Sample records for drum mountain geothermal

  1. Drum Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem CoDow CorningDrive5Drum

  2. Drum Mountain Geothermal Project (3) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem CoDow CorningDrive5Drum)

  3. Nevada Geothermal Power Company, Inc. (Blue Mountain) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal...

  4. Geothermal Energy Resource Investigations, Chocolate Mountains...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,...

  5. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details...

  6. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Exploration Activity Details Location...

  7. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Exploration Activity Details Location...

  8. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity...

  9. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Home Exploration Activity: Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

  10. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Activity: Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

  11. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrillingProject (2) Jump

  12. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross, Et Al., 1999) Exploration Activity Details Location...

  13. Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al., 2010) Exploration Activity Details Location...

  14. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Exploration Activity Details Location...

  15. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Dipole-Dipole Resistivity At Blue Mountain Geothermal Area...

  16. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Geothermal Area...

  17. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

  18. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,...

  19. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Broader source: Energy.gov (indexed) [DOE]

    December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain...

  20. A Preliminary Structural Model for the Blue Mountain Geothermal...

    Open Energy Info (EERE)

    Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A...

  1. A Preliminary Conceptual Model for the Blue Mountain Geothermal...

    Open Energy Info (EERE)

    for the Blue Mountain Geothermal System, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Preliminary Conceptual Model...

  2. Geology and Temperature Gradient Surveys Blue Mountain Geothermal...

    Open Energy Info (EERE)

    Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and...

  3. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not...

  4. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Activity Details Location Blue Mountain Geothermal Area Exploration Technique Flow Test Activity Date 2002 - 2002 Usefulness not useful DOE-funding Unknown Exploration Basis...

  5. Ground Gravity Survey At Blue Mountain Geothermal Area (U.S....

    Open Energy Info (EERE)

    Ground Gravity Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique...

  6. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Magnetics Activity...

  7. Core Analysis At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2009) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Analysis Activity Date...

  8. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique...

  9. Geophysical Setting of the Blue Mountain Geothermal Area, North...

    Open Energy Info (EERE)

    Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Jump...

  10. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

  11. Drum Mountain Geothermal Project (2) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrillingProject (2) Jump to:

  12. Geothermal Energy Resource Investigations, Chocolate Mountains Aerial

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to library WebWestern UnitedGeothermal

  13. Mcgee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° Show MapMcMinnMcNary,South

  14. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New EnergyChippewaChocolate Mountains

  15. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind FarmJefferson City,Jemez Mountain

  16. Bald Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public UtilitiesBald Mountain

  17. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

    1995-12-01T23:59:59.000Z

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  18. Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain...

    Open Energy Info (EERE)

    at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Deep Blue No. 1-A Slimhole Geothermal Discovery at...

  19. Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...

    Open Energy Info (EERE)

    At Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Deep Blue No.1-A Slimhole Geothermal Discovery At...

  20. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01T23:59:59.000Z

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this wellthe most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  1. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981

    SciTech Connect (OSTI)

    Lunis, B.C.; Toth, W.J. (comps.)

    1982-05-01T23:59:59.000Z

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

  2. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect (OSTI)

    Lunis, B.C. (ed.)

    1982-08-01T23:59:59.000Z

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  3. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    SciTech Connect (OSTI)

    Lunis, B. C.; Toth, W. J. [comps.

    1981-10-01T23:59:59.000Z

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  4. Geothermal: Sponsored by OSTI -- State geothermal commercialization...

    Office of Scientific and Technical Information (OSTI)

    State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980 Geothermal Technologies Legacy Collection HelpFAQ | Site...

  5. EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California

    Broader source: Energy.gov [DOE]

    The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

  6. Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr Geothermal Project JumpPark,

  7. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980

    SciTech Connect (OSTI)

    Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

    1981-01-01T23:59:59.000Z

    The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

  8. Unvented Drum Handling Plan

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    2000-08-01T23:59:59.000Z

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The preferred option is to use equipment provided by a commercial vendor during the first few years of retrieval and venting. This is based on a number of reasons. First, retrieval funding is uncertain. Using a commercial vendor will allow DOE-RL to avoid the investment and maintenance costs if retrieval is not funded. Second, when funding can be identified, retrieval will likely be performed with minimal initial throughput and intermittent operations. Again, costs can be saved by using contracted vendor services only as needed, rather than supporting Hanford equipment full time. When full-scale retrieval begins and the number of drums requiring venting increases significantly, then use of the Hanford container venting system (CVS) should be considered.

  9. Waste drum refurbishment

    SciTech Connect (OSTI)

    Whitmill, L.J.

    1996-10-18T23:59:59.000Z

    Low-carbon steel, radioactive waste containers (55-gallon drums) are experiencing degradation due to moisture and temperature fluctuations. With thousands of these containers currently in use; drum refurbishment becomes a significant issue for the taxpayer and stockholders. This drum refurbishment is a non-intrusive, portable process costing between 1/2 and 1/25 the cost of repackaging, depending on the severity of degradation. At the INEL alone, there are an estimated 9,000 drums earmarked for repackaging. Refurbishing drums rather than repackaging can save up to $45,000,000 at the INEL. Based on current but ever changing WIPP Waste Acceptance Criteria (WAC), this drum refurbishment process will restore drums to a WIPP acceptable condition plus; drums with up to 40% thinning o the wall can be refurbished to meet performance test requirements for DOT 7A Type A packaging. A refurbished drum provides a tough, corrosion resistant, waterproof container with longer storage life and an additional containment barrier. Drums are coated with a high-pressure spray copolymer material approximately .045 inches thick. Increase in internal drum temperature can be held to less than 15 F. Application can be performed hands-on or the equipment is readily adaptable and controllable for remote operations. The material dries to touch in seconds, is fully cured in 48 hours and has a service temperature of {minus}60 to 500 F. Drums can be coated with little or no surface preparation. This research was performed on drums however research results indicate the coating is very versatile and compatible with most any material and geometry. It could be used to provide abrasion resistance, corrosion protection and waterproofing to almost anything.

  10. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

  11. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  12. Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho

    SciTech Connect (OSTI)

    Arney, B.H.; Goff, F.

    1982-05-01T23:59:59.000Z

    Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

  13. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    SciTech Connect (OSTI)

    None

    1981-07-01T23:59:59.000Z

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  14. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  15. Drum lid removal tool

    DOE Patents [OSTI]

    Pella, Bernard M. (Martinez, GA); Smith, Philip D. (North Augusta, SC)

    2010-08-24T23:59:59.000Z

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  16. FAILURE ANALYSIS: WASTEWATER DRUM BULGING

    SciTech Connect (OSTI)

    Vormelker, P

    2008-09-15T23:59:59.000Z

    A 55 gallon wastewater drum lid was found to be bulged during storage in a remote area. Drum samples were obtained for analysis. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  17. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity...

  18. Rotating drum filter

    DOE Patents [OSTI]

    Anson, Donald (Worthington, OH)

    1990-01-01T23:59:59.000Z

    A perforated drum (10) rotates in a coaxial cylindrical housing (18) having three circumferential ports (19,22,23), and an axial outlet (24) at one end. The axis (11) is horizontal. A fibrous filter medium (20) is fed through a port (19) on or near the top of the housing (81) by a distributing mechanism (36) which lays a uniform mat (26) of the desired thickness onto the rotating drum (10). This mat (26) is carried by the drum (10) to a second port (23) through which dirty fluid (13) enters. The fluid (13) passes through the filter (26) and the cleaned stream (16) exits through the open end (15) of the drum (10) and the axial port (24) in the housing (18). The dirty filter material (20) is carried on to a third port (22) near the bottom of the housing (18) and drops into a receiver (31) from which it is continuously removed, cleaned (30), and returned (32) to the charging port (36) at the top. To support the filter mat, the perforated cylinder may carry a series of tines (40), shaped blades (41), or pockets, so that the mat (26) will not fall from the drum (10) prematurely. To minimize risk of mat failure, the fluid inlet port (23) may be located above the horizontal centerline (11).

  19. Clamshell closure for metal drum

    DOE Patents [OSTI]

    Blanton, Paul S

    2014-09-30T23:59:59.000Z

    Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.

  20. Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Photo of a ranch in the mountains. As part of a geothermal exploration effort to search for geothermal resources nationwide, a 5 million U.S. Department of Energy investment to...

  1. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    Open Energy Info (EERE)

    to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not...

  2. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    Open Energy Info (EERE)

    Personal Communication: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Abstract Not available. Author Brian D. Fairbank...

  3. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L. (comp.)

    1980-08-01T23:59:59.000Z

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  4. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  5. 2 Aijakko Mitiq: drum songs

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 2 Length of track 5 minutes Title of track Aijakko Mitiq: drum songs Translation of title...

  6. Drum tie-down apparatus

    DOE Patents [OSTI]

    Morse, Harvey E. (Albuquerque, NM)

    1984-01-01T23:59:59.000Z

    A drum tie-down apparatus for securing drum-like containers in an upright position to a floor or platform of a transportation vehicle having spaced apart cargo tie-down points. The apparatus comprises a pair of cylindrical, hollow tube segments horizontally oriented and engageable with a drum lid adjacent opposite rim edges, flexible strap segments for connecting upper and lower central portions of the tube segments together across the drum lid and a pair of elongated flexible tie-down segments, one extending horizontally through each of the tube segments, the ends thereof being attached to said spaced apart tie-down points such that end portions of the pair of tie-down segments extend downwardly and radially outwardly from the tube segments to the tie-down points.

  7. L AREA WASTEWATER STORAGE DRUM EVALUATION

    SciTech Connect (OSTI)

    Vormelker, P; Cynthia Foreman, C; Zane Nelson, Z; David Hathcock, D; Dennis Vinson, D

    2007-11-30T23:59:59.000Z

    This report documents the determination of the cause of pressurization that led to bulging deformation of a 55 gallon wastewater drum stored in L-Area. Drum samples were sent to SRNL for evaluation. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  8. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass...

  9. Modeling-Computer Simulations At Chocolate Mountains Area (Alm...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity...

  10. Electrical Resistivity and Self-Potential Surveys Blue Mountain...

    Open Energy Info (EERE)

    Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and...

