National Library of Energy BETA

Sample records for droplet size distribution

  1. Evolution of droplet size distribution and autoconversion parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in turbulent clouds Evolution of droplet size distribution and autoconversion parameterization in turbulent clouds McGraw, Robert Brookhaven National Laboratory Liu, Yangang Brookhaven National Laboratory Category: Modeling Effects from turbulence-induced fluctuations in water vapor saturation on cloud droplet growth are examined using a Brownian diffusion model [McGraw and Liu, 2006]. The model predicts diffusive broadening of the droplet size distribution, tempered by enhanced

  2. Dispersion of Cloud Droplet Size Distributions, Cloud Parameterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broomfield, Colorado, March 31-April 4, 2003 indicates that for a given liquid water content and droplet concentration, the effect of spectral dispersion alone can cause...

  3. ARM - Measurement - Cloud droplet size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  4. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect (OSTI)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  5. The effect of turbulence on the stability of liquid jets and the resulting droplet size distributions. Third quarterly technical report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Mansour, A.; Chigier, N.

    1993-12-01

    Laminar and turbulent columns of liquids issuing from capillary tubes were studied in order to determine the effects of turbulence on the stability of liquid jets and to establish the influence of liquid turbulence on droplet size distributions after breakup. Two capillary tubes were chosen with diameters D{sub 1}=3.0mm and D{sub 2}=1.2mm; jet Reynolds numbers were 1000--30000, and 400--7200. For water injection into stagnant air, stability curve is bounded by a laminar portion, where a jet radius and {delta}{sub o} initial disturbance amplitude, and a fully developed turbulent portion characterized by high initial disturbance amplitude (ln(a/{delta}{sub o,T}) {approximately} 4.85). In the transition region, ln(a/{delta}{sub o}) is not single valued; it decreases with increasing Reynolds number. In absence of aerodynamic effects, turbulent jets are as stable as laminar jets. For this breakup mode turbulence propagates initial disturbances with amplitudes orders of magnitude larger than laminar jets ({delta}{sub o,T}=28{times}10{sup 6} {delta}{sub o,L}). Growth rates of initial disturbances are same for both laminar and turbulent columns with theoretical Weber values. Droplet size distribution is bi-modal; the number ratio of large (> D/2), to small (< D/2) droplets is 3 and independent of Reynolds number. For laminar flow optimum wavelength ({lambda}{sub opt}) corresponding to fastest growing disturbance is equal to 4.45D, exactly the theoretical Weber value. For turbulent flow conditions, the turbulent column segments. Typically, segments with lengths of one to several wavelengths, detach from the liquid jet. The long ligaments contract under the action of surface tension, resulting in droplet sizes larger than predicted by Rayleigh and Weber. For turbulent flow conditions, {lambda}{sub opt} = 9.2D, about 2 times the optimum Weber wavelength.

  6. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOE Patents [OSTI]

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  7. ARM - Measurement - Hydrometeor Size Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hydrometeors observed in a given size range. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  8. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  9. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  10. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air...

  11. Angular ion species distribution in droplet-based laser-produced plasmas

    SciTech Connect (OSTI)

    Giovannini, Andrea Z.; Gambino, Nadia; Rollinger, Bob; Abhari, Reza S.

    2015-01-21

    The angular distribution of the ion species generated from a laser irradiated droplet target is measured. The employed instrument was an electrostatic energy analyzer with differential pumping. Singly and doubly charged ions were detected at an argon ambient gas pressure of 2 × 10{sup −2} mbar. The amount of Sn{sup +} and Sn{sup 2+} and their kinetic energy is measured from 45° to 120° from the laser axis. Sn{sup +} expands approximately isotropically, and Sn{sup 2+} expansion is peaked towards the incoming laser radiation. The singly charged ion kinetic energy is close to constant over the measurement range, while it decreases by around 30% for Sn{sup 2+}. A calibrated model of the ion expansion that includes recombinations correctly predicts the mean ion charge distribution. The model is able to qualitatively estimate the influence of the laser wavelength on the mean ion charge distribution. The results show a more pronounced isotropic distribution for shorter wavelengths, and a more forward-peaked distribution for longer wavelengths. The ion charge distribution expected without the ambient gas is estimated through the measured ion kinetic energy. The presence of the ambient gas results in a decrease of the mean ion charge state and a decrease in angular anisotropy.

  12. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 m wavelength relative to 11 m wavelength due to the process of wave resonance or photon tunneling more active at 12 m. This makes the 12/11 m absorption optical depth ratio (or equivalently the 12/11 m Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  13. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    SciTech Connect (OSTI)

    Hashimoto, Takeshi; Yokokawa, Takumi; Endo, Yuriko; Iwanaka, Nobumasa; Higashida, Kazuhiko; Faculty of Sport Science, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 ; Taguchi, Sadayoshi

    2013-10-11

    Highlights: Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via decreased glucose uptake and lipogenic protein expression and increased basal lipolysis. Such an hypoxia-induced decrease in lipogenesis may be an attractive therapeutic target against lipid-associated metabolic diseases.

  14. Measuring the Raindrop Size Distribution, ARM's Efforts at Darwin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Raindrop Size Distribution, ARM's Efforts at Darwin and SGP Bartholomew, Mary Jane Brookhaven National Laboratory Category: Instruments ARM has purchased two impact...

  15. Characterization of Vertical Velocity and Drop Size Distribution...

    Office of Scientific and Technical Information (OSTI)

    Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that ...

  16. Inertial migration of deformable droplets in a microchannel

    SciTech Connect (OSTI)

    Chen, Xiaodong; Xue, Chundong; Hu, Guoqing E-mail: sunjs@nanoctr.cn; Zhang, Li; Jiang, Xingyu; Sun, Jiashu E-mail: sunjs@nanoctr.cn

    2014-11-15

    The microfluidic inertial effect is an effective way of focusing and sorting droplets suspended in a carrier fluid in microchannels. To understand the flow dynamics of microscale droplet migration, we conduct numerical simulations on the droplet motion and deformation in a straight microchannel. The results are compared with preliminary experiments and theoretical analysis. In contrast to most existing literature, the present simulations are three-dimensional and full length in the streamwise direction and consider the confinement effects for a rectangular cross section. To thoroughly examine the effect of the velocity distribution, the release positions of single droplets are varied in a quarter of the channel cross section based on the geometrical symmetries. The migration dynamics and equilibrium positions of the droplets are obtained for different fluid velocities and droplet sizes. Droplets with diameters larger than half of the channel height migrate to the centerline in the height direction and two equilibrium positions are observed between the centerline and the wall in the width direction. In addition to the well-known Segré-Silberberg equilibrium positions, new equilibrium positions closer to the centerline are observed. This finding is validated by preliminary experiments that are designed to introduce droplets at different initial lateral positions. Small droplets also migrate to two equilibrium positions in the quarter of the channel cross section, but the coordinates in the width direction are between the centerline and the wall. The equilibrium positions move toward the centerlines with increasing Reynolds number due to increasing deformations of the droplets. The distributions of the lift forces, angular velocities, and the deformation parameters of droplets along the two confinement direction are investigated in detail. Comparisons are made with theoretical predictions to determine the fundamentals of droplet migration in microchannels. In addition, existence of the inner equilibrium position is linked to the quartic velocity distribution in the width direction through a simple model for the slip angular velocities of droplets.

  17. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect (OSTI)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  18. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect (OSTI)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  19. Concentrations and Size Distributions of Particulate Matter Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Concentrations ...

  20. Characterization of Vertical Velocity and Drop Size Distribution Parameters

    Office of Scientific and Technical Information (OSTI)

    in Widespread Precipitation at ARM Facilities (Journal Article) | SciTech Connect Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities Citation Details In-Document Search Title: Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation

  1. Particle size and shape distributions of hammer milled pine

    SciTech Connect (OSTI)

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  2. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect (OSTI)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  3. A new model of cloud drop distribution that simulates the observed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Michigan Technological University Wiscombe, Warren BNLNASA Goddard Space Flight Center Category: Modeling Cloud droplet size distribution is one of the most fundamental...

  4. Effect of Engine-Out NOx Control Strategies on PM Size Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in ...

  5. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect (OSTI)

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between the two approaches possibly representing shattered cloud droplets or unknown artifact. CDNC and interstitial aerosol were anti-correlated in all cloud transects, consistent with the occurrence of dry in-cloud areas due to entrainment or circulation mixing.

  6. Effects of the dynamics of droplet-based laser-produced plasma on angular extreme ultraviolet emission profile

    SciTech Connect (OSTI)

    Giovannini, Andrea Z.; Abhari, Reza S.

    2014-05-12

    The emission distribution of extreme ultraviolet (EUV) radiation from droplet targets is dependent on the dynamics of the laser-produced plasma. The EUV emission is measured on a 2% bandwidth centered at 13.5 nm (in-band). The targets of the laser are small (sub-50 μm) tin droplets, and the in-band emission distribution is measured for different laser irradiances and droplet sizes at various angular positions. Larger droplets lead to a faster decay of EUV emission at larger angles with respect to the laser axis. A decrease in laser irradiance has the opposite effect. The measurements are used together with an analytical model to estimate plume dynamics. Additionally, the model is used to estimate EUV emission distribution for a desired droplet diameter and laser irradiance.

  7. Lossless droplet transfer of droplet-based microfluidic analysis

    DOE Patents [OSTI]

    Kelly, Ryan T (West Richland, WA); Tang, Keqi (Richland, WA); Page, Jason S (Kennewick, WA); Smith, Richard D (Richland, WA)

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  8. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect (OSTI)

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation.

  9. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Evaluation Product : Droplet Number Concentration Value-Added Product Title: ARM Evaluation Product : Droplet Number Concentration Value-Added Product Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo

  10. Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy

    SciTech Connect (OSTI)

    Li, C.; Zeng, Z. Q.; Hirono, Y.; Morgan, T. A.; Hu, X.; Salamo, G. J.; Fan, D. S.; Wu, J.; Yu, S. Q.; Wang, Zh. M.

    2011-12-12

    Self-assembly of bismuth droplets at nanoscale on GaAs(100) surface using molecular beam epitaxy was demonstrated. Fine control of density and size was achieved by varying growth temperature and total bismuth deposition. Droplet density was tuned by roughly 3 orders of magnitude, and the density-temperature dependence was found to be consistent with classical nucleation theory. These results may extend the flexibility of droplet epitaxy by serving as templates for group V based droplet epitaxy, which is in contrast to conventional group III based droplet epitaxy and may encourage nanostructure formation of bismuth-containing materials.

  11. THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Trujillo, Chadwick A.

    2010-11-10

    We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

  12. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura

    2014-05-15

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  13. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  14. Measurements of Aerosol Charge and Size Distribution for Graphite, Gold, Palladium, and Silver Nanoparticles

    SciTech Connect (OSTI)

    Simones, Matthew P.; Gutti, Veera R.; Meyer, Ryan M.; Loyalka, Sudarshan K.

    2011-11-01

    The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.

  15. Consideration of Grain Size Distribution in the Diffusion of Fission Gas to Grain Boundaries

    SciTech Connect (OSTI)

    Paul C. Millett; Yongfeng Zhang; Michael R. Tonks; S. B. Biner

    2013-09-01

    We analyze the accumulation of fission gas on grain boundaries in a polycrystalline microstructure with a distribution of grain sizes. The diffusion equation is solved throughout the microstructure to evolve the gas concentration in space and time. Grain boundaries are treated as infinite sinks for the gas concentration, and we monitor the cumulative gas inventory on each grain boundary throughout time. We consider two important cases: first, a uniform initial distribution of gas concentration without gas production (correlating with post-irradiation annealing), and second, a constant gas production rate with no initial gas concentration (correlating with in-reactor conditions). The results show that a single-grain-size model, such as the Booth model, over predicts the gas accumulation on grain boundaries compared with a polycrystal with a grain size distribution. Also, a considerable degree of scatter, or variability, exists in the grain boundary gas accumulation when comparing all of the grain boundaries in the microstructure.

  16. Low pressure shock initiation of porous HMX for two grain size distributions and two densities

    SciTech Connect (OSTI)

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1995-09-01

    Shock initiation measurements have been made on granular HMX (octotetramethylene tetranitrainine) for two particle size distributions and two densities. Samples were pressed to either 65% or 73% of crystal density from fine ({approx} 10 {mu}m grain size) and coarse (broad distribution of grain sizes peaking at {approx} 150 {mu}m) powders. Planar shocks of 0.2--1 GPa were generated by impacting gas gun driven projectiles on plastic targets containing the HMX. Wave profiles were measured at the input and output of the {approx} 3.9 mm thick HMX layer using electromagnetic particle velocity gauges. The initiation behavior for the two particle size distributions was very different. The coarse HMX began initiating at input pressures as low as 0.5 GPa. Transmitted wave profiles showed relatively slow reaction with most of the buildup occurring at the shock front. In contrast, the fine particle HMX did not begin to initiate at pressures below 0.9 GPa. When the fine powder did react, however, it did so much faster than the coarse HMX. These observations are consistent with commonly held ideas about bum rates being correlated to surface area, and initiation thresholds being correlated with the size and temperature of the hot spots created by shock passage. For each size, the higher density pressings were less sensitive than the lower density pressings.

  17. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ?50 fs, 800?nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (?90%) of small nanoparticles, and a residual part (?10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  18. COLOR DEPENDENCE IN THE SIZE DISTRIBUTION OF MAIN BELT ASTEROIDS REVISITED

    SciTech Connect (OSTI)

    August, Tyler M.; Wiegert, Paul A.

    2013-06-15

    The size distribution of the asteroid belt is examined with 16956 main belt asteroids detected in data taken from the Canada-France-Hawaii Telescope Legacy Survey in two filters (g' and r'). The cumulative H (absolute magnitude) distribution is examined in both filters, and both match well to simple power laws down to H = 17, with slopes in rough agreement with those reported the literature. This implies that disruptive collisions between asteroids are gravitationally dominated down to at least this size, and probably sub-kilometer scales. The slopes of these distributions appear shallower in the outer belt than the inner belt, and the g' distributions appear slightly steeper than the r'. The slope shallowing in the outer belt may reflect a real compositional difference: the inner asteroid belt has been suggested to consist mostly of stony and/or metallic S-type asteroids, whereas carbonaceous C-types are thought to be more prevalent further from the Sun. No waves are seen in the size distribution above H = 15. Since waves are expected to be produced at the transition from gravitationally-dominated to internal strength-dominated collisions, their absence here may imply that the transition occurs at sub-kilometer scales, much smaller than the H = 17 (diameter {approx} 1.6 km) cutoff of this study.

  19. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    SciTech Connect (OSTI)

    Henager, Charles H.; Alvine, Kyle J.; Bliss, Mary; Riley, Brian J.; Stave, Jean A.

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-m apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te-particle direct capture from melt-solid growth instabilities, 2) Te-particle formation from dislocation core diffusion and the formation and breakup of Te-tubes, and 3) Te-particle formation due to classical nucleation and growth as precipitates.

  20. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  1. Size and spacial distribution of micropores in SBA-15 using CM-SANS

    SciTech Connect (OSTI)

    Pollock, Rachel A; Walsh, Brenna R; Fry, Jason A; Ghampson, Tyrone; Centikol, Ozgul; Melnichenko, Yuri B; Kaiser, Helmut; Pynn, Roger; Frederick, Brian G

    2011-01-01

    Diffraction intensity analysis of small-angle neutron scattering measurements of dry SBA-15 have been combined with nonlocal density functional theory (NLDFT) analysis of nitrogen desorption isotherms to characterize the micropore, secondary mesopore, and primary mesopore structure. The radial dependence of the scattering length density, which is sensitive to isolated surface hydroxyls, can only be modeled if the NLDFT pore size distribution is distributed relatively uniformly throughout the silica framework, not localized in a 'corona' around the primary mesopores. Contrast matching-small angle neutron scattering (CM-SANS) measurements, using water, decane, tributylamine, cyclohexane, and isooctane as direct probes of the size of micropores indicate that the smallest pores in SBA-15 have diameter between 5.7 and 6.2 {angstrom}. Correlation of the minimum pore size with the onset of the micropore size distribution provides direct evidence that the shape of the smallest micropores is cylinderlike, which is consistent with their being due to unraveling of the polymer template.

  2. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  3. Observations and Modeling of the Green Ocean Amazon : Nanoparticle Size Distribution (NPSD) Field Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Observations and Modeling of the Green Ocean Amazon 2014/15: Nanoparticle Size Distribution (NPSD) Field Campaign Report C Kuang P Artaxo S Martin J Wang April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  4. Observations and Modeling of the Green Ocean Amazon : Nanoparticle Size Distribution (NPSD) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    0 Observations and Modeling of the Green Ocean Amazon 2014/15: Nanoparticle Size Distribution (NPSD) Field Campaign Report C Kuang P Artaxo S Martin J Wang April 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

  5. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, Eric R.; Perl, Martin L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  6. OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL

    SciTech Connect (OSTI)

    H.J. Walqui; T.C. Eisele; S.K. Kawatra

    2003-07-01

    The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced can be minimized. The goal is to save energy by reducing the amount of material that is ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) determining whether new technologies, such as high-pressure roll crushing, can be used to alter particle breakage behavior to minimize fines production.

