of hydrogen can be contained in an SRS TRU drum without total integrity failure via lid removal.

Dykes, K.L.; Meyer, M.L.

1990-01-01T23:59:59.000Z

209

Robotics for waste storage inspection: A user`s perspective  

SciTech Connect

Self-navigating robotic vehicles are now commercially available, and the technology supporting other important system components has also matured. Higher reliability and the obtainability of system support now make it practical to consider robotics as a way of addressing the growing operational requirement for the periodic inspection and maintenance of radioactive, hazardous, and mixed waste inventories. This paper describes preparations for the first field deployment of an autonomous container inspection robot at a Department of Energy (DOE) site. The Stored Waste Autonomous Mobile Inspector (SWAMI) is presently being completed by engineers at the Savannah River Technology Center (SRTC). It is a modified version of a commercially available robot. It has been outfitted with sensor suites and cognition that allow it to perform inspections of drum inventories and their storage facilities.

Hazen, F.B.

1994-06-23T23:59:59.000Z

210

Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 1: establish facility design criteria and utility benefits  

SciTech Connect

Compressed air energy storage (CAES) has been identified as one of the principal new energy storage technologies worthy of further research and development. The CAES system stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high-efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. In this manner, essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the CAES system results in increased net generation and greater premium fuel economy. The use of CAES systems to meet the utilities' high electrical demand requirements is particularly attractive in view of the reduced availability of premium fuels such as oil and natural gas. This volume documents the Task 1 work performed in establishing facility design criteria for a CAES system with aquifer storage. Information is included on: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

1980-10-01T23:59:59.000Z

211

DOE-STD-1071-94; DOE Standard Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage, Retrieval, and Issuance at DOE Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71-94 71-94 June 1994 DOE STANDARD GUIDELINE TO GOOD PRACTICES FOR MATERIAL RECEIPT, INSPECTION, HANDLING, STORAGE, RETRIEVAL, AND ISSUANCE AT DOE NUCLEAR FACILITIES U.S. Department of Energy AREA MNTY Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE94014949 DOE-STD-1071-94 FOREWORD The Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage,

212

Review of the aquifer seasonal thermal energy storage building HVAC system at the Melville, New York, Mid-Island Mail Facility  

DOE Green Energy (OSTI)

The successful widespread commercialization of aquifer thermal energy storage (ATES) in the United States will depend on the effectiveness with which the experiences gained from early full-scale systems are used as guides in the design, installation and operation of future projects. One such early system from which both anecdotal and quantitative information is available is the Mid-Island Postal Facility in Melville, New York. At this facility, built in the mid-1980s, an ATES system has been integrated with the building`s central heating and cooling plant. ``Cold`` wells are charged with water that is cooled during the winter by heat pump and closed circuit cooler operation. Water from these cold wells is then used to meet the facility`s cooling load during the summer, before being pumped back into the ground at ``Warm`` wells. Dehumidification during summer operation is accomplished by a liquid desiccant system that uses propane boilers to provide a heat source for desiccant regeneration. This system will also add water to the air during periods of low humidity. This paper provides an overview of the project, and describes the analysis being performed to assess energy and economic merits of this innovative system.

Marseille, T.J.; Wilke, D.A.

1992-08-01T23:59:59.000Z

213

Final work plan : phase II investigation of potential contamination at the former CCC/USDA grain storage facility in Savannah, Missouri.  

Science Conference Proceedings (OSTI)

From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri (Figure 1.1). During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of statewide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MoDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well (on property currently occupied by the Missouri Department of Transportation [MoDOT]) described as being approximately 400 ft east of the former CCC/USDA facility. The identified concentrations in these two wells were above the EPA maximum contaminant level (MCL) and the Missouri risk-based corrective action default target level (MRBCA DTL) values of 5.0 {micro}g/L for carbon tetrachloride in water used for domestic purposes (EPA 1999; MoDNR 2000a,b, 2006). Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA is conducting an investigation to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride at Savannah and (2) evaluate the potential risks to human health, public welfare, and the environment posed by the contamination. This work is being performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and the MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The site characterization at Savannah is being conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. The investigation at Savannah is being conducted in phases. This approach is being used by the CCC/USDA and Argonne, with the approval of the MoDNR, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. Phase I of the Savannah program was conducted in October-November 2007 and January 2008 (Argonne 2007a, 2008). This site-specific Work Plan provides a brief summary of the Phase I findings and the results of groundwater level monitoring that has been ongoing since completion of the Phase I study and also outlines technical objectives, investigation tasks, and investigation methods for Phase II of the site characterization at Savannah.

LaFreniere, L. M.; Environmental Science Division

2010-08-16T23:59:59.000Z

214

Potential chemical hazards during retrieval of TRU waste drums  

DOE Green Energy (OSTI)

Los Alamos National Laboratory is implementing a program to retrieve a large number of transuranic (TRU) waste containers retrievably stored under earthen cover on three pads. The waste containers will be inspected and overpacked or repackaged as necessary. The majority of the containers are drums (> 16,000) and, as shown in Table 1,99.9% are 208-L (55-gal.) drums. The 208-L drums are reported to be of mild steel construction with removable lids and gaskets. The gaskets are believed to be permeable to hydrogen, but their permeability to volatile organic compounds (VOCS) is not known. As part of the retrieval operations, the drums will be penetrated and then fitted with a carbon-filter-containing venting device to ensure they do not contain flammable gases. A fully contained and high-efficiency air particulate (HEPA) filtered venting system with gas analysis capability for insertion of the vent device has been designed and is being constructed. A Hazards Analysis (HA) has been performed on the system to identify and evaluate potential accidents arising from the operation of the drum venting system.

Kosiewicz, S.T.; Thomas, C.C. Jr.; Sasser, M.K.; Foxx, C.L.; Gruetzmacher, K.M.

1995-02-01T23:59:59.000Z

215

Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned  

E-Print Network (OSTI)

reservoirs and natural gas storage facilities. Nonetheless,USA The Yaggy natural gas storage facility is located sevenreservoirs and natural gas storage facilities, respectively,

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

216

Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned  

E-Print Network (OSTI)

reservoirs and natural gas storage facilities, respectively,reservoirs and natural gas storage facilities. Nonetheless,USA The Yaggy natural gas storage facility is located seven

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

217

Final work plan : Phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Savannah, Missouri.  

SciTech Connect

From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of state-wide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MoDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well (on property currently occupied by the Missouri Department of Transportation [MoDOT]), approximately 400 ft east of the former CCC/USDA facility. Carbon tetrachloride concentrations in the Morgan well have ranged from the initial value of 29 {micro}g/L in 1998, up to a maximum of 61 {micro}g/L in 1999, and back down to 22 {micro}g/L in 2005. The carbon tetrachloride concentration in the MoDOT well in 2000 (the only time it was sampled) was 321 {micro}g/L. The concentrations for the two wells are above the EPA maximum contaminant level (MCL) of 5 {micro}g/L for carbon tetrachloride (EPA 1999; MoDNR 2000a,b). Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based grain fumigants at its former grain storage facility, the CCC/USDA will conduct investigations to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride at Savannah and (2) evaluate the health and environmental threats potentially posed by the contamination. This work will be performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The investigative activities at Savannah will be conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an agreement with the DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The site characterization at Savannah will take place in phases. This approach is recommended by the CCC/USDA and Argonne, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. This site-specific Work Plan outlines the specific technical objectives and scope of work proposed for Phase I of the Savannah investigation. This Work Plan also includes the community relations plan to be followed throughout the CCC/USDA program at the Savannah site. Argonne is developing a Master Work Plan specific to operations in the state of Missouri. In the meantime, Argonne will issue a Provisional Master Work Plan (PMWP; Argonne 2007) that will be submitted to the MoDNR for review and approval. The agency has already reviewed and approved (with minor changes) the present Master Work Plan (Argonne 2002) under which Argonne currently operates in Kansas. The PMWP (Argonne 2007) will provide detailed information and guidance on the investigative technologies, analytical methodologies, quality assurance-quality control measures, and general health and safety policies to be employed by Argonne for all investigations at former CCC/USDA grain storage facilities in Missouri. Both the PMWP

LaFreniere, L. M.; Environmental Science Division

2007-10-12T23:59:59.000Z

218

The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles  

DOE Green Energy (OSTI)

Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

1991-06-01T23:59:59.000Z

219

Review of the aquifer seasonal thermal energy storage building HVAC system at the Melville, New York, Mid-Island Mail Facility  

DOE Green Energy (OSTI)

The successful widespread commercialization of aquifer thermal energy storage (ATES) in the United States will depend on the effectiveness with which the experiences gained from early full-scale systems are used as guides in the design, installation and operation of future projects. One such early system from which both anecdotal and quantitative information is available is the Mid-Island Postal Facility in Melville, New York. At this facility, built in the mid-1980s, an ATES system has been integrated with the building's central heating and cooling plant. Cold'' wells are charged with water that is cooled during the winter by heat pump and closed circuit cooler operation. Water from these cold wells is then used to meet the facility's cooling load during the summer, before being pumped back into the ground at Warm'' wells. Dehumidification during summer operation is accomplished by a liquid desiccant system that uses propane boilers to provide a heat source for desiccant regeneration. This system will also add water to the air during periods of low humidity. This paper provides an overview of the project, and describes the analysis being performed to assess energy and economic merits of this innovative system.

Marseille, T.J.; Wilke, D.A.

1992-08-01T23:59:59.000Z

220

Renewable Energy Opportunities at Fort Drum, New York  

DOE Green Energy (OSTI)

This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.

Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J.; Weimar, Mark R.; Rowley, Steven; Nesse, Ronald J.

2010-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

An analytical technique developed by Pajarito Scientific Corporation (PSC), utilizing spectral summing of spectra from groups of drums of similar waste type, is being employed by the Waste Disposition Project - Low Level Waste Disposal (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no place to go unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs two High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confinned TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radio nuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have too high a MDA to be classified as LLW enter a radioactive waste characterization indetenninate status that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced ganuna spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discernable in the individual spectra can become quantifiable in the summed spectrum and the MDA for group sum is reduced. The group of waste items can then be properly classified as LLW based on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100 nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other waste drums that are measured on a WIPP certified HENC system is planned and good candidate drum sets are being evaluated as indeterminate situations develop.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORAPTION; Seamans, Jr., James V [PAJARITO SCIENTIFIC CORPORATION; Clapham, Martin J [PAJARITO SCIENTIFIC CORPORATION

2010-11-09T23:59:59.000Z

222

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

The spectral summing technique developed by Pajarito Scientific Corporation (PSC) is a unique modeling technique that is being employed by the Waste Disposition Project - Low Level Waste Disposition (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no disposal path unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confirmed TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radionuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have TRU MDAs > 100nCi/g enter a radioactive waste characterization indeterminate state that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced gamma spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discemable in the individual spectra become quantifiable in the summed spectrum and the MDA for the group sum is reduced. The group of waste items can then be properly classified as LLW waste on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other debris drums and sludge drums that were measured on a WIPP certified HENe is planned and good candidate drum sets are being evaluated.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORPORATION; Seamans, Jr, J. V. [PAJARITO SCIENTIFIC CORPATION; Clapham, M. J. [PAJARITO SCIENTIFIC CORPORATION

2011-01-27T23:59:59.000Z

223

Research on water level optimal control of boiler drum based on dual heuristic dynamic programming  

Science Conference Proceedings (OSTI)

Boiler drum system is an important component of a thermal power plant or industrial production, and the water level is a critical parameter of boiler drum control system. Because of non-linear, strong coupling and large disturbance, it is difficult to ... Keywords: BP neural network, boiler drum level, dual heuristic dynamic programming, optimal control

Qingbao Huang; Shaojian Song; Xiaofeng Lin; Kui Peng

2011-05-01T23:59:59.000Z

224

Final work plan : phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Montgomery City, Missouri.  