  11. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Epithermal Gold Mineralization and a Geothermal Resource at Blue...

    Open Energy Info (EERE)

    Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  13. Geology and geothermal waters of Lightning Dock region, Animas...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains,...

  14. Solid waste drum array fire performance

    SciTech Connect (OSTI)

    Louie, R.L. [Westinghouse Hanford Co., Richland, WA (United States); Haecker, C.F. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L. [Hughes Associates, Inc., Baltimore, MD (United States)

    1995-09-01T23:59:59.000Z

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

  15. Mountainous | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr Geothermal ProjectMountainous Jump to:

  16. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  17. Geothermal Energy Association Recognizes the National Geothermal...

    Energy Savers [EERE]

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  18. US Geothermal, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc....

  19. Drum plug piercing and sampling device and method

    DOE Patents [OSTI]

    Counts, Kevin T. (Aiken, SC)

    2011-04-26T23:59:59.000Z

    An apparatus and method for piercing a drum plug of a drum in order to sample and/or vent gases that may accumulate in a space of the drum is provided. The drum is not damaged and can be reused since the pierced drum plug can be subsequently replaced. The apparatus includes a frame that is configured for engagement with the drum. A cylinder actuated by a fluid is mounted to the frame. A piercer is placed into communication with the cylinder so that actuation of the cylinder causes the piercer to move in a linear direction so that the piercer may puncture the drum plug of the drum.

  20. Oak Ridge National Laboratory Evaluation for Drum Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation for Drum Characterization and Source Term Report Oak Ridge National Laboratory Evaluation for Drum Characterization and Source Term Report This document was used to...

  1. Thermal And-Or Near Infrared At Socorro Mountain Area (Owens...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location...

  2. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  3. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

  4. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01T23:59:59.000Z

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  5. An integrated study of dietary lipid manipulation and thermal-refuge technology for overwintering red drum (Sciaenops ocellatus) in outdoor ponds

    E-Print Network [OSTI]

    Boren, Ronald Scott

    1995-01-01T23:59:59.000Z

    designed to afford red drum sub-habitat warmer than other parts of the ponds. Geothermal water (22 OC) from a freshwater well heated the refuges. An opening in each refuge's pond-ward side provided access for the fish. Mean water temperatures inside...

  6. TRU drum corrosion task team report

    SciTech Connect (OSTI)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01T23:59:59.000Z

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  7. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

    1996-02-01T23:59:59.000Z

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  8. 7 Aijakko Mitiq: individual drum song

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 7 Length of track 2 minutes Title of track Aijakko Mitiq: individual drum song Translation...

  9. 3 Aijakko Mitiq: individual drum song

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 3 Length of track 1 minute Title of track Aijakko Mitiq: individual drum song Translation...

  10. 31 Navarana Dunneq drum-dancing

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 31 Length of track 10 minutes Title of track Navarana Dunneq drum-dancing Translation...

  11. 7 Aijakko Mitiq: interview and drum songs

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 7 Length of track 31 minutes Title of track Aijakko Mitiq: interview and drum songs...

  12. 5 Aijakko Mitiq: drum song and interview

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 5 Length of track 17 minutes Title of track Aijakko Mitiq: drum song and interview Translation...

  13. 4 Aijakko Mitiq: individual drum song

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 4 Length of track 2 minutes Title of track Aijakko Mitiq: individual drum song Translation...

  14. 6 Aijakko Mitiq: drum song and interview

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 6 Length of track 41 minute Title of track Aijakko Mitiq: drum song and interview Translation...

  15. 8 Aijakko Mitiq: individual drum song

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 8 Length of track 2 minutes Title of track Aijakko Mitiq: individual drum song Translation...

  16. 38 Single drum dance by Quluatanguaq Jeremiassen

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 38 Length of track 1 minute Title of track Single drum dance by Quluatanguaq Jeremiassen...

  17. 6 Aijakko Mitiq: individual drum song

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 6 Length of track 2 minutes Title of track Aijakko Mitiq: individual drum song Translation...

  18. 3 Aijakko Mitiq: individual drum song

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 3 Length of track 1 minutes Title of track Aijakko Mitiq: individual drum song Translation...

  19. 5 Aijakko Mitiq: individual drum song

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 5 Length of track 1 minute Title of track Aijakko Mitiq: individual drum song Translation...

  20. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01T23:59:59.000Z

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  1. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Broader source: Energy.gov (indexed) [DOE]

    by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. stanford2013hollett.pdf More Documents & Publications Geothermal...

  2. Geothermal Heat Flow and Existing Geothermal Plants | Department...

    Energy Savers [EERE]

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

  3. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  4. Mountain Home Well - Borehole Geophysics Database

    SciTech Connect (OSTI)

    Shervais, John

    2012-11-11T23:59:59.000Z

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  5. CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line...

  6. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  7. Geothermal: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links News DOE...

  8. Geothermal: Publications

    Office of Scientific and Technical Information (OSTI)

    Influences on Geochemical Temperature Indicators: Final Report Earl Mattson ; Robert Smith ; Yoshiko Fujita ; et.al. INLEXT-14-33959 2015 04 07 2015 Mar 01 Deep Geothermal:...

  9. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31T23:59:59.000Z

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  10. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01T23:59:59.000Z

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  11. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal,...

  12. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

  13. Benefits of ARG-US "Smart Drum"

    E-Print Network [OSTI]

    Kemner, Ken

    Program Manager Savannah River National Laboratory paul.blanton@srnl.doe.gov 803.725.3738 ARG-US RFIDBenefits of ARG-US "Smart Drum" Technology Argonne National Laboratory is a U.S. Department Nuclear Engineer, Section Manager Argonne National Laboratory yyliu@anl.gov 630.252.5127 Paul Blanton

  14. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  15. The effect of friction on drum brakes

    SciTech Connect (OSTI)

    Huang, Y.M.; Shyr, J.S. [National Taiwan Univ. (China)

    1995-12-31T23:59:59.000Z

    The boundary element method (BEM) has been developed for a long period of time. Cruse and Wilson developed an isoparametric quadratic element. Rizzo, Cruse, Rizzo and Shippy, and Swedlow and cruse applied the method to various problems. It shows that the BEM can provide a very good analytical result in the linear problem and it can reduce time in preparation of numerical data. Watson and Newcomb pointed out that the pressure distribution on the contact surface of the brake drum and the lining plate do not vary significantly along the axis. The deflection can be reduced by an appropriate design of the web; therefore, two dimensional analysis with the BEM is used in this analysis. Based on the authors` knowledge, this is the first paper to analyze the drum brake by using the BEM. The assumptions are the brake drum to be a rigid body, perfect interface contact between the drum and the shoe, the constant friction coefficient of the friction material and the thermal effect to be neglected. The two dimensional equations are derived based on the Somigliana`s identity. Since there is no shape function and no need of the Jacobin for the coordinate transform, to integrate numerically is easier and to write a computer code is simpler for the constant value element than the second order element. The linear element is inappropriate to treat the comer problem. Using the linear elements or second order elements creates discontinuous phenomena along the irregular boundary. The common nodal point has different normal vector and boundary conditions. It is necessary to have an extra equation to provide a unique solution for the final linear equation. Using the constant value element can get rid of this problem. The effect of the friction on the pressure distribution at the friction interface is studied. The calculated results of the pressure distribution are compared with the available data. The mathematical model can be used as a design tool to predict the performance of drum brakes.

  16. THERMAL PERFORMANCE ANALYSIS FOR WSB DRUM

    SciTech Connect (OSTI)

    Lee, S

    2008-06-26T23:59:59.000Z

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum.

  17. California Geothermal Energy Collaborative

    E-Print Network [OSTI]

    California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

  18. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    SciTech Connect (OSTI)

    Mickalonis, J.; Vormelker, P.

    2009-07-31T23:59:59.000Z

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  19. Potential VOC Deflagrations in a Vented TRU Drum

    SciTech Connect (OSTI)

    Mukesh, GUPTA

    2005-04-07T23:59:59.000Z

    The objective of the analysis is to examine the potential for lid ejection from a vented transuranic (TRU) waste drum due to pressure buildup caused by the deflagration of hydrogen and volatile organic compounds (VOCs) inside the drum. In this analysis, the AICC pressure for a stoichiometric mixture of VOCs is calculated and then compared against the experimental peak pressure of stoichiometric combustion of propane and hexane in a combustion chamber. The experimental peak pressures of propane and hexane are about 12 percent lower than the calculated AICC pressure. Additional losses in the drum are calculated due to venting of the gases, drum bulging, waste compaction, and heat losses from the presence of waste in the drum. After accounting for these losses, the final pressures are compared to the minimum observed pressure that ejects the lid from a TRU drum. The ejection pressure of 105 psig is derived from data that was recorded for a series of tests where hydrogen-air mixtures were ignited inside sealed TRU drums. Since the calculated pressures are below the minimum lid ejection pressure, none of the VOCs and the hydrogen (up to 4 percent) mixtures present in the TRU waste drum is expected to cause lid ejection if ignited. The analysis of potential VOC deflagrations in a vented TRU drum can be applied across the DOE-Complex since TRU waste is stored in drums throughout the complex.

  20. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  1. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  2. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Zone Mesozoic granite granodiorite Aurora Geothermal Area Aurora Geothermal Area Walker Lane Transition Zone Geothermal Region MW Beowawe Hot Springs Geothermal Area Beowawe Hot...

  3. White Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy Resources JumpMeadow Lake, New

  4. White Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy Resources JumpMeadow Lake, NewWhite

  5. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New EnergyChippewaChocolate

  6. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG26588°,Socorro County, New Mexico: Energy

  7. White Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to:Westwood Renewables Jump to:meaningWillow IWhite

  8. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa: Energy ResourcesJehin Co Ltd

  9. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSloughCreekRhodePUDSocorro

  10. Augusta Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation,Kansas:Audubon,Ohio:Augusta

  11. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotion Energy Jump to: navigation,Area Jump

  12. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotion Energy Jump to: navigation,Area

  13. Tungsten Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinity Thermal Systems JumpTrueTullahomaTungsten

  14. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJump to: navigation,Hydrogen

  15. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJump to: navigation,HydrogenFlorida

  16. Tungsten Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-StateTucson Estates,Tumwater, Washington:

  17. Glass Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <Glacial Energy HoldingsGlacial LakesGlass

  18. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Broader source: Energy.gov (indexed) [DOE]

    Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. icelandgeothermalco...