  7. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  8. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect (OSTI)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 13 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ? 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  9. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect (OSTI)

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  10. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect (OSTI)

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  11. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    SciTech Connect (OSTI)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav; Wang, Tianhan; Wu, Benny; Graves, Catherine; Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  12. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    SciTech Connect (OSTI)

    Lu, Gui; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104 ; Hu, Han; Sun, Ying E-mail: ysun@coe.drexel.edu; Duan, Yuanyuan E-mail: ysun@coe.drexel.edu

    2013-12-16

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger.

  13. Chip-based droplet sorting

    DOE Patents [OSTI]

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  14. Paleozoic expulsion in Bolivia-its influence on field size and distribution

    SciTech Connect (OSTI)

    Beer, J.A. ); Lopez, O. )

    1993-02-01

    Production within the Chaco Basin of Bolivia may be grouped into three areas: a northern area with several large fields (> 100 MMBOE), a central area nearly devoid of fields, and a southern area with numerous small fields. Models for the timing of hydrocarbon charge suggest that field size and distribution can be tied to spatial variation in the magnitude of a Paleozoic expulsion event. In the central Chaco, the Devonian Los Monos Formation source rock interval was deeply buried beneath a Carboniferous depocenter (1600 to 2000 m of sediment). An in-house thermal modeling program, constrained by vitrinite reflectance data, indicates that the source rock interval entered the oil window as early as 270 Ma. Basal Los Monos kerogen was completely converted to oil prior to Neogene trap formation, making oil accumulations impossible. In the southern Chaco, an intermediate Carboniferous thickness (1300-1600 m) resulted in a less pronounced pre-Cenzoic expulsion event. Expulsion began at 150 Ma, with 80% of basal Los Monos kerogen converted to oil prior to trap formation. The southern Chaco thus has limited exploration opportunity for large accumulations. The northern Chaco has a thin Carboniferous veneer (01300 m), and experienced insignificant pre-Cenozoic expulsion. As a result, 90% of the basal Los Monos kerogen was available for conversion to oil at the time of trap formation, and large accumulations were possible. Given the relationship between field presence/size and subsidence history, a Carboniferous isopach map is a powerful exploration tool. Where there is a thin Carboniferous section, unconverted Devonian source rocks are able to charge Cenozoic structures. One area that meets this criterium is the western Subandean, a relatively unexplored province adjacent to the Chaco Basin.

  15. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash).he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions.he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns.here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD.he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal).hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  16. Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities

    SciTech Connect (OSTI)

    Giangrande S. E.; Luke, E. P.; Kollias, P.

    2012-02-01

    Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0-10 cm{sup -1}) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s{sup -1} with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3-0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

  17. Method development and validation for measuring the particle size distribution of pentaerythritol tetranitrate (PETN) powders.

    SciTech Connect (OSTI)

    Young, Sharissa Gay

    2005-09-01

    Currently, the critical particle properties of pentaerythritol tetranitrate (PETN) that influence deflagration-to-detonation time in exploding bridge wire detonators (EBW) are not known in sufficient detail to allow development of a predictive failure model. The specific surface area (SSA) of many PETN powders has been measured using both permeametry and gas absorption methods and has been found to have a critical effect on EBW detonator performance. The permeametry measure of SSA is a function of particle shape, packed bed pore geometry, and particle size distribution (PSD). Yet there is a general lack of agreement in PSD measurements between laboratories, raising concerns regarding collaboration and complicating efforts to understand changes in EBW performance related to powder properties. Benchmarking of data between laboratories that routinely perform detailed PSD characterization of powder samples and the determination of the most appropriate method to measure each PETN powder are necessary to discern correlations between performance and powder properties and to collaborate with partnering laboratories. To this end, a comparison was made of the PSD measured by three laboratories using their own standard procedures for light scattering instruments. Three PETN powder samples with different surface areas and particle morphologies were characterized. Differences in bulk PSD data generated by each laboratory were found to result from variations in sonication of the samples during preparation. The effect of this sonication was found to depend on particle morphology of the PETN samples, being deleterious to some PETN samples and advantageous for others in moderation. Discrepancies in the submicron-sized particle characterization data were related to an instrument-specific artifact particular to one laboratory. The type of carrier fluid used by each laboratory to suspend the PETN particles for the light scattering measurement had no consistent effect on the resulting PSD data. Finally, the SSA of the three powders was measured using both permeametry and gas absorption methods, enabling the PSD to be linked to the SSA for these PETN powders. Consistent characterization of other PETN powders can be performed using the appropriate sample-specific preparation method, so that future studies can accurately identify the effect of changes in the PSD on the SSA and ultimately model EBW performance.

  18. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect (OSTI)

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  19. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions

    DOE Patents [OSTI]

    Ryon, Allen D.; Haas, Paul A.; Vavruska, John S.

    1984-01-01

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  20. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling

    SciTech Connect (OSTI)

    Kornilov, Oleg; Toennies, J. Peter

    2015-02-21

    The size distribution of para-H{sub 2} (pH{sub 2}) clusters produced in free jet expansions at a source temperature of T{sub 0} = 29.5 K and pressures of P{sub 0} = 0.91.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, N{sub k} = A?k{sup a} e{sup ?bk}, shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH{sub 2}){sub k} magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b{sup ?(a+1)} on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections ?{sub 11} with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

  1. Lithium Droplet Injector......Inventors ..--..Lane Roquemore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Droplet Injector......Inventors ..--..Lane Roquemore, Daniel Andruczyk A liquid lithium device has been invented that produces spherical droplets of lithium for the control ...

  2. Controlled Dispensing and Mixing of Pico- to Nanoliter Volumes Using On-Demand Droplet-Based Microfluidics

    SciTech Connect (OSTI)

    Sun, Xuefei; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2013-07-08

    We present an integrated droplet-on-demand microfluidic platform for dispensing, mixing, incubating, extracting and analyzing by mass spectrometry pico- to nanoliter sized droplets. Droplet generation is accomplished using computer-controlled pneumatic valves. Controlled actuation of valves for different aqueous streams enables controlled dosing and rapid mixing of reagents within droplets in the droplet generation area or in a region with widening channel cross-section. Following incubation, which takes place while droplets travel in the oil stream, the droplet contents are extracted to an aqueous channel for subsequent ionization at an integrated nanoelectrospray emitter. As an initial demonstration of the platform, rapid enzymatic digestions of a model protein are performed in droplets and detected on-line by nanoelectrospray ionization mass spectrometry.

  3. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions. [Patent application

    DOE Patents [OSTI]

    Ryon, A.D.; Haas, P.A.; Vavruska, J.S.

    1982-01-19

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. This is accomplished by subjecting aqueous dispersions of a sol, within a water-immiscible organic liquid to a turbulent flow. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  4. Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts

    SciTech Connect (OSTI)

    Benavidez, Angelica D.; Kovarik, Libor; Genc, Arda; Agrawal, Nitin; Larsson, Elin M.; Hansen, Thomas W.; Karim, Ayman M.; Datye, Abhaya K.

    2012-10-31

    In this Environmental TEM (ETEM) study of supported Pt and Pd model catalysts, individual nanoparticles were tracked during heat treatments at temperatures up to 600C in H2, O2, and vacuum. We found anomalous growth of nanoparticles occurred during the early stages of catalyst sintering wherein some particles started to grow significantly larger than the mean, resulting in a broadening of the particle size distribution. We can rule out sample non-uniformity as a cause for the growth of these large particles, since images were recorded prior to heat treatments. The anomalous growth of these particles may help explain particle size distributions in heterogeneous catalysts which often show particles that are significantly larger than the mean, resulting in a long tail to the right. It has been suggested that particle migration and coalescence could be the likely cause for the broad size distributions. This study shows that anomalous growth of nanoparticles can occur under conditions where Ostwald ripening is the primary sintering mechanism.

  5. Shoreline, grain-size, and total-carbon distribution changes before and after Hurricane Alicia, Galveston Island, Texas, 1983

    SciTech Connect (OSTI)

    Rothammer, C.M.; Morrison, L.R.; Warkentin, S.L.

    1985-02-01

    Shoreline, grain-size, and sediment total-carbon changes were monitored, on a monthly basis, on three Galveston Island beaches, from January through December 1983. The study area included: (1) East Beach, obstructed by groins and a seawall; (2) Galveston Island State Park, obstructed by fences artificially stabilizing the dunes; and (3) West Beach, an unobstructed beach. Beach profiles revealed the effects of beach obstruction, such as erosion and undercutting at East Beach, and truncation of the dunes at Galveston Island State Park. Approximately 20 m of expansional cutback occurred on the beaches after Hurricane Alicia hit on August 18, 1983. Contour maps of grain-size and total-carbon distributions reflect the movement of beach sand by either onshore-offshore transport during low-energy periods, or longshore, edge-wave transport during high-energy periods. Statistical analyses revealed a small variation in grain size throughout the year. There were well-defined times of either no correlation or strong correlation between total carbon vs. mean grain size, skewness vs. mean grain size, kurtosis vs. mean grain size, skewness vs. mean grain size, kurtosis vs. mean grain size, total carbon vs. percent sand, total carbon vs. skewness, and skewness vs. kurtosis. Strong correlation was found in response to high-energy events, whereas no correlation was found in response to low-energy events. Galveston Island is undergoing net erosion and appears to be in a metastable state, still capable of responding to oceanographic conditions. The economic effects of Hurricane Alicia include considerable loss of the shoreline and destruction of property. Beach nourishment appears to be the only economically feasible solution to counteract the extensive erosion.

  6. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil

    SciTech Connect (OSTI)

    Song, Wenji; Zhao, Chen; Lercher, Johannes A.

    2013-07-22

    Improved synthetic approaches for preparing small-sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brnsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brnsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability.

  7. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect (OSTI)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  8. Effect of Engine-Out NOx Control Strategies on PM Size Distribution in

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Diesel Engines Developed for 2010 | Department of Energy A distinct relationship was found between engine-out and SCR-out PM distributions for single-mode testing. PDF icon deer08_ardanese.pdf More Documents & Publications Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Advanced HD Engine Systems and Emissions Control Modeling and Analysis Can We Accurately Measure In-Use Emissions

  9. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    SciTech Connect (OSTI)

    Durand, O.; Soulard, L.

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  10. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect (OSTI)

    Mendoza Herrera, Luis J.; Arboleda, David Muetn; Schinca, Daniel C.; Scaffardi, Luca B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ?{sub P}?? and the damping constant ?{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ?{sub p} (0.5%1.6%) and for ?{sub free} (3%8%), which are smaller than those reported in the literature. These small uncertainties in ?{sub p} and ?{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ?{sub p} and ?{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  11. ARM Evaluation Product : Droplet Number Concentration Value-Added...

    Office of Scientific and Technical Information (OSTI)

    Evaluation Product : Droplet Number Concentration Value-Added Product Title: ARM Evaluation Product : Droplet Number Concentration Value-Added Product Cloud droplet number ...

  12. Universal Fluid Droplet Ejector - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Universal Fluid Droplet Ejector SLAC National Accelerator Laboratory Contact SLAC About This Technology Technology Marketing SummaryStanford researchers have developed a patented, economical fluid droplet ejector that is capable of varying the vertical and horizontal inter-droplet spacing of a two-dimensional droplet array in real time. This universal design is compatible for a wide variety of fluids because it

  13. In-situ droplet monitoring for self-tuning spectrometers

    DOE Patents [OSTI]

    Montaser, Akbar; Jorabchi, Kaveh; Kahen, Kaveh

    2010-09-28

    A laser scattering based imaging technique is utilized in order to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from an aerosol source to the site of analytical measurements. The resulting snapshots provide key information about the spatial distribution of the aerosol introduced by direct and indirect injection devices: 1) a direct injection high efficiency nebulizer (DIHEN); 2) a large-bore DIHEN (LB-DIHEN); and 3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry (PIV) is used to study the in-situ behavior of the aerosol before interaction with, for example, plasma, while the individual surviving droplets are explored by particle tracking velocimetry (PTV). Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are important in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and for developing smart spectrometers. For example, a controller can be provided to control the output of the aerosol source by controlling the configuration of the source or the gas flow rate via feedback information concerning the aerosol.

  14. Intercomparison of Large-eddy Simulations of Arctic Mixed-phase Clouds: Importance of Ice Size Distribution Assumptions

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-14

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.

  15. The Occurrence of Particle Size Distribution Bimodality in Midlatitude Cirrus as Inferred from Ground-Based Remote Sensing Data

    SciTech Connect (OSTI)

    Zhao, Yang; Mace, Gerald G.; Comstock, Jennifer M.

    2011-06-01

    To better understand the role of small particles in the microphysical processes and the radiative properties of cirrus, the reliability of historical in-situ data must be understood. Recent studies call into question the validity of that data because of shattering of large crystals on probe and aircraft surfaces thereby artificially amplifying the concentration of crystals smaller than approximately 50 ?m. We contend that the general character of the in-situ measurements must be consistent, in a broad sense, with statistics derived from long-term remote sensing data. To examine this consistency, an algorithm using Doppler radar moments and Raman lidar extinction is developed to retrieve a bimodal particle size distribution and its uncertainty. Using case studies and statistics compiled over one year we show that the existence of high concentrations (> 1 cm-3 ) of small (sub 50 ?m) particles in cirrus are not consistent with any reasonable interpretation of the remote sensing data. We conclude that the high concentrations of small particles found in many aircraft data sets are therefore likely an artifact of the in situ measurement process.

  16. Vortices catapult droplets in atomization

    SciTech Connect (OSTI)

    Jerome, J. John Soundar Zaleski, Stphane; Hoepffner, Jrme; Marty, Sylvain; Matas, Jean-Philippe

    2013-11-15

    A droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave, and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wavejust where the liquid film is now located; the liquid film is blown up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by the recirculation vortex.

  17. Evaluation of moist processes during intense precipitation in km-scale NWP models using remote sensing and in-situ data: Impact of microphysics size distribution assumptions

    SciTech Connect (OSTI)

    VanWeverberg, K.; vanLipzig, N. P. M.; Delobbe, L.

    2011-02-01

    This study investigates the sensitivity of moist processes and surface precipitation during three extreme precipitation events over Belgium to the representation of rain, snow and hail size distributions in a bulk one-moment microphysics parameterisation scheme. Sensitivities included the use of empirically derived relations to calculate the slope parameter and diagnose the intercept parameter of the exponential snow and rain size distributions and sensitivities to the treatment of hail/graupel. A detailed evaluation of the experiments against various high temporal resolution and spatially distributed observational data was performed to understand how moist processes responded to the implemented size distribution modifications. Net vapor consumption by microphysical processes was found to be unaffected by snow or rain size distribution modifications, while it was reduced replacing formulations for hail by those typical for graupel, mainly due to intense sublimation of graupel. Cloud optical thickness was overestimated in all experiments and all cases, likely due to overestimated snow amounts. The overestimation slightly deteriorated by modifying the rain and snow size distributions due to increased snow depositional growth, while it was reduced by including graupel. The latter was mainly due to enhanced cloud water collection by graupel and reduced snow depositional growth. Radar reflectivity and cloud optical thickness could only be realistically represented by inclusion of graupel during a stratiform case, while hail was found indispensable to simulate the vertical reflectivity profile and the surface precipitation structure. Precipitation amount was not much altered by any of the modifications made and the general overestimation was only decreased slightly during a supercell convective case.

  18. Effects of current on droplet generation and arc plasma in gas metal arc welding

    SciTech Connect (OSTI)

    Hu, J.; Tsai, H. L.

    2006-09-01

    In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the molten metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.

  19. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    SciTech Connect (OSTI)

    Plionis, Alexander A; Peterson, Dominic S; Tandon, Lav; Lamont, Stephen P

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  20. Kinetics of complex plasma with liquid droplets

    SciTech Connect (OSTI)

    Misra, Shikha; Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India); Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India)] [Institute for Plasma Research (IPR), Gandhinagar 382428 (India)

    2013-12-15

    This paper provides a theoretical basis for the reduction of electron density by spray of water (or other liquids) in hot plasma. This phenomenon has been observed in a hypersonic flight experiment for relief of radio black out, caused by high ionization in the plasma sheath of a hypersonic vehicle, re-entering the atmosphere. The analysis incorporates a rather little known phenomenon for de-charging of the droplets, viz., evaporation of ions from the surface and includes the charge balance on the droplets and number cum energy balance of electrons, ions, and neutral molecules; the energy balance of the evaporating droplets has also been taken into account. The analysis has been applied to a realistic situation and the transient variations of the charge and radius of water droplets, and other plasma parameters have been obtained and discussed. The analysis through made in the context of water droplets is applicable to all liquids.