SciTech Connect

From September 1949 until September 1966, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) leased property at the southeastern end of Montgomery City, Missouri, for the operation of a grain storage facility. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In January 2000, carbon tetrachloride was detected in a soil sample (220 {micro}g/kg) and two soil gas samples (58 {micro}g/m{sup 3} and 550 {micro}g/m{sup 3}) collected at the former CCC/USDA facility, as a result of a pre-CERCLIS site screening investigation (SSI) performed by TN & Associates, Inc., on behalf of the U.S. Environmental Protection Agency (EPA), Region VII (MoDNR 2001). In June 2001, the Missouri Department of Natural Resources (MoDNR) conducted further sampling of the soils and groundwater at the former CCC/USDA facility as part of a preliminary assessment/site inspection (PA/SI). The MoDNR confirmed the presence of carbon tetrachloride (at a maximum identified concentration of 2,810 {micro}g/kg) and chloroform (maximum 82 {micro}g/kg) in the soils and also detected carbon tetrachloride and chloroform (42.2 {micro}g/L and 58.4 {micro}g/L, respectively) in a groundwater sample collected at the former facility (MoDNR 2001). The carbon tetrachloride levels identified in the soils and groundwater are above the default target level (DTL) values established by the MoDNR for this contaminant in soils of all types (79.6 {micro}g/kg) and in groundwater (5.0 {micro}g/L), as outlined in Missouri Risk-Based Corrective Action (MRBCA): Departmental Technical Guidance (MoDNR 2006a). The corresponding MRBCA DTL values for chloroform are 76.6 {micro}g/kg in soils of all types and 80 {micro}g/L in groundwater. Because the observed contamination at Montgomery City might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA will conduct investigations to (1) characterize the source(s), extent, and factors controlling the possible subsurface distribution and movement of carbon tetrachloride at the Montgomery City site and (2) evaluate the health and environmental threats potentially represented by the contamination. This work will be performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and the MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The investigations at Montgomery City will be conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The site characterization at Montgomery City will take place in phases. This approach is recommended by the CCC/USDA and Argonne, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. This site-specific Work Plan outlines the specific technical objectives and scope of work proposed for Phase I of the Montgomery City investigation. This Work Plan also includes the community relations plan to be followed throughout the CCC/USDA program at the Montgomery City site. Argonne is developing a Master Work Plan specific to operations in the state of Missouri. In the meantime, Argonne has issued a Provisional Master Work Plan (PMWP; Argonne 2007) that has been reviewed and approved by the MoDNR for current use. The PMWP (Argonne 2007) provides detailed information and guidance on the investigative technologies, analytical methodologies, qua

LaFreniere, L. M.; Environmental Science Division

2010-08-16T23:59:59.000Z

225

Gulf of Mexico Fishery Management Plans 1. Atlantic Red Drum  

E-Print Network (OSTI)

#12; Gulf of Mexico Fishery Management Plans 1. Atlantic Red Drum 2. Shrimp 3. Stone Crab 4. Coral, Coral Reef, and Live/Hard Bottom Habitats (with SAFMC) Key Gulf of Mexico Commercial Species Commercially-important species and species groups in the Gulf of Mexico include: blue crab, stone crab

226

JUSTIFICATION FOR A LIMIT OF 15 PERCENT HYDROGEN IN A 55 GALLON DRUM  

DOE Green Energy (OSTI)

The concentration of 15% hydrogen in air in a waste drum is used as the concentration at which the drum remains intact in the case of a deflagration. The following describes what could happen to the drum if 15% hydrogen or more in air were ignited. Table 2 of the Savannah River report WSRC-TR-90-165 ''TRU Drum Hydrogen Explosion Tests'' provides the results of tests performed in 55-gallon drums filled with hydrogen and air mixtures. The hydrogen-air mixtures were ignited by a hot-wire igniter. The results of the tests are shown in Table 1. They concluded that drums can withstand deflagration involving hydrogen concentration up to 15% hydrogen. Testing was performed at Idaho Falls and documented in a letter from RH Beers, Waste Technology Programs Division, EG&G Idaho, to CP Gertz, Radioactive Waste Technology Branch, DOE dated Sept. 29, 1983. In these tests, 55-gallon drums were filled with hydrogen-air mixtures which were ignited. The results in Table 2.2 showed that ignition for drums containing 11% and 14% hydrogen, the drum lid remained on the drum. Ignition in drum with 30% hydrogen resulted in lid loss. It is concluded from the results of these two tests that, for uncorroded drums, a 15% hydrogen in air mixture will not result in loss of drum integrity (i.e., lid remains on, walls remain intact). The drum walls however, may be thinned due to corrosion. The effect of the deflagration on thinner walls is assessed next. Assume a 15% hydrogen in air mixture exists in a drum. The pressure assuming adiabatic isochoric complete combustion (AICC) conditions is 69 psig (using the same deflagration pressure calculation method as in HNF-19492, ''Revised Hydrogen Deflagration Analysis which got 82 psig for 20% hydrogen in air).

MARUSICH, R.M.

2007-01-04T23:59:59.000Z

227

The 'Supply-of-Storage' for Natural Gas in California  

E-Print Network (OSTI)

95616 Abstract: Do natural gas storage decisions inCHARACTERISTICS OF NATURAL GAS STORAGE FACILITIES Apart fromofficial seasons in natural gas storage, one for injection

Uria, Rocio; Williams, Jeffrey

2005-01-01T23:59:59.000Z

228

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the AST, with chemicals or radioactivity above action levels. CAS 12-22-26 has different potential closure pathways that are dependent upon the concentrations and chemicals detected. If only petroleum hydrocarbons are detected above action levels, then the area will be use-restricted. It will not be excavated because of the more significant hazard of excavating within a URMA. Similarly, polychlorinated biphenyls (PCBs) will only be excavated for concentrations of 50 parts per million (ppm) or greater, if there are no other factors that require excavation. For PCBs at concentrations above 1 ppm, the area will be use-restricted as required by Title 40, Code of Federal Regulations (CFR) Part 761 for PCBs (CFR, 2006), in the ''Toxic Substances Control Act'' (TSCA). Other chemicals at concentrations above the final action levels (FALs) will be excavated. If radioactivity is above action levels, then the soil will be excavated only to a depth of 1 foot (ft) below ground surface (bgs) and replaced with clean fill. This action is intended to remove the ''hot spot'' on the surface caused by leakage from a drum, and not to remediate the URMA.

NSTec Environmental Restoration

2007-06-01T23:59:59.000Z

229

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

230

Corrective Action Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 166, Storage Yards and Contaminated Materials, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 166 consists of seven Corrective Action Sites (CASs) located in Areas 2, 3, 5, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada (Figure 1). CAU 166 consists of the following CASs: (1) CAS 02-42-01, Cond. Release Storage Yd - North; (2) CAS 02-42-02, Cond. Release Storage Yd - South; (3) CAS 02-99-10, D-38 Storage Area; (4) CAS 03-42-01, Conditional Release Storage Yard; (5) CAS 05-19-02, Contaminated Soil and Drum; (6) CAS 18-01-01, Aboveground Storage Tank; and (7) CAS 18-99-03, Wax Piles/Oil Stain. Details of the site history and site characterization results for CAU 166 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007).

NSTec Environmental Restoration

2007-10-01T23:59:59.000Z

231

Preliminary evaluation of 30 potential granitic rock sites for a radioactive waste storage facility in southern Nevada  

SciTech Connect

Results of preliminary study are presented which was performed under subtask 2.7 of the NTS Terminal Waste Storage Program Plan for 1978. Subtask 2.7 examines the feasibility of locating a nuclear waste repository in a granitic stock or pluton in southern Nevada near the Nevada Test Site (NTS). It is assumed for the purposes of this study that such a repository cannot be located at NTS. This assumption may or may not be correct. This preliminary report does not identify a particular site as being a suitable location for a repository. Nor does it absolutely eliminate a particular site from further consideration. It does, however, answer the basic question of probable suitability of some of the sites and present a systematic method for site evaluation. Since the findings of this initial study have been favorable, it will be followed by more exhaustive and detailed studies of the original 30 sites and perhaps others. In future studies some of the evaluation criteria used in the preliminary study may be modified or eliminated, and new criteria may be introduced.

Boardman, C.R.; Knutson, C.F.

1978-02-15T23:59:59.000Z

232

Evaluation of rotary drum screens used to protect juvenile salmonids in the Yakima River Basin, Washington, USA  

DOE Green Energy (OSTI)

The purpose of this study is to assess the design and operation of rotary drum screens. Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss are the potentially affected fish. Cold-branded fish are released upstream of the screen facilities. For descaling tests, the fish are captured as they exit the facility and are examined for injuries, descaling, and post-test mortalities. For screen passage tests, nets are placed in the irrigation ditch, downstream of the screen facilities, to determine if fish can pass through or over the screens. More than 100 tests have been conducted with almost 35,000 fish. Additionally, nearly 2000 native fish have been evaluated. Usually less than 2% of the test fish are injured or dead, and the condition of test fish does not differ from the controls. Less than 2% of the fish pass through or over the screens when the screen seals are properly installed and maintained.

Neitzel, D.A.; Abernethy, C.S. (Pacific Northwest Lab., Richland, WA (USA)); Clune, T.J. (USDOE Bonneville Power Administration, Yakima, WA (USA))

1990-10-01T23:59:59.000Z

233

Drum Mountain Geothermal Project (3) | Open Energy Information  

Open Energy Info (EERE)

Development Project: Drum Mountain Geothermal Project (3) Development Project: Drum Mountain Geothermal Project (3) Project Location Information Coordinates The following coordinate was not recognized: 39.32.41" N, 112°55'1" W.The following coordinate was not recognized: 39.32.41" N, 112°55'1" W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

234

Transport characteristics across drum filter vents and polymer bags  

DOE Green Energy (OSTI)

The rate at which hydrogen (H {sub 2}) or a volatile organic compound (VOC) exits a layer of confinement in a vented waste drum is proportional to the concentration difference across the layer. The proportionality constant is the gas transport characteristic. A series of transport experiments were conducted to determine H{sub 2} and VOC transport characteristics across different drum filter vents and polymer bags. This report reviews the methods and results of past investigators in defining transport characteristics across filter vents and polymer bags, describes the apparatus and procedures used in these experiments, compares the reported and estimated transport characteristics with earlier results, and discusses the impact of changing the transport characteristic values used in model calculations.

Liekhus, K.J.

1994-08-01T23:59:59.000Z

235

Geological and Geotechnical Site Investigation for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility  

SciTech Connect

With international efforts to limit anthropogenic carbon in the atmosphere, various CO{sub 2} sequestration methods have been studied by various facilities worldwide. Basalt rock in general has been referred to as potential host material for mineral carbonation by various authors, without much regard for compositional variations due to depositional environment, subsequent metamorphism, or hydrothermal alteration. Since mineral carbonation relies on the presence of certain magnesium, calcium, or iron silicates, it is necessary to study the texture, mineralogy, petrology, and geochemistry of specific basalts before implying potential for mineral carbonation. The development of a methodology for the characterization of basalts with respect to their susceptibility for mineral carbonation is proposed to be developed as part of this research. The methodology will be developed based on whole rock data, petrography and microprobe analyses for samples from the Caledonia Mine in Michigan, which is the site for a proposed small-scale demonstration project on mineral carbonation in basalt. Samples from the Keweenaw Peninsula will be used to determine general compositional trends using whole rock data and petrography. Basalts in the Keweenaw Peninsula have been subjected to zeolite and prehnite-pumpellyite facies metamorphism with concurrent native copper deposition. Alteration was likely due to the circulation of CO{sub 2}-rich fluids at slightly elevated temperatures and pressures, which is the process that is attempted to be duplicated by mineral carbonation.

Metz, Paul; Bolz, Patricia

2013-03-25T23:59:59.000Z

236

Gas generation results and venting study for transuranic waste drums  

DOE Green Energy (OSTI)

Sixteen waste drums, containing six categories of plutonium-contaminated waste, were monitored for venting and gas generation for six months. The venting devices tested appeared adequate to relieve pressure and prevent hydrogen accumulation. Most of the gas generation, primarily H2 and CO2, was due to radiolytic decomposition of the hydrogenous wastes. Comparison of the gas yields with those obtained previously in laboratory tests showed very reasonable agreement with few exceptions.

Kazanjian, A.R.; Arnold, P.M.; Simmons, W.C.; D'Amico, E.L.

1985-09-23T23:59:59.000Z

237

Project Drum Inlet: explosive excavation in saturated sand  

SciTech Connect

Seasonal storms during February of 1971 completely closed the Drum Inlet navigation channel through the Outer Banks off the North Carolina coast. This channel is highly useful to commercial and sport fishing industries in the Carteret County vicinity of North Carolina, and is vital to maintenance of the ecological balance in the inland Core Sound waters. To reopen Drum Inlet, an alignment about 2.1 miles south of the original location was selected. A contract dredge excavated a channel from the inland Core Sound waterway to and part way through the Outer Banks. The final 385-ft-long section of sand separating the Core Sound from the Atlantic Ocean was excavated with large explosive charges, This report describes the explosive excavation of that portion of the channel. Twenty-two separate canisters, each containing 1 ton of aluminized ammonium-nitrate slurry blasting agent, were emplaced in two rows. All charges were detonated simultaneously at 1327 hours, 23 Decembcr 1971. The detonation successfully removed the sand barrier, forming a continuous channel over 80 ft in width. This channel subsequently washed out to a width of about 1000 ft and was used:is an access route to the Raleigh Bay fishing grounds. The Drum Inlet project demonstrated the practicality of explosive channel excavation in saturated sand under the special conditions encountered at this site. (auth)

Snell, C.M.; Gillespie, R.H.

1973-10-01T23:59:59.000Z

238

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

239

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrieval Facility Begins New Role Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

240

Progress report and technical evaluation of the ISCR pilot test conducted at the former CCC/USDA grain storage facility in Centralia, Kansas.  