  19. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  20. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29T23:59:59.000Z

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  1. WRAP operational test report drum non destructive examination system

    SciTech Connect (OSTI)

    HUMPHRYS, K.L.

    1999-07-01T23:59:59.000Z

    This operational test report was performed to verify the WRAP Facility Drum Non-Destructive Examination systems operate in accordance with the system designs and specifications.

  2. Examination of representative drum from 618-9 Burial Ground

    SciTech Connect (OSTI)

    Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States); Bunnell, L.R. [Pacific Northwest Lab., Richland, WA (United States)

    1992-10-01T23:59:59.000Z

    The work described in this report was conducted in pursuance of Task E of the Pacific Northwest Laboratory Solid Waste Technology Support Program for Westinghouse Hanford Company. Task E calls for a determination of the corrosion rate of low-carbon steels under typical Hanford Site conditions. To meet this objective, Pacific Northwest Laboratory examined one intact drum that was judged to be representative of the largely intact drums excavated at the 618-9 Burial Ground located west of the 300 Area at the Hanford Site. Six samples were examined to characterize the drum, its composition, and its corrosion and corrosion products. The drum, which was found empty, was constructed of low-carbon steel. Its surface appeared relatively sound. The drum metal varied in thickness, but the minimum thickness in the samples was near 0.020 in. The corrosion corresponds to approximately 25 to 35 mils of metal loss, roughly a 1 mil/yr corrosion rate. Corrosion products were goethite and maghymite, expected products of iron buried in soil. Apparently, the drum leaked some time ago, but the cause of the leakage is unknown because records of the drums and their burial are limited. The drum was empty when found, and it is possible that it could have failed by pitting rather than by general corrosion. A pitting rate of about 3.5 mils/yr would have caused loss of drum integrity in the time since burial.

  3. Evaluation of the Drum Tipper Mechanism for the WRAP Facility

    SciTech Connect (OSTI)

    LEIST, K.J.

    1999-12-07T23:59:59.000Z

    The drum tipper assembly has had numerous problems and has recently failed. ARES Corporation was asked to evaluate the existing system and provide recommendations for a replacement system.

  4. NANA Geothermal Assessment Program Final Report

    SciTech Connect (OSTI)

    Jay Hermanson

    2010-06-22T23:59:59.000Z

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  5. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01T23:59:59.000Z

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  6. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  7. Fire protection guide for solid waste metal drum storage

    SciTech Connect (OSTI)

    Bucci, H.M.

    1996-09-16T23:59:59.000Z

    This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

  8. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01T23:59:59.000Z

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  9. Geothermal Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

  10. Geothermal Technologies Legacy Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    programmatic reports Geothermal resource maps International journal citations DOEOSTI--C126 0811 A valuable source of DOE-sponsored geothermal information at your fingertips...

  11. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  12. Geothermal Technologies Subject Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programmatic Reports Geothermal Resource Maps International journal citations DOEOSTI--C126 1008 A valuable source of DOE-sponsored geothermal information at your fingertips Hot...

  13. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy...

  14. Neutron Screening Measurements of 110 gallon drums at T Plant

    SciTech Connect (OSTI)

    Mozhayev, Andrey V.; Hilliard, James R.; Berg, Randal K.

    2011-01-14T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) Nondestructive Assay (NDA) Service Center was contracted to develop and demonstrate a simple and inexpensive method of assaying 110 gallon drums at the Hanford Sites T-Plant. The drums contained pucks of crushed old drums used for storage of transuranic (TRU) waste. The drums were to be assayed to determine if they meet the criteria for TRU or Low Level Waste (LLW). Because of the dense matrix (crushed steel drums) gamma measurement techniques were excluded and a mobile, configurable neutron system, consisting of four sequentially connected slab detectors was chosen to be used for this application. An optimum measurement configuration was determined through multiple test measurements with californium source. Based on these measurements the initial calibration of the system was performed applying the isotopic composition for aged weapon-grade plutonium. A series of background and blank puck drum measurements allowed estimating detection limits for both total (singles) and coincidence (doubles) counting techniques. It was found that even conservative estimates for minimum detection concentration using singles count rate were lower than the essential threshold of 100 nCi/g. Whereas the detection limit of coincidence counting appeared to be about as twice as high of the threshold. A series of measurements intended to verify the technique and revise the initial calibration obtained were performed at the Waste Receiving and Processing (WRAP) facility with plutonium standards. Standards with a total mass of 0.3 g of plutonium (which is estimated to be equivalent of 100 nCi/g for net waste weight of 300 kg) loaded in the test puck drum were clearly detected. The following measurements of higher plutonium loadings verified the calibration factors obtained in the initial exercise. The revised and established calibration factors were also confirmed within established uncertainties by additional measurements of plutonium standards in various locations in the test drum. Due to necessity to dispense the blank test drum an alternative method of baseline determination was established during field measurements. Count rates of ambient background were corrected by the differences between observed background and blank test drum count rates which were previously determined over a series of measurements. Only 31 drums out of 352 counted during the intensive measurement campaign at T-Plant were determined to be Suspect TRU. 25 of these drums were re-measured at the WRAP facility using the SuperHENC. Of the 25 drums measured, 21 were confirmed to be TRU and the remaining four LLW.

  15. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration

  16. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01T23:59:59.000Z

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  17. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  18. Geothermal: Sponsored by OSTI -- National Geothermal Data System...

    Office of Scientific and Technical Information (OSTI)

    National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing Geothermal Technologies Legacy...

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details Location Lightning Dock Geothermal Area...

  20. Geothermal: Sponsored by OSTI -- Development of a geothermal...

    Office of Scientific and Technical Information (OSTI)

    Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan Geothermal Technologies Legacy Collection HelpFAQ | Site...

  1. Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...

    Office of Scientific and Technical Information (OSTI)

    Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

  2. Geothermal: Sponsored by OSTI -- Calpine geothermal visitor center...

    Office of Scientific and Technical Information (OSTI)

    Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers Geothermal Technologies Legacy Collection HelpFAQ |...

  3. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal Literature Review Activity Date...

  4. Geothermal: Sponsored by OSTI -- A study of geothermal drilling...

    Office of Scientific and Technical Information (OSTI)

    A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  5. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal...

  6. Geothermal: Sponsored by OSTI -- The Preston Geothermal Resources...

    Office of Scientific and Technical Information (OSTI)

    The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  7. Geothermal: Sponsored by OSTI -- GEOTHERMAL / SOLAR HYBRID DESIGNS...

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

  9. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01T23:59:59.000Z

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  10. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  11. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  12. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC) a tax-exempt, non-profit, geothermal educational association publishes quarterly as an insert in its GRC Bulletin.

  13. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

  14. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

  15. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

  16. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  17. 21 Single drum-song by Aijakko Mitiq

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 21 Length of track 1 minute Title of track Single drum-song by Aijakko Mitiq Translation...

  18. 18 Single drum-song by Aijakko Mitiq

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 18 Length of track 1 minute Title of track Single drum-song by Aijakko Mitiq Translation...

  19. 20 Single drum-song by Aijakko Mitiq

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 20 Length of track 1 minute 30 seconds Title of track Single drum-song by Aijakko Mitiq...

  20. 24 Single drum-song by Aijakko Mitiq

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 24 Length of track 1 minute Title of track Single drum-song by Aijakko Mitiq Translation...

  1. 22 Single drum-song by Aijakko Mitiq

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 22 Length of track 1 minute Title of track Single drum-song by Aijakko Mitiq Translation...

  2. 2 Aijakko Mitiq: drum-dancing for Australian television

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 SAccession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 2 Length of track 52 minutes Title of track Aijakko Mitiq: drum-dancing for Australian...

  3. 32 Navarana Dunneq drum-dancing (part 2)

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 32 Length of track 2 minutes Title of track Navarana Dunneq drum-dancing (part 2) Translation...

  4. 1 Aijakko Mitiq: drum-dancing and interview

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 1 Length of track 1 hour 6 minutes Title of track Aijakko Mitiq: drum-dancing and interview...

  5. 23 Single drum-song by Aijakko Mitiq

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 23 Length of track 1 minute Title of track Single drum-song by Aijakko Mitiq Translation...

  6. 19 Single drum-song by Aijakko Mitiq

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 19 Length of track 1 minute Title of track Single drum-song by Aijakko Mitiq Translation...

  7. 43 Favourite drum-songs by Qulutanguaq Jerermiassen

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 43 Length of track 30 minutes Title of track Favourite drum-songs by Qulutanguaq Jerermiassen...

  8. Technical Assessment Team Report on Cause of Breached Drum at...

    Broader source: Energy.gov (indexed) [DOE]

    Technical Assessment Team Report on Cause of Breached Drum at Waste Isolation Pilot Plant Released WASHINGTON, D.C. - The U.S. Department of Energy today released a report by an...

  9. Report Card for GSHP in the Mountain West

    E-Print Network [OSTI]

    Report Card for GSHP in the Mountain West Cary Smith CGD CEM CEA Sound Geothermal: - Par7al year data 2013 - Does not include projects in Indian Na7ons (Qty Systems Permi^ed) 0 5 10 15 20 25 30 35 40 2002 2003 2004

  10. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01T23:59:59.000Z

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  11. 1979-1980 Geothermal Resource Assessment Program in Washington

    SciTech Connect (OSTI)

    Korosec, M.A.; Schuster, J.E.

    1980-01-01T23:59:59.000Z

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  12. Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...

    Office of Scientific and Technical Information (OSTI)

    Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

  13. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED through September 30, 1982. The Stanford Geothermal Program conducts interdisciplinary research

  14. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  15. Yucca Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognizedThesis PrizeYucca Mountain We are

  16. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01T23:59:59.000Z

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  17. Geothermal: Sponsored by OSTI -- Geothermal Power Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  18. Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News...