  1. Particulate and droplet diagnostics in spray combustion

    SciTech Connect (OSTI)

    Semerjian, H.G.

    1986-07-01

    There is a critical need for detailed data on the structure of spray flames, including information on the particle field, droplets, velocity and temperature fields, as well as gaseous species concentrations. The objective of this project is to obtain such a comprehensive data base, as a complementary effort to the spray modelling work being carried out at JPL and LANL. In addition, this study will provide data on the effect of fuel properties and flow field characteristics on the spray combustion processes. Finally, this research effort will focus on identification of the most important sub-processes, such as droplet vaporization, droplet-droplet interactions, droplet-air interactions, radiative energy transfer, etc., which have the greatest impact on the overall characteristics of spray flames. 57 refs., 18 figs., 2 tabs.

  2. Models of crystallization in evaporating droplets

    SciTech Connect (OSTI)

    Ford, I.J.

    1996-12-31

    The spray drying of a droplet containing a substance in solution can produce solid particles with a variety of final shapes: hollow, punctured, squashed, as well as solid spheres. The geometry affects the properties of the product. Models are presented here which describe the processes of solvent evaporation and solute crystallization as drying takes place. The formation of a crust on the surface of the droplet is addressed. It is proposed that such a crust with a thickness of two crystallite diameters can develop into dry hollow shell. Some example calculations of the spray drying of droplets of sodium chloride solution are described.

  3. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

    SciTech Connect (OSTI)

    VanWeverberg K.; Vogelmann A.; vanLipzig, N. P. M.; Delobbec, L.

    2012-04-01

    We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

  4. The effect of acidity variations in cloud droplet populations on aqueous-phase sulfate production

    SciTech Connect (OSTI)

    Gurciullo, C.S.; Pandis, S.N.

    1995-12-31

    The majority of global atmospheric sulfate production occurs in clouds. Experimental evidence suggests that significant chemical heterogeneities exist in cloud droplet populations. Both theoretical and field studies suggest that the acidity of a cloud droplet population can differ by 1 pH unit or more between the smallest and largest droplets. Traditionally, cloud chemistry has been studied using bulk models that assume that the aqueous- phase chemistry can be accurately modeled using {open_quotes}mean droplet{close_quotes} properties. The average droplet population pH is then used as the basis for calculating reaction rates. Using this bulk chemistry approach in cloud or fog models may lead to significant errors in the predicted aqueous-phase reaction rates. We prove analytically that the use of a droplet Population`s average pH always results in the underestimation of the rate of sulfate production. In order to examine the magnitude of this error, we have developed two aqueous-phase chemistry models: a droplet size-resolved model and a bulk chemistry model. The discrepancy between the results of these two models indicates the degree of error introduced by assuming bulk aqueous-phase properties. The magnitude of this error depends on the availability of SO{sub 2}, H{sub 2}O{sub 2}, NH{sub 3}, and acidity, and can range from zero to a factor of three for reasonable ambient conditions. A modeling approach that combines the accuracy of the size-resolved model and the low computing requirements of the bulk model is developed.

  5. THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA

    SciTech Connect (OSTI)

    Temim, Tea; Dwek, Eli, E-mail: tea.temim@nasa.gov [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-09-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 M{sub Sun }, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 {mu}m. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in external galaxies.

  6. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  7. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    SciTech Connect (OSTI)

    Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric; Jacobson, Jacob; Schwab, Amy; Wu, May; Argo, Andrew; Brandt, Craig C.; Cafferty, Kara; Chiu, Yi-Wen; Dutta, Abhijit; Eaton, Laurence M.; Searcy, Erin

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.

  8. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator

    SciTech Connect (OSTI)

    Lian, Meng; Collier, Pat; Doktycz, Mitchel John; Retterer, Scott T

    2012-01-01

    Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of backing pressures, in the absence of surfactants, is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level.

  9. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  10. Phenomenology of electrostatically charged droplet combustion in normal gravity

    SciTech Connect (OSTI)

    Anderson, Eric K.; Koch, Jeremy A.; Kyritsis, Dimitrios C.

    2008-08-15

    Experimental findings are provided on the effect of electrostatically charging a fuel on single-burning droplet combustion in normal gravity. It was established that significant modification of the flame morphology and the droplet burning time could be achieved, solely by the droplet charge, without the application of external electric fields. Negative charging of the droplets of mixtures of isooctane with either ethanol or a commercially available anti-static additive generated intense motion of the flame and abbreviated the droplet burning time by as much as 40% for certain blend compositions. Positive charging of the droplets generated almost spherical flames, because electrostatic attraction toward the droplets countered the effect of buoyancy. By comparing combustion of droplets of the same conductivity but different compositions, coupling of electrostatics with combustion chemistry was established. (author)

  11. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    SciTech Connect (OSTI)

    Gambino, Nadia Brandsttter, Markus; Rollinger, Bob; Abhari, Reza

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device has been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zrich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.

  12. Length Scale of Leidenfrost Ratchet Switches Droplet Directionality

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Length Scale of Leidenfrost Ratchet Switches Droplet Directionality Citation Details In-Document Search Title: Length Scale of Leidenfrost Ratchet Switches Droplet Directionality Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with

  13. ARM - Measurement - Particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer...

  14. An interface tracking model for droplet electrocoalescence.

    SciTech Connect (OSTI)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  15. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect (OSTI)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  16. Acoustic behavior of ordered droplets in a liquid: A phase space approach

    SciTech Connect (OSTI)

    Rivera, A.L.; Lozada-Cassou, M.; Palomino, M.R.; Icaza, M. de; Castano, V.M.

    2005-03-01

    The transmission of an acoustical signal through a spatial arrangement consisting of a bidimensional crystal of droplets (liquid spheres) immersed into another liquid is analyzed. As a first approximation, the paraxial case is solved by considering a set of acoustical lenses which allow us to model the effect of each droplet on the signal. An expression for the Wigner distribution function that lets us evaluate the corresponding image, diffraction pattern, and even the output signal of any given paraxial input signal to that crystalline substrate is obtained, with particular emphasis on the case of an incoming plane wave. To solve the nonparaxial situation, a generalization of the concept of focal distance interpreting every sphere as a superposition of concentric rings of different radius, which permits us to find a general expression for the Wigner distribution function is proposed.

  17. System for sensing droplet formation time delay in a flow cytometer

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect System for sensing droplet formation time delay in a flow cytometer Citation Details In-Document Search Title: System for sensing droplet formation time delay in a flow cytometer A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously

  18. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  19. Metals processing control by counting molten metal droplets

    DOE Patents [OSTI]

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  20. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; et al

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less

  1. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    SciTech Connect (OSTI)

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.

  2. Determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer quantum dots via spectral analysis of optical signature of the Aharanov-Bohm excitons

    SciTech Connect (OSTI)

    Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha; Kuskovsky, Igor L.; Shuvayev, Vladimir; Deligiannakis, Vasilios; Tamargo, Maria C.; Ludwig, Jonathan; Smirnov, Dmitry; Wang, Alice

    2014-10-28

    For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, even though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.

  3. The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium

    SciTech Connect (OSTI)

    Van Weverberg, K.; VanLipzig, N. P. M.; Delobbe, L.

    2011-04-01

    In this research the impact of modifying the size distribution assumptions of the precipitating hydrometeors in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics has been explored for long-lived low-topped supercells in Belgium. It was shown that weighting the largest precipitating ice species of the microphysics scheme to small graupel results in an increase of surface precipitation because of counteracting effects. On the one hand, the precipitation formation process slowed down, resulting in lower precipitation efficiency. On the other hand, latent heat release associated with freezing favored more intense storms. In contrast to previous studies finding decreased surface precipitation when graupel was present in the microphysics parameterization, storms were rather shallow in the authors simulations. This left little time for graupel sublimation. The impact of size distribution assumptions of snow was found to be small, but more realistic size distribution assumptions of rain led to the strongest effect on surface precipitation. Cold pools shrunk because of weaker rain evaporation at the cold pool boundaries, leading to a decreased surface rain area.

  4. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation

    Office of Scientific and Technical Information (OSTI)

    during TCAP Field Campaign Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report Citation Details In-Document Search Title: Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report The formation of clouds is an essential element in understanding the Earth's radiative budget. Liquid water clouds

  5. Material forming apparatus using a directed droplet stream

    DOE Patents [OSTI]

    Holcomb, David E. (Oak Ridge, TN); Viswanathan, Srinath (Knoxville, TN); Blue, Craig A. (Knoxville, TN); Wilgen, John B. (Oak Ridge, TN)

    2000-01-01

    Systems and methods are described for rapidly forming precision metallic and intermetallic alloy net shape parts directly from liquid metal droplets. A directed droplet deposition apparatus includes a crucible with an orifice for producing a jet of material, a jet destabilizer, a charging structure, a deflector system, and an impact zone. The systems and methods provide advantages in that fully dense, microstructurally controlled parts can be fabricated at moderate cost.

  6. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    SciTech Connect (OSTI)

    Singaravelu, Ragunath; National Research Council of Canada, Ottawa, Ontario K1A 0R6 ; Lyn, Rodney K.; National Research Council of Canada, Ottawa, Ontario K1A 0R6 ; Srinivasan, Prashanth; Delcorde, Julie; National Research Council of Canada, Ottawa, Ontario K1A 0R6 ; Steenbergen, Rineke H.; Tyrrell, D. Lorne; Li Ka Shing Institute of Virology, Katz Centre for Pharmacy and Health Research, Edmonton, Alberta T6G 2S2 ; Pezacki, John P.

    2013-11-15

    Highlights: Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. The observed increase in LD size correlates with increased PGC-1? and CIDEB expression. Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. This system represents a cost-efficient model to study CIDEBs role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEBs role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1?, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEBs role in LD fusion, and presents a new model system to study the PGC-1?/CIDEB pathways role in LD dynamics and the VLDL pathway.

  7. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  8. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    SciTech Connect (OSTI)

    Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.; Smith, Richard D.; Watts, Jennifer

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type and high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.

  9. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.

  10. Dilution-Free Analysis from Picoliter Droplets by Nano-Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Page, Jason S.; Marginean, Ioan; Tang, Keqi; Smith, Richard D.

    2009-09-01

    The expanding role of microfluidics for chemical and biochemical analysis is due to factors including the favorable scaling of separation performance with reduced channel dimensions,[1] flexibility afforded by computer-aided device design, and the ability to integrate multiple sample handling and analysis steps into a single platform.[2] Such devices enable smaller liquid volumes and sample sizes to be handled than can be achieved on the benchtop, where sub-microliter volumes are difficult to work with and where sample losses to the surfaces of multiple reaction vessels become prohibitive. A particularly attractive microfluidic platform for sample-limited analyses employs aqueous droplets or plugs encapsulated by an immiscible oil.[3,4] Each droplet serves as a discrete compartment or reaction chamber enabling, e.g., high throughput screening[5,6] and kinetic studies[7-9] of femto- to nanoliter samples, as well as the encapsulation[10-12] and lysis[10] of individual cells with limited dilution of the cellular contents

  11. Dynamics of lipid droplets induced by the hepatitis C virus core protein

    SciTech Connect (OSTI)

    Lyn, Rodney K.; Department of Chemistry, University of Ottawa, Ottawa ; Kennedy, David C.; Stolow, Albert; Ridsdale, Andrew; Pezacki, John Paul

    2010-09-03

    Research highlights: {yields} Hepatitis C virus uses lipid droplets (LD) onto which HCV core proteins bind. {yields} HCV core proteins on LDs facilitate viral particle assembly. {yields} We used a novel combination of CARS, two-photon fluorescence, and DIC microscopies. {yields} Particle tracking experiments show that core slowly affects LD localization. {yields} Particle tracking measured the change in speed and directionality of LD movement. -- Abstract: The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV core proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.

  12. Length Scale Selects Directionality of Droplets on Vibrating Pillar Ratchet

    SciTech Connect (OSTI)

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, Pat; Lavrik, Nickolay V.

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the length scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. The ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.

  13. Length scale selects directionality of droplets on vibrating pillar ratchet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V.

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the lengthmore » scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. As a result, the ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.« less

  14. Characterizing Uncertainties in Ice Particle Size Distributions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight In many parameterization schemes for numerical models or remote sensing...

  15. ARM - Measurement - Aerosol particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer HTDMA : Humidified Tandem Differential Mobility Analyzer SMPS : Scanning mobility particle sizer TDMA : Tandem...

  16. ARM - Campaign Instrument - csphot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol optical properties Cloud optical depth Cloud droplet size Particle number concentration Particle size distribution Precipitable water Shortwave narrowband radiance...

  17. Composition profiling of GaAs/AlGaAs quantum dots grown by droplet epitaxy

    SciTech Connect (OSTI)

    Bocquel, J.; Koenraad, P. M.; Giddings, A. D.; Prosa, T. J.; Larson, D. J.; Mano, T.

    2014-10-13

    Droplet epitaxy (DE) is a growth method which can create III-V quantum dots (QDs) whose optoelectronic properties can be accurately controlled through the crystallisation conditions. In this work, GaAs/AlGaAs DE-QDs have been analyzed with the complimentary techniques of cross-sectional scanning tunneling microscopy and atom probe tomography. Structural details and a quantitative chemical analysis of QDs of different sizes are obtained. Most QDs were found to be pure GaAs, while a small proportion exhibited high intermixing caused by a local etching process. Large QDs with a high aspect ratio were observed to have an Al-rich crown above the GaAs QD. This structure is attributed to differences in mobility of the cations during the capping phase of the DE growth.

  18. Chang-F-L

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius F.-L. Chang and Z. Li ESSICDepartment of Meteorology University of Maryland College Park,...

  19. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent to the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.

  20. Investigation of thermochemical biorefinery sizing and environmental...

    Office of Scientific and Technical Information (OSTI)

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs...

  1. Evalution of long-term surface-retrieved cloud-droplet number concentration

    Office of Scientific and Technical Information (OSTI)

    with in situ aircraft observations (Journal Article) | SciTech Connect Evalution of long-term surface-retrieved cloud-droplet number concentration with in situ aircraft observations Citation Details In-Document Search Title: Evalution of long-term surface-retrieved cloud-droplet number concentration with in situ aircraft observations A new cloud-droplet number concentration (NDROP) value added product (VAP) has been produced at the Atmospheric Radiation Measurement (ARM) Southern Great

  2. ON-DEMAND SERIAL DILUTION USING QUANTIZED NANO/PICOLITER-SCALE DROPLETS

    SciTech Connect (OSTI)

    Jambovane, Sachin R.; Prost, Spencer A.; Sheen, Allison M.; Magnuson, Jon K.; Kelly, Ryan T.

    2014-10-29

    This paper describes a fully automated droplet-based microfluidic device for on-demand serial dilution that is capable of achieving a dilution ratio of >6000 (concentration ranges from 1 mM to 160nM) over 35 nanoliter-scale droplets. This serial diluter can be applied to high throughput and label-free kinetic assays by integrating with our previously developed on-demand droplet-based microfluidic with mass spectrometry detection.

  3. Two-dimensional fluid droplet arrays generated using a single nozzle

    DOE Patents [OSTI]

    Lee, Eric R.; Perl, Martin L.

    1999-11-02

    Amplitudes of drive pulses received by a horizontally-placed dropper determine the horizontal displacements of droplets relative to an ejection aperture of the dropper. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  4. Natural discharge after pulse and cooperative electrodes to enhance droplet velocity in digital microfluidics

    SciTech Connect (OSTI)

    Chen, Tianlan; Dong, Cheng; Gao, Jie; Jia, Yanwei; Mak, Pui-In, E-mail: pimak@umac.mo; Vai, Mang-I; Martins, Rui P. [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)] [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)

    2014-04-15

    Digital Microfluidics (DMF) is a promising technology for biological/chemical micro-reactions due to its distinct droplet manageability via electronic automation, but the limited velocity of droplet transportation has hindered DMF from utilization in high throughput applications. In this paper, by adaptively fitting the actuation voltages to the dynamic motions of droplet movement under real-time feedback monitoring, two control-engaged electrode-driving techniques: Natural Discharge after Pulse (NDAP) and Cooperative Electrodes (CE) are proposed. They together lead to, for the first time, enhanced droplet velocity with lower root mean square voltage value.

  5. Robust Extraction Interface for Coupling Droplet-Based and Continuous Flow Microfluidics

    SciTech Connect (OSTI)

    Sun, Xuefei; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2012-03-07

    Reliable and highly efficient extraction of droplets from oil to aqueous phase is key for downstream coupling with chemical separations and nonoptical detection methods such as amperometry and mass spectrometry. This paper presents an improved interface providing robust extraction for droplet-based poly(dimethylsiloxane) (PDMS) microfluidic devices. The extraction interface consists of an array of cylindrical posts with narrow apertures in between. The aqueous flow channel into which droplets coalesced was simply and selectively modified to be hydrophilic, while the continuous oil phase flow channel that contained encapsulated aqueous droplets retained a hydrophobic surface. The different surfaces on both sides of the extraction region form a highly stable liquid interface between the two immiscible phases, allowing rapid droplet transfer to the aqueous stream. Entire droplets could be completely extracted within broad ranges of aqueous and oil flow rates (0 - 1 and 0.1 - 1 uL/min, respectively). After extraction, the droplet contents could be transported electrophoretically or by pressure-driven flow to a monolithically integrated emitter for nano-electrospray ionization mass spectrometry (nanoESI-MS) analysis. This interface should be amenable to the separation and identification of droplet contents and on-line monitoring of in-droplet reactions.