Science Conference Proceedings (OSTI)

In October, 2007, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented the document Interim Measure Conceptual Design (Argonne 2007a) to the Kansas Department of Health and Environment, Bureau of Environmental Remediation (KDHE/BER), for a proposed non-emergency Interim Measure (IM) at the site of the former CCC/USDA grain storage facility in Centralia, Kansas (Figure 1.1). The IM was recommended to mitigate existing levels of carbon tetrachloride contamination identified in the vadose zone soils beneath the former facility and in the groundwater beneath and in the vicinity of the former facility, as well as to moderate or decrease the potential future concentrations of carbon tetrachloride in the groundwater. The Interim Measure Conceptual Design (Argonne 2007a) was developed in accordance with the KDHE/BER Policy No.BERRS-029, Policy and Scope of Work: Interim Measures (KDHE 1996). The hydrogeologic, geochemical, and contaminant distribution characteristics of the Centralia site, as identified by the CCC/USDA, factored into the development of the nonemergency IM proposal. These characteristics were summarized in the Interim Measure Conceptual Design (Argonne 2007a) and were discussed in detail in previous Argonne reports (Argonne 2002a, 2003, 2004, 2005a,b,c, 2006a,b, 2007b). The identified remedial goals of the proposed IM were as follows: (1) To reduce the existing concentrations of carbon tetrachloride in groundwater in three 'hot spot' areas identified at the site (at SB01, SB05, and SB12-MW02; Figure 1.2) to levels acceptable to the KDHE. (2) To reduce carbon tetrachloride concentrations in the soils near the location of former soil boring SB12 and existing monitoring well MW02 (Figure 1.2) to levels below the KDHE Tier 2 Risk-Based Screening Level (RBSL) of 200 {micro}g/kg for this contaminant. To address these goals, the potential application of an in situ chemical reduction (ISCR) treatment technology, employing the use of the EHC{reg_sign} treatment materials marketed by Adventus Americas, Inc. (Freeport, Illinois), was recommended. The EHC materials are proprietary mixtures of food-grade organic carbon and zero-valent iron that are injected into the subsurface as a slurry (EHC) or in dissolved form (EHC-A) and subsequently released slowly into the formation. The materials are designed to create highly reducing geochemical conditions in the vadose and saturated zones that foster both thermodynamic and biological reductive dechlorination of carbon tetrachloride.

LaFreniere, L. M.; Environmental Science Division

2009-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

RESULTS OF ANALYSIS OF NGS CONCENTRATE DRUM SAMPLES [Next Generation Solvent  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) prepared two drums (50 gallons each in ?Drum#2? and ?Drum#4?) of NGS-MCU (Next Generation Solvent-Modular CSSX Unit) concentrate for future use at MCU in downblending the BOBCalixC6 based solvent to produce NGS-MCU solvent. Samples of each drum were sent for analysis. The results of all the analyses indicate that the blend concentrate is of the correct composition and should produce a blended solvent at MCU of the desired formulation.

Peters, T.; Williams, M.

2013-09-13T23:59:59.000Z

242

Corrective Action Decision Document for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada with Errata Sheet  

Science Conference Proceedings (OSTI)

This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 166, Storage Yards and Contaminated Materials, in accordance with the Federal Facility Agreement and Consent Order (1996). The corrective action sites (CASs) are located in Areas 2, 3, 5, and 18 of the Nevada Test Site, Nevada. Corrective Action Unit 166 is comprised of the following CASs: • 02-42-01, Cond. Release Storage Yd - North • 02-42-02, Cond. Release Storage Yd - South • 02-99-10, D-38 Storage Area • 03-42-01, Conditional Release Storage Yard • 05-19-02, Contaminated Soil and Drum • 18-01-01, Aboveground Storage Tank • 18-99-03, Wax Piles/Oil Stain The purpose of this CADD is to identify and provide the rationale for the recommendation of a corrective action alternative (CAA) for the seven CASs within CAU 166. Corrective action investigation (CAI) activities were performed from July 31, 2006, through February 28, 2007, as set forth in the CAU 166 Corrective Action Investigation Plan (NNSA/NSO, 2006).

Grant Evenson

2007-03-01T23:59:59.000Z

243

Interim measure conceptual design for remediation at the former CCC/USDA grain storage facility at Centralia, Kansas : pilot test and remedy implementation.  

SciTech Connect

This document presents an Interim Measure Work Plan/Design for the short-term, field-scale pilot testing and subsequent implementation of a non-emergency Interim Measure (IM) at the site of the former grain storage facility operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Centralia, Kansas. The IM is recommended to mitigate both (1) localized carbon tetrachloride contamination in the vadose zone soils beneath the former facility and (2) present (and potentially future) carbon tetrachloride contamination identified in the shallow groundwater beneath and in the immediate vicinity of the former CCC/USDA facility. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory have demonstrated that groundwater at the Centralia site is contaminated with carbon tetrachloride at levels that exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency's maximum contaminant level of 5.0 {micro}g/L for this compound. Groundwater sampling and analyses conducted by Argonne under a monitoring program approved by the Kansas Department of Health and Environment (KDHE) indicated that the carbon tetrachloride levels at several locations in the groundwater plume have increased since twice yearly monitoring of the site began in September 2005. The identified groundwater contamination currently poses no unacceptable health risks, in view of the absence of potential human receptors in the vicinity of the former CCC/USDA facility. Carbon tetrachloride contamination has also been identified at Centralia in subsurface soils at concentrations on the order of the Kansas Tier 2 RBSL of 200 {micro}g/kg in soil for the soil-to-groundwater protection pathway. Soils contaminated at this level might pose some risk as a potential source of carbon tetrachloride contamination to groundwater. To mitigate the existing contaminant levels and decrease the potential future concentrations of carbon tetrachloride in groundwater and soil, the CCC/USDA recommends initial short-term, field-scale pilot testing of a remedial approach that employs in situ chemical reduction (ISCR), in the form of a commercially available material marketed by Adventus Americas, Inc., Freeport, Illinois (http://www.adventusgroup.com). If the pilot test is successful, it will be followed by a request for KDHE authorization of full implementation of the ISCR approach. In the recommended ISCR approach, the Adventus EHC{reg_sign} material--a proprietary mixture of food-grade organic carbon and zero-valent iron--is introduced into the subsurface, where the components are released slowly into the formation. The compounds create highly reducing conditions in the saturated zone and the overlying vadose zone. These conditions foster chemical and biological reductive dechlorination of carbon tetrachloride. The anticipated effective lifetime of the EHC compounds following injection is 1-5 yr. Although ISCR is a relatively innovative remedial approach, the EHC technology has been demonstrated to be effective in the treatment of carbon tetrachloride contamination in groundwater and has been employed at a carbon tetrachloride contamination site elsewhere in Kansas (Cargill Flour Mill and Elevator, Wellington, Kansas; KDHE Project Code C209670158), with the approval of the KDHE. At Centralia, the CCC/USDA recommends use of the ISCR approach initially in a short-term pilot test addressing the elevated carbon tetrachloride levels identified in one of three persistently highly contaminated areas ('hot-spot areas') in the groundwater plume. In this test, a three-dimensional grid pattern of direct-push injection points will be used to distribute the EHC material (in slurry or aqueous form) throughout the volume of the contaminated aquifer and (in selected locations) the vadose zone in the selected hot-spot area. Injection of the EHC material will be conducted by a licensed contractor, under the supervision of Adventus and Argonne technical personnel. The contractor will be identified upon acceptanc

LaFreniere, L. M.; Environmental Science Division

2007-11-09T23:59:59.000Z

244

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

More Storage Space, Better Reliability Now at the ARM Data Management More Storage Space, Better Reliability Now at the ARM Data Management Facility Bookmark and Share To support the ever-increasing file storage needs of the ARM Data Management Facility (DMF) and ARM Engineering computers, a Network Appliance (NetApp®) file server with 2.68 terabytes, or 2.95 trillion bytes, of highly-reliable and extremely-fast, usable disk storage joined the DMF servers. The NetApp system performs nearly four times faster than the previous file server and is engineered for a higher degree of reliability-critical improvements needed to maintain uptime for ARM data availability at the DMF. A NetApp server increases ARM storage capacity and keeps the data flowing at the Data Management Facility. A NetApp server increases ARM storage capacity and keeps the data flowing

245

Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and accumulators, gas cylinders, and associated debris were removed and are currently pending treatment and disposal as MW. (3) At CAS 05-19-02, Contaminated Soil and Drum, as a BMP, an empty drum was removed and disposed as sanitary waste. (4) At CAS 18-01-01, Aboveground Storage Tank, approximately 165 gal of lead-impacted liquid were removed and are currently pending disposal as HW, and approximately 10 gal of lead shot and 6 yd{sup 3} of wax embedded with lead shot were removed and are currently pending treatment and disposal as MW. As a BMP, approximately 0.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, approximately 55 gal of liquid were removed and disposed as sanitary waste, and two metal containers were grouted in place. (5) At CAS 18-99-03, Wax Piles/Oil Stain, no further action was required; however, as a BMP, approximately l.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, and one metal container was grouted in place.

NSTec Environmental Restoration

2009-08-01T23:59:59.000Z

246

Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029  

SciTech Connect

This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

2013-09-01T23:59:59.000Z

247

SITING HAZARDOUS WASTE MANAGEMENT FACILITIES * KARL F. BIRNS  

E-Print Network (OSTI)

cap and are now under RCRA post-closure care and monitoring. Capping of the old ponds has lessened contaminated soils excavated during the RCRA closure of the OLF as well as soils excavated from the banks of NT. complete the RCRA closure of the K-1417-B Drum Storage Yard and will perform surveillance and maintenance

Columbia University

248

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities and Capabilities Facilities and Capabilities Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities | High Performance Storage SHARE High Performance Storage and Archival Systems To meet the needs of ORNL's diverse computational platforms, a shared parallel file system capable of meeting the performance and scalability require-ments of these platforms has been successfully deployed. This shared file system, based on Lustre, Data Direct Networks (DDN), and Infini-Band technologies, is known as Spider and provides centralized access to petascale datasets from all major on-site computational platforms. Delivering more than 240 GB/s of aggregate performance,

249

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

R.F. , 1974, Bad Creek pumped storage project, in ElectricJ.J. , 1974, Potential pumped storage projects that wouldconverting in pumped storage facilities, Franklin Pierce

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

250

Addendum to the corrective action plan for Underground Storage Tanks 1219-U, 1222-U, 2082-U, 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID {number_sign}0-010117  

Science Conference Proceedings (OSTI)

This document represents an addendum to the Corrective Action Plan (CAP) for underground storage tanks 1219-U, 2082-U, and 2068-U located at Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, TN. The site of the four underground storage tanks is commonly referred to as the Rust Garage Facility. The original CAP was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review in May 1992. During the time period after submission of the original CAP for the Rust Garage Facility, Y-12 Plant Underground Storage Tank (UST) Program personnel continued to evaluate improvements that would optimize resources and expedite the activities schedule presented in the original CAP. Based on these determinations, several revisions to the original corrective action process options for remediation of contaminated soils are proposed. The revised approach will involve excavation of the soils from the impacted areas, on-site thermal desorption of soil contaminants, and final disposition of the treated soils by backfilling into the subject site excavations. Based on evaluation of the corrective actions with regard to groundwater, remediation of groundwater under the Y-12 Plant CERCLA Program is proposed for the facility.

Not Available

1994-01-01T23:59:59.000Z

251

Drum Mountain Geothermal Project (2) | Open Energy Information  

Open Energy Info (EERE)

Project (2) Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project (2) Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Analysis of natural gas supply strategies at Fort Drum  

SciTech Connect

This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

1992-07-01T23:59:59.000Z

253

What Employees Need (and Want) to Hear When Justifying the Suspension of a Regulated Metals Plan for the Processing of Drums Containing Metal Turnings  

SciTech Connect

A Regulated Metals Plan (RMP) was implemented for outdoor work activities involving the removal and disposition of approximately 4,000 deteriorated waste drums containing 236 metric tonnes (260 tons) of lead turnings from various, unspecified machine shop facilities at the Paducah Gaseous Diffusion Plant. Until exposure monitoring could prove otherwise, the work area established for processing the drums was conservatively defined as a Lead Regulated Area (LRA) subject to the Occupational Safety and Health Administration's Lead Standard found in Title 29 of the Code of Federal Regulations, Part 1910.1025. The vast majority of the analytical results for the industrial hygiene breathing zone samples collected and tested for arsenic, beryllium, cadmium, chromium, lead, nickel, selenium, silver, and thallium using the National Institute for Occupational Safety and Health's analytical method 7300 were equivalent to the laboratory detection limits for each analyte. All results were less than 6% of their respective Permissible Exposure Limits (PEL), except for one nickel result that was approximately 17% of its PEL. The results provided justification to eventually down-post the LRA to existing employee protection requirements. In addition to removing the deteriorated drums and accompanying debris, the success of this project was quantified in terms of zero recordable injuries. The primary contributor in achieving this success was the sharing and communication of information between management, safety, and the field teams. Specifically, this was what the employees needed (and wanted) to hear when justifying the suspension of the RMP for the processing of drums containing metal turnings. Daily briefings on the status of the project and field monitoring results were just as important as maintaining budget and schedule milestones. Also, the Environmental, Safety and Health organization maintained its presence by continuing to monitor evolving field conditions to ensure the effectiveness of its plans and procedures. (authors)

Todd Potts, T. [WESKEM, LLC, Oak Ridge Turnpike, Oak Ridge, TN (United States); Hylko, J.M. [Paducah Remediation Services, LLC, Kevil, KY (United States)

2008-07-01T23:59:59.000Z

254

MULTIPLE INPUT BINARY ADDER EMPLOYING MAGNETIC DRUM DIGITAL COMPUTING APPARATUS  

DOE Patents (OSTI)

A digital computing apparatus is described for adding a plurality of multi-digit binary numbers. The apparatus comprises a rotating magnetic drum, a recording head, first and second reading heads disposed adjacent to the first and second recording tracks, and a series of timing signals recorded on the first track. A series of N groups of digit-representing signals is delivered to the recording head at time intervals corresponding to the timing signals, each group consisting of digits of the same significance in the numbers, and the signal series is recorded on the second track of the drum in synchronism with the timing signals on the first track. The multistage registers are stepped cyclically through all positions, and each of the multistage registers is coupled to the control lead of a separate gate circuit to open the corresponding gate at only one selected position in each cycle. One of the gates has its input coupled to the bistable element to receive the sum digit, and the output lead of this gate is coupled to the recording device. The inputs of the other gates receive the digits to be added from the second reading head, and the outputs of these gates are coupled to the adding register. A phase-setting pulse source is connected to each of the multistage registers individually to step the multistage registers to different initial positions in the cycle, and the phase-setting pulse source is actuated each N time interval to shift a sum digit to the bistable element, where the multistage register coupled to bistable element is operated by the phase- setting pulse source to that position in its cycle N steps before opening the first gate, so that this gate opens in synchronism with each of the shifts to pass the sum digits to the recording head.