  19. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  20. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  1. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  2. Sandia National Laboratories: Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

  3. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  4. Geothermal Technologies Newsletter Archives

    Broader source: Energy.gov [DOE]

    Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

  5. Evaluation of various sulphur amino acid compounds in the diet of red drum, Sciaenops ocellatus

    E-Print Network [OSTI]

    Goff, Jonathan B

    2003-01-01T23:59:59.000Z

    Refinement of diet formulations to enhance the efficiency of red drum production continues to be pursued. Based on previous studies, the sulfur amino acid (SAA) requirement of red drum for methionine plus cystine appears to be most limiting, which...

  6. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  7. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  8. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications including technical reports, newsletters, brochures, and more about geothermal energy.

  9. Geothermal energy in Nevada

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  10. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    inGeysersgeothermalcoolingtowers. Geothermalin Geysers Geothermal Cooling Towers. Aminzadeh,processes Geothermal resources near cooling

  11. Renewable Energy Opportunities at Fort Drum, New York

    SciTech Connect (OSTI)

    Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J.; Weimar, Mark R.; Rowley, Steven; Nesse, Ronald J.

    2010-10-20T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.

  12. Method of estimating maximum VOC concentration in void volume of vented waste drums using limited sampling data: Application in transuranic waste drums

    SciTech Connect (OSTI)

    Liekhus, K.J.; Connolly, M.J.

    1995-12-01T23:59:59.000Z

    A test program has been conducted at the Idaho National Engineering Laboratory to demonstrate that the concentration of volatile organic compounds (VOCs) within the innermost layer of confinement in a vented waste drum can be estimated using a model incorporating diffusion and permeation transport principles as well as limited waste drum sampling data. The model consists of a series of material balance equations describing steady-state VOC transport from each distinct void volume in the drum. The primary model input is the measured drum headspace VOC concentration. Model parameters are determined or estimated based on available process knowledge. The model effectiveness in estimating VOC concentration in the headspace of the innermost layer of confinement was examined for vented waste drums containing different waste types and configurations. This paper summarizes the experimental measurements and model predictions in vented transuranic waste drums containing solidified sludges and solid waste.

  13. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  14. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

  15. Summary of geothermal exploration activity in the State of Washington from 1978 to 1983. Final report

    SciTech Connect (OSTI)

    Korosec, M.A.

    1984-01-01T23:59:59.000Z

    Project activity is summarized with references to the publications produced. Project findings are reported as they relate to specific geothermal resource target areas. Some major projects of the goethermal exploration program are: thermal and mineral spring chemistry, heat flow drilling, temperature gradient measurements, Cascade Range regional gravity, geohydrology study of the Yakima area, low temperature geothermal resources, geology, geochemistry of Cascade Mountains volcanic rocks, and soil mercury studies. (MHR)

  16. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  17. DIRECTIONAL DIFFERENCES IN THE SOUND INTENSITY OF RUFFED GROUSE DRUMMING

    E-Print Network [OSTI]

    Minnesota, University of

    of an adult male grouse (No. 1616) were recorded on video tape with Sony videorecording equipment in conjunc a television camera (Sony Model TC-303, F 1.4) was lashed to a small tree about 7 feet from the drumming stage log, the videorecorder (Sony Model EV-210) and camera power supply-control unit (Sony Model TP-110

  18. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01T23:59:59.000Z

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  19. CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES

    E-Print Network [OSTI]

    Stanford University

    geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

  20. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  1. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06T23:59:59.000Z

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  2. Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...

    Office of Scientific and Technical Information (OSTI)

    Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  3. Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...

    Office of Scientific and Technical Information (OSTI)

    Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

  4. Geothermal: Sponsored by OSTI -- Deep Geothermal Drilling Using...

    Office of Scientific and Technical Information (OSTI)

    Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

  6. EARLY TESTS OF DRUM TYPE PACKAGINGS - THE LEWALLEN REPORT

    SciTech Connect (OSTI)

    Smith, A.

    2010-07-29T23:59:59.000Z

    The need for robust packagings for radioactive materials (RAM) was recognized from the earliest days of the nuclear industry. The U.S. Department of Energy (DOE) Rocky Flats Plant developed a packaging for shipment of Pu in the early 1960's, which became the U.S. Department of Transportation (DOT) 6M specification package. The design concepts were employed in other early packagings. Extensive tests of these at Savannah River Laboratory (now Savannah River National Laboratory) were performed in 1969 and 1970. The results of these tests were reported in 'Drum and Board-Type Insulation Overpacks of Shipping Packages for Radioactive Materials', by E. E. Lewallen. The Lewallen Report was foundational to design of subsequent drum type RAM packaging. This paper summarizes this important early study of drum type packagings. The Lewallen Report demonstrated the ability packagings employing drum and insulation board overpacks and engineered containment vessels to meet the Type B package requirements. Because of the results of the Lewallen Report, package designers showed high concern for thermal protection of 'Celotex'. Subsequent packages addressed this by following strategies like those recommended by Lewallen and by internal metal shields and supplemental, encapsulated insulation disks, as in 9975. The guidance provide by the Lewallen Report was employed in design of a large number of drum size packagings over the following three decades. With the increased public concern over transportation of radioactive materials and recognition of the need for larger margins of safety, more sophisticated and complex packages have been developed and have replaced the simple packagings developed under the Lewallen Report paradigm.

  7. Geothermal Technologies Office: Financial Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities Printable Version Share this resource Send a link to Geothermal Technologies Office: Financial Opportunities to someone by E-mail Share Geothermal...

  8. Geothermal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 11, 2013 The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees On December 10, the Geothermal Energy Association announced its 2013 GEA Honors...

  9. Geothermal News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    March 31, 2014 Low-temp geothermal technologies are meeting a growing demand for strategic materials in clean manufacturing. Here, lithium is extracted from geothermal brines in...

  10. Sandia National Laboratories: Geothermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

  11. Geothermal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal News Geothermal News RSS August 1, 2008 Energy Transport Corridor Draft Environmental Impact Statement Available for Review The Department of the Interior's Bureau of...

  12. Sandia National Laboratories: Geothermal Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

  13. Geothermal News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    January 21, 2011 Handbook of Best Practices for Geothermal Drilling Released The Handbook of Best Practices for Geothermal Drilling, funded by the U.S. Department of Energy's...

  14. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov (indexed) [DOE]

    confidential, or otherwise restricted information. Insert photo of your choice Drilling on the OIT campus Feb. 2009 2 | US DOE Geothermal Program eere.energy.gov * Timeline:...

  15. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  16. Geothermal resources of California

    SciTech Connect (OSTI)

    Bezore, S.P.

    1984-06-01T23:59:59.000Z

    Geothermal resources may be classified into two types: high temperature, >150 C, suitable for electrical generation and low- to moderate-temperature, 20-150 C, suitable for direct use. To further the development of geothermal resources in California, a concentrated study of low-temperature and moderate-temperature geothermal resources has been conducted by the California Department of Conservation. As part of that study a map containing technical data on the geothermal resources of California is now available to help planners, local governments, etc. develop their local resources.

  17. Geothermal: Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  18. Geothermal: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Contact...

  19. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  20. Geothermal: Promotional Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promotional Video Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  1. Geothermal: Distributed Search Help

    Office of Scientific and Technical Information (OSTI)

    Search Help Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  2. Geothermal: Basic Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Search...

  3. Geothermal Prospects in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospects in Colorado Geothermal Peer Review Bobi Garrett Deputy Laboratory Director Strategic Programs and Partnerships April 22, 2013 2 NREL Snapshot * Physical Assets Owned by...

  4. Geothermal: Educational Zone

    Office of Scientific and Technical Information (OSTI)

    Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  5. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  6. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11T23:59:59.000Z

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  7. Geothermal: Bibliographic Citation

    Office of Scientific and Technical Information (OSTI)

    Bibliographic Citation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related...

  8. Geothermal: Search Results

    Office of Scientific and Technical Information (OSTI)

    Search Results Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links The...

  9. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  10. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

  11. geothermal2.qxp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of...

  12. Geothermal Financing Workbook

    SciTech Connect (OSTI)

    Battocletti, E.C.

    1998-02-01T23:59:59.000Z

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  13. A MODULAR STORE FOR DRUMS OF RADIOACTIVE WASTE

    SciTech Connect (OSTI)

    Sims, J.; Holden, G.

    2003-02-27T23:59:59.000Z

    Currently, the United Kingdom has no facility for the disposal of any waste above the low level category, indicating that all intermediate and high level waste, apart from spent fuel, has to be stored on the site of origin. To meet this storage requirement, nuclear sites are resorting to converting existing buildings or contemplating the construction of dedicated facilities, resulting in considerable cost implications. These financing aspects not only concern the construction strategy but also impinge on the ultimate decommissioning costs associated with each particular nuclear site. This paper reports on an investigation to apply the commercially available interlocking hollow block system to the design of a store for drums of radioactive waste. This block system can be quickly, and cost effectively, erected and filled with a choice of dense material. Later, the store can be dismantled with a minimum of disposable radioactive waste and the complete facility re - erected at another location if required, considerably reducing both capital construction and decommissioning costs. The investigation also encompassed a detailed review of the equipment required to place the drums of waste into the store, resulting in a scheme for a remotely operated vehicle that did not rely on umbilical control cables. The drum handler design included for 100% redundancy of all functions, meaning that whichever component failed, the handler was always recoverable to effect the necessary repair. The ultimate aim of the waste drum store review was to produce a facility that was as safe as a conventionally constructed unit, but at a lower overall building and decommissioning cost.

  14. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

  15. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on early

  16. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  17. Geothermal energy: a brief assessment

    SciTech Connect (OSTI)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01T23:59:59.000Z

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  18. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    on Geothermal Resource Assessment and Reservoir EngineeriWorkshop on Geothermal Resources Assessment and ReserooirWorkshop on Geothermal Resources Assessment an ervoi r Engi

  19. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    at the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.

  20. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01T23:59:59.000Z

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  1. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01T23:59:59.000Z

    an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

  2. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01T23:59:59.000Z

    the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

  3. 2012 Geothermal Webinar | Department of Energy

    Energy Savers [EERE]

    Geothermal Webinar 2012 Geothermal Webinar January 10, 2012 - 12:47pm Addthis This Office of Indian Energy webinar provides information on developing geothermal resources on tribal...