  6. Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach

    SciTech Connect (OSTI)

    Xu, W.; Lan, Z.; Peng, B. L.; Wen, R. F.; Ma, X. H.

    2015-02-07

    Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation of a wet-spot, increase of contact angle with near-constant contact line, and finally growth with constant contact angle. The growth rate of nuclei also increases with the size of high energy particles.

  7. High speed flow cytometer droplet formation system and method

    DOE Patents [OSTI]

    Van den Engh, Ger

    2000-01-01

    A droplet forming flow cytometer system allows high speed processing without the need for high oscillator drive powers through the inclusion of an oscillator or piezoelectric crystal such as within the nozzle volume or otherwise unidirectionally coupled to the sheath fluid. The nozzle container continuously converges so as to amplify unidirectional oscillations which are transmitted as pressure waves through the nozzle volume to the nozzle exit so as to form droplets from the fluid jet. The oscillator is directionally isolated so as to avoid moving the entire nozzle container so as to create only pressure waves within the sheath fluid. A variation in substance concentration is achieved through a movable substance introduction port which is positioned within a convergence zone to vary the relative concentration of substance to sheath fluid while still maintaining optimal laminar flow conditions. This variation may be automatically controlled through a sensor and controller configuration. A replaceable tip design is also provided whereby the ceramic nozzle tip is positioned within an edge insert in the nozzle body so as to smoothly transition from nozzle body to nozzle tip. The nozzle tip is sealed against its outer surface to the nozzle body so it may be removable for cleaning or replacement.

  8. On-demand production of uniform DT droplets using pulsed electrohydrodynamic spraying. Charged Particle Research Laboratory report No. 1-82

    SciTech Connect (OSTI)

    Kim, K.; Gavrilovic, P.

    1982-04-01

    A technique suitable for on-demand production of uniform DT droplets is investigated using pulsed electrohydrodynamic (EHD) spraying. Liquid hydrogen is employed as the working liquid, into which charge is injected using a sharp tungsten needle raised to high voltage. By controlling this high voltage, the amount of charge injection required for disrupting the liquid surface into a smooth liquid jet of desired size is determined. For on-demand production of the liquid jet (which breaks up into uniform droplets), high voltage pulses of appropriate height and duration are applied to the charge injection electrode. Results obtained with liquid hydrogen and liquid nitrogen are presented. Considering the potential hazard and scarcity of tritium, the present technique may prove to be particularly useful when there is a need for filling ICF targets with a controlled amount of DT micropellets.

  9. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    SciTech Connect (OSTI)

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.

    2014-11-28

    This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 6382%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.

  10. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  11. Method of dispensing droplets to penetration-resistive mediums. [Patent application

    DOE Patents [OSTI]

    Fowler, V.L.; Ryon, A.D.; Haas, P.A.

    1982-06-10

    Uniform, monosized microspheroids are produced in a gelation medium characterized by a high resistance to surface penetration by reducing the effect of impact on entry of the droplets into the medium by contacting the droplet with a stream of medium and by introducing the resulting stream into a gelation column.

  12. Detachment of Liquid-Water Droplets from Gas-Diffusion Layers

    SciTech Connect (OSTI)

    Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

    2011-07-01

    A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

  13. Quantized vortices in {sup 4}He droplets: A quantum Monte Carlo study

    SciTech Connect (OSTI)

    Sola, E.; Casulleras, J.; Boronat, J.

    2007-08-01

    We present a diffusion Monte Carlo study of a vortex line excitation attached to the center of a {sup 4}He droplet at zero temperature. The vortex energy is estimated for droplets of increasing number of atoms, from N=70 up to 300, showing a monotonous increase with N. The evolution of the core radius and its associated energy, the core energy, is also studied as a function of N. The core radius is {approx}1 A in the center and increases when approaching the droplet surface; the core energy per unit volume stabilizes at a value 2.8 K{sigma}{sup -3} ({sigma}=2.556 A) for N{>=}200.

  14. Magnetic detection of underground pipe using timed-release marking droplets

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.

    1996-12-17

    A system and method are disclosed of detecting an underground pipe by injecting magnetic marking droplets into the underground pipe which coat the inside of the pipe and may be detected from aboveground by a magnetometer. The droplets include a non-adhesive cover which allows free flow through the pipe, with the cover being ablatable for the timed-release of a central core containing magnetic particles which adhere to the inside of the pipe and are detectable from aboveground. The rate of ablation of the droplet covers is selectively variable to control a free flowing incubation zone for the droplets and a subsequent deposition zone in which the magnetic particles are released for coating the pipe. 6 figs.

  15. Magnetic detection of underground pipe using timed-release marking droplets

    DOE Patents [OSTI]

    Powell, James R.; Reich, Morris

    1996-12-17

    A system 10 and method of detecting an underground pipe 12 injects magnetic marking droplets 16 into the underground pipe 12 which coat the inside of the pipe 12 and may be detected from aboveground by a magnetometer 28. The droplets 16 include a non-adhesive cover 32 which allows free flow thereof through the pipe 12, with the cover 32 being ablatable for the timed-release of a central core 30 containing magnetic particles 30a which adhere to the inside of the pipe 12 and are detectable from aboveground. The rate of ablation of the droplet covers 32 is selectively variable to control a free flowing incubation zone 12a for the droplets 16 and a subsequent deposition zone 12b in which the magnetic particles 30a are released for coating the pipe 12.

  16. Packaging a liquid metal ESD with micro-scale Mercury droplet. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Packaging a liquid metal ESD with micro-scale Mercury droplet. Citation Details In-Document Search Title: Packaging a liquid metal ESD with micro-scale Mercury droplet. A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro

  17. Results from Analysis of Avian Retina Oil Droplets. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Results from Analysis of Avian Retina Oil Droplets. Citation Details In-Document Search Title: Results from Analysis of Avian Retina Oil Droplets. Abstract not provided. Authors: Timlin, Jerilyn A. ; Beechem Iii, Thomas Edwin ; McDonald, Anthony E. ; Toomey, Matt ; Corbo, Joseph Publication Date: 2014-10-01 OSTI Identifier: 1241759 Report Number(s): SAND2014-18406PE 539937 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Research Org: Sandia National

  18. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    SciTech Connect (OSTI)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  19. System for sensing droplet formation time delay in a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1997-01-01

    A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustment which may then act with analysis equipment to revise the time delay estimate actually applied during processing. The automatic sampler can be controlled through a microprocessor and appropriate programming to bracket an initial droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.

  20. Hopper Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Hopper Job Size Charts Fractional Jobs The following charts show the fraction of hours used on Hopper in each of five job-core-size bins: 2014 Usage by Job Size Chart 2013 2012 2011 Large Jobs The following charts show the fraction of hours used on Hopper by jobs using greater than 16,384 cores: 2014 2013 2012 Usage by Job Size Chart 2011 Last edited: 2016-05-02 09:20:42

  1. Axisymmetric oscillation modes of a double droplet system

    SciTech Connect (OSTI)

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) the pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)?R3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. In particular, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =?/??R? , where ? is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.

  2. Axisymmetric oscillation modes of a double droplet system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  3. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports » Edison Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size Note: Interactive charts with current and past Cori and Edison data are now available on MyNERSC This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job Size Chart 2014 Fraction of Hours Used by Big Jobs This chart shows the fraction of hours used on Edison by jobs using 16,384 or more cores. 2015 Usage by Job Size Chart 2014 Last edited: 2016-04-21

  4. The structure of mixed {sup 3}He-{sup 4}He droplets doped with OCS: A density functional approach

    SciTech Connect (OSTI)

    Leal, Antonio; Mateo, David; Pi, Mart; Barranco, Manuel [Departament ECM, Facultat de Fsica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain)] [Departament ECM, Facultat de Fsica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Navarro, Jess [IFIC (CSIC-Universidad de Valencia), P.O. Box 22085, E-46071 Valencia (Spain)] [IFIC (CSIC-Universidad de Valencia), P.O. Box 22085, E-46071 Valencia (Spain)

    2013-11-07

    We have investigated the structure and energetics of mixed {sup 3}He-{sup 4}He droplets doped with a carbonyl sulfide molecule within a density functional approach considering a small but finite temperature of 0.1 K. The molecule is treated as an external field to which the helium droplet is attached. The energetics and appearance of these droplets are discussed for selected numbers of helium atoms, identifying the first magic numbers of the fermionic component.

  5. Powder processing for the fabrication of Si{sub 3}N{sub 4} ceramics. 1: Influence of spray-dried granule strength on pore size distribution in green compacts

    SciTech Connect (OSTI)

    Kamiya, Hidehiro; Isomura, Kenji; Jimbo, Genji; Junichiro, Tsubaki

    1995-01-01

    The effect of spray-dried granule strength on the microstructure of green compacts obtained by isostatic pressing was quantitatively analyzed. The fracture strength of single granules of Si{sub 3}N{sub 4} powder made with ultrafine Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} powders was measured directly by diametral compression. It was found that fracture strength increased notably with the increasing relative density of the granule and the decreasing size of agglomerates in suspension before spray-drying. Even when green bodies were prepared at an isostatic pressure of 200 MPa, intergranular pores, which negatively affected densification of the sintered bodies, occurred between unfractured granules. The volume and size of these pores in the green compacts increased with the increasing fracture strength of the granules. In the case of closely packed granules, an isostatic pressure of 800 MPa was required to completely collapse the intergranular pores. A simple equation was derived to calculate the isostatic pressure necessary for complete collapse of intergranular pores in the green compacts, and it was determined that granule strength must be kept as low as possible to obtain uniform green compacts.

  6. Correlating Size and Composition-Dependent Effects with Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Correlating Size and Composition-Dependent Effects with Magnetic, Mssbauer, and Pair Distribution Function Measurements in a Family of Catalytically Active Ferrite Nanoparticles ...

  7. Overview of Detailed Chemical Speciation and Particle Sizing...

    Broader source: Energy.gov (indexed) [DOE]

    The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition Microsoft PowerPoint - DEER03-P.ppt Development and ...

  8. Bright tunable femtosecond x-ray emission from laser irradiated micro-droplets

    SciTech Connect (OSTI)

    Yu, Tong-Pu Hu, Li-Xiang; Yin, Yan; Shao, Fu-Qiu; Zhuo, Hong-Bin; Ma, Yan-Yun; Yang, Xiao-Hu; Luo, Wen; Pukhov, Alexander

    2014-09-15

    It is demonstrated that bright femtosecond X-rays can be obtained by irradiating a moderate laser onto a helium micro-droplet. The laser ponderomotive force continuously sweeps electrons from the droplets and accelerates them forward. The electrons exposed in the outrunning laser field oscillate transversely and emit photons in the forward direction. The total flux of photons with energies above 1?keV is as high as 10{sup 9}/shot which is about 10-fold enhancement compared with betatron oscillation under similar laser conditions. The maximum achieved peak brightness is up to 10{sup 21} photons/s/mm{sup 2}/mrad{sup 2}/0.1%BW. By adjusting laser and droplet parameters, we can get tunable X-rays with required brightness and energy.

  9. Microsoft PowerPoint - ARM2007LetterSize.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote sensing microphysical retrieval and cloud microphysics parameterizations rely on a knowledge of the shape of cloud drop size distributions (DSD). These are often approximated by Gamma, lognormal, or, more specifically by Khrgian-Mazin, Marshall-Palmer type distributions. We ask the question which functional form approximates best the drop size distributions in drizzling stratocumulus? Specifically, we evaluate the accuracy of lognormal and Gamma-type distributions in approximating higher

  10. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    SciTech Connect (OSTI)

    Kosch, Sebastian E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser E-mail: ashgriz@mie.utoronto.ca

    2015-04-15

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  11. System for sensing droplet formation time delay in a flow cytometer

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect System for sensing droplet formation time delay in a flow cytometer Citation Details In-Document Search Title: System for sensing droplet formation time delay in a flow cytometer × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  12. Oxidation Behavior of In-Flight Molten Aluminum Droplets in the Twin-Wire Electric Arc Thermal Spray Process

    SciTech Connect (OSTI)

    Donna Post Guillen; Brian G. Williams

    2005-05-01

    This paper examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment and mixing of the surface oxides within the droplet, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a droplet without internal circulation. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of an average droplet at impact agrees well with the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating, which ranges from 3.3 to 12.7%. An explanation is provided for the elevated, nearly constant surface temperature (~ 2000 oC) of the droplets during flight to the substrate and shows that the majority of oxide content in the coating is produced during flight, rather than after deposition.

  13. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets

    SciTech Connect (OSTI)

    Beer, N R; Wheeler, E; Lee-Houghton, L; Watkins, N; Nasarabadi, S; Hebert, N; Leung, P; Arnold, D; Bailey, C; Colston, B

    2007-12-19

    The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing thermal cycling for reverse transcription and subsequent PCR amplification without droplet motion. This combination of the established real-time reverse transcription-PCR assay with digital microfluidics is ideal for isolating single-copy RNA and virions from a complex environment, and will be useful in viral discovery and gene-profiling applications.

  14. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  15. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    ... filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to ...

  16. Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

    2013-06-24

    Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of homogeneous organic material without identifiable cores.

  17. Does size matter?

    SciTech Connect (OSTI)

    Carreras, B. A.; Physics Department, College of Natural Science and Mathematics and Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775; Physics Department, Universidad Carlos III de Madrid, Madrid ; Newman, D. E.; Dobson, Ian

    2014-06-15

    Failures of the complex infrastructures society depends on having enormous human and economic cost that poses the question: Are there ways to optimize these systems to reduce the risks of failure? A dynamic model of one such system, the power transmission grid, is used to investigate the risk from failure as a function of the system size. It is found that there appears to be optimal sizes for such networks where the risk of failure is balanced by the benefit given by the size.

  18. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  19. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  20. Distributed PV Interconnection: Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Make Smart Solar Decisions Distributed Solar Interconnection: Challenges and Best ... 50, Arizona: 54, Colorado: 63, New York: 68 New Jersey: 90 System Size Mean Median Std. ...

  1. Concentrations and Size Distributions of Particulate Matter Emissions from

    Broader source: Energy.gov (indexed) [DOE]

    What will the project do? Combined, the projects are estimated to create nearly 1,800 jobs and enough energy to power more than 100,000 homes. Today, Secretary Chu announced conditional commitments for approximately $2 billion in loan guarantees to two California concentrating solar power plants. The projects are estimated to create nearly 1,800 jobs and will utilize advanced technologies which can help drive down the cost of solar power. The two plants, the Mojave Solar Project in San

  2. Radio-frequency capacitive discharge with non-flow-type and droplet-jet electrolytic electrodes

    SciTech Connect (OSTI)

    Gaisin, A. F.; Abdullin, I. Sh.; Basyrov, R. Sh.; Khaziev, R. M.; Samitova, G. T.; Shakirova, E. F.

    2014-12-15

    Results are presented from experimental studies of the shape, structure, and spectral characteristics of an RF capacitive discharge operating between a droplet-jet electrolytic electrode and an electrolytic cell in air at pressures of P = 10{sup 3}10{sup 5} Pa, as well as of a discharge burning between a copper rod and the surface of non-flow electrolyte at atmospheric pressure. It is found that, at voltages of U ? 3500 V, the multichannel discharge burning between the rod and the electrolyte (saturated solution of NaCl in technical water) surface transforms into a torch discharge. Specific features of the burning of a discharge with a droplet electrolytic electrode are investigated. Different forms of discharges burning on the surface of a copper tube and an electrolyte jet are revealed.

  3. DOE/SC-ARM-TR-140 Droplet Number Concentration Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Droplet Number Concentration Value-Added Product L Riihimaki S McFarlane C Sivaraman June 2014 Version 1.0 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its

  4. Cloud Droplet Spectral Shape Sheds New Light on Aerosol- Cloud-Interaction Regimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Droplet Spectral Shape Sheds New Light on Aerosol- Cloud-Interaction Regimes For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Despite decades of research, aerosol indirect effects remain among the most uncertain climate forcings according to the latest Intergovernmental Panel on Climate Change report. Furthermore, climate models tend to overestimate the cooling of aerosol indirect effects and are more susceptible than

  5. Freezing a Droplet to Stop the Ice | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Freezing a Droplet to Stop the Ice Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More Information » 08.01.15 Freezing a

  6. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    5-055 ENERGY Science Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report D Cziczo May 2016 ARM CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  7. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect (OSTI)

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  8. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition

    SciTech Connect (OSTI)

    Emery, S. B. Little, B. K.; Xin, Y.; Ridge, C. J.; Lindsay, C. M.; Buszek, R. J.; Boatz, J. A.; Boyle, J. M.