Cooke-Yarborough, E.H.

1960-12-01T23:59:59.000Z

255

Development of a model for predicting transient hydrogen venting in 55-gallon drums  

DOE Green Energy (OSTI)

Remote drum venting was performed on a population of unvented high activity drums (HAD) in the range of 63 to 435 plutonium equivalent Curies (PEC). These 55-gallon Transuranic (TRU) drums will eventually be shipped to the Waste Isolation Pilot Plant (WIPP). As a part of this process, the development of a calculational model was required to predict the transient hydrogen concentration response of the head space and polyethylene liner (if present) within the 55-gallon drum. The drum and liner were vented using a Remote Drum Venting System (RDVS) that provided a vent sampling path for measuring flammable hydrogen vapor concentrations and allow hydrogen to diffuse below lower flammability limit (LFL) concentrations. One key application of the model was to determine the transient behavior of hydrogen in the head space, within the liner, and the sensitivity to the number of holes made in the liner or number of filters. First-order differential mass transport equations were solved using Laplace transformations and numerically to verify the results. the Mathematica 6.0 computing tool was also used as a validation tool and for examining larger than two chamber systems. Results will be shown for a variety of configurations, including 85-gallon and 110-gallon overpack drums. The model was also validated against hydrogen vapor concentration assay measurements.

Apperson, Jason W [Los Alamos National Laboratory; Clemmons, James S [Los Alamos National Laboratory; Garcia, Michael D [Los Alamos National Laboratory; Sur, John C [Los Alamos National Laboratory; Zhang, Duan Z [Los Alamos National Laboratory; Romero, Michael J [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

256

EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

257

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

258

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

259

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

for a pumped-storage hydroelectric facility. As described byand tunnels several hydroelectric generation facilities.tors in ore location. Hydroelectric facilities incorporating

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

260

Waste drum gas generation sampling program at Rocky Flats during FY 1988  

DOE Green Energy (OSTI)

Rocky Flats Plant Transuranic Waste Drums were sampled for gas composition. Combustibles, plastics, Raschig rings, solidified organic sludge, and solidified inorganic sludge transuranic waste forms were sampled. Plastic bag material and waste samples were also taken from some solidified sludge waste drums. A vacuum system was used to sample each layer of containment inside a waste drum, including individual waste bags. G values (gas generation) were calculated for the waste drums. Analytical results indicate that very low concentrations of potentially flammable or corrosive gas mixtures will be found in vented drums. G(H{sub 2}) was usually below 1.6, while G(Total) was below 4.0. Hydrogen permeability tests on different types of plastic waste bags used at Rocky Flats were also conducted. Polyvinylchloride was slightly more permeable to hydrogen than polyethylene for new or creased material. Permeability of aged material to hydrogen was slightly higher than for new material. Solidified organic and inorganic sludges were sampled for volatile organics. The analytical results from two drums of solidified organic sludges showed concentrations were above detection limits for four of the 36 volatile organics analyzed. The analytical results for four of the five solidified inorganic sludges show that concentrations were below detection limits for all volatile organics analyzed. 3 refs., 5 figs., 2 tabs.

Roggenthen, D.K.; McFeeters, T.L.; Nieweg, R.G.

1991-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PURPA and Superconducting Magnetic Energy Storage: Energy Conservation, Environmental Protection and Entrepreneurial Opportunity in the Next Technological Revolution  

E-Print Network (OSTI)

1988] SUPERCONDUCTING MAGNETIC ENERGY STORAGE Corp. ,60 theSupercon- ducting Magnetic Energy Storage, 2 SUPERCURRENTS1988] SUPERCONDUCTING MAGNETIC ENERGY STORAGE facilities (

Bovett, Robert E.

1988-01-01T23:59:59.000Z

262

Conceptual design of electrical balance of plant for advanced battery energy storage facility. Annual report, March 1979. [20-MW, 100 MWh  

SciTech Connect

Large-scale efforts are in progress to develop advanced batteries for utility energy storage systems. Realization of the full benefits available from those systems requires development, not only of the batteries themselves, but also the ac/dc power converter, the bulk power interconnecting equipment, and the peripheral electric balance of plant equipment that integrate the battery/converter into a properly controlled and protected energy system. This study addresses these overall system aspects; although tailored to a 20-MW, 100-MWh lithium/sulfide battery system, the technology and concepts are applicable to any battery energy storage system. 42 figures, 14 tables. (RWR)

1980-01-01T23:59:59.000Z

263

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest ...

264

A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525  

Science Conference Proceedings (OSTI)

For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities.

Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B. [Oak Ridge National Lab., TN (United States); Guay, K.P. [S. M. Stroller Corp. (United States); Smith, L.C. [United Energy Services Corp. (United States)

1995-07-01T23:59:59.000Z

265

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2010 [Facility News] 15, 2010 [Facility News] Water Vapor Network at SGP Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. After nearly eleven years, the Single Frequency GPS Water Vapor Network field campaign at the ARM Southern Great Plains (SGP) site came to a close on July 1, 2010. Installed between 1999 and 2000, this network consisted of 24 GPS stations operating within an 8-kilometer radius around the SGP Central Facility near Lamont, Oklahoma. Developed to function as a single instrument, the network simultaneously measured "slant water vapor" in

266

Movement of Fall Chinook Salmon Fry Oncorhynchus Tshawytscha : A Comparison of Approach Angles for Fish Bypass in a Modular Rotary Drum Fish Screen.  

DOE Green Energy (OSTI)

The Pacific Northwest National Laboratory (PNNL) performed tests to determine whether a significant difference in fish passage existed between a 6-ft screening facility built perpendicularly to canal flow and an identical screening facility with the screen mounted at a 45-degree angle to the approach channel. A modular drum screen built by the Washington Department of Fish and Wildlife was installed at PNNL`s Aquatic Ecology research laboratory in Richland, Washington. Fall chinook salmon fry were introduced into the test system, and their movements were monitored. A total of 14 tests (400 fish per test) that lasted 20 hours were completed during April and May, 1996. There was no significant difference in fish passage rate through the two approach configurations. Attraction flow to the bypass across the face of the screen was more evident for the angled approach, although this did not appear to play a significant role in attracting fish to the bypass. Approach velocities at the face of the screen did not exceed the 0.4 fps criteria for either approach configuration and posed not threat to fish. No fish passed over, around, or through the drum screen during any test.

Neitzel, D.A.; Blanton, S.L.; Abernethy, C. Scott; Daly, D.S. [Pacific Northwest National Laboratory, Richland, WA (United States)

1996-08-01T23:59:59.000Z

267

Nuclear heat-load limits for above-grade storage of solid transuranium wastes  

SciTech Connect

Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190/sup 0/F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450/sup 0/F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265/sup 0/F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative.

Clontz, B.G.

1978-06-01T23:59:59.000Z

268

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H  

Science Conference Proceedings (OSTI)

This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

269

Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source  

DOE Patents (OSTI)

A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

Paulson, Leland E. (Morgantown, WV)

1990-01-01T23:59:59.000Z

270

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

... Demonstrated maximum working gas volume is the sum of the highest storage inventory levels of working gas observed in each facility over the previous 5-year ...

272

Pipe overpack container for transuranic waste storage and shipment  

Science Conference Proceedings (OSTI)

A Pipe Overpack Container is described for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding, thus allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, R.R.; Thorp, D.T.; Rivera, M.A.

1999-12-07T23:59:59.000Z

273

Pipe overpack container for trasuranic waste storage and shipment  

DOE Patents (OSTI)

A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

1999-01-01T23:59:59.000Z

274

A computer model of gas generation and transport within TRU waste drums  

DOE Green Energy (OSTI)

A computer model has been developed to predict radiolytic gas generation and transport within Transuranic (TRU) waste drums and surrounding enclosures. Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled and the concentrations of gas throughout the waste drum and enclosures are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that the concentration of hydrogen gas can exceed 4 mole percent (lower flammable limit) with only about 5 curies of plutonium. If the drum liner is punctured and an unrestricted 0.75-in. carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. Larger diameter filters can be used to increase the curie loading. The model has been used to show that shipments of 1000 Ci of plutonium-238 contaminated waste from Savannah River to the WIPP site are feasible using the TRUPACT shipping container. 10 refs., 17 figs., 6 tabs.

Smith, F.G. III

1988-06-01T23:59:59.000Z

275

Scenes from Argonne's Materials Engineering Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs...

276

Support Facilities | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

maintenance shops, waste management and storage facilities, guard portals and posts, cooling towers and chiller buildings - with an emphasis on sustainment, cost savings and...

277

Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect

This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

1996-12-01T23:59:59.000Z

278

Natural gas storage - end user interaction. Task 2. Topical report  

Science Conference Proceedings (OSTI)

New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. This paper discusses the storage of natural gas, storage facilities, and factors affecting the current, and future situation for natural gas storage.

NONE

1996-01-01T23:59:59.000Z

279

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

280

Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117  

Science Conference Proceedings (OSTI)

This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility.

NONE

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

282

The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic  

E-Print Network (OSTI)

The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic, New Mexico to dispose of this waste. The TRU waste being disposed at the WIPP is packaged into drums-level waste and spent nuclear fuel. The WIPP has a total capacity of 6.2 million cubic feet of TRU waste

283

Baseline descriptions for LWR spent fuel storage, handling, and transportation  

SciTech Connect

Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

Moyer, J.W.; Sonnier, C.S.

1978-04-01T23:59:59.000Z

284

Drum type fossil fueled power plant control based on fuzzy inverse MIMO model  

Science Conference Proceedings (OSTI)

In this paper, a new fuzzy controller is proposed based on inverse model of boiler-turbine system. Gain scheduling scheme is used to keep feedback rule as close as possible to optimal condition while generating plant Input/Output data. Interaction between ... Keywords: ANFIS, drum type fossil fueled power plant (FFPP), interaction, inverse model control, nonlinear model, robustness

Ali Ghaffari; Mansour Nikkhah Bahrami; Hesam Parsa

2006-06-01T23:59:59.000Z

285

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

286

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 28, 2013 [Facility News] June 28, 2013 [Facility News] What's a Little Helium Among Friends? Bookmark and Share In early June, this 38-cylinder helium storage system arrived at the ARM Southern Great Plains site with nearly 18,000 standard cubic feet of helium left in it-enough to launch about 400 weather balloons. In early June, this 38-cylinder helium storage system arrived at the ARM Southern Great Plains site with nearly 18,000 standard cubic feet of helium left in it-enough to launch about 400 weather balloons. What is white and blue, can hold 55,000 standard cubic feet (scf) of gas, and looks like it could attach to the International Space Station? A helium storage system, of course. This impressive contraption arrived at the ARM Southern Great Plains site in early June, along with 18,000 scf of helium inside-valuable stuff,

287

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for...

288

NREL: Electricity Integration Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's electricity integration research is conducted in state-of-the-art facilities. These facilities assist industry in the development of power systems and address the operational challenges of full system integration. The Energy Systems Integration Facility can be used to design, test, and analyze components and systems to enable economic, reliable integration of renewable electricity, fuel production, storage, and building efficiency technologies with the U.S. electricity delivery infrastructure. New grid integration capabilities at the National Wind Technology Center will allow testing of many grid integration aspects of multi-megawatt, utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize,

289

HTGR spent fuel storage study  

SciTech Connect

This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification.

Burgoyne, R.M.; Holder, N.D.

1979-04-01T23:59:59.000Z

290

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

291

Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source  

DOE Patents (OSTI)

A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.

Paulson, L.E.