  4. NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

  5. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01T23:59:59.000Z

    Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

  6. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01T23:59:59.000Z

    that well blocks must geothermal reservoir studies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  7. Geothermal Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Technologies Office Energy Department Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal...

  8. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  9. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.for Recovery of Energy from Geothermal Hot Brine Deposits."

  10. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01T23:59:59.000Z

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  11. Flint Geothermal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,and WildlifeFlashFlint Geothermal Geothermal

  12. RESULTS OF ANALYSIS OF NGS CONCENTRATE DRUM SAMPLES [Next Generation Solvent

    SciTech Connect (OSTI)

    Peters, T.; Williams, M.

    2013-09-13T23:59:59.000Z

    Savannah River National Laboratory (SRNL) prepared two drums (50 gallons each in ?Drum#2? and ?Drum#4?) of NGS-MCU (Next Generation Solvent-Modular CSSX Unit) concentrate for future use at MCU in downblending the BOBCalixC6 based solvent to produce NGS-MCU solvent. Samples of each drum were sent for analysis. The results of all the analyses indicate that the blend concentrate is of the correct composition and should produce a blended solvent at MCU of the desired formulation.

  13. Navy Geothermal Plan

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  14. National Geothermal Resource Assessment and Classification |...

    Office of Environmental Management (EM)

    Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation at the...

  15. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

  16. Updating the Classification of Geothermal Resources- Presentation

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  17. Updating the Classification of Geothermal Resources

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  18. Ionic Liquids for Utilization of Geothermal Energy

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

  19. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

  20. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  1. Geothermal Energy: Current abstracts

    SciTech Connect (OSTI)

    Ringe, A.C. (ed.)

    1988-02-01T23:59:59.000Z

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  2. Geothermal: Site Map

    Office of Scientific and Technical Information (OSTI)

    Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Site Map...

  3. RMOTC - Testing - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Testing Notice: As of July 1st, 2014, Testing at RMOTC has officially completed. We would like to thank all of our testing partners and everyone who helped make the...

  4. Geothermal Resources Act (Texas)

    Broader source: Energy.gov [DOE]

    The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide...

  5. Geothermal Orientation Handbook

    SciTech Connect (OSTI)

    None

    1984-07-01T23:59:59.000Z

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  6. Geothermal Case Studies

    SciTech Connect (OSTI)

    Young, Katherine

    2014-09-30T23:59:59.000Z

    The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  7. Fractal Zeta Functions and Complex Dimensions of Relative Fractal Drums

    E-Print Network [OSTI]

    Michel L. Lapidus; Goran Radunovi?; Darko ubrini?

    2014-11-17T23:59:59.000Z

    The theory of 'zeta functions of fractal strings' has been initiated by the first author in the early 1990s, and developed jointly with his collaborators during almost two decades of intensive research in numerous articles and several monographs. In 2009, the same author introduced a new class of zeta functions, called `distance zeta functions', which since then, has enabled us to extend the existing theory of zeta functions of fractal strings and sprays to arbitrary bounded (fractal) sets in Euclidean spaces of any dimension. A natural and closely related tool for the study of distance zeta functions is the class of 'tube zeta functions', defined using the tube function of a fractal set. These three classes of zeta functions, under the name of 'fractal zeta functions', exhibit deep connections with Minkowski contents and upper box dimensions, as well as, more generally, with the complex dimensions of fractal sets. Further extensions include zeta functions of relative fractal drums, the box dimension of which can assume negative values, including minus infinity. We also survey some results concerning the existence of the meromorphic extensions of the spectral zeta functions of fractal drums, based in an essential way on earlier results of the first author on the spectral (or eigenvalue) asymptotics of fractal drums. It follows from these results that the associated spectral zeta function has a (nontrivial) meromorphic extension, and we use some of our results about fractal zeta functions to show the new fact according to which the upper bound obtained for the corresponding abscissa of meromorphic convergence is optimal. Finally, we conclude this survey article by proposing several open problems and directions for future research in this area.

  8. Fort Drum integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  9. Regulation of Thyrotropin mRNA Expression in Red Drum, Sciaenops ocellatus

    E-Print Network [OSTI]

    Jones, Richard Alan

    2012-10-19T23:59:59.000Z

    , circulates with a robust daily rhythm in the sciaenid fish, red drum. Previous research has suggested that the red drum T? cycle is circadian in nature, driven by TSH secretion in the early photophase and inhibited by T? feedback in the early scotophase...

  10. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    in The Geysers. GeothermalResourcesCouncilA planned Enhanced Geothermal System demonstrationproject. Geothermal Resources Council Transactions33,

  11. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

  12. Application of the Australian Geothermal Reporting Code to "Convention...

    Open Energy Info (EERE)

    of the Australian Geothermal Reporting Code to "Conventional" Geothermal Projects. In: Proceedings. Australian Geothermal Energy Conference; 20101117; Adelaide, Australia....

  13. 17 Introduction to drum-singing by Aijakko Mitiq, drum-song about two Arctic Hares and a song about a bow and arrow

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 17 Length of track 5 minutes Title of track Short introduction to drum-singing by Aijakko Mitiq...

  14. Geothermal Literature Review At White Mountains Area (Goff &...

    Open Energy Info (EERE)

    24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff,...

  15. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    low SP anomalies. The anomalies had a minimum value of -268 mV. References Fairbank Engineering Ltd (2003) Phase I Report U.S. DOE GRED II Program Additional References Retrieved...

  16. Reflection Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    dipping faults that become less steep with increasing depth. References Fairbank Engineering Ltd (2003) Phase I Report U.S. DOE GRED II Program Additional References Retrieved...

  17. Geology and Temperature Gradient Surveys Blue Mountain Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations2002)

  18. Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to library WebWestern United

  19. EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku Wind Power,Thermal EnergyAirCounty, NV |

  20. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Display map Temperature 36.0 C 96.0 F Flow 1,600 gpm 6,064 Lmin Capacity 8.00x106 Btuhr 2.300 MWt Annual Generation 56.00x109 Btuyr 16.40 GWhyr Delat T 10.00 F Load...

  1. A Preliminary Structural Model for the Blue Mountain Geothermal Field,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. NationalMammalsSmith Jump

  2. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeegerSelden, NewVC-2A,

  3. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish,New York: Energy Resources2003) |

  4. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:Analogs For1991) | Open Energy

  5. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County, Washington:Energy Information2003)

  6. A Preliminary Conceptual Model for the Blue Mountain Geothermal System,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf TheLtd APWR Jump to:AHumboldt

  7. Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd, 2003) | Open

  8. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc. Place: Potsdam, NewOcean | Open

  9. Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectProgramsAlteration JumpDixieHyper2010) |

  10. Zuni Mountains Nm Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZolo Technologies Inc Jump to:Zuni

  11. Zuni Mountains Nm Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZolo Technologies Inc Jump

  12. Geothermometry At Blue Mountain Geothermal Area (Casteel, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlanGmbH und Co KG Jump to:EnergyOpenOpen

  13. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska:Gridley,Grocery 2009(Redirected1978)

  14. McGee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan, California: Energy ResourcesMcGee

  15. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr County,and5EnergyCull,

  16. Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma: EnergyEnergy Information

  17. Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldorado IvanpahGas WellsColumbiaArea, Nevada |

  18. Cuttings Analysis At Jemez Mountain Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine:1983) | Open

  19. Cuttings Analysis At Marysville Mountain Geothermal Area (1976) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine:1983) | OpenEnergy

  20. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump to:

  1. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands,EnergyHot-Dry-Rock

  2. McGee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo Power Jump to:McCoyMcGee

  3. Reflection Survey At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreview ofOzkocak, 1985) Exploration

  4. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:Rockwall County, Texas:Rocky

  5. Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place:EnergyLiteInformationEoliaHumboldt

  6. Geothermal: Sponsored by OSTI -- Small Geothermal Systems: A...

    Office of Scientific and Technical Information (OSTI)

    Small Geothermal Systems: A Guide for the Do-It-Yourselfer Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

  7. Geothermal: Sponsored by OSTI -- User manual for geothermal energy...

    Office of Scientific and Technical Information (OSTI)

    User manual for geothermal energy assisted dairy complex computer programs: PREBLD, MODEL0, MODEL1, MODEL2, FRMAT2, PREPI2, NET2, DAIRY and DAIRY1 Geothermal Technologies Legacy...

  8. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    SciTech Connect (OSTI)

    Jody Erikson

    2006-05-26T23:59:59.000Z

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  9. Geothermal: Sponsored by OSTI -- Low-Temperature Enhanced Geothermal...

    Office of Scientific and Technical Information (OSTI)

    Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic...

  10. Geothermal Site Assessment Using the National Geothermal Data...

    Open Energy Info (EERE)

    Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studiesexamples, Publications Website: www.unr.edugeothermalpdffiles...

  11. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    into sustainable geothermal energy: The S.E. Geysersseismicityandgeothermal energy. GeothermalResourcesinto sustainable geothermal energy: The S.E. Geysers

  12. DOE and Partners Demonstrate Mobile Geothermal Power System at...

    Energy Savers [EERE]

    DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy...

  13. Energy Department Announces National Geothermal Data System to...

    Office of Environmental Management (EM)

    National Geothermal Data System to Accelerate Geothermal Energy Development Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development...

  14. How an Enhanced Geothermal System Works | Department of Energy

    Energy Savers [EERE]

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems,...

  15. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    inducedseismicityandgeothermal energy. Geothermalinto sustainable geothermal energy: The S.E. Geysersinto sustainable geothermal energy: The S.E. Geysers

  16. Geothermal: Sponsored by OSTI -- Use of a Geothermal-Solar Hybrid...

    Office of Scientific and Technical Information (OSTI)

    Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

  17. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  18. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

  19. Geothermal News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    October 25, 2011 First Google.Org-Funded Geothermal Mapping Report Confirms Vast Coast-to-Coast Clean Energy Source New research from SMU's Geothermal Laboratory, funded by a grant...

  20. DOE-Geothermal Data Repository

    Broader source: Energy.gov [DOE]

    Geothermal energy hidden in the subsurface can be more effectively targeted through precise heatflow and temperature data. The Energy Department makes all data from DOE-funded projects available free online through the National Geothermal Data System.