    2015-02-28

    We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.

  9. Computational insights of water droplet transport on graphene sheet with chemical density

    SciTech Connect (OSTI)

    Zhang, Liuyang; Wang, Xianqiao, E-mail: xqwang@uga.edu [College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602 (United States)

    2014-05-21

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  10. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  11. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  12. How Distributed Wind Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Distributed Wind Works How Distributed Wind Works Your browser does not support iframes. Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kilowatt turbine at a home to a multi-megawatt (MW) turbine at a manufacturing facility. Distributed wind systems are connected on the customer side of the meter to meet the onsite load or directly to distribution or

  13. Profiling of Adrenocorticotropic Hormone and Arginine Vasopressin in Human Pituitary Gland and Tumor Thin Tissue Sections using Droplet-Based Liquid Microjunction Surface Sampling-HPLC-ESI-MS/MS

    SciTech Connect (OSTI)

    Kertesz, Vilmos; Van Berkel, Gary J; Calligaris, David; Feldman, Daniel R; Changelian, Armen; Laws, Edward R; Santagata, Sandro; Agar, Nathalie YR

    2015-01-01

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.

  14. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.; Changelian, Armen; Laws, Edward R.; Santagata, Sandro; Agar, Nathalie Y. R.; Van Berkel, Gary J.

    2015-06-18

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland.more » AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.« less

  15. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project ...

  16. Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time

    SciTech Connect (OSTI)

    Nguyen, Vanthan; Yan, Lihe Si, Jinhai; Hou, Xun

    2015-02-28

    Photoluminescent carbon nanodots (C-dots) with size tunability and uniformity were fabricated in polyethylene glycol (PEG{sub 200N}) solution using femtosecond laser ablation method. The size distributions and photoluminescence (PL) properties of C-dots are well controlled by adjusting the combined parameters of laser fluence, spot size, and irradiation time. The size reduction efficiency of the C-dots progressively increases with decreasing laser fluence and spot size. The optimal PL spectra are red-shifted and the quantum yields decrease with the increase in C-dots size, which could be attributed to the more complex surface functional groups attached on C-dots induced at higher laser fluence and larger spot size. Moreover, an increase in irradiation time leads to a decrease in size of C-dots, but long-time irradiation will result in the generation of complex functional groups on C-dots, subsequently the PL spectra are red-shifted.

  17. Structure of droplet-epitaxy-grown InAs/GaAs quantum dots

    SciTech Connect (OSTI)

    Cohen, Eyal; Yochelis, Shira; Westreich, Ohad; Shusterman, Sergey; Kumah, Divine P.; Clarke, Roy; Yacoby, Yizhak; Paltiel, Yossi

    2011-09-06

    We have used a direct x-ray phasing method, coherent Bragg rod analysis, to obtain sub-angstrom resolution electron density maps of the InAs/GaAs dot system. The dots were grown by the droplet heteroepitaxy (DHE) technique and their structural and compositional properties are compared with those of dots grown by the strain-driven Stranski-Krastanov method. Our results show that the Ga diffusion into the DHE-grown dots is somewhat larger; however, other characteristics such as the composition of the dots uppermost layers, the interlayer spacing, and the bowing of the atomic layers are similar.

  18. An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decade of Observations at a Mid-Continental Site An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a Decade of Observations at a Mid-Continental Site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Category: Aerosols Continuing observations of aerosol and cloud optical property have been made using MFRSR and MWR at the ARM SGP site since

  19. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOE Patents [OSTI]

    Huber, Dale L.

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  20. Effective Radius of Cloud Droplets Derived from Ground-based Remote Sensing at the ARM SGP site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficacy of Aerosol - Cloud Interactions under Varying Meteorological Conditions Byung-Gon Kim, @ Mark Miller, # Stephen Schwartz, $ Yangang Liu, $ Qilong Min % Kangnung National University, @ Rutgers University # Brookhaven National Laboratory, $ State Univ. of NY at Albany % (Courtesy Magritte) Cloud dynamical processes such as entrainment mixing may be the primary modulators of cloud optical properties in certain situations. Entrainment of dry air alters the cloud drop size distribution by

  1. Morphology Of Diesel Soot Residuals From Supercooled Water Droplets And Ice Crystals: Implications For Optical Properties

    SciTech Connect (OSTI)

    China, Swarup; Kulkarni, Gourihar; Scarnatio, Barbara; Sharma, Noopur; Pekour, Mikhail S.; Shilling, John E.; Wilson, Jacqueline M.; Zelenyuk, Alla; Chand, Duli; Liu, Shang; Aiken, Allison; Dubey, Manvendra K.; Laskin, Alexander; Zaveri, Rahul A.; Mazzoleni, Claudio

    2015-11-04

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those from supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. These results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.

  2. Finite element thermomechanical simulation of droplets impacting on a rigid substrate

    SciTech Connect (OSTI)

    Bertagnolli, M.; Marchese, M.; Jacucci, G.; St. Doltsinis, I.; Noelting, S.

    1994-12-31

    The plasma spray process is a convenient way to coat a piece of material with a layer of another material, to protect the first from thermal shock or environmental degradation. Finite Element simulation techniques (FEM) for the spreading process of a ceramic liquid droplet impacting on a flat cold surface have been developed. The goal of the present investigation is (1) to predict the geometrical form of the splat as a function of process parameters, such as initial temperature and velocity, and (2) to follow the thermal field developing in the droplet up to solidification. A non-linear finite element procedure has been extended in order to model the complex physical phenomena involved in the impact process. The dynamic motion of the viscous melt in the drops as constrained by elastic surface tensions in interaction with the developing contact with the target, ultimately has been coupled to transient thermal phenomena accounting also for the solidification of the material. In a first model description, spherical particles of liquid ceramic of given temperature and velocity impact on a flat, cool rigid surface. The deformation of the splat geometry as well as the evolution of the thermal field within the splat are followed up to the final state and require adaptive discretization techniques. The authors discuss an utilization of the proposed model in correlating flattening degrees with the initial process parameters.

  3. Usage by Job Size Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage by Job Size Table Usage by Job Size Table page loading animation Usage Query Interface System All Hopper Edison Cori Carver Planck Matgen Franklin Hopper 1 Magellan Dirac...

  4. ARM - Publications: Science Team Meeting Documents: Response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in cloud droplet size distribution Barker, Howard Meteorological Service of Canada Cole, Jason Meteorological Service of Canada Marshak, Alexander NASA Goddard Space Flight...

  5. Impact of aerosol size representation on modeling aerosol-cloud interactions: AEROSOL SIZE REPRESENTATION

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    We use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approachmore » with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  6. Special Distribution

    Office of Legacy Management (LM)

    Special Distribution Issued: December 1977 ',, Radiological Survey and Decontamination of the Former Main Technical Area (TA-1) at Los Alamos, New Mexico Compiled by A. John Ahlquist Alan K. Stoker Linda K. Trocki c laboratory of, the University of California LOS ALAMOS, NEW MEXICO 87545 An Alfirmdve Action/Equal Opportunity Employer ..-_- .-- .--.-. c T -,--... _ _._-r..l __,.. - .-,_.. ..- _._ -- .--. " . . _ . - . c- - . . . _ -. . _ . - . - . _ - - n - _ _~ ~_. __ _ ~~_ --..&e+

  7. Strategic Petroleum Reserve: Analysis of size options

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This report presents the results of the deliberations of the interagency group formed to study the costs and benefits of expanding the size of the SPR. The study concentrated on severe oil supply disruptions involving sharp reductions in world oil production that were 2 to 4 times larger than the largest 1970s interruption. The disruption sizes and estimated probability of occurrence of these scenarios were supplied by the CIA. The most critical part of the CIA's analysis was the assessment of likelihood of these cases occurring. The CIA approached the likelihood problem by combining an examination of past oil supply disruptions with qualitative analysis of important oil market and regional trends. The study group then used statistical techniques and probability distributions to synthesize the historical data with CIA evaluations of as yet unobserved events. The SPR size study assumed direct purchases of SPR oil and did not assume the use of alternative financing mechanisms. Members of the working group with foreign policy and national security responsibilities provided an in-depth review of strategic considerations affecting SPR size. A number of prior studies, some classified, have addressed the strategic importance and insurance value of the SPR to the US and its allies. The results of these studies have also been incorporated in the current effort. 10 refs., 5 figs.

  8. Wide size range fast integrated mobility spectrometer

    DOE Patents [OSTI]

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  9. Water droplet behavior on superhydrophobic SiO{sub 2} nanocomposite films during icing/deicing cycles

    SciTech Connect (OSTI)

    Lazauskas, A.; Guobienė, A.; Prosyčevas, I.; Baltrušaitis, V.; Grigaliūnas, V.; Narmontas, P.; Baltrusaitis, J.

    2013-08-15

    This work investigates water droplet behavior on superhydrophobic (water contact angle value of 162 ± 1°) SiO{sub 2} nanocomposite films subjected to repetitive icing/deicing treatments, changes in SiO{sub 2} nanocomposite film surface morphology and their non-wetting characteristics. During the experiment, water droplets on SiO{sub 2} nanocomposite film surface are subjected to a series of icing and deicing cycles in a humid (∼ 70% relative humidity) atmosphere and the resulting morphological changes are monitored and characterized using atomic force microscopy (AFM) and contact angle measurements. Our data show that the formation of the frozen or thawed water droplet, with no further shape change, on superhydrophobic SiO{sub 2} nanocomposite film, is obtained faster within each cycle as the number of the icing/deicing cycles increases. After 10 icing and deicing cycles, the superhydrophobic SiO{sub 2} nanocomposite film had a water contact angle value of 146 ± 2° which is effectively non-superhydrophobic. AFM analysis showed that the superhydrophobic SiO{sub 2} nanocomposite film surface area under the water droplet undergoes gradual mechanical damage during the repetitive icing/deicing cycles. We propose a possible mechanism of the morphological changes to the film surface that take place during the consecutive icing/deicing experiments. - Highlights: • Superhydrophobic film is subjected to repetitive icing/deicing treatments. • Water droplet shape transition is recorded and characterized thereafter. • Atomic force microscopy and contact angle measurements are performed. • The surface undergoes gradual mechanical damage during repetitive icing/deicing. • Mechanism for the observed surface morphological changes is suggested.

  10. Defect distributions in weld-deposited cladding

    SciTech Connect (OSTI)

    Li, Y.Y.; Mabe, W.R.

    1998-11-01

    Defect distributions in stainless steel and nickel-chromium alloy weld-deposited cladding over a low alloy steel base were characterized by destructive evaluation (DE). An evaluation of the observed defects was conducted to characterize the defects by type or classification. Size distributions of cladding defect types were developed from the information obtained. This paper presents the results of the cladding evaluation.

  11. Method for sizing hollow microspheres

    DOE Patents [OSTI]

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  12. Evaluate the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction The earth's radiation budget is sensitive to changes in the microphysical properties of low-level stratiform clouds. Their extensive coverage can significantly reduce the solar energy

  13. Control of membrane permeability in air-stable droplet interface bilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G; Taylor, Graham; Sarles, Stephen A; Boreyko, Jonathan; Hayes, Douglas G; Collier, Pat

    2015-01-01

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results inmore » loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.« less

  14. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    SciTech Connect (OSTI)

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya; Kennedy, Anne M.

    2009-04-14

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  15. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems

    SciTech Connect (OSTI)

    Factorovich, Matas H.; Scherlis, Damin A.

    2014-02-14

    In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

  16. Site-controlled fabrication of Ga nanodroplets by focused ion beam

    SciTech Connect (OSTI)

    Xu, Xingliang; Wang, Zhiming M.; Wu, Jiang; Li, Handong; Zhou, Zhihua; Wang, Xiaodong

    2014-03-31

    Ga droplets are created by focused ion beam irradiation of GaAs surface. We report that ordered Ga droplets can be formed on the GaAs surface without any implantation damage. The droplets are characterized with bigger sizes than those droplets formed on damaged area. These aligned Ga droplets are formed via the migration of Ga atoms from ion irradiation area to the edge of undamaged GaAs surface and further nucleation into droplets. The morphological evolution and size distribution of these nanodroplets are investigated systematically with different beam irradiation time and incident angles. Based on this method, well positioned Ga nanodroplets, such as chains, are achieved by using focus ion beam patterning. The controllable assembly of droplets on undamaged semiconductor surface can be used to fabricate templates, to fabricate quantum structures and quantum devices by droplet epitaxy technique.

  17. Strategy Guideline: HVAC Equipment Sizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: HVAC Equipment Sizing Arlan Burdick IBACOS, Inc. February 2012 This report received minimal editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  18. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  19. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    SciTech Connect (OSTI)

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; Scalia, Alexander; Mullen, Jeffrey D.; Sweet, Robert M.; Soares, Alexei S.

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.

  20. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; Scalia, Alexander; Mullen, Jeffrey D.; Sweet, Robert M.; Soares, Alexei S.

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using thismore » system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.« less

  1. EIA - Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal > Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of

  2. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  3. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  4. Size and concentration measurements of particles produced in commercial chromium plating processes

    SciTech Connect (OSTI)

    Bonin, M.P.; Flower, W.L.; Renzi, R.F.; Peng, L.W.

    1995-11-01

    Optical measurements of particle size and concentration were made at the chromium plating tank and exhaust system at a commercial hexavalent chromium plating facility. Particles were examined at three locations in the exhaust system: (1) directly at the hexavalent chromium plating bath surface, (2) at the exit of a cyclone separator located in the exhaust system approximately three to four meters downstream of the bath, and (3) in the exhaust stack, downstream of the induced draft fan and all abatement devices. Particle diameters at the bath surface ranged from 0.3 to 25 {mu}m. Downstream of the cyclone exit and mesh pad filters, particle top sizes were approximately 5 and 0.7 mm, respectively. On a mass basis, the collection efficiency of all abatement devices was 99.997%. Assuming that droplets in the flow consist primarily of water and chromium, correcting the total particle mass flow against water content gives a chromium emission rate of 64,000 {mu}g/hr, which compares favorably with a value of 77,000 {mu}g/hr measured with EPA methods. This initial agreement, which should be validated through additional measurements over a broad range of flow conditions, raises the possibility of continuous monitoring for chromium metal emissions using particle size/mass as a surrogate. 6 refs., 7 figs.

  5. Size exclusion deep bed filtration: Experimental and modelling uncertainties

    SciTech Connect (OSTI)

    Badalyan, Alexander You, Zhenjiang; Aji, Kaiser; Bedrikovetsky, Pavel; Carageorgos, Themis; Zeinijahromi, Abbas

    2014-01-15

    A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspended particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.

  6. Energy Department Announces Distributed Wind Competitiveness Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Awards | Department of Energy Distributed Wind Competitiveness Improvement Project Awards Energy Department Announces Distributed Wind Competitiveness Improvement Project Awards July 24, 2014 - 3:23pm Addthis The Energy Department and the Department's National Renewable Energy Laboratory today announced funding for projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy

  7. Study of trajectories and combustion of fuel-oil droplets in the combustion chamber of a power-plant boiler with the use of a mathematical model

    SciTech Connect (OSTI)

    Enyakin, Yu.P.; Usman, Yu.M.

    1988-03-01

    A mathematical model was developed to permit study of the behavior of fuel-oil droplets in a combustion chamber, and results are presented from a computer calculation performed for the 300-MW model TGMP-314P boiler of a power plant. The program written to perform the calculations was organized so that the first stage would entail calculation of the combustion (vaporization) of a droplet of liquid fuel. The program then provided for a sudden decrease in the mass of the fuel particle, simulating rupture of the coke shell and ejection of some of the liquid. The program then considered the combustion of a hollow coke particle. Physicochemical parameters characteristic of fuel oil M-100 were introduced in the program in the first stage of computations, while parameters characteristic of the coke particle associated with an unburned fuel-oil droplet were included in the second stage.

  8. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  9. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  10. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  11. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  12. A high-speed beam of lithium droplets for collecting diverted energy and particles in ITER (International Thermonuclear Experimental Reactor)

    SciTech Connect (OSTI)

    Werley, K.A.

    1989-01-01

    A high-speed (160m/s) beam (0.14 {times} 0.86m) of liquid-lithium droplets passing through the divertor region(s) below (and above) the main plasma has the potential to replace and out-perform conventional'' solid divertor plates in both heat and particle removal. In addition to superior heat-collection properties, the lithium beam would: remove impurities; require low power to circulate the lithium; exhibit low-recycle divertor operation compatible with lower-hybrid current drive, H-mode plasma confinement, and no flow reversal in the edge plasma; be insensitive to plasma shifts; and finally protect solid structures from the plasma thermal energy for those disruptions that deposit energy preferentially into the divertor while simultaneously being rapidly re-established after a major disruption. Scoping calculations identifying the beam configuration and the droplet dynamics, including formation, MHD effects, gravitational effects, thermal response and hydrodynamics, are presented. Limitations and uncertainties are also discussed. 20 refs., 6 figs., 3 tabs.