1988-05-13T23:59:59.000Z

292

Repository receiving facility design support  

Science Conference Proceedings (OSTI)

This report provides preliminary design criteria and proposed design features to reduce the occupational radiation exposure and the transportation turnaround time during receipt of waste shipments at a Federal high-level nuclear waste repository. A cost/benefit analysis is provided. Much of the data presented in previous reports was revised and upgraded to reflect current estimates of waste generation/receipt volumes so as to provide a baseline comparison case for the cost/benefit analysis. The National Waste Repository in Basalt receiving facility operational manpower requirements, estimated occupational dose exposures and capital cost estimates were revised by scaling factors based on the volume receipts. All capital cost estimates were expressed in terms of 1983 dollars. The repository receiving facility was divided into two main areas. The cask handling facility for unloading shipments of spent fuel high-level vitrified wastes and spent fuel cladding hulls, and the TRU-waste handling facility for unloading 55-, 80-, and 600-drum shipments. In both areas, remote handling techniques were employed as much as practical. Occupational dose estimates were formulated based on an operational time and motion survey for truck and rail shipping packages and reference dose maps for each corresponding package. 9 references, 5 figures, 22 tables.

Cottrell, J.E.; Dabolt, R.J.; Steneck, P.D.

1983-07-01T23:59:59.000Z

293

Energy Storage Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

294

Effects of lysine nutrition on production characteristics and ammonia excretion of red drum Sciaenops ocellatus  

E-Print Network (OSTI)

The red drum (Sciaenops ocellatus) has traditionally been an important commercial and recreational fish species in the Gulf of Mexico; therefore, its aquacultural production for food and for stock enhancement continues to develop. The minimum dietary lysine requirement of juvenile red drum was previously quantified to be 1.55% of a 35% crude protein (CP) diet (4.4% of dietary protein). However, red drum are usually fed diets containing 40 to 50% CP under commercial production. Therefore, the purpose of this study was to reevaluate the dietary lysine requirement of red drum as a function of dietary CP, and determine the effects of dietary manipulations on ammonia excretion. Control diets at 35 and 45% CP contained only the intact protein provided by a 50/50 mixture of red drum muscle and wheat gluten. Four experimental diets at each CP level contained the mixture (64% of CP) and crystalline amino acids (34% of CP) to provide lysine levels above and below the previously determined requirement. Each diet was fed to triplicate groups of 20 juvenile red drum initially averaging 3.4 g/fish in 110-l aquaria containing brackish (7ppt) water at 27±1 °C and operated in a recirculating mode. Diets were fed at a fixed rate approaching apparent satiation twice daily for 6 weeks after which total ammonia nitrogen (TAN) excretion at 4-h postprandial was determined. Diets supplemented with crystalline amino acids supported similar weight gain (94 - 98%) as that obtained by fish fed control diets with intact protein. Based on weight gain, protein efficiency ratio (PER), and protein conversion efficiency (PCE) data, the minimum dietary lysine requirement was not influenced by dietary CP. Broken-line regression analysis of weight gain data of fish fed increments of lysine in both 35 and 45% CP diets yielded a lysine requirement estimate of 1.49±0.07% of diet, confirming the previously determined value. Weight gain and TAN excretion were significantly (P#0.05) higher in fish fed the 45% CP diets while PER and PCE values were significantly reduced. Lysine deficiency also resulted in elevated ammonia excretion, but significant reductions were not achieved when dietary lysine was at or above the established requirement.

Webb, Kenneth Ashley

2002-01-01T23:59:59.000Z

295

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of ...

296

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

297

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

298

Subdiffusive axial transport of granular materials in a long drum mixer  

E-Print Network (OSTI)

Granular mixtures rapidly segregate radially by size when tumbled in a partially filled horizontal drum. The smaller component moves toward the axis of rotation and forms a buried core, which then splits into axial bands. Models have generally assumed that the axial segregation is opposed by diffusion. Using narrow pulses of the smaller component as initial conditions, we have characterized axial transport in the core. We find that the axial advance of the segregated core is well described by a self-similar concentration profile whose width scales as $t^\\alpha$, with $\\alpha \\sim 0.3 < 1/2$. Thus, the process is subdiffusive rather than diffusive as previously assumed. We find that $\\alpha$ is nearly independent of the grain type and drum rotation rate within the smoothly streaming regime. We compare our results to two one-dimensional PDE models which contain self-similarity and subdiffusion; a linear fractional diffusion model and the nonlinear porous medium equation.

Zeina S. Khan; Stephen W. Morris

2004-08-28T23:59:59.000Z

299

Drum Screen Filtration of Cooling Water in Fossil-Fired and Nuclear Power Plants: The Electricite de France (EDF) Experience  

Science Conference Proceedings (OSTI)

This document presents a summary of the lessons learned from operating the drum screen filtration systems used for the last three decades in Člectricité de France’s (EDF’s) nuclear and fossil-fired power plants, both in terms of the technological aspects of filtration and with regard to the prevention of clogging risks and the prevention of damage to the living organisms impinged on the drum screens and entrained into the cooling ...

2012-11-21T23:59:59.000Z

300

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

LED Provides Effective and Efficient Lighting in Freezer Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

by example, saving energy and taxpayer dollars in federal facilities Spotlight on Design LED Provides Effective and Efficient Lighting in Freezer Storage Room New lighting...

302

Energy Storage Systems Program at Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Controller - PE Reliability FY10 SNL ESS Program Molecules to Megawatts * Testing - 1 MW Energy Storage Test Facility (ESTF) initiated - Lead Carbon, Li Ion Battery Testing to...

303

Pipelines and Underground Gas Storage (Iowa) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of...

304

Working and Net Available Shell Storage Capacity as of March...  

Gasoline and Diesel Fuel Update (EIA)

includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net...

305

Working and Net Available Shell Storage Capacity as of ...  

U.S. Energy Information Administration (EIA)

It includes three tables detailing working and net available shell storage capacity by facility type, product, and PAD District as of September 30, 2010.

306

EA-1900: Radiological Work and Storage Building at the Knolls...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors. Public...

307

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific...

308

Geomechanics of subsurface sand production and gas storage .  

E-Print Network (OSTI)

??Improving methods of hydrocarbon production and developing new techniques for the creation of natural gas storage facilities are critically important for the petroleum industry. This… (more)

Choi, Jong-Won

2011-01-01T23:59:59.000Z

309

Facility Microgrids  

Science Conference Proceedings (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

310

RCRA facility assessments  

SciTech Connect

The Hazardous and Solid Waste Amendments of 1984 (HSWA) broadened the authorities of the Resource Conservation and Recovery Act (RCRA) by requiring corrective action for releases of hazardous wastes and hazardous constituents at treatment, storage, and disposal (TSD) facilities. The goal of the corrective action process is to ensure the remediation of hazardous waste and hazardous constituent releases associated with TSD facilities. Under Section 3004(u) of RCRA, operating permits issued to TSD facilities must address corrective actions for all releases of hazardous waste and hazardous constituents from any solid waste management unit (SWMU) regardless of when the waste was placed in such unit. Under RCRA Section 3008(h), the Environmental Protection Agency (EPA) may issue administrative orders to compel corrective action at facilities authorized to operate under RCRA Section 3005(e) (i.e., interim status facilities). The process of implementing the Corrective Action program involves the following, in order of implementation; (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) the Corrective Measures Study (CMS); and (4) Corrective Measures Implementation (CMI). The RFA serves to identify and evaluate SWMUs with respect to releases of hazardous wastes and hazardous constituents, and to eliminate from further consideration SWMUs that do not pose a threat to human health or the environment. This Information Brief will discuss issues concerning the RFA process.

NONE

1994-07-01T23:59:59.000Z

311

Waste Encapsulation Storage Facility, January 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safety question (USQ) evaluation and an Occurrence Reporting and Processing System (ORPS) report were also promptly initiated. Subsequent analyses resulting from the USQ...

312

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

313

Thermal Energy Storage at a Federal Facility  

DOE Green Energy (OSTI)

Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals

Not Available

2000-07-01T23:59:59.000Z

314

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

315

Transphase cool storage test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial cool storage systems. Transphase, Inc. provided a prototype of a new storage tank design equipped with coils designed for use with a secondary fluid system and filled with a eutectic designed to freeze at 41{degree}F. The Transphase cool storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank with relatively constant brine temperatures over most of the charging cycle. During discharge cycles, the storage tank outlet temperature was governed mainly by the brine flow rate and the tank`s remaining charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. This prototype unit experienced several operational problems, not unexpected for the first full-size execution of a new design. Such prototype testing was one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-12-01T23:59:59.000Z

316

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

317

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Note: 1) 'Demonstrated Peak Working Gas Capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period as...

318

Welfare losses in commodity storage games  

Science Conference Proceedings (OSTI)

We develop a game theoretic model of a shared commodity storage facility whose injection/ejection and space resources have been allocated to multiple selfish firms. We assume a setting where each firms injectability and deliverability depend on overall ...

Alan Holland

2009-05-01T23:59:59.000Z

319

Behavior of spent nuclear fuel and storage system components in dry interim storage. Revision 1  

SciTech Connect

Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom; organic-cooled reactor (OCR) fuel (clad with a zirconium alloy) in silos in Canada; and boiling water reactor (BWR) fuel (clad with Zircaloy) in a metal storage cask in Germany. Dry storage demonstrations are under way for Zircaloy-clad fuel from BWRs, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions. 110 refs., 22 figs., 28 tabs.

Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

1983-02-01T23:59:59.000Z

320

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities  

Science Conference Proceedings (OSTI)

The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (radiation measurements, for SR facilities is also presented.

Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

2009-12-11T23:59:59.000Z

322

Application: Facilities  

Science Conference Proceedings (OSTI)

... Option.. Papavergos, PG; 1991. Halon 1301 Use in Oil and Gas Production Facilities: Alaska's North Slope.. Ulmer, PE; 1991. ...

2011-12-22T23:59:59.000Z

323

Closure Report for Corrective Action Unit 214: Bunkers and Storage Areas, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 214 is located in Areas 5, 11, and 25 of the Nevada Test Site (NTS). CAU 214 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as ''Corrective Action Unit 214: Bunkers and Storage Areas,'' and is comprised of nine Corrective Action Sites (CASs): {sm_bullet} CAS 05-99-01, Fallout Shelters {sm_bullet} CAS 11-22-03, Drum {sm_bullet} CAS 25-23-01, Contaminated Materials {sm_bullet} CAS 25-23-19, Radioactive Material Storage {sm_bullet} CAS 25-34-03, Motor Dr/Gr Assembly (Bunker) {sm_bullet} CAS 25-34-04, Motor Dr/Gr Assembly (Bunker) {sm_bullet} CAS 25-34-05, Motor Dr/Gr Assembly (Bunker) {sm_bullet} CAS 25-99-12, Fly Ash Storage {sm_bullet} CAS 25-99-18, Storage Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 11-22-03, 25-34-03, 25-34-04, 25-34-05, 25-99-12, and 25-99-18 is No Further Action. Closure activities included: {sm_bullet} Removing and disposing of the fly ash and surrounding wooden structure at CAS 25-99-12 as a best management practice The NDEP-approved corrective action alternative for CAS 05-99-01 in CAU 214 is Clean Closure. Closure activities included: {sm_bullet} Removing and disposing of soil contaminated with the pesticide dieldrin The NDEP-approved corrective action alternative for CASs 25-23-01 and 25-23-19 is Closure in Place with Administrative Controls. Closure activities included: {sm_bullet} Removing and disposing of soil contaminated with chromium and soil impacted with the pesticides chlordane and heptachlor {sm_bullet} Implementing use restrictions (UR) at both CASs as detailed in the CAU 214 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005) {sm_bullet} Posting UR warning signs around CASs 25-23-01 and 25-23-19 on the existing chain link fence

NSTec Environmental Restoration

2006-09-01T23:59:59.000Z

324

DEVELOPMENT AND FIELD IMPLEMENTATION OF AN IMPROVED METHOD FOR HEADSPACE GAS SAMPLING OF TRANSURANIC WASTE DRUMS  

Science Conference Proceedings (OSTI)

A fast, safe, and cost-effective method for obtaining headspace gas samples has been developed and implemented at Los Alamos National Laboratory (LANL). A sample port is installed directly into a drum lid using a pneumatic driver, allowing sampling with a side-port needle. Testing has shown that the sample port can be installed with no release of radioactive material. Use of this system at LANL has significantly reduced the time required for sampling, and eliminates the need for many safety precautions previously used. The system has significantly improved productivity and lowered radiation exposure and cost.

Polley, M.; Ankrom, J.; Wickland, T.; Warren, J.

2003-02-27T23:59:59.000Z

325

Primer on lead-acid storage batteries  

DOE Green Energy (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

326

Compressed Air Storage for Electric Power Generation  

Science Conference Proceedings (OSTI)

This Technical Report focuses on the use of underground storage of natural gas as a means of leveling the load between supply and demand. The book presents a view of the way compressed air storage can reduce costs when constructing new facilities for generating peak load electricity. The primary emphasis given concerns underground storage of air in underground porous media, the vehicle utilized on a large scale for over 25 years by the natural gas industry.