  1. Geothermal energy: 1992 program overview

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  2. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

  3. Fort Drum integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

  4. South Dakota Geothermal Energy Handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

  5. Geothermal Resources and Transmission Planning

    Broader source: Energy.gov [DOE]

    This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

  6. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  7. GEOTHERMAL Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GEOTHERMAL Events GEOTHERMAL Events February 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Geothermal...

  8. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  9. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-42 PROCEEDINGS SPECIAL PANEL ON GEOTHERMAL MODEL INTERCOMPARISON STUDY held in conjunction with The Code Comparison Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office

  10. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of Petroleum ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

  11. DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

  12. GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger

    E-Print Network [OSTI]

    Stanford University

    SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

  13. Stanford Geothermal Program Stanford University

    E-Print Network [OSTI]

    Stanford University

    s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

  14. Stanford Geothermal Program Tnterdisciplinary Research

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

  15. Postgraduate Certificate in Geothermal Energy

    E-Print Network [OSTI]

    Auckland, University of

    Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University for development of geothermal fields is large and many countries are seeking to move away from fossil fuel power generation for both economic and environmental reasons. Global revenues for geothermal power were estimated

  16. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

  17. Rocky Mountain Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3700 Loveland, CO 80539-3003 970-461-7200 Toll Free: 1-800-472-2306 Rocky Mountain Organizational Chart and phone numbers Merchant Manager: 970-240-6209 Scheduling Manager:...

  18. Direct utilization of geothermal energy for Pagosa Springs, Colorado. Final report, June 1979-June 1984

    SciTech Connect (OSTI)

    Goering, S.W.; Garing, K.L.; Coury, G.

    1984-08-01T23:59:59.000Z

    The Pagosa Springs Geothermal District Heating System was conceptualized, designed, and constructed between 1979 to 1984 under the US Department of Energy Program Opportunity Notice (PON) program to demonstrate the feasibility for utilizing moderate temperature geothermal resources for direct-use applications. The Pagosa Springs system successfully provides space heating to public buildings, school facilities, residences, and commercial establishments at costs significantly lower than costs of available conventional fuels. The Pagosa Springs project encompassed a full range of technical, institutional, and economic activities. Geothermal reservoir evaluations and testing were performed, and two productive approx.140/sup 0/F geothermal supply wells were successfully drilled and completed. Transmission and distribution system design, construction, startup, and operation were achieved with minimum difficulty. The geothermal system operation during the first two heating seasons has been fully reliable and well respected in the community. The project has proven that low to moderate-temperature waters can effectively meet required heating loads, even for harsh winter-mountain environments. The principal difficulty encountered has been institutional in nature and centers on the obtaining of the geothermal production well permits and the adjudicated water rights necessary to supply the geothermal hot water fluids for the full operating life of the system. 28 figs., 15 tabs.

  19. The 1980-1982 Geothermal Resource Assessment Program in Washington

    SciTech Connect (OSTI)

    Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

    1983-08-01T23:59:59.000Z

    Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

  20. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16T23:59:59.000Z

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  1. Development of a model for predicting transient hydrogen venting in 55-gallon drums

    SciTech Connect (OSTI)

    Apperson, Jason W [Los Alamos National Laboratory; Clemmons, James S [Los Alamos National Laboratory; Garcia, Michael D [Los Alamos National Laboratory; Sur, John C [Los Alamos National Laboratory; Zhang, Duan Z [Los Alamos National Laboratory; Romero, Michael J [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Remote drum venting was performed on a population of unvented high activity drums (HAD) in the range of 63 to 435 plutonium equivalent Curies (PEC). These 55-gallon Transuranic (TRU) drums will eventually be shipped to the Waste Isolation Pilot Plant (WIPP). As a part of this process, the development of a calculational model was required to predict the transient hydrogen concentration response of the head space and polyethylene liner (if present) within the 55-gallon drum. The drum and liner were vented using a Remote Drum Venting System (RDVS) that provided a vent sampling path for measuring flammable hydrogen vapor concentrations and allow hydrogen to diffuse below lower flammability limit (LFL) concentrations. One key application of the model was to determine the transient behavior of hydrogen in the head space, within the liner, and the sensitivity to the number of holes made in the liner or number of filters. First-order differential mass transport equations were solved using Laplace transformations and numerically to verify the results. the Mathematica 6.0 computing tool was also used as a validation tool and for examining larger than two chamber systems. Results will be shown for a variety of configurations, including 85-gallon and 110-gallon overpack drums. The model was also validated against hydrogen vapor concentration assay measurements.

  2. EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility...

    Office of Environmental Management (EM)

    6: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR December 1, 2009 EA-1676: Final...

  3. Geothermal hydrogen sulfide removal

    SciTech Connect (OSTI)

    Urban, P.

    1981-04-01T23:59:59.000Z

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  4. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  5. Geothermal materials development activities

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1993-06-01T23:59:59.000Z

    This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

  6. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  7. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    SciTech Connect (OSTI)

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-06-15T23:59:59.000Z

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

  8. Geothermal well stimulation

    SciTech Connect (OSTI)

    Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

    1980-01-01T23:59:59.000Z

    All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

  9. Geothermal | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics Geothermal

  10. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Cross, J.; Freeman, J.

    2009-07-01T23:59:59.000Z

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  11. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington:Informationgeothermal

  12. Analysis of natural gas supply strategies at Fort Drum

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

    1992-07-01T23:59:59.000Z

    This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

  13. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    GEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps IS GEOTHERMAL HEAT PUMP TECHNOLOGY ??? Answer: It is a 60 year old technology! #12;FACT GHP's were first written

  14. Imperial County, geothermal development. Quarterly report, October 1-December 31, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Geothermal development activities have increased during the October to December period. Nine power plant projects are proceeding, this includes two constructed facilities, one facility under construction, three facilities scheduled to begin construction in 1982, and three facilities in the planning or permitting stage. Geothermal exploration activities are continuing with activities in East Brawley, Truckhaven, and near the Superstition Mountains. Interest in direct heat development seems to be increasing. The City of El Centro project is under construction and there are several direct heat projects in preliminary planning stages. Permitting, planning, and waste disposal activities are reviewed.

  15. State Geothermal Resource Assessment and Data Collection Efforts

    Broader source: Energy.gov [DOE]

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  16. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

  17. Yucca Mountain Science and Engineering Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong,Women @Join theGeothermalWritten|Yucca MountainYucca

  18. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  19. 3D Model of the Tuscarora Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  20. Drilling, completing, and maintaining geothermal wells in Baca, New Mexico

    SciTech Connect (OSTI)

    Pye, S.

    1981-01-01T23:59:59.000Z

    A 55-MWe power plant is planned for development in the Baca location in the Jemez Mountains of New Mexico. Union Geothermal has contracted to provide the steam for the power plant. This paper uses Baca Well No. 13 as a case history to describe the drilling methods, casing program, cementing program, and completion methods used by Union. The discussion includes aerated-water. Lost circulation control in mud drilling and its effort on the subsequent casing cementing program are discussed. The paper also includes a case history of scale removal methods used in Baca Well No. 11, including drilling the scale out with a turbodrill and attempts at chemical inhibition.

  1. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01T23:59:59.000Z

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  2. Simulation of geothermal subsidence

    SciTech Connect (OSTI)

    Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

    1980-03-01T23:59:59.000Z

    The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

  3. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  4. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  5. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  6. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

  7. Additional Steam Traps Increase Production of a Drum Oven at a Petroleum Jelly Plant

    SciTech Connect (OSTI)

    Not Available

    2002-03-01T23:59:59.000Z

    Additional steam traps were installed on the drum oven at a petroleum jelly production facility at an ExxonMobil plant in Nigeria. The installation improved heat transfer and saved energy.

  8. Interaction of temperature, dissolved oxygen and feed energy on ecophysiological performance of juvenile red drum

    E-Print Network [OSTI]

    Fontaine, Lance Pierre

    2008-10-10T23:59:59.000Z

    The red drum (Sciaenops ocellatus) is important for recreational fishing and aquacultural production in Texas' coastal waters and elsewhere in the nearshore Gulf of Mexico and in subtemperate to subtropical areas of the ...

  9. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  10. Sean Hewitt Wild Mountain Thyme

    E-Print Network [OSTI]

    Robertson, Stephen

    Se´an Hewitt Wild Mountain Thyme Christmas day. We're all at my gran's house, The full, Catholic notes to Wild Mountain Thyme, And our voices warm And swell around The sunken armchair left Empty since

  11. A Preliminary Microsatellite Linkage Map of the Red Drum (Sciaenops ocellatus)

    E-Print Network [OSTI]

    Hollenbeck, Christopher

    2011-01-11T23:59:59.000Z

    A PRELIMINARY MICROSATELLITE LINKAGE MAP OF THE RED DRUM (SCIAENOPS OCELLATUS) Major: Biology April 2009 Submitted to the Office of Undergraduate Research Texas A&M University in partial fulfillment of the requirements... for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by CHRISTOPHER M. HOLLENBECK A PRELIMINARY MICROSATELLITE LINKAGE MAP OF THE RED DRUM (SCIAENOPS OCELLATUS) Approved by: Research Advisor: John R. Gold Associate...

  12. Effect of dissolved oxygen on stomach evacuation rate of juvenile red drum (Sciaenops ocellatus)

    E-Print Network [OSTI]

    Becerra Illingworth, Jorge Alberto

    1998-01-01T23:59:59.000Z

    occurring populations off the southern Atlantic and Gulf of Mexico coasts. Regulation of red drum fisheries has created an emerging aquaculture industry in the U. S. A. , the Republic of Panama, and the Republic of Ecuador. Extensive research... drum in commercial aquaculture ponds in Panama, by depressing food consumption. It has been demonstrated that the metabolic rate of carnivorous fishes increases drastically after feeding and then gradually decreases to pre-feeding levels over periods...