  13. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM PROJECT PROFILE Distributed Energy Project Profile * Verizon System Technical Overview During ... to the grid-a connected generation limit of 3 MVA set by the ...

  14. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  15. Annual Coal Distribution

    Reports and Publications (EIA)

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  16. Distributed Wind Ordinances: Slides

    Wind Powering America (EERE)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  17. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  18. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  19. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  20. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; Sarles, Stephen A.

    2015-08-05

    In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow formore » determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.« less

  1. Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, Henry, N.

    2014-10-30

    64x64 scan of a group of latex spheres with 45 nm step size, used for demonstrating Wigner-distribution deconvolution.

  2. Top 10 Things You Didn't Know About Distributed Wind Power |...

    Energy Savers [EERE]

    by households, schools, farms, industrial facilities and municipalities, distributed wind doesn't only refer to small-scale turbines; it includes any size turbine or array of...

  3. Ground-state energy and stability limit of {sup 3}He droplets

    SciTech Connect (OSTI)

    Sola, E.; Casulleras, J.; Boronat, J.

    2006-03-01

    Small and stable drops of {sup 3}He atoms can only exist above a minimum number of particles, due to the combination of the {sup 3}He atom Fermi statistics and its light mass. An accurate estimation of this minimum number using microscopic theory has been difficult due to the inhomogeneous and fermionic nature of these systems. We present a diffusion Monte Carlo calculation of {sup 3}He drops with sizes near the minimum in order to determine the stability threshold. The results show that the minimum self-bound drop is formed by N=30 atoms with preferred orbitals for open shells corresponding to maximum value of the spin.

  4. Doubly Distributed Transactions

    Energy Science and Technology Software Center (OSTI)

    2014-08-25

    Doubly Distributed Transactions (D2T) offers a technique for managing operations from a set of parallel clients with a collection of distributed services. It detects and manages faults. Example code with a test harness is also provided

  5. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  6. Building the Distribution Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Edison Quadrennial Energy Review Electricity Transmission, Storage and Distribution - West ... optimal locations, additional investment, and barriers to deployment of ...

  7. Hazards of explosives dusts: Particle size effects

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  8. FRIB cryogenic distribution system

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Knudsen, Peter N.; Arenius, Dana M.; Barrios, Matthew N.; Jones, S.; Johnson, M.; Casagrande, Fabio

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  9. DNA fragment sizing and sorting by laser-induced fluorescence

    DOE Patents [OSTI]

    Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.

    1996-01-01

    A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.

  10. Fuel cells in distributed generation

    SciTech Connect (OSTI)

    O'Sullivan, J.B.

    1999-07-01

    In the past the vertically integrated electric utility industry has not utilized Distributed Generation (DG) because it was viewed as competition to central station power production. Gas utilities have been heavily and aggressively involved in the promotion of gas fired DG because for them it is additional load that may also balance the winter load. With deregulation and restructuring of the electricity industry DG is now viewed in a different light. For those utilities that have sold their generation assets DG can be a new retail service to provide to their customers. For those who are still vertically integrated, DG can be an asset management tool at the distribution level. DG can be utilized to defer capital investments involving line and substation upgrades. Coupled to this new interest in DG technologies and their performance characteristics are the associated interests in implementation issues. These range from the codes and standards requirements and hardware for interfacing to the grid as well as C{sup 3}-I (command, control, communication--intelligence) issues. The latter involves dispatching on-grid or customer sited resources, monitoring their performance and tracking the economic transactions. Another important aspect is the impact of DG resources (size, number and location) on service area dynamic behavior (power quality, reliability, stability, etc.). EPRI has ongoing programs addressing all these aspects of DG and the distribution grid. Since fuel cells can be viewed as electrochemical engines, and as with thermomechanical engines, there doesn't have to be a best fuel cell. Each engine can serve many markets and some will be better suited than others in a specific market segment (e.g. spark ignition in cars and turbines in planes). This paper will address the status of developing fuel cell technologies and their application to various market areas within the context of Distributed Generation.

  11. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B

    SciTech Connect (OSTI)

    Roberts, G. C.; Day, D. A.; Russell, Lynn M.; Dunlea, E. J.; Jimenez, J. L.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Y.; Clarke, A. D.

    2010-07-20

    Measurements of cloud condensation nuclei (CCN), aerosol size distributions, and submicron aerosol composition were made as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign during spring 2006. Measurements were conducted from an aircraft platform over the northeastern Pacific and western North America with a focus on how the transport and evolution of Asian pollution across the Pacific Ocean affected CCN properties. A broad range of air masses were sampled and here we focus on three distinct air mass types defined geographically: the Pacific free troposphere (FT), the marine boundary layer (MBL), and the polluted continental boundary layer in the California Central Valley (CCV). These observations add to the few observations of CCN in the FT. CCN concentrations showed a large range of concentrations between air masses, however CCN activity was similar for the MBL and CCV ({kappa} {approx} 0.2-0.25). FT air masses showed evidence of long-range transport from Asia and CCN activity was consistently higher than for the boundary layer air masses. Bulk chemical measurements predicted CCN activity reasonably well for the CCV and FT air masses. Decreasing trends in {kappa} with organic mass fraction were observed for the combination of the FT and CCV air masses and can be explained by the measured soluble inorganic chemical components. Changes in hygroscopicity associated with differences in the non-refractory organic composition were too small to be distinguished from the simultaneous changes in inorganic ion composition in the FT and MBL, although measurements for the large organic fractions (0.6-0.8) found in the CCV showed values of the organic fraction hygroscopicity consistent with other polluted regions ({kappa}{sub org} {approx} 0.1-0.2). A comparison of CCN-derived {kappa} (for particles at the critical diameter) to H-TDMA-derived {kappa} (for particles at 100 nm diameter) showed similar trends, however the CCN-derived {kappa} values were significantly higher.

  12. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  13. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  14. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  15. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  16. Distribution of Correspondence

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-30

    Defines correct procedures for distribution of correspondence to the Naval Reactors laboratories. Does not cancel another directive. Expired 8-30-97.

  17. Single photon emission of a charge-tunable GaAs/Al{sub 0.25}Ga{sub 0.75}As droplet quantum dot device

    SciTech Connect (OSTI)

    Langer, Fabian Plischke, David; Kamp, Martin; Hfling, Sven

    2014-08-25

    In this work, we report the fabrication of a charge-tunable GaAs/Al{sub 0.25}Ga{sub 0.75}As quantum dot (QD) device containing QDs deposited by modified droplet epitaxy producing almost strain and composition gradient free QDs. We obtained a QD density in the low 10{sup 9?}cm{sup ?2} range that enables us to perform spectroscopy on single droplet QDs showing linewidths as narrow as 40??eV. The integration of the QDs into a Schottky diode allows us to controllably charge a single QD with up to four electrons, while non-classical photoluminescence is proven by photon auto-correlation measurements showing photon-antibunching (g{sup (2)}(0)?=?0.05).

  18. Phosphorus removal from slow-cooled steelmaking slags: Grain size determination and liberation studies

    SciTech Connect (OSTI)

    Fregeau-Wu, E.; Iwasaki, I.

    1995-07-01

    The major obstacle in recycling steelmaking slags to the blast furnace is their phosphorus content. Removal of the phosphorus, which is primarily associated with the silicate and phosphate phases, would allow for greater recycle of these slags for their iron, manganese, and lime contents. Calculations show that separation of the silicates from the oxide phases would remove nearly 90% of the phosphorus from the slag. The variable grain size of the as-received slag made liberation by fine grinding difficult. Therefore, slow-cooling experiments were undertaken to improve the grain size distribution. The grain size distributions were determined using in-situ image analysis. The samples were ground to their apparent liberation size and high gradient magnetic separation was used to separate the magnetic oxides from the nonmagnetic silicates and phosphates. Liberation analysis and modeling was performed on selected separation products for discussion of benefication characteristics.

  19. The Dependence of Cirrus Cloud-Property Retrievals on Size-Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Audit Report The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels DOE/IG-0863 April 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 25, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's $12.2 Billion Waste Treatment and

  20. Assessing the Importance of Using Biomodal Size Distribution for Ice Cloud Optical Property Parameterizations

    SciTech Connect (OSTI)

    Stackhouse, P. W.

    2006-03-31

    This report represents the final report for DE-AI02-0 IER63074. This work represented some follow-on work to that completed under DE-AI02-0 1 ER62669. The research reported here is undertaken in collaboration with Dr. David Mitchell of the Desert Research Institute in Reno, Nevada. The progress given here represents my contribution to his approach by providing radiative transfer expertise and calculations.

  1. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation

    SciTech Connect (OSTI)

    Venkatesan, Guru A.; Lee, Joonho; Farimani, Amir Barati; Heiranian, Mohammad; Collier, C. Patrick; Narayana, Aluru; Sarles, Stephen A.

    2015-11-10

    The droplet interface bilayer (DIB) is a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets and has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous dropletoil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: lipid-in, in which phospholipids in the form of liposomes are placed in water, and lipid-out, in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods and exhibit different success rates for bilayer formation. In our study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. Also, we clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and type are characterized.

  2. Particle impactor assembly for size selective high volume air sampler

    DOE Patents [OSTI]

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  3. Distribution Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable distributed generation Dispatchable distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response ...

  4. Distributed generation: Early markets for emerging technologies

    SciTech Connect (OSTI)

    Lenssen, N.; Cler, G.

    1999-11-01

    How will developers of emerging distributed generation technologies successfully commercialize their products. This paper presents one approach for these developers, borrowing from the experience of other developers of innovative technologies and services. E Source`s analysis suggests, however, that there is already more of a market for distributed generation than is generally recognized. US and Canadian firms already buy about 3,400 megawatts of small generators each year, mostly for backup power but some as the primary power source for selected loads and facilities. This demand is expected to double in 10 years. The global market for small generators is already more than 10 times this size, at some 40,000 megawatts per year, and it is expected to continue growing rapidly, especially in developing nations. Just how the emerging distributed generation technologies, such as microturbines, fuel cells, and Stirling engines compete-or surpass-the conventional technologies will have a huge impact on their eventual commercial success.

  5. Assessment of Available Particle Size Data to Support an Analysis of the Waste Feed Delivery System Transfer System

    SciTech Connect (OSTI)

    JEWETT, J.R.

    2000-08-10

    Available data pertaining to size distribution of the particulates in Hanford underground tank waste have been reviewed. Although considerable differences exist between measurement methods, it may be stated with 95% confidence that the median particle size does not exceed 275 {micro}m in at least 95% of the ten tanks selected as sources of HLW feed for Phase 1 vitrification in the RPP. This particle size is recommended as a design basis for the WFD transfer system.

  6. " Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",562.6,4.7,2.4 ," 50-99",673.1,5.1,2.4 ," 100-249",1072.799927,6.459656809,2.981380066 ," ...

  7. " Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",507.3,6.7,3.4,2.6 ," 50-99",561.6,6.7,3.2,3 ," 100-249",913.6,9.2,4.4,2 ," ...

  8. Morphological changes in ultrafast laser ablation plumes with varying spot size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; Phillips, M. C.

    2015-06-04

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 ?m. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmoreclearly show that the morphological changes in the plume with spot size are independent of laser pulse width.less

  9. Distributed Wind Energy Workshop

    Broader source: Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  10. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  11. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  12. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. domestic coal distribution by coal origin, coal destination, mode of transportation ... YearQuarters By origin State By destination State Report Data File Report Data File 2009 ...

  13. Domestic and Foreign Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. Coal by State of Origin, 2008 Final May 2010 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2008 (Thousand Short Tons) State Region Domestic Foreign...

  14. Distributed Energy Resource Program

    Broader source: Energy.gov [DOE]

    Note: A series of orders issued on July 15, 2015 in  Docket 2015-53-E, Docket 2015-54-E, and Docket 2015-55-E approved the incentive programs for South Carolina's Distributed Energy Resource...

  15. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  16. Investigations of initiation spot size effects

    SciTech Connect (OSTI)

    Clarke, Steven A; Akinci, Adrian A; Leichty, Gary; Schaffer, Timothy; Murphy, Michael J; Munger, Alan; Thomas, Keith A

    2010-01-01

    As explosive components become smaller, a greater understanding of the effect of initiation spot size on detonation becomes increasingly critical. A series of tests of the effect of initiation spot size will be described. A series of DOI (direct optical initiation) detonators with initiation spots sizes from {approx}50 um to 1000um have been tested to determine laser parameters for threshold firing of low density PETN pressings. Results will be compared with theoretical predictions. Outputs of the initiation source (DOI ablation) have been characterized by a suite of diagnostics including PDV and schlieren imaging. Outputs of complete detonators have been characterized using PDV, streak, and/or schlieren imaging. At present, we have not found the expected change in the threshold energy to spot size relationship for DOI type detonators found in similar earlier for projectiles, slappers and EBWs. New detonators designs (Type C) are currently being tested that will allow the determination of the threshold for spot sizes from 250 um to 105um, where we hope to see change in the threshold vs. spot size relationship. Also, one test of an extremely small diameter spot size (50um) has resulted in preliminary NoGo only results even at energy densities as much as 8 times the energy density of the threshold results presented here. This gives preliminary evidence that 50um spot may be beyond the critical initiation diameter. The constant threshold energy to spot size relationship in the data to date does however still give some insight into the initiation mechanism of DOI detonators. If the DOI initiation mechanism were a 1D mechanism similar to a slapper or a flyer impact, the expected inflection point in the graph would have been between 300um and 500um diameter spot size, within the range of the data presented here. The lack of that inflection point indicates that the DOI initiation mechanism is more likely a 2D mechanism similar to a sphere or rod projectile. We expect to see a three region response as the results from the smaller spot size Type C detonators are completed.

  17. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    SciTech Connect (OSTI)

    Boedicker, J.; Li, L; Kline, T; Ismagilov, R

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  18. Sizing a New Water Heater | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sizing a New Water Heater Sizing a New Water Heater Is your water heater the right size for you house? | Photo credit ENERGY STAR Is your water heater the right size for you ...

  19. Top 10 Things You Didn't Know About Distributed Wind Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Distributed Wind Power Top 10 Things You Didn't Know About Distributed Wind Power August 10, 2015 - 8:20am Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Mid-Sized Distributed Wind: Two mid-sized

  20. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Physics, Information Theory and Cloud Droplet Size Distributions Y. Liu and P. H. Daum Brookhaven National Laboratory Atmospheric Sciences Division Upton, New York Introduction Specification of cloud droplet size distributions is essential for the calculation of radiation transfer in clouds and cloud-climate interactions, and for remote sensing of cloud properties. Despite the effort and progress made over the last few decades, a number of vital issues remain unsolved. For example,

  1. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne; Dunson, David

    2008-06-03

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  2. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne; Dunson, David

    2006-08-08

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  3. Size separation of analytes using monomeric surfactants

    DOE Patents [OSTI]

    Yeung, Edward S.; Wei, Wei

    2005-04-12

    A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.

  4. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect (OSTI)

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  5. Distributed Sensors Simulator

    Energy Science and Technology Software Center (OSTI)

    2003-08-30

    The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for distributed sensor networks without the commitment inherent in using hardware. The flexibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness, and scaling issues; explore arbitrary algorithms for DSNs; and is particularly useful as a proof-of-concept tool. The user provides data on node location and specifications, defines event phenomena, and plugs in the application(s)more » to run. DSS in turn provides the virtual environmental embedding — but exposed to the user like no true embedding could ever be.« less

  6. Neutron and weak-charge distributions of the 48Ca nucleus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; Papenbrock, Thomas F.; Bacca, S.; Barnea, Nir; Carlsson, Boris; Drischler, Christian; Hebeler, Kai; Hjorth-Jensen, M.; et al

    2015-11-02

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less

  7. Power-law and exponential rank distributions: A panoramic Gibbsian perspective

    SciTech Connect (OSTI)

    Eliazar, Iddo

    2015-04-15

    Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.

  8. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Venkatesan, Guru A.; Lee, Joonho; Farimani, Amir Barati; Heiranian, Mohammad; Collier, C. Patrick; Narayana, Aluru; Sarles, Stephen A.