1990-06-01T23:59:59.000Z

327

Energy storage criteria handbook. Final report mar 81-jun 82  

SciTech Connect

The purpose of this handbook is to provide information and criteria necessary for the selection and sizing of energy storage technologies for use at U.S. Naval facilities. The handbook gives Naval base personnel procedures and information to select the most viable energy storage options to provide the space conditioning (heating and cooling) and domestic hot water needs of their facility. The handbook may also be used by contractors, installers, designers, engineers, architects, and manufacturers who intend to enter the energy storage business. The handbook is organized into three major sections: a general section, a technical section, and an example section. While a technical background is assumed for the latter two sections, the general section is simply written and can serve as an introduction to the field of energy storage. The technical section examines the following energy storage technologies: sensible heat storage, latent heat storage, cold storage, thermochemical storage, mechanical storage, pumped hydro storage, and electrochemical storage. The example section is limited to thermal storage and includes examples for: water tank storage, rockbed storage, latent heat storage, and cold water storage.

Hull, J.R.; Cole, R.L.; Hull, A.B.

1982-10-01T23:59:59.000Z

328

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

2011-10-01T23:59:59.000Z

329

New Facility Aids in Lab's Capability to Ship TRU Waste to WIPP |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Aids in Lab's Capability to Ship TRU Waste to WIPP Facility Aids in Lab's Capability to Ship TRU Waste to WIPP New Facility Aids in Lab's Capability to Ship TRU Waste to WIPP December 1, 2011 - 12:00pm Addthis Workers move standard waste boxes to the High-Energy Real Time Radiography facility. Workers move standard waste boxes to the High-Energy Real Time Radiography facility. A standard waste box enters the HE-RTR at Los Alamos National Laboratory. The facility x-rays waste drums that contain high-density items such as motors and pumps and larger containers known as standard waste boxes. A standard waste box enters the HE-RTR at Los Alamos National Laboratory. The facility x-rays waste drums that contain high-density items such as motors and pumps and larger containers known as standard waste boxes. Workers move standard waste boxes to the High-Energy Real Time Radiography facility.

330

NGLW RCRA Storage Study  

Science Conference Proceedings (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

2000-06-01T23:59:59.000Z

331

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

332

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems...

333

Characterizing and improving passive-active shufflers for assays of 208-Liter waste drums  

DOE Green Energy (OSTI)

A passive and active neutron shuffler for 208-L waste drums has been used to perform over 1500 active and 500 passive measurements on uranium and plutonium samples in 28 different matrices. The shuffler is now better characterized and improvements have been implemented or suggested. An improved correction for the effects of the matrix material was devised from flux-monitor responses. The most important cause of inaccuracies in assays is a localized instead of a uniform distribution of fissile material in a drum; a technique for deducing the distribution from the assay data and then applying a correction is suggested and will be developed further. A technique is given to detect excessive amounts of moderator that could make hundreds of grams of {sup 235}U assay as zero grams. Sensitivities (minimum detectable masses) for {sup 235}U with active assays and for {sup 240}Pu{sub eff} with passive assays are presented and the effects of moderators and absorbers on sensitivities noted.

Rinard, P.M.; Adams, E.L.; Menlove, H.O.; Sprinkle, J.K. Jr.

1992-06-01T23:59:59.000Z

334

Characterizing and improving passive-active shufflers for assays of 208-Liter waste drums  

DOE Green Energy (OSTI)

A passive and active neutron shuffler for 208-L waste drums has been used to perform over 1500 active and 500 passive measurements on uranium and plutonium samples in 28 different matrices. The shuffler is now better characterized and improvements have been implemented or suggested. An improved correction for the effects of the matrix material was devised from flux-monitor responses. The most important cause of inaccuracies in assays is a localized instead of a uniform distribution of fissile material in a drum; a technique for deducing the distribution from the assay data and then applying a correction is suggested and will be developed further. A technique is given to detect excessive amounts of moderator that could make hundreds of grams of {sup 235}U assay as zero grams. Sensitivities (minimum detectable masses) for {sup 235}U with active assays and for {sup 240}Pu{sub eff} with passive assays are presented and the effects of moderators and absorbers on sensitivities noted.

Rinard, P.M.; Adams, E.L.; Menlove, H.O.; Sprinkle, J.K. Jr.

1992-01-01T23:59:59.000Z

335

IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES  

Science Conference Proceedings (OSTI)

This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.

Gupta, N

2007-03-06T23:59:59.000Z

336

Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if contaminants of concern are present. (5) If contaminants of concern are present, collect additional step-out samples to define the extent of the contamination. (6) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection, and field work will commence following approval.

David Strand

2006-06-01T23:59:59.000Z

337

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project Â… 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENGINEERING AND FIRE PROTECTION ENGINEERING AND FIRE PROTECTION OBJECTIVE EN.1 - Equipment (systems and components) required for activity performance has been identified, meets the design criteria for the activity, and a system is in place to maintain control over the design. EN.1.1. Requirements from vendor technical manuals and data have been incorporated into activity documents. EN. 1.2 Spare parts inventory for activity and support equipment is adequate for activity performance. EN. 1.3 A program is in place to confirm and periodically reconfirm the condition and operability of safety SSCs. This includes examinations of records of tests and calibration of these systems. REVIEW APPROACH: Document Reviews: * Review activity documents to ensure that vendor data and information from

338

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project Â… 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMERGENCY MANAGEMENT (EM) EMERGENCY MANAGEMENT (EM) OBJECTIVE EM.1 The selection, training, and qualification for operations, maintenance, operations support personnel, and technical staff have been established, documented, and implemented meet the following criteria: EM. 1.1 A routine drill program and emergency operations drill program, including program records, have been established and implemented. REVIEW APPROACH: Document Reviews: * Review applicable operational event scenarios for identification and implementation of emergency management responses. * Review applicable EARS. * Review Emergency Management drill and exercise training records to determine effectiveness of program and activity personnel. * Review Emergency Management drill and exercise training records to

339

Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results  

SciTech Connect

Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures.

JOHNSON, M.D.

2000-03-13T23:59:59.000Z

340

Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system  

SciTech Connect

The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule.

Rasmussen, D.E.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Interim storage study report  

SciTech Connect

High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

Rawlins, J.K.

1998-02-01T23:59:59.000Z

342

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

343

NREL: Energy Storage - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

344

User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory's National User Facilities are available for cooperative research with institutions and the private sector worldwide. The Environmental...

345

Interaction of temperature, dissolved oxygen and feed energy on ecophysiological performance of juvenile red drum  

E-Print Network (OSTI)

The red drum (Sciaenops ocellatus) is important for recreational fishing and aquacultural production in Texas' coastal waters and elsewhere in the nearshore Gulf of Mexico and in subtemperate to subtropical areas of the western North Atlantic Ocean. I performed indoor-tank and outdoor-pond experiments, in conjunction with automa ted respirometry and ecophysiological modeling, to assess interacting effects of temperature, dissolved-oxygen concentration (DO) and feed energy density on survival, growth, metabolism, and other measures of juvenile red drum performance. The main objective was to test an energy/metabolism tradeoff hypothesis, which states that growth of fish exposed to high temperatures can be limited by available feed energy; whereas, growth of fish exposed to lower temperatures can be limited by their metabolic capacity to exploit available feed energy. Also, I examined the influence of DO on this relationship and evaluated the effects of cyclical regimes of temperature and DO on fish performance. Insights from laboratory-based feeding trials were incorporated in experiments conducted in hatchery ponds to assess effects of oxygen supplementation and dietary additives - nucleotides and prebiotics - on performance in a more natural setting. In examining these issues, various technologies were developed. These included a computer-based apparatus for autonomously inducing cyclical regimes of temperature and DO in experimental tanks over an extended period of time. Additionally, I developed a soft feed with low energy-density to simulate natural forage. Experimental results supported the principal research hypothesis: At high temperature and DO, ecophysiological performance of juvenile red drum was enhanced by feeding to satiation with a high-energy feed (15.9 kJ/g) versus with a foragesimulating feed having lower energy density (4.1 kJ/g). Cyclical regimes of temperature and DO - as imposed in my particular laboratory experiments -did not impart growth benefits; however, the potential for enhanced growth via an appropriate cyclical environmental regime remains intact. Results from outdoor-pond experiments were consistent with laboratory results; however, the strong positive effect of feed energy density overwhelmed potential effects of dietary additives or oxygen supplementation on growth.

Fontaine, Lance Pierre

2008-05-01T23:59:59.000Z

346

Deviation to the Test Program and Procedures for the 710 Critical Experiment Reactor Control Drum Mockup Experiment  

SciTech Connect

This document describes a deviation from the "Test Program and Procedures for the 710 Critical Experiment Reactor Control Drum Mockup Experiment," TM-64-3-706, which was made in accordance with ITS Standard Practice J80-81 on September 14, 1964. The deviation did not involve a significant change in the safety of the operation.

Sims, F.L.

1964-09-14T23:59:59.000Z

347

An RTD study for the flow of lignite particles through a pilot rotary dryer. Part 2: Flighted drum case  

SciTech Connect

In Part 2 of this work a flighted pilot rotating cylindrical drum, intended to be used as either a dryer or calciner (kiln), has been used to investigate the flow, through it, of pulverized moist lignite. Tracer pulse input-response experiments have been performed. Residence Time Distribution (RTD) data have been deduced for three types of flight geometry, namely: Rectangular (RA), Equal Angular Distribution (EAD) and Equal Horizontal Distribution (EHD). For each flight shape, mean residence time {bar t} has been correlated with drum operating conditions. The sequence {bar t}{sub EAD} < {bar t}{sub RA} < {bar t}{sub EHD} has been validated. A comparison between the residence time predictions for the flighted and the bare drum has indicated that {bar t} for the former may be higher by up to 3.5 times than that for the latter. Exceptionally high solids hold-up values (i.e., Z = 0.13--0.42) have been observed and compared to theoretical predictions. Particle size segregation during lignite flow through the flighted drum was not confirmed.

Hatzilyberis, K.S.; Androutsopoulos, G.P. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

1999-04-01T23:59:59.000Z

348

SERAPH facility capabilities  

DOE Green Energy (OSTI)

The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

Castle, J.; Su, W.

1980-06-01T23:59:59.000Z

349

Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project  

SciTech Connect

The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M&O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky Flats Environmental Technology Site (RFETS), and a variety of other sites over 20 years ago, making the development of Acceptable Knowledge a significant and problematic effort. In addition, the characterization requirements, and data quality objectives for shipment and WIPP disposal today, were non-existent when this waste was generated, resulting in real-time adjustments to unexpected conditions.

R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

2006-01-01T23:59:59.000Z

350

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

351

Risk analysis of an LPG facility  

SciTech Connect

This paper describes methods used to conduct a safety review of an existing LPG loading, processing, and storage facility. An engineering team conducted a Hazard and Operability study of the plant to identify potential problems. A Probabilistic Risk Assessment was also made on the facility where the probability and consequences of worst case accidents were estimated. Stone and Webster recently completed an analysis of an LPG terminal to determine if there were any engineering, design, or operating deficiencies which could jeopardize the operability of the facility or make operation hazardous. The facility includes a dock for off-loading refrigerated propane and butane, transfer piping from the dock to storage, a heating system, pressurized storage, dehydration, product transfer and loading.

Daley, H.F.; Chapman, P.D.L.

1986-01-01T23:59:59.000Z

352

Site maps and facilities listings  

SciTech Connect

In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

Not Available

1993-11-01T23:59:59.000Z

353

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Electric utilities are interested energy storage solutions for renewable integration and transmission and distribution (TD) grid support that require systems of 10's of MWs in scale and energy durations of longer than 4 hours. Compressed air energy storage and pumped hydro systems are currently the lowest capital cost (/ kW-h) bulk storage options for energy durations longer than 10 hour; however, these storage facilities have geological and siting restrictions and require long permitting and deployment ...

2010-12-16T23:59:59.000Z

354

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

355

Air quality impacts due to construction of LWR waste management facilities  

SciTech Connect

Air quality impacts of construction activities and induced housing growth as a result of construction activities were evaluated for four possible facilities in the LWR fuel cycle: a fuel reprocessing facility, fuel storage facility, fuel fabrication plant, and a nuclear power plant. Since the fuel reprocessing facility would require the largest labor force, the impacts of construction of that facility were evaluated in detail.

1977-06-01T23:59:59.000Z

356

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

357

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

358

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

359

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Storage Storage Energy storage isnt just for AA batteries. Thanks to investments from the Energy Department's Advanced Research...

360

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

362

Argonne Chemical Sciences & Engineering - Facilities - Remote Handling  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities * Actinide * Analytical Chemistry * Premium Coal Samples * Electrochemical Analysis * Glovebox * Glassblowing Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Contact Us CSE Intranet Remote Handling Mockup Facility Remote Handling Mockup Facility Radiochemist Art Guelis observes technician Kevin Quigley preparing to cut open a surrogate uranium target. Argonne designed and built a Remote Handling Mockup Facility to let engineers simulate the handling of radioactive materials in a non-radioactive environment. The ability to carry out the details of an

363

Calmac Ice Storage Test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. Calmac provided a storage tank equipped with coils designed for use with a secondary fluid system. The Calmac ice storage system was tested over a wide range of operating conditions. Measured system performance during charging was similar to that reported by the manufacturer. Both the measured average and minimum brine temperatures were in close agreement with Calmac's literature values, and the ability to fully charge the tank was relatively unaffected by charging rate and brine flow rate. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend most strongly on the discharge conditions required to serve the load. This report describes Calmac system performance fully under both charging and discharging conditions. Companion reports describe ISTF test procedures and ice-making efficiency test results that are common to many of the units tested. 11 refs., 31 figs., 9 tabs.