  13. Geothermal Technologies Office Hosts Collegiate Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

  14. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    F i r s t Geopressured Geothermal Energy Conference. Austin,Experiment t o Extract Geothermal Energy From Hot Dry Rock."I 2nd Geopressured Geothermal Energy Conference. University

  15. State Regulatory Oversight of Geothermal Heat Pump

    E-Print Network [OSTI]

    State Regulatory Oversight of Geothermal Heat Pump Installa:ons: 2012 & 2009 Kevin McCray, Execu:ve Director #12;2009 #12;Sponsors The Geothermal Hea requested geothermal hea:ng and cooling regulatory data. An email containing

  16. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    F i r s t Geopressured Geothermal Energy Conference. Austin,I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."

  17. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

  18. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01T23:59:59.000Z

    compaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (Applications o f Geothermal Energy and t h e i r Place i n t

  19. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01T23:59:59.000Z

    Hill hot dry rock geothermal energy site, New Mexico. Int J.No. 1. In: Geopressured-Geothermal Energy, 105, Proc. 5thCoast Geopressured-Geothermal Energy Conf. (Bebout, D.G. ,

  20. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Broader source: Energy.gov [DOE]

    This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

  1. Potential of geothermal energy in China

    E-Print Network [OSTI]

    Sung, Peter On

    2010-01-01T23:59:59.000Z

    This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

  2. Selling Geothermal Systems The "Average" Contractor

    E-Print Network [OSTI]

    Selling Geothermal Systems #12;The "Average" Contractor History of sales procedures Manufacturer Driven Procedures What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." It should

  3. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01T23:59:59.000Z

    Schwartz, Oct: 1977. "Geothermal Aspects o f Hydrogen Sul 4.S.R. Schwartz, "Review o f Geothermal Subsidence", LBL-3220,k i l e d to over 200 geothermal specialists i n 1977. Over

  4. SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD

    E-Print Network [OSTI]

    Majer, E. L.

    2011-01-01T23:59:59.000Z

    P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

  5. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01T23:59:59.000Z

    Applications o f Geothermal Energy and t h e i r Place i n tcompaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (

  6. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01T23:59:59.000Z

    and Renewable Energy, Geothermal Technologies Program of theHill hot dry rock geothermal energy site, New Mexico. Int J.1. In: Geopressured-Geothermal Energy, 105, Proc. 5th U.S.

  7. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson ., Steingrmsson B., Sigmundsson F., Axelsson G., rmannsson H.,...

  8. BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...

    Open Energy Info (EERE)

    SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED...

  9. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Technique Geothermal Literature Review Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  10. Geothermal: Sponsored by OSTI -- Geothermal Plant Capacity Factors

    Office of Scientific and Technical Information (OSTI)

    Plant Capacity Factors Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related...

  11. Geothermal: Sponsored by OSTI -- National Geothermal Data System...

    Office of Scientific and Technical Information (OSTI)

    Hub Deployment Timeline (Appendix E-1-d) Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot...

  12. National Geothermal Data System - DOE Geothermal Data Repository...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of the National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngdsgdrgeneralpresentation.pdf More Documents & Publications How to Utilize the National...

  13. 2014 Geothermal Resources Council Annual Meeting

    Broader source: Energy.gov [DOE]

    The Annual Meeting attracts geothermal industry stakeholders worldwide and provides opportunity to participate in presentations on geothermal research, exploration, development, and utilization.

  14. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

  15. Virginia Geothermal Resources Conservation Act (Virginia)

    Broader source: Energy.gov [DOE]

    It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to...

  16. Misinterpretation of Electrical Resistivity Data in Geothermal...

    Open Energy Info (EERE)

    Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone. In: Geological and Nuclear Sciences. World Geothermal Congress 2005; 20050424; Antalya, Turkey. New Zealand:...

  17. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

  18. Geothermal: Sponsored by OSTI -- Technologies for Extracting...

    Office of Scientific and Technical Information (OSTI)

    Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  19. The Energy Department's Geothermal Technologies Office Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

  20. Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

  1. President Obama visits Geothermal Technologies Program Partner...

    Energy Savers [EERE]

    President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

  2. California: Next-Generation Geothermal Demonstration Launched...

    Office of Environmental Management (EM)

    Next-Generation Geothermal Demonstration Launched California: Next-Generation Geothermal Demonstration Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest...

  3. International Partnership for Geothermal Technology Launches...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Partnership for Geothermal Technology Launches Website International Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis...

  4. Geothermal, the 'undervalued' renewable resource, sees surging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal, the 'undervalued' renewable resource, sees surging interest Geothermal, the 'undervalued' renewable resource, sees surging interest May 21, 2009 - 10:38am Addthis...

  5. Geothermal Technologies Office Director Doug Hollett Keynotes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director Doug Hollett Keynotes at Annual Technical Conference of the Geothermal Resources Council in September Geothermal Technologies Office Director Doug Hollett Keynotes at...

  6. The Geothermal Technologies Office Congratulates this Year's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees December 11, 2013...

  7. Funding Mechanisms for Federal Geothermal Permitting (Presentation)

    SciTech Connect (OSTI)

    Witherbee, K.

    2014-03-01T23:59:59.000Z

    This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

  8. Geothermal Technologies Office | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal Technologies Office Director Position The...

  9. Geothermal: Sponsored by OSTI -- Validation of Multicomponent...

    Office of Scientific and Technical Information (OSTI)

    Validation of Multicomponent Equilibrium Geothermometry at Four Geothermal Power Plants Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  10. Comprehensive Evaluation of the Geothermal Resource Potential...

    Broader source: Energy.gov (indexed) [DOE]

    data for the National Geothermal Database * Validate state-of-the-art reservoir simulation techniques to reduce model uncertainty and project risk 4 | US DOE Geothermal...

  11. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

  12. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    o f Energy from Fractured Geothermal Reservoirs. Dal las:well behavior, fractured matrix reservoir behavior, wellEnergy from Fractured Geothermal Reservoirs." Society of ~

  13. Dominica Grants Geothermal Exploration and Development License...

    Office of Environmental Management (EM)

    Dominica Grants Geothermal Exploration and Development License to Caribbean Company Dominica Grants Geothermal Exploration and Development License to Caribbean Company July 23,...

  14. International Partnership for Geothermal Technology - 2012 Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS) IEA-GIA ExCo - National Geothermal Data...

  15. Geothermal: Sponsored by OSTI -- Fracture Characterization in...

    Office of Scientific and Technical Information (OSTI)

    Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

  16. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  17. Potential for substitution of geothermal energy at domestic defense installations and White Sands Missile Range

    SciTech Connect (OSTI)

    Bakewell, C.A.; Renner, J.L.

    1982-01-01T23:59:59.000Z

    Geothermal resources that might provide substitute energy at any of 76 defense installations are identified and evaluated. The geologic characteristics and related economics of potential geothermal resources located at or near the 76 installations were estimated. The geologic assessment identified 18 installations with possible geothermal resources and 4 Atlantic Coastal Plain resource configurations that represented the alternatives available to East Coast bases. These 18 locations and 4 resource configurations, together with 2 possible resources at the White Sands Missile Range and a potential resource at Kings Bay, Georgia, were examined to determine the relative economics of substituting potential geothermal energy for part or all of the existing oil, gas, and electrical energy usage. Four of the military installations - Mountain Home, Norton, Hawthorne, and Sierra - appear to be co-located with possible geothermal resources which, if present, might provide substitute energy at or below current market prices for oil. Six additional locations - Ellsworth, Luke, Williams, Bliss, Fallon, and Twentynine Palms - could become economically attractive under certain conditions. No geothermal resource was found to be economically competitive with natural gas at current controlled prices. Generation of electric power at the locations studied is estimated to be uneconomic at present.

  18. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  19. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01T23:59:59.000Z

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  20. Geothermal Research and Development Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

  1. Geothermal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in advancing the nation's renewable electricity market. October 17, 2012 Geothermal Discovery Offers Hope for More Potential Across the Country In summer 2012, a team...

  2. Geothermal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 29, 2009 Department of Energy Awards 338 Million to Accelerate Domestic Geothermal Energy U.S. Department of Energy Secretary Steven Chu today announced up to 338...

  3. Geothermal News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 16, 2013 Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Ormat Technologies develops first commercial EGS project to supply electricity to the grid....

  4. GREEN MOUNTAIN MORRIS DANCERS

    E-Print Network [OSTI]

    Mountain (boys) and Maple Leaf (girls) will be recruiting new members in January 2009, typically 6th grade to Chris.Levey@dartmouth.edu. Morris dancing is an energetic stick clashing, bell ringing, handkerchief, 2008: New England Folk Festival (NEFFA) Perform Saturday 3-4pm at the main entrance. May 1, 2008

  5. Geothermal Progress Monitor 12

    SciTech Connect (OSTI)

    None

    1990-12-01T23:59:59.000Z

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  6. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect (OSTI)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01T23:59:59.000Z

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  7. Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source

    DOE Patents [OSTI]

    Paulson, Leland E. (Morgantown, WV)

    1990-01-01T23:59:59.000Z

    A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

  8. Decision making in coastal fisheries conflict: the case of red drum and spotted seatrout legislation in Texas

    E-Print Network [OSTI]

    Christian, Richard Travis

    1986-01-01T23:59:59.000Z

    Stricter Measures Called For The TPWD Increases Regulations on Red and Spotted Seatrout Illegal Netting 61 65 66 Drum TABLE OF CONTENTS (continued) IV CASE FINDINGS (continued) The Opposition Increases The Legislative Process Economic Impact... and spotted seatrout caught in Texas February 12 May 19 H. B. 980 S. B. 139 Called for a halt to harvest of red drum and spotted seatrout in Texas by all persons February 12 killed Red drum and spotted seat rout to be made permanently illegal...

  9. Colorado Geothermal Commercialization Program

    SciTech Connect (OSTI)

    Healy, F.C.

    1980-04-01T23:59:59.000Z

    Chaffee County, located in central Colorado, has immense potential for geothermal development. This report has been prepared to assist residents and developers in and outside the area to develop the hydrothermal resources of the county. Data has been collected and interpreted from numerous sources in order to introduce a general description of the area, estimate energy requirements, describe the resources and postulate a development plan. Electric power generation and direct heat application potential for the region are described.