    2015-11-10

    The droplet interface bilayer (DIB) is a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets and has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet–oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: “lipid-in”, in which phospholipids in the form of liposomes are placed in water, and “lipid-out”, in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods andmore » exhibit different success rates for bilayer formation. In our study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. Also, we clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and type are characterized.« less

  9. NREL Distributes Wind Competitiveness Improvement Project Round Four

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding - News Releases | NREL NREL Distributes Wind Competitiveness Improvement Project Round Four Funding May 13, 2016 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) is awarding four subcontracts under the fourth round of funding through DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help manufacturers of small and mid-size wind turbines improve their turbine design and manufacturing processes while reducing costs and improving

  10. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  11. Aerosol distribution apparatus

    DOE Patents [OSTI]

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  12. Distributed Energy Projects

    Broader source: Energy.gov [DOE]

    At the National Clean Energy Summit 8.0 in Nevada, President Obama announced that the Loan Programs Office (LPO) has issued guidance for potential applicants on the kinds of Distributed Energy Projects it can support, in the form of supplements to its existing Renewable Energy and Efficient Energy (REEE) Projects and Advanced Fossil Energy Projects solicitations.

  13. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Foreign Distribution of U.S. Coal by State of Origin, 2001 State Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143...

  14. Distribution Category: Water R

    Office of Scientific and Technical Information (OSTI)

    Distribution Category: Water R e a c t o r Safety- R e s e a r c h - - A n a l y s i s ... 8 10 I TOTAL VOLUMETRIC FLUX, ms Fig. 9. Fully Developed Air-Water Flow Data.30 ANL Neg. ...

  15. " Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",395.7,4.3,2.3,3.6 ," 50-99",663.4,6.8,3.3,5 ," 100-249",905.8,7.9,3.8,3.6 ," 250-499",1407.1,11.1,5....

  16. " Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",625.5,3.3,1.7 ," 50-99",882.3,5.8,2.5 ," 100-249",1114.9,5.8,2.5 ," 250-499",2250.4,8,3.7 ," ...

  17. Annual Emergency Preparedness Grant Distributed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Emergency Preparedness Grant Distributed The Emergency Preparedness Working Group (EPWG) recently came together to distribute approximately 415,000 in grant funding for ...

  18. Size-dependent structure of silver nanoparticles under high pressure

    SciTech Connect (OSTI)

    Koski, Kristie Jo

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  19. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon 2012_distributed_wind_technologies_market_report.pdf More Documents & Publications

  20. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications The 2012 Market Report on U.S. Wind Technologies in Distributed Applications is an annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon 2012

  1. Multipartite secure state distribution

    SciTech Connect (OSTI)

    Duer, W.; Briegel, H.-J.; Calsamiglia, J.

    2005-04-01

    We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum primitive. We show that in the presence of noisy quantum channels (and noisy control operations), any state chosen from the set of two-colorable graph states (Calderbank-Shor-Steane codewords) can be created with high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite entanglement purification, which we introduce in this paper, or by multipartite entanglement purification of enlarged states, which offers advantages over an alternative scheme based on standard channel purification and teleportation. The parties are thus provided with a secret resource of their choice for distributed secure applications.

  2. Properly Understanding the Impacts of Distributed Resources on Distribution Systems

    SciTech Connect (OSTI)

    Rizy, D Tom; Li, Fangxing; Li, Huijuan; Adhikari, Sarina; Kueck, John D

    2010-01-01

    The subject paper discusses important impacts of distributed resources on distribution networks and feeders. These include capacity, line losses, voltage regulation, and central system support (such as volt/var via central generators and substation) as the number, placement and penetration levels of distributed resources are varied. Typically, the impacts of distributed resources on the distribution system are studied by using steady-state rather than dynamic analysis tools. However, the response time and transient impacts of both system equipment (such as substation/feeder capacitors) and distributed resources needs to be taken into account and only dynamic analysis will provide the full impact results. ORNL is wrapping up a study of distributed resources interconnected to a large distribution system considering the above variables. A report of the study and its results will be condensed into a paper for this panel session. The impact of distributed resources will vary as the penetration level reaches the capacity of the distribution feeder/system. The question is how high of a penetration of distributed resource can be accommodated on the distribution feeder/system without any major changes to system operation, design and protection. The impacts most surely will vary depending upon load composition, distribution and level. Also, it is expected that various placement of distributed resources will impact the distribution system differently.

  3. Symmetric generalized binomial distributions

    SciTech Connect (OSTI)

    Bergeron, H.; Curado, E. M. F.; Instituto Nacional de Cincia e Tecnologia - Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ ; Gazeau, J. P.; APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris Cit, 75205 Paris ; Rodrigues, Ligia M. C. S. E-mail: evaldo@cbpf.br E-mail: ligia@cbpf.br

    2013-12-15

    In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.

  4. MEMORANDUM FOR DISTRIBUTION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Department of Energy Washington, DC 20585 December 20, 2007 MEMORANDUM FOR DISTRIBUTION FROM: MICHAEL W. OWEN /<f /c / DIRECTOR, OFFICE OF LEGACY MANAGEM.ENT SUBJECT: Compliance with Established Policies and Guidance for Contractor Work Force Restructuring As you know, the Office of Legacy Management (LM) is the Department's fical point for all work force restructuring actions. As a reminder of policies and guidance that should continue to be followed when implementing work force

  5. Distributed generation implementation guidelines

    SciTech Connect (OSTI)

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  6. U.S. Distributed Wind Sector Finds Support from NREL

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-02-02

    Small and mid-sized wind turbine manufacturers in the United States have led the international distributed wind market in installed capacity for decades. Continued reductions in the cost of distributed wind systems are essential to successfully compete with currently economical photovoltaic systems. Annual capacity additions in 2013 were particularly low. In an effort to reduce the levelized cost of energy (LCOE) of distributed wind systems manufactured in the United States, the U.S. Department of Energy (DOE) has provided funding through the National Renewable Energy Laboratory (NREL) to support several projects.

  7. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer

    SciTech Connect (OSTI)

    Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; Sarles, Stephen A.

    2015-08-05

    In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow for determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.

  8. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  9. Method of making metal oxide ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1992-01-01

    A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  10. Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator

    SciTech Connect (OSTI)

    Godin, Michel; Bryan, Andrea K.; Burg, Thomas P.; Babcock, Ken; Manalis, Scott R.

    2007-09-17

    We demonstrate the measurement of mass, density, and size of cells and nanoparticles using suspended microchannel resonators. The masses of individual particles are quantified as transient frequency shifts, while the particles transit a microfluidic channel embedded in the resonating cantilever. Mass histograms resulting from these data reveal the distribution of a population of heterogeneously sized particles. Particle density is inferred from measurements made in different carrier fluids since the frequency shift for a particle is proportional to the mass difference relative to the displaced solution. We have characterized the density of polystyrene particles, Escherichia coli, and human red blood cells with a resolution down to 10{sup -4} g/cm{sup 3}.

  11. Small- and Medium-Size Building Automation and Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Michael ...

  12. Real-Time Simultaneous Measurements of Size, Density, and Composition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of ...

  13. Reduce Pumping Costs Through Optimum Pipe Sizing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Pumping Costs Through Optimum Pipe Sizing This tip sheet discusses how to reduce pumping system costs through optimum pipe sizing. PUMPING SYSTEMS TIP SHEET 9 PDF icon ...

  14. Scalable Heuristics for Planning, Placement and Sizing of Flexible...

    Office of Scientific and Technical Information (OSTI)

    Sizing of Flexible AC Transmission System Devices Citation Details In-Document Search Title: Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission ...

  15. CBEI: Coordinating RTUs in Small and Medium Sized Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordinating RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: Coordinating RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review ...

  16. Sandia Energy - Self-Regulated Fabrication of Size-Controlled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Regulated Fabrication of Size-Controlled Quantum Nanostructures Home Highlights - Energy Research Self-Regulated Fabrication of Size-Controlled Quantum Nanostructures Previous...

  17. Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Presentation given at DEER 2006, August 20-24, ...

  18. Small- and Medium-Size Building Automation and Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Emerging ...

  19. Magnetic agglomeration method for size control in the synthesis...

    Office of Scientific and Technical Information (OSTI)

    Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles Title: Magnetic agglomeration method for size control in the synthesis of magnetic ...

  20. Distributed Optimization System

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  1. Distribution Category: Water R

    Office of Scientific and Technical Information (OSTI)

    Distribution Category: Water R e a c t o r Safety- R e s e a r c h - - A n a l y s i s Development (NRG-4) A N L - 7 7 - 4 7 ARGONNE NATIONAL LABORATORY 9700 South C a s s Avenue Argonne, Illinois 60439 ONE-DIMENSIONAL D R I F T - F L U X MODEL AND CONSTITUTIVE EQUATIONS FOR RELATIVE MOTION BETWEEN PHASES IN VARIOUS TWO-PHASE FLOW REGIMES by M. Ishii Reactor Analysis and Safety Division October 1977 NOTICE This report was prepared as an account of work sponsored by the United States Government

  2. Spark Distributed Analytic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apache Spark Spark Distributed Analytic Framework Description and Overview Apache Spark(tm) is a fast and general engine for large-scale data processing. How to Use Spark Because of its high memory and I/O bandwidth requirements, we recommend you run your spark jobs on Cori. Follow the steps below to use spark, note that the order of the commands matters. DO NOT load the spark module until you are inside a batch job. Interactive mode Submit an interactive batch job with at least 2 nodes in the

  3. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect (OSTI)

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  4. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOE Patents [OSTI]

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  5. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A.

    1997-06-02

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  6. Particle size analysis in a turbid media with a single-fiber, optical probe while using a visible spectrometer

    DOE Patents [OSTI]

    Canpolat, Murat; Mourant, Judith R.

    2003-12-09

    Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.

  7. Distributed charging of electrical assets

    DOE Patents [OSTI]

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  8. Distributed road assessment system

    DOE Patents [OSTI]

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  9. DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK

    DOE Patents [OSTI]

    Bell, P.R. Jr.

    1958-10-21

    An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.

  10. Offshore Lubricants Market Size | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Size Home There are currently no posts in this category. Syndicate content...

  11. Coal Fired Power Generation Market Size | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Size Home There are currently no posts in this category. Syndicate...

  12. Integrated Distribution Planning Concept Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Planning Concept Paper www.irecusa.org A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources May 2013 Integrated Distribution Planning Concept Paper A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources Tim Lindl and Kevin Fox Interstate Renewable Energy Council, Inc. Abraham Ellis and Robert Broderick Sandia National Laboratories May 2013 IREC enables greater use of clean energy in a sustainable way by

  13. Interconnection of Distributed Energy Resources

    Energy Savers [EERE]

    Interconnection of Distributed Energy Resources Delivered to: Transmission and Grid Basics for Tribal Economic and Energy Development Dave Narang Principal Engineer, NREL March 30, 2016 2 Discussion Topics * Distribution System Interconnections - Part 1 o Background o Distribution Systems Overview o Electric Utility Operations o Emerging Topics in Grid Integration o DOE Grid Modernization Initiative * Distribution System Interconnections - Part 2 o Permitting o Interconnection * Wrap up o

  14. Sizing a New Water Heater | Department of Energy

    Energy Savers [EERE]

    Heat & Cool » Water Heating » Sizing a New Water Heater Sizing a New Water Heater Is your water heater the right size for you house? | Photo credit ENERGY STAR® Is your water heater the right size for you house? | Photo credit ENERGY STAR® A properly sized water heater will meet your household's hot water needs while operating more efficiently. Therefore, before purchasing a water heater, make sure it's the correct size. Here you'll find information about how to size these systems:

  15. New program sizes pressure-relief drums

    SciTech Connect (OSTI)

    Durand, A.A.; Osorio, R.A.; Suarez, R.H.

    1996-05-06

    In accordance with API Recommended Practice 521, a new procedure has been developed for the design of relief drums. The calculation method determines by convergence the most economical length-to-diameter ratio for gas-liquid separation vessels. Drum sizing is based on the separation of a two-phase stream, taking into account the special condition of intermittent flow. Design parameters such as settling velocity and residence time also must be calculated to determine an optimum design. A new program based on a programmable algorithm can be converted from basic language to any other computer language to facilitate vessel-design computations. The program quickly and efficiently computes design values for relief systems used in refineries and petrochemical plants.

  16. Measurement of the soot concentration and soot particle sizes in propane oxygen flames

    SciTech Connect (OSTI)

    Bockhorn, H.; Fetting, F.; Meyer, U.; Reck, R.; Wannemacher, G.

    1981-01-01

    Soot concentrations and particle sizes were measured by light scattering and probe measurements in the burnt gas region of atmospheric pressure propane-oxygen flames and propane-oxygen flames to which hydrogen or ammonia were added. The results show that the soot concentrations in propane-oxygen flames, to which hydrogen is added are lower compared to propane-oxygen flames. The decrease of soot concentration is much stronger when ammonia is added. Associated with the reduction of soot concentration is a reduction of mean particle size of the soot particles and a lower breadth of the particle size distributions. Electron micrographs of soot particles from the probe measurements showed that soot particles from flames with high soot concentrations (propane oxygen flames) are aggregates with chain or cluster structure while the structure of the particles from flames with lower soot concentration (propane oxygen flames with hydrogen or ammonia added) is more compact. 24 refs.

  17. An instrument to measure extended particle size and velocity ranges in multiphase flows

    SciTech Connect (OSTI)

    Wood, C.P.; Hess, C.F.

    1995-12-31

    This paper describes a miniaturized particle sizing velocimeter developed and built by MetroLaser to measure the spatial and temporal distributions of particle size and velocity. The instrument is the first of its kind to utilize the pulse displacement technique (PDT) to measure particle size. PDT is based on the detection of scattered refraction and reflection pulses which sweep past a detector at different times as a particle traverses a narrow laser sheet. In conjunction with Mie scattering and a time-of-fight velocity measuring technique, the instrument provides detailed distributions of particle size from 2 {micro}m to 6,000 {micro}m in two optical configurations, and particle velocity from 0.5 m/s to 150 m/s. This paper summarizes the theoretical foundation of PDT which allows the calculation of particle diameter from various optical parameters such as refractive index and collection angle. An overview of the instrument is presented, followed by a brief description of the miniaturized optical probe. The processing of data is described and, lastly, the results of experimental studies are presented which verify the accuracy and versatility of the instrument.

  18. Chemical distribution in high-solids paint overspray aerosols

    SciTech Connect (OSTI)

    D'Arcy, J.B.; Chan, T.L. )

    1990-03-01

    The chemical composition of high-solids basecoat paint overspray aerosols was determined as a function of particle size. Detailed information on the chemical composition of the overspray aerosols is important in health hazard evaluation since the composition and distribution within the airborne particles may differ significantly from the bulk paint material. This study was conducted in a typical down-draft paint booth equipped with air-atomized spray painting equipment. A fixed paint target was used to simulate typical overspray generation conditions and the aerosols were collected isokinetically with a seven-stage cascade impactor for size-fractionated analysis. The overspray aerosol from six paints consisted of organic paint binders with varying amounts of inorganic species as pigments or luster enhancers. These overspray aerosols had mass median aerodynamic diameters (MMAD) ranging from 2.9 to 9.7 microns. The size-fractionated paint samples collected on the impaction stages were analyzed by energy dispersive X-ray spectrometry on a scanning electron microscope (SEM-EDXRS) to identify the metallic elements. Atomic absorption spectrometry was used to determine the mass distribution of aluminum and iron as indicators of nonuniform distribution. Three of the aerosols containing aluminum were found to have bimodal distributions with most aluminum distributions having cumulative MMADs larger than the total aerosol. Iron in the aerosols was bimodal for three of the paints with all samples having an overall iron MMAD less than or equal to the overspray aerosol MMAD. Analysis using ultraviolet spectrometry revealed that the organic compounds present in the size-fractionated particulate samples consisted of a single, polydispersed mode with an MMAD similar to that of the total overspray aerosol.

  19. Distributed Merge Trees

    SciTech Connect (OSTI)

    Morozov, Dmitriy; Weber, Gunther

    2013-01-08

    Improved simulations and sensors are producing datasets whose increasing complexity exhausts our ability to visualize and comprehend them directly. To cope with this problem, we can detect and extract significant features in the data and use them as the basis for subsequent analysis. Topological methods are valuable in this context because they provide robust and general feature definitions. As the growth of serial computational power has stalled, data analysis is becoming increasingly dependent on massively parallel machines. To satisfy the computational demand created by complex datasets, algorithms need to effectively utilize these computer architectures. The main strength of topological methods, their emphasis on global information, turns into an obstacle during parallelization. We present two approaches to alleviate this problem. We develop a distributed representation of the merge tree that avoids computing the global tree on a single processor and lets us parallelize subsequent queries. To account for the increasing number of cores per processor, we develop a new data structure that lets us take advantage of multiple shared-memory cores to parallelize the work on a single node. Finally, we present experiments that illustrate the strengths of our approach as well as help identify future challenges.