Stovall, T.K.

1991-08-01T23:59:59.000Z

364

Movement and Injury Rates for Three Life Stages of Spring Chinook Salmon Oncorhynchus Tshawytscha : A Comparison of Submerged Orifices and an Overflow Weir for Fish Bypass in a Modular Rotary Drum Fish Screen : Annual Report 1995.  

DOE Green Energy (OSTI)

The Pacific Northwest National Laboratory (PNNL) evaluated the effectiveness of 6-in. and 2-in. submerged orifices, and an overflow weir for fish bypass at a rotary drum fish screening facility. A modular drum screen built by the Washington Department of Fish and Wildlife (WDFW) was installed at PNNL`s Aquatic Ecology research laboratory in Richland, Washington. Fry, subyearlings, and smolts of spring chinook salmon (Oncorhynchus tshawyacha) were introduced into the test system, and their movement and injury rates were monitored. A total of 33 tests (100 fish per test) that lasted from 24 to 48 hr were completed from 1994 through 1995. Passage rate depended on both fish size and bypass configuration. For fry/fingerling spring chinook salmon, there was no difference in passage rate through the three bypass configurations (2-in. orifice, 6-in. orifice, or overflow weir). Subyearlings moved sooner when the 6-in. orifice was used, with more than 50% exiting through the fish bypass in the first 8 hr. Smolts exited quickly and preferred the 6-in. orifice, with over 90% of the smolts exiting through the bypass in less than 2 hr. Passage was slightly slower when a weir was used, with 90% of the smolts exiting in about 4 hr. When the 2-in. orifice was used in the bypass, 90% of the smolts did not exit until after 8 hr. In addition, about 7% of the smolts failed to migrate from the forebay within 24 hr, indicating that smolts were significantly delayed when the 2-in. orifice was used. Few significant injuries were detected for any of the life stages. However, light descaling occurred on about 15% of chinook salmon smolts passing through the 2-in. orifice. Although a single passage through the orifice did not appear to cause significant scale loss or other damage, passing through several screening facilities with 2-in. orifices could cause cumulative injuries.

Abernethy, C. Scott; Neitzel, Duane A.; Mavros, William V.

1996-03-01T23:59:59.000Z

365

Consolidated Incineration Facility (CIF) development  

SciTech Connect

The Defense Waste Processing Facility (DWPF) will produce as average of 150 gallons per day of a benzene rich organic steam as a byproduct of precipitate hydrolysis. The organic product is separated and decontaminated by two stages of batch distillation and discharged from the canyon facility. Originally the product was to be stored in a 150,000 gallon storage tank and disposed of by combustion in the Consolidated Incineration Facility (CIF). However, recent delays in design completion and RCRA permitting for the CIF have resulted in an estimated 18 month delay in the facility startup. On-site destruction of the contaminated material is prudent since there is no EPA (or other government agency) deminimus to allow unrestricted use of the material. This report details a preliminary review of four technologies suitable to destroy the organic steams. These include: A silver catalyzed dissolver, A super critical water reactor, the Westinghouse Electric Pyrolyzer, and the Synthetica Detoxifier. Each option is discussed.

Carter, J.T.; Morrison, J.

1990-08-01T23:59:59.000Z

366

APS storage ring vacuum system  

SciTech Connect

The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

1990-01-01T23:59:59.000Z

367

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

368

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

369

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

370

Application-storage discovery  

Science Conference Proceedings (OSTI)

Discovering application dependency on data and storage is a key prerequisite for many storage optimization tasks such as data assignment to storage tiers, storage consolidation, virtualization, and handling unused data. However, in the real world these ... Keywords: enterprise storage, experimental evaluation, storage discovery

Nikolai Joukov; Birgit Pfitzmann; HariGovind V. Ramasamy; Murthy V. Devarakonda

2010-05-01T23:59:59.000Z

371

Assessment of a Low-Level Waste Outside Storage Pad Design Method  

Science Conference Proceedings (OSTI)

EPRI has developed a method for designing an outside pad and modules for interim on-site storage of low-level waste. A detailed comparison between EPRI's outside storage pad facility design and cost projections and those of Boston Edison revealed excellent agreement between the two estimates. This report provides detailed information on how to approach the design of an outside storage pad facility as well as use of the EPRI method for an on-site storage project.

1996-04-19T23:59:59.000Z

372

Facility effluent monitoring plan for the 325 Facility  

SciTech Connect

The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1998-12-31T23:59:59.000Z

373

Carbon Capture, Utilization & Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Carbon capture, utilization and storage (CCUS), also referred to as carbon

374

Corrective Action Investigation Plan for Corrective Action Unit 214: Bunkers and Storage Areas Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1 and No. 2  

SciTech Connect

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 214 under the Federal Facility Agreement and Consent Order. Located in Areas 5, 11, and 25 of the Nevada Test Site, CAU 214 consists of nine Corrective Action Sites (CASs): 05-99-01, Fallout Shelters; 11-22-03, Drum; 25-99-12, Fly Ash Storage; 25-23-01, Contaminated Materials; 25-23-19, Radioactive Material Storage; 25-99-18, Storage Area; 25-34-03, Motor Dr/Gr Assembly (Bunker); 25-34-04, Motor Dr/Gr Assembly (Bunker); and 25-34-05, Motor Dr/Gr Assembly (Bunker). These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). The suspected contaminants and critical analyte s for CAU 214 include oil (total petroleum hydrocarbons-diesel-range organics [TPH-DRO], polychlorinated biphenyls [PCBs]), pesticides (chlordane, heptachlor, 4,4-DDT), barium, cadmium, chronium, lubricants (TPH-DRO, TPH-gasoline-range organics [GRO]), and fly ash (arsenic). The land-use zones where CAU 214 CASs are located dictate that future land uses will be limited to nonresidential (i.e., industrial) activities. The results of this field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-05-16T23:59:59.000Z

375

Basic Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

BES User Facilities BES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 BES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Basic Energy Sciences program supports the operation of the following national scientific user facilities: Synchrotron Radiation Light Sources National Synchrotron Light Source (NSLS): External link The NSLS at Brookhaven National Laboratory External link , commissioned in 1982, consists of two distinct electron storage rings. The x-ray storage

376

Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

1996-12-01T23:59:59.000Z

377

An RTD study for the flow of lignite particles through a pilot rotary dryer. Part 1: Bare drum case  

SciTech Connect

In Part 1 of the present work a pilot rotating cylindrical drum, without an internal lifting flight system (bare), has been employed for the study of lignite motion through it, at ambient temperature. Tracer pulse stimulus-response experiments have been carried out to deduce residence time distribution (RTD) data and relate them to the operating conditions (slope, speed of revolution, etc.). Mean residence time, space-time and solids hold-up have been correlated with the drum operating conditions. Experimental data of mean axial velocity of solids have been compared with theoretical predictions and found to deviate within a {+-}15% margin. A size segregation of particles during their motion through the kiln under a variety of operating conditions has been confirmed and quantified. An average maximum divergence of 20% between the residence time of the smallest and that of the largest nominal particle sizes has been assessed.

Hatzilyberis, K.S.; Androutsopoulos, G.P. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

1999-04-01T23:59:59.000Z

378

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

379

Header and Drum Damage: Theory and Practice: Volume 1: Information Common to All Damage Types; Volume 2: Mechanisms  

Science Conference Proceedings (OSTI)

Headers and drums represent two of the largest and most expensive components in boilers. Particularly in the case of high-temperature headers, there are considerable safety concerns when operating aging plants, and some notable failures have occurred. For these reasons, understanding the types of damage that can accumulate and dealing with that damage are vital to the safe and economic operation of fossil power plants.

2003-12-31T23:59:59.000Z

380

Underground Energy Storage Program. 1984 annual summary  

DOE Green Energy (OSTI)

Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.

Kannberg, L.D.

1985-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A perturbative approach to the spectral zeta functions of strings, drums, and quantum billiards  

Science Conference Proceedings (OSTI)

We show that the spectral zeta functions of inhomogeneous strings and drums can be calculated using Rayleigh-Schroedinger perturbation theory. The inhomogeneities that can be treated with this method are small but otherwise arbitrary and include the previously studied case of a piecewise constant density. In two dimensions the method can be used to derive the spectral zeta function of a domain obtained from the small deformation of a square. We also obtain exact sum rules that are valid for arbitrary densities and that correspond to the values taken by the spectral zeta function at integer positive values; we have tested numerically these sum rules in specific examples. We show that the Dirichlet or Neumann Casimir energies of an inhomogeneous string, evaluated to first order in perturbation theory, contain in some cases an irremovable divergence, but that the combination of the two is always free of divergences. Finally, our calculation of the Casimir energies of a string with piecewise constant density and of two perfectly conducting concentric cylinders, of similar radius, reproduce the results previously published.

Amore, Paolo [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima (Mexico)

2012-12-15T23:59:59.000Z

382

Thermal energy storage for cogeneration applications  

SciTech Connect

Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

Drost, M.K.; Antoniak, Z.I.

1992-04-01T23:59:59.000Z

383

Thermal energy storage for cogeneration applications  

DOE Green Energy (OSTI)

Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

Drost, M.K.; Antoniak, Z.I.

1992-04-01T23:59:59.000Z

384

Thermal energy storage for cogeneration applications  

DOE Green Energy (OSTI)

Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy`s Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

Drost, M.K.; Antoniak, Z.I.

1992-04-01T23:59:59.000Z

385

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

386

FCT Hydrogen Storage: The 'National Hydrogen Storage Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

The 'National Hydrogen Storage Project' to someone by E-mail Share FCT Hydrogen Storage: The 'National Hydrogen Storage Project' on Facebook Tweet about FCT Hydrogen Storage: The...

387

The Design and Construction of the Advanced Mixed Waste Treatment Facility  

SciTech Connect

The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site integration of functional components or glove boxes, with the attendant integrated control system and undertaking continuous, non-stop, operational effectiveness proof tests. This paper describes the process, plant and technology used within the AMWTP and provides an outline of the associated design, procurement, fabrication, testing and construction.

Harrop, G.

2003-02-27T23:59:59.000Z

388

Decision analysis for INEL hazardous waste storage  

Science Conference Proceedings (OSTI)

In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

Page, L.A.; Roach, J.A.

1994-01-01T23:59:59.000Z

389

105-H Reactor Interim Safe Storage Project Final Report  

SciTech Connect

The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D&D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

E.G. Ison

2008-11-08T23:59:59.000Z

390

RADIATION FACILITY FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1961-12-12T23:59:59.000Z

391

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main Themes/Caveats Bulk Storage = Anything not on the vehicle 10's of Tons -- End use point 50-100 Tons - Terminals/City Gates 1000's Tons - Between Production Facility and Terminal/City Gate Bulk storage requirements less restrictive and different from on-board storage Uncertainty about evolution of infrastructure requires multiple pathways to be considered Bulk storage is an economic solution to address supply/demand imbalance Breakout Session - Bulk Hydrogen Storage Targets/Objectives Hard to quantify - scenario & end-use dependent Storage Materials (solid state) and container require different targets

392

Overview of Carbon Storage Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. Roughly one third of the United States' carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. This effort is organized into two broad areas: Cooperative Advancement, which involves working with other organizations and governments to advance CCS worldwide, and

393

ADAPTING A CERTIFIED SHIPPING PACKAGE FOR STORAGE APPLICATIONS  

Science Conference Proceedings (OSTI)

For years shipping packages have been used to store radioactive materials at many DOE sites. Recently, the K-Area Material Storage facility at the Savannah River Site became interested in and approved the Model 9977 Shipping Package for use as a storage package. In order to allow the 9977 to be stored in the facility, there were a number of evaluations and modifications that were required. There were additional suggested modifications to improve the performance of the package as a storage container that were discussed but not incorporated in the design that is currently in use. This paper will discuss the design being utilized for shipping and storage, suggested modifications that have improved the storage configuration but were not used, as well as modifications that have merit for future adaptations for both the 9977 and for other shipping packages to be used as storage packages.

Loftin, B.; Abramczyk, G.

2012-06-05T23:59:59.000Z

394

Southern company energy storage study : a study for the DOE energy storage systems program.  

Science Conference Proceedings (OSTI)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

395

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

396

Sorption Storage Technology Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Technology Summary DOE H2 Storage Workshop, Feb 14-15, 2011, Washington, DC 1 Compressed & Cryo-Compressed Hydrogen Storage Workshop February 14 - 15, 2011, Washington, DC...