  10. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01T23:59:59.000Z

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  11. Earthquake and Geothermal Energy

    E-Print Network [OSTI]

    Kapoor, Surya Prakash

    2013-01-01T23:59:59.000Z

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  12. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  13. Silica extraction from geothermal water

    DOE Patents [OSTI]

    Bourcier, William L; Bruton, Carol J

    2014-09-23T23:59:59.000Z

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  14. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  15. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  16. State Regulatory Oversight of Geothermal

    E-Print Network [OSTI]

    State Regulatory Oversight of Geothermal Heat Pump Installations: 2012 Kevin McCray Executive of this project was to update previous research accomplished by the Geothermal Heat Pump Consortium (GHPC of ground-source heat pump (GSHP) systems. The work was to provide insight into existing and anticipated

  17. Well descriptions for geothermal drilling

    SciTech Connect (OSTI)

    Carson, C.C.; Livesay, B.J.

    1981-01-01T23:59:59.000Z

    Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

  18. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    SciTech Connect (OSTI)

    Klauk, R.H.; Budding, K.E.

    1984-07-01T23:59:59.000Z

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  19. Characterization of geothermal solid wastes

    SciTech Connect (OSTI)

    Morris, W.F.; Stephens, F.B.

    1981-07-01T23:59:59.000Z

    The compositions of 5 major types of geothermal wastes have been determined, and samples have been subjected to EPA recommended extraction tests to determine if they contain toxic metals that would classify the wastes as hazardous. Of the samples tested, the extracts of geothermal brines clearly contain levels of As, Ba and Pb exceeding the maximum allowed concentrations that characterize wastes as toxic. Only one other waste type, geothermal scale, exhibited EP toxicity. Pb was found in the extract of geothermal scale at a level of 7 mg/l, only 2 mg/l over the maximum limit. All of the other types of geothermal waste samples showed levels of toxic metals in the extracts well below the regulated limits.

  20. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30T23:59:59.000Z

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: ï?· Drilling, testing, and completion of a new production well and geothermal water injection well ï?· Construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  1. Geopressured geothermal bibliography (Geopressure Thesaurus)

    SciTech Connect (OSTI)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01T23:59:59.000Z

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  2. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29T23:59:59.000Z

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  3. 2013 National Geothermal Student Competition Background

    E-Print Network [OSTI]

    Carrington, Emily

    1 2013 National Geothermal Student Competition Background: The 2013 National Geothermal Student, is designed to advance the understanding of geothermal energy as a valued resource by promoting innovation to engage students in a collaborative exercise to develop a business plan for developing a geothermal

  4. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  5. U.S. Geothermal Announces Successful Completion

    Broader source: Energy.gov [DOE]

    U.S. Geothermal Inc. (U.S. Geothermal), a renewable energy company focused on the production of electricity from geothermal energy, announced today that the first full size production well (NHS-1) at the Neal Hot Springs Project was successfully completed on May 23 and an initial flow test confirms the presence of a geothermal reservoir.

  6. Corrosion of candidate materials in Lake Rotokawa geothermal exposure

    SciTech Connect (OSTI)

    Estill, J.C.; McCright, R.D.

    1995-05-01T23:59:59.000Z

    Corrosion rates were determined for CDA 613, CDA 715, A-36 carbon steel, 1020 carbon steel, and Alloy 825 flat coupons which were exposed to geothermal spring water at Paraiki site number 9 near Lake Rotokawa, New Zealand. Qualitative observations of the corrosion performance of Type 304L stainless steel and CDA 102 exposed to the same environment were noted. CDA 715, Alloy 825, 1020 carbon steel, and other alloys are being considered for the materials of construction for high-level radioactive waste containers for the United States civilian radioactive waste disposal program. Alloys CDA 613 and CDA 102 were tested to provide copper-based materials for corrosion performance comparison purposes. A36 was tested to provide a carbon steel baseline material for comparison purposes, and alloy 304L stainless steel was tested to provide an austenitic stainless steel baseline material for comparison purposes. In an effort to gather corrosion data from an environment that is rooted in natural sources of water and rock, samples of some of the proposed container materials were exposed to a geothermal spring environment. At the proposed site at Yucca Mountain, Nevada, currently under consideration for high-level nuclear waste disposal, transient groundwater may come in contact with waste containers over the course of a 10,000-year disposal period. The geothermal springs environment, while extremely more aggressive than the anticipated general environment at Yucca Mountain, Nevada, could have similarities to the environment that arises at selected local sites on a container as a result of crevice corrosion, pitting corrosion, microbiologically influenced corrosion (MIC), or the concentration of the ionic species due to repetitive evaporation or boiling of the groundwater near the containers. The corrosion rates were based on weight loss data obtained after six weeks exposure in a 90{degrees}C, low-pH spring with relatively high concentrations of SO{sub 4}{sup 2-} and Cl{sup -}.

  7. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2003-05-01T23:59:59.000Z

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  8. A Roadmap for Strategic Development of Geothermal Exploration...

    Office of Environmental Management (EM)

    A Roadmap for Strategic Development of Geothermal Exploration Technologies A Roadmap for Strategic Development of Geothermal Exploration Technologies The Dixie Valley Geothermal...

  9. Geothermal Energy Production with Co-produced and Geopressured...

    Energy Savers [EERE]

    Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) Geothermal Energy Production with Co-produced and...

  10. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  11. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    Applications & Operations, Geothermal Energy Division of theP. , and Otte, C. , Geothermal energy: Stanford, California,Applications & Operations, Geothermal Energy Division of the

  12. VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA

    E-Print Network [OSTI]

    Churchman, C.W.

    2011-01-01T23:59:59.000Z

    Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

  13. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    2 Mission of Division of Geothermal Energy . . . . .of Energy, Division of Geothermal Energy effort is theMission of Division of Geothermal Energy The mission of the

  14. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

  15. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Environmental Management (EM)

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  16. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01T23:59:59.000Z

    130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

  17. Sierra Geothermal's Key Find in Southern Nevada | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal's Key Find in Southern Nevada July 13, 2010 - 5:17pm Addthis Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at...

  18. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Broader source: Energy.gov (indexed) [DOE]

    mineral-webinar.pdf More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis...

  19. National Geothermal Academy Underway at University of Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Academy Underway at University of Nevada, Reno National Geothermal Academy Underway at University of Nevada, Reno July 11, 2012 - 2:13pm Addthis The National Geothermal...

  20. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  1. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    2 Mission of Division of Geothermal Energy . . . . .of the Division of Geothermal Energy and these directoratesof Energy, Division of Geothermal Energy effort is the

  2. Demonstration of an Enhanced Geothermal System at the Northwest...

    Energy Savers [EERE]

    Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California Demonstration of an Enhanced Geothermal System at the Northwest Geysers...

  3. Effects of prebiotics on growth performance, nutrient utilization and the gastrointestinal tract microbial community of hybrid striped bass (Morone chrysops x M. saxatilis) and red drum (Sciaenops ocellatus)

    E-Print Network [OSTI]

    Burr, Gary Stephen

    2009-05-15T23:59:59.000Z

    ), and inulin/ fructooligosaccharide (FOS)--on the gastrointestinal (GI) tracts microbial community in hybrid striped bass and red drum. The first in vitro experiment applied denaturing gradient gel electrophoresis (DGGE) to examine responses of red drum GI...

  4. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.A N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 Il i c a t i o n s of Geothermal Energy Substudy Participants

  5. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01T23:59:59.000Z

    BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

  6. Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook

    Broader source: Energy.gov [DOE]

    Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. Empower local leaders to develop policies that facilitate growth of geothermal energy and prepare the local workforce to serve geothermal industry needs.

  7. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01T23:59:59.000Z

    the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

  8. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.l f u e l boilers, and geothermal energy. The model was d ed approach to solar and geothermal energy, r e s o u r c e s

  9. Geothermal | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged In You must create an Geothermal

  10. Geothermal Success Stories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGOofGeneric(FactGeothermal R&D:1

  11. Geothermal Energy (5 Activities)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting.Energy InDOE Geothermal A photo of

  12. Geothermal Energy News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting.Energy InDOE Geothermal A

  13. Sandia Energy - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal Home Stationary

  14. Sandia Energy - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure ModeGeothermal Home

  15. Geothermal Resources Council's 36

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451DOE/SC0002390dV DOE/m/10412Geothermal

  16. ccsd-00083932,version1-4Jul2006 The S shape of a granular pile in a rotating drum

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    ccsd-00083932,version1-4Jul2006 The S shape of a granular pile in a rotating drum Nicolas Taberlet1 (Dated: July 4, 2006) The shape of a granular pile in a rotating drum is investigated. Using Discrete reveals a dimensionless number which quantifies the influence of the end plates on the shape of the pile

  17. Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation

    SciTech Connect (OSTI)

    Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

    1981-08-01T23:59:59.000Z

    Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

  18. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  19. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams; Greg Nash

    2004-03-01T23:59:59.000Z

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  20. Geothermal low-temperature reservoir assessment in Dona Ana County, New Mexico. Final report

    SciTech Connect (OSTI)

    Icerman, L.; Lohse, R.L.

    1983-04-01T23:59:59.000Z

    Sixty-four shallow temperature gradient holes were drilled on the Mesilla Valley East Mesa (east of Interstate Highways 10 and 25), stretching from US Highway 70 north of Las Cruces to NM Highway 404 adjacent to Anthony, New Mexico. Using these data as part of the site selection process, Chaffee Geothermal, Ltd. of Denver, Colorado, drilled two low-temperature geothermal production wells to the immediate north and south of Tortugas Mountain and encountered a significant low-temperature reservoir, with a temperature of about 150{sup 0}F and flow rates of 750 to 1500 gallons per minute at depths from 650 to 1250 feet. These joint exploration activities resulted in the discovery and confirmation of a 30-square-mile low-temperature geothermal anomaly just a few miles to the east of Las Cruces that has been newly named as the Las Cruces east Mesa Geothermal Field. Elevated temperature and heat flow data suggest that the thermal anomaly is fault controlled and extends southward to the Texas border covering a 100-square-mile area. With the exception of some localized perturbations, the anomaly appears to decrease in temperature from the north to the south. Deeper drilling is required in the southern part of the anomaly to confirm the existence of commercially-exploitable geothermal waters.