397

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

398

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Adki ns, "Raccoon Mountain Pumped-Storage Plant- Ten Years2J O. D. Johnson, "Worldwide Pumped-Storage Projects", PowerUnderground Pumped Hydro Storage", Proc. 1976 Eng.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

399

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

400

Comparison of risk-dominant scenario assumptions for several TRU waste facilities in the DOE complex  

Science Conference Proceedings (OSTI)

In order to gain a risk management perspective, the DOE Rocky Flats Field Office (RFFO) initiated a survey of other DOE sites regarding risks from potential accidents associated with transuranic (TRU) storage and/or processing facilities. Recently-approved authorization basis documents at the Rocky Flats Environmental Technology Site (RFETS) have been based on the DOE Standard 3011 risk assessment methodology with three qualitative estimates of frequency of occurrence and quantitative estimates of radiological consequences to the collocated worker and the public binned into three severity levels. Risk Class 1 and 2 events after application of controls to prevent or mitigate the accident are designated as risk-dominant scenarios. Accident Evaluation Guidelines for selection of Technical Safety Requirements (TSRs) are based on the frequency and consequence bin assignments to identify controls that can be credited to reduce risk to Risk Class 3 or 4, or that are credited for Risk Class 1 and 2 scenarios that cannot be further reduced. This methodology resulted in several risk-dominant scenarios for either the collocated worker or the public that warranted consideration on whether additional controls should be implemented. RFFO requested the survey because of these high estimates of risks that are primarily due to design characteristics of RFETS TRU waste facilities (i.e., Butler-type buildings without a ventilation and filtration system, and a relatively short distance to the Site boundary). Accident analysis methodologies and key assumptions are being compared for the DOE sites responding to the survey. This includes type of accidents that are risk dominant (e.g., drum explosion, material handling breach, fires, natural phenomena, external events, etc.), source term evaluation (e.g., radionuclide material-at-risk, chemical and physical form, damage ratio, airborne release fraction, respirable fraction, leakpath factors), dispersion analysis (e.g., meteorological assumptions, distance to receptors, plume meander, deposition, and other factors affecting the calculated {chi}/Q), dose assessments (specific activities, inhalation dose conversion factors, breathing rates), designated frequency of occurrence, and risk assignment per the DOE Standard 3011 methodology. Information from the sites is being recorded on a spreadsheet to facilitate comparisons. The first response from Westinghouse Safety Management Solutions for the Savannah River Site (SRS) also provided a detailed analysis of the major differences in methods and assumptions between RFETS and SRS, which forms much of the basis for this paper. Other sites responding to the survey include the Idaho National Engineering and Environmental Laboratory (INEEL), Hanford, and the Los Alamos National Laboratory (LANL).

Foppe, T.L. [Foppe and Associates, Inc., Golden, CO (United States); Marx, D.R. [Westinghouse Safety Management Solutions, Inc., Aiken, SC (United States)

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling a Leadership-scale Storage System , Christopher Carothers1  

E-Print Network (OSTI)

an end-to-end storage system model of the Argonne Leadership Computing Facility's (ALCF) comput- ing collected from the ALCF's storage system for a variety of synthetic I/O workloads and scales. we present in the ALCF. As an early study of the CODES project, our simulators can quickly and accurately simulate

402

Evaluation of storage/transportation options to support criteria development for the Phase I MRS (Monitored Retrievable Storage)  

SciTech Connect

The Department of Energy's (DOE) Office of Civilian Waste Management (OCRWM) plans to develop an interim storage facility to enable acceptance of spent fuel in 1998. It is estimated that this interim storage facility would be needed for about two years. A Monitored Retrievable Storage (MRS) facility is anticipated in 2000 and a repository in 2010. Acceptance and transport of spent fuel by DOE/OCRWM in 1998 will require an operating transportation system. Because this interim storage facility is not yet defined, development of an optimally compatible transportation system is not a certainty. In order to assure a transport capability for 1998 acceptance of spent fuel, it was decided that the OCRWM transportation program had to identify likely options for an interim storage facility, including identification of the components needed for compatibility between likely interim storage facility options and transportation. Primary attention was given to existing hardware, although conceptual designs were also considered. A systems-based probabilistic decision model was suggested by Sandia National Laboratories and accepted by DOE/OCRWM's transportation program. Performance of the evaluation task involved several elements of the transportation program. This paper describes the decision model developed to accomplish this task, along with some of the results and conclusions. 1 ref., 4 figs.

Sorenson, K.B.; Brown, N.N.; Bennett, P.C. (Sandia National Labs., Albuquerque, NM (USA)); Lake, W. (USDOE Office of Civilian Radioactive Waste Management, Washington, DC (USA))

1991-01-01T23:59:59.000Z

403

Evaluation of storage/transportation options to support criteria development for the Phase I MRS (Monitored Retrievable Storage)  

SciTech Connect

The Department of Energy's (DOE) Office of Civilian Waste Management (OCRWM) plans to develop an interim storage facility to enable acceptance of spent fuel in 1998. It is estimated that this interim storage facility would be needed for about two years. A Monitored Retrievable Storage (MRS) facility is anticipated in 2000 and a repository in 2010. Acceptance and transport of spent fuel by DOE/OCRWM in 1998 will require an operating transportation system. Because this interim storage facility is not yet defined, development of an optimally compatible transportation system is not a certainty. In order to assure a transport capability for 1998 acceptance of spent fuel, it was decided that the OCRWM transportation program had to identify likely options for an interim storage facility, including identification of the components needed for compatibility between likely interim storage facility options and transportation. Primary attention was given to existing hardware, although conceptual designs were also considered. A systems-based probabilistic decision model was suggested by Sandia National Laboratories and accepted by DOE/OCRWM's transportation program. Performance of the evaluation task involved several elements of the transportation program. This paper describes the decision model developed to accomplish this task, along with some of the results and conclusions. 1 ref., 4 figs.

Sorenson, K.B.; Brown, N.N.; Bennett, P.C. (Sandia National Labs., Albuquerque, NM (USA)); Lake, W. (USDOE Office of Civilian Radioactive Waste Management, Washington, DC (USA))

1991-01-01T23:59:59.000Z

404

SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

405

ARM - SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

406

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2004 Facility News ARM Climate Research Facility Achieves User Milestone Three Months Ahead of Schedule Bookmark and Share Summary of the ARM Climate Research Facility User...

407

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News Future of User Facility Discussed at Fall Workshop As a national user facility, ARM is accessible to scientists around the globe for...

408

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

409

Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energys Vehicle Technology Program to conduct various types of energy storage...

410

NERSC HPSS Storage Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting Optimizing IO performance on the Lustre file system IO Formats Sharing Data Transferring Data Unix...

411

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

412

Interim Storage of Low and Intermediate Level Wastes: Guidelines for Extended Storage  

Science Conference Proceedings (OSTI)

Domestic utilities are responding to impending changes in low-level waste (LLW) disposal site facility availability by extending their capabilities for interim on-site storage of LLW. International utilities likewise face challenges in implementing complete low and intermediate waste disposal options. Therefore, our members asked EPRI to revise and update our series of documents devoted to on-site interim LLW storage. This report represents the key guidelines document for the series.

2002-10-30T23:59:59.000Z

413

Energy Secretary Moniz Visits Clean Coal Facility in Mississippi |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Visits Clean Coal Facility in Mississippi Secretary Moniz Visits Clean Coal Facility in Mississippi Energy Secretary Moniz Visits Clean Coal Facility in Mississippi November 8, 2013 - 3:36pm Addthis On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs See a photo gallery of the Secretary's visit to Kemper. Liberty, Mississippi, a small town in the eastern county of Kemper, is quietly making energy history. Liberty is the home of the largest carbon capture and storage (CCS) plant

414

Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3[2].docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Images-Front cover: 20MW Beacon Power flywheel storage facility; Ameren's 440MW pumped-hydro storage at Taum Sauk, Missouri. Back cover: 8MW SCE / A123 Lithium-ion storage at Tehachapi wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary............................................................................................................. 1 1.0 Introduction to the OE Storage Program ...................................................................... 5 1.1. The Grid Energy Storage Value Proposition ..................................................................................... 5 1.2. Grid Energy Storage at DOE .............................................................................................................

415

Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility  

Science Conference Proceedings (OSTI)

The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

Not Available

1993-08-01T23:59:59.000Z

416

Existing Facilities Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Facilities Program Existing Facilities Program Existing Facilities Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Installer/Contractor Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Construction Commercial Weatherization Manufacturing Heat Pumps Commercial Lighting Lighting Maximum Rebate Pre-Qualified Measures (General): $30,000 (electric and gas) Electric Efficiency and Energy Storage: 50% of cost or $2 million Natural Gas Efficiency: 50% of cost or $200,000 Demand Response: 75% of cost or $2 million (limit also applies to combined performance based efficiency and demand response measures) Industrial Process Efficiency: 50% of cost or $5 million

417

Mechanistic facility safety and source term analysis  

SciTech Connect

A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here.

PLYS, M.G.

1999-06-09T23:59:59.000Z

418

PASIG_LBNL_Storage.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting DOE Science Supporting DOE Science Jason Hick jhick@lbl.gov NERSC LBNL http://www.nersc.gov/nusers/systems/HPSS/ http://www.nersc.gov/nusers/systems/NGF/ May 12, 2011 * Operated by UC for the DOE * NERSC serves a large population - Approximately 4000 users, 400 projects, 500 codes - Focus on "unique" resources * High-end computing systems * High-end storage systems - Large shared GPFS (a.k.a. NGF) - Large archive (a.k.a. HPSS) * Interface to high speed networking - ESnet soon to be 100Gb (a.k.a. ANI) * Our mission is to accelerate the pace of discovery by providing high performance computing, data, and communication services to the DOE Office of Science community. The Production Facility for DOE Office of Science 2010 storage usage by area of science.

419

BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS  

SciTech Connect

Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

Loftin, B.; Abramczyk, G.; Koenig, R.

2012-06-06T23:59:59.000Z

420

The public response to Monitored Retrievable Storage: An interim report  

SciTech Connect

This report describes public opinion concerning the proposed monitored retrievable storage facility to be located in the vicinity of Oak Ridge, Tennessee. The majority of individuals who did express an opinion opposed the facility due to transport/safety concerns and environmental/health concerns. (CBS)

1985-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "drum storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geostock's containment method reduces underground storage leakage  

SciTech Connect

Geostock's hydraulic containment method of safely containing liquid hydrocarbons in unlined underground storage caverns, so that there is no danger of leakage into the surrounding ground makes use of the surrounding ground water, whose static head is kept higher than the pressure of the stored product. For leakage prevention, the static head must be larger than the potential of the stored product plus a safety margin. The safety margin involves a shape factor, dependent on the size and shape of the cavity (examples are given), and a factor which allows for unforeseen conditions. The depth required for the ground water to possess a sufficiently large static head depends on the type and pressure of the stored product, the hydrogeological environment, and the geometry of the facility. Geostock has used the hydraulic containment method in a domestic heating oil facility at May sur Orne, Fr., and also in three propane storage facilities in France.

Not Available

1980-06-23T23:59:59.000Z

422

Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models  

SciTech Connect

A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed. (DLC)

Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

1979-09-01T23:59:59.000Z

423

Cold vacuum drying facility 90% design review  

Science Conference Proceedings (OSTI)

This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

O`Neill, C.T.

1997-05-02T23:59:59.000Z

424

Replacement of Fishmeal with Plant Feedstuffs in the Diet of Red Drum Sciaenops ocellatus: An Assessment of Nutritional Value  

E-Print Network (OSTI)

The expansion of aquaculture has increased demand for fishmeal supplies around the world; this, in turn, has resulted in dramatic increases in the cost of fishmeal, which has sparked interest in alternative feedstuffs. The development of new processing technologies, as well as the expanding generation of by-products from ethanol production has resulted in the development of novel protein sources that have the potential for replacing fishmeal in aquafeeds. The present study assessed the nutritional value of soy protein concentrate (SoyPC), barley protein concentrate (BarPC) and corn protein concentrate (CornPC) in the diet of red drum. Three sequential feeding trials were conducted; in these 50%, 75%, or 90% of the protein provided by Special SelectTM menhaden fishmeal in the reference diet was replaced with either SoyPC, BarPC, or CornPC in isonitrogenous (40% CP), isoenergetic (3.1kcal g-1) diets. Red drum with an average weight of 2.5 g, 1.6 g, and 1.5 g for trials 1, 2, and 3, respectively, were stocked in a recirculating system and fed twice daily at a rate approaching apparent satiation for 6 to 8 weeks. Along with the substitution of the selected plant feedstuffs, supplementation of DL-methionine and L-lysine was provided to exceed the established requirements of red drum for lysine and methionine, and glycine was added for palatability. Performance parameters of weight gain, feed efficiency, survival, hepatosomatic index, intraperitoneal fat ratio, and apparent digestibility coefficients for protein along with proximate composition of whole-body tissues were determined in the various trials. Results showed that 50% replacement of fishmeal protein by each of the protein concentrates produced fish performance, condition indices, and whole-body composition similar to those produced by the reference diet. However, replacing 75% and 90% of fishmeal protein with each of the plant protein concentrates reduced fish performance but not as severely as replacing all of the fishmeal protein with equal (33%) contributions from SoyPC, BarPC, and CornPC. Contrarily, these dietary substitutions did not reduce the apparent protein digestibility of the experimental diets. Based on the various results of this study, SoyPC, BarPC, and CornPC can readily replace 50% of the protein provided by menhaden fishmeal without adversely affecting the performance of cultured red drum.

Moxley, Joseph

2012-05-01T23:59:59.000Z

425

Remote power systems with advanced storage technologies for Alaskan villages  

DOE Green Energy (OSTI)

Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing envir