  20. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    SciTech Connect (OSTI)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2012-11-10

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  1. Feedback mechanism for smart nozzles and nebulizers

    DOE Patents [OSTI]

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  2. Distributed Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  3. Distribution of Clokey's Eggvetch

    SciTech Connect (OSTI)

    David C. Anderson

    1998-12-01

    The Environment, Safety and Health Division of the U.S. Department of Energy, Nevada Operations Office implements the Ecological Monitoring and Compliance Program on the Nevada Test Site (NTS). This program ensures compliance with applicable environmental laws and regulations, delineates and describes NTS ecosystems, and provides ecological information for predicting and evaluating potential impacts of proposed projects on those ecosystems. Over the last several decades, has taken an active role in providing information on the tatus of plant species proposed for protection under the Endangered Species Act(ESA). One such species is Clokey's eggvetch (Astragalus oophorus var. clokeyanus), which is a candidate species under the listing guidelines of the ESA. Surveys for this species were conducted on the NTS in 1996, 1997, and 1998. Field surveys focused on potential habitat for this species in the southern Belted range and expanded to other areas with similar habitat. Over 30 survey day s were completed; five survey days in 1996, 25 survey days in 1997, and three survey days in 1998. Clokey's eggvetch was located at several sites in the southern Belted Range. It was found through much of the northern section of Kawich Canyon, one site at the head of Gritty Gulch, and a rather extensive location in Lambs Canyon. It was also located further south at Captain Jack Springs in the Eleana Range, in much of Falcon Canyon and around Echo Peak on Pahute Mesa, and was also found in the Timber and Shoshone Mountains. Overall, the locations of Clokey's eggvetch on the NTS appears to form a distinct bridge between populations of the species located further north in the Belted and Kawich Ranges and the population located in the Spring Mountains. Clokey's eggvetch was commonly found along washes and small draws, and typically in sandy loam soils with a covering of light tuffaceous rock. It occurs primarily above 1830 meters (6000 feet) in association with single-leaf pinyon (Pinus monophylla), Utah juniper (Juniperus osteosperma), and big sagebrush (Artemisia tridentata ssp. tridentata). Overall, the populations of Clokey's eggvetch on the NTS appear to be vigorous and do not appear threatened. It is estimated that there are approximately 2300 plants on the NTS. It should be considered as a species of concern because of its localized distribution, but it does not appear to warrant protection under the ESA.

  4. Incentivizing Distributed Solar: Best Practices (Presentation)

    SciTech Connect (OSTI)

    Bird, L.; Reger, A.

    2013-06-01

    The presentation discussed findings of a recent NREL technical report on best practices for designing and implementing incentives for small and mid-sized residential and commercial distributed solar energy projects. Topics covered included: factors to consider in setting and modifying incentive levels over time, differentiating incentives to encourage various market segments, and administrative issues such as providing equitable access to incentives and customer protection. In addition, the presentation explored how incentive programs can be designed to respond to changing market conditions while attempting to provide a longer-term and stable environment for the solar industry. The findings of the report were based on interviews with program administrators, regulators, and industry representatives as well as data from numerous incentive programs nationally, particularly the largest and longest-running programs.

  5. Rotary seal with improved film distribution

    DOE Patents [OSTI]

    Dietle, Lannie Laroy; Schroeder, John Erick

    2015-09-01

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  6. Rotary seal with improved film distribution

    DOE Patents [OSTI]

    Dietle, Lannie Laroy; Schroeder, John Erick

    2013-10-08

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  7. Solar Trackers Market Size | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Size Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  8. CBEI: AHU FDD in Small and Medium Sized Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHU FDD in Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: AHU FDD in Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Jin Wen, Drexel ...

  9. Global Nuclear Energy Partnership Triples in Size to 16 Members...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Triples in Size to 16 Members Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On...

  10. Distributed Bio-Oil Reforming

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Robert Evans at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  11. AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION

    Broader source: Energy.gov [DOE]

    The agenda for the Quadrennial Energy Review (QER) public stakeholder meeting in New Orleans on petroleum product transmission, distribution, and storage.

  12. Distribution Drive | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Distribution Drive Place: Dallas, Texas Zip: 75205 Product: Biodiesel fuel distributor. Coordinates: 32.778155, -96.795404 Show Map Loading map......

  13. Singularities of Generalized Parton Distributions

    SciTech Connect (OSTI)

    Anatoly Radyushkin

    2012-05-14

    The basic ideas of the theory of Generalized Parton Distributions (GPDs) are reviewed. Recent developments in the study of singularities of GPDs are discussed.

  14. Distributed Wind | Open Energy Information

    Open Energy Info (EERE)

    facility's anaerobic digesters. Photo from Kathryn Craddock, NREL 16710 Distributed wind energy systems provide clean, renewable power for on-site use and help relieve...

  15. 2013 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orrell, A. C.

    2014-08-15

    This report describes the status of the U.S. distributed wind industry in 2013; its trends, performance, market drivers and future outlook.

  16. 2013 Distributed Wind Market Report

    Broader source: Energy.gov [DOE]

    This report describes the status of the U.S. distributed wind market in 2013; its trends, performance, market drivers and future outlook.

  17. Method for determining aerosol particle size device for determining aerosol particle size

    DOE Patents [OSTI]

    Novick, Vincent J.

    1998-01-01

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

  18. Quantum-size-controlled photoelectrochemical etching of semiconductor

    Office of Scientific and Technical Information (OSTI)

    nanostructures (Patent) | SciTech Connect Patent: Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures Citation Details In-Document Search Title: Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be

  19. Synthesis and Size-Dependent Crystallization of Colloidal Germanium

    Office of Scientific and Technical Information (OSTI)

    Telluride (Journal Article) | SciTech Connect Synthesis and Size-Dependent Crystallization of Colloidal Germanium Telluride Citation Details In-Document Search Title: Synthesis and Size-Dependent Crystallization of Colloidal Germanium Telluride Colloidal nanocrystals have long been used to study the dependence of phase stability and transitions on size. Both structural phase stability and phase transitions change dramatically in the nanometre size regime where the surface plays a significant

  20. Annual Coal Distribution Report - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    current Coal Distribution Report Annual Coal Distribution Report Release Date: April 8, 2016 | Next Release Date: December 2016 | full report Archive Domestic coal distribution by ...

  1. Hydrogen Pathway Cost Distributions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Cost Distributions Hydrogen Pathway Cost Distributions Presentation on hydrogen pathway cost distributions presented January 25, 2006. PDF icon wkshpstorageuihlein.pdf...

  2. Articles about Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles about Distributed Wind Articles about Distributed Wind Below are stories about distributed wind featured by the U.S. Department of Energy (DOE) Wind Program. October 1,...

  3. Distributed Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Distributed Power Inc Place: Lime Rock, Connecticut Zip: 6039 Product: Focused on distributed generation power technology. References: Distributed Power Inc1 This article is a...

  4. Distributed Energy Projects | Department of Energy

    Office of Environmental Management (EM)

    Distributed Energy Projects Distributed Energy Projects Distributed Energy Projects At the National Clean Energy Summit 8.0 in Nevada, President Obama announced that the Loan...

  5. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; Westover, Tyler L.

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  6. Pseudodynamic planning for expansion of power distribution sytems

    SciTech Connect (OSTI)

    Ramirez-Rosado, I.J. ); Gonen, T. )

    1991-02-01

    This paper presents basic and extended planning models, based on a pseudodynamic methodology, to solve the global expansion problem (sizing, locating, and timing) of distribution substations and feeders throughout the planning time period. The objective functions, that represent the expansion costs, are minimized by successive concatenated optimizations subject to the Kirchhoff's current law, power capacity limits and logical constraints, in the basic model. It also presents an extended model that is obtained by including the voltage drop constraints in the basic model.

  7. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  8. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, D.

    1997-03-18

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

  9. Distributed Wind Policy Comparison Tool

    Broader source: Energy.gov [DOE]

    DOE funded "Best Practices for Cost-Effective Distributed Wind" to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth).

  10. 2014 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  11. Distribution System Voltage Regulation by Distributed Energy Resources

    SciTech Connect (OSTI)

    Ceylan, Oguzhan; Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2014-01-01

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  12. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    SciTech Connect (OSTI)

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; Laan, G. van der; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-08-02

    The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form.

  13. E-H heating mode transition in inductive discharges with different antenna sizes

    SciTech Connect (OSTI)

    Lee, Hyo-Chang Chung, Chin-Wook

    2015-05-15

    The spatial distribution of plasma density and the transition power for capacitive (E) to inductive (H) mode transition are studied in planar type inductively coupled plasmas with different antenna sizes. The spatial plasma distribution has a relatively flat profile at a low gas pressure, while the plasma profile is affected by the antenna size at higher gas pressure. The transition power for the E to H mode transition is shown to be critically affected by the antenna size. When the discharge is sustained by a small one-turn antenna coil, the transition power has a minimum value at Ar gas of 20 mTorr. However, the minimum transition power is shown at a relatively high gas pressure (40–60 mTorr) in the case of a large one-turn antenna coil. This change in the transition power can be understood by the thermal transport of the energetic electrons with non-local kinetics to the chamber wall. This non-local kinetic effect indicates that the transition power can also increase even for a small antenna if the antenna is placed near the wall.

  14. Weld defect distributions in offshore structures and their influence on structural reliability

    SciTech Connect (OSTI)

    Rogerson, J.H.; Wong, W.K.

    1982-01-01

    Failure by fracture is a serious possible fracture mode of steel offshore structures particularly in hostile, low-temperature environments. Such fracture usually initiates from flaws in regions of stress concentration. For any probabilistic failure analysis to be credible, it is necessary to have a good estimate of the flaw size and distribution. For fixed steel platforms the important flaw size distribution is the distribution of defect height in welds in node connections. Previous work has shown that different structures have similar defect distributions which suggests that a function can be derived for the generality of such structures. Data has been analyzed relating to > 1000 m of weld in one North Sea structure. From this can be seen that a Weibull distribution is the appropriate function to use for defect height. Conclusions also are drawn about the required reliability of even an imperfect inspection and repair technique to significantly reduce failure probability.

  15. A versatile technique to minimize electrical losses in distribution feeders

    SciTech Connect (OSTI)

    Kyaruzi, A.L.

    1994-12-31

    This dissertation presents a method of minimizing electrical losses in radial distribution feeders by the use of shunt capacitors. The engineering benefits of reducing peak electrical power and energy losses are compared to the costs associated with the current engineering practice of buying, installing and servicing capacitor banks in the distribution feeders. The present analysis defines this cost-benefit problem and the formulation of the problem of nonuniform feeders with different wire gauges at various feeder sections. Standard utility capacitor bank sizes are used to give a more realistic model. An original computer solution methodology based on techniques developed for this study determines: (i) Whether it is economical to install compensating capacitor banks on a particular radial distribution feeder or not. (ii) The locations at which capacitor banks should be installed. (iii) The types and sizes of capacitor banks to be installed. (iv) The time setting of switched capacitor banks. The techniques have been applied to a typical radial distribution feeder in Dar-es-Salaam, Tanzania. The results and the engineering implications of this work are discussed and recommendations for the engineering community made.

  16. A high-entropy-wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012)

    SciTech Connect (OSTI)

    Kratz, Karl-Ludwig; Farouqi, Khalil; Mller, Peter E-mail: kfarouqi@lsw.uni-heidelberg.de

    2014-09-01

    Attempts to explain the source of r-process elements in our solar system (S.S.) by particular astrophysical sites still face entwined uncertainties, stemming from the extrapolation of nuclear properties far from stability, inconsistent sources of different properties (e.g., nuclear masses and ?-decay properties), and the poor understanding of astrophysical conditions, which are hard to disentangle. In this paper we present results from the investigation of r-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and ?-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to AME2003, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S.S. r-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between A ? 110 and {sup 209}Bi, as well as remaining deficiencies, are discussed in terms of the underlying spherical and deformed shell structure far from stability.

  17. Ultra-low-temperature reactions of C({sup 3}P{sub 0}) atoms with benzene molecules in helium droplets

    SciTech Connect (OSTI)

    Krasnokutski, Serge A. Huisken, Friedrich

    2014-12-07

    The reaction of carbon atoms with benzene has been investigated in liquid helium droplets at T = 0.37 K. We found an addition of the carbon atom to form an initial intermediate complex followed by a ring opening and the formation of a seven-membered ring. In contrast to a previous gas phase study, the reaction is frozen after these steps and the loss of hydrogen does not occur. A calorimetric technique was applied to monitor the energy balance of the reaction. It was found that more than 267 kJ mol{sup ?1} were released in this reaction. This estimation is in line with quantum chemical calculations of the formation energy of a seven-membered carbon ring. It is suggested that reactions of this kind could be responsible for the low abundance of small polycyclic aromatic hydrocarbon molecules in the interstellar medium. We also found the formation of weakly bonded water-carbon adducts, in which the carbon atom is linked to the oxygen atom of the water molecule with a binding energy of about 33.4 kJ mol{sup ?1}.

  18. Characteristics and sources of intermediate size particles in recovery boilers : final project report.

    SciTech Connect (OSTI)

    Baxter, Larry L.; Shaddix, Christopher R.; Verrill, Christopher L.; Wessel, Richard A.

    2005-02-01

    As part of the U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) Industries of the Future (IOF) Forest Products research program, a collaborative investigation was conducted on the sources, characteristics, and deposition of particles intermediate in size between submicron fume and carryover in recovery boilers. Laboratory experiments on suspended-drop combustion of black liquor and on black liquor char bed combustion demonstrated that both processes generate intermediate size particles (ISP), amounting to 0.5-2% of the black liquor dry solids mass (BLS). Measurements in two U.S. recovery boilers show variable loadings of ISP in the upper furnace, typically between 0.6-3 g/Nm{sup 3}, or 0.3-1.5% of BLS. The measurements show that the ISP mass size distribution increases with size from 5-100 {micro}m, implying that a substantial amount of ISP inertially deposits on steam tubes. ISP particles are depleted in potassium, chlorine, and sulfur relative to the fuel composition. Comprehensive boiler modeling demonstrates that ISP concentrations are substantially overpredicted when using a previously developed algorithm for ISP generation. Equilibrium calculations suggest that alkali carbonate decomposition occurs at intermediate heights in the furnace and may lead to partial destruction of ISP particles formed lower in the furnace. ISP deposition is predicted to occur in the superheater sections, at temperatures greater than 750 C, when the particles are at least partially molten.

  19. 2013 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF

    2014-08-20

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  20. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Bio-Oil Reforming R. Evans, S. Czernik, R. French, M. Ratcliff National ... GAS 7 BIOMASS BIO-OIL CHAR For reactor or export Gas recycle For fluidization or export ...

  1. Multiple complementary gas distribution assemblies

    DOE Patents [OSTI]

    Ng, Tuoh-Bin; Melnik, Yuriy; Pang, Lily L; Tuncel, Eda; Nguyen, Son T; Chen, Lu

    2016-04-05

    In one embodiment, an apparatus includes a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber and a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber. The first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber. The first gas passage is shaped as a first ring positioned within the processing chamber above the second gas passage that is shaped as a second ring positioned within the processing chamber. The gas distribution assemblies may be designed to have complementary characteristic radial film growth rate profiles.

  2. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  3. NREL: Distributed Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of two men in safety glasses working with electric equipment in a laboratory. NREL's distributed grid integration projects develop and test technologies, systems, and methods to interconnect variable renewable energy with the electric power grid. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our

  4. Double distributions and evolution equations

    SciTech Connect (OSTI)

    A.V. Radyushkin

    1998-05-01

    Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements < p{prime} {vert_bar}O(0,z){vert_bar}p > of quark and gluon light-cone operators. In their previous papers the authors used two types of nonperturbative functions parameterizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions F{sub {zeta}}(X;t). Here they discuss in more detail the double distributions (DD's) and evolution equations which they satisfy. They propose simple models for F(x,y;t=0) DD's with correct spectral and symmetry properties which also satisfy the reduction relations connecting them to the usual parton densities f(x). In this way, they obtain self-consistent models for the {zeta}-dependence of nonforward distributions. They show that, for small {zeta}, one can easily obtain nonforward distributions (in the X > {zeta} region) from the parton densities: F{sub {zeta}} (X;t=0) {approx} f(X{minus}{zeta}/2).

  5. EVIDENCE FOR (AND AGAINST) PROGENITOR BIAS IN THE SIZE GROWTH OF COMPACT RED GALAXIES

    SciTech Connect (OSTI)

    Keating, Stephanie K.; Abraham, Roberto G.; Schiavon, Ricardo; Graves, Genevieve; Damjanov, Ivana; Yan, Renbin; Newman, Jeffrey; Simard, Luc

    2015-01-01

    Most massive, passive galaxies are compact at high redshifts, but similarly compact massive galaxies are rare in the local universe. The most common interpretation of this phenomenon is that massive galaxies have grown in size by a factor of about five since redshift z = 2. An alternative explanation is that recently quenched massive galaxies are larger (a {sup p}rogenitor bias{sup )}. In this paper, we explore the importance of progenitor bias by looking for systematic differences in the stellar populations of compact early-type galaxies in the DEEP2 survey as a function of size. Our analysis is based on applying the statistical technique of bootstrap resampling to constrain differences in the median ages of our samples and to begin to characterize the distribution of stellar populations in our co-added spectra. The light-weighted ages of compact early-type galaxies at redshifts 0.5 < z < 1.4 are compared to those of a control sample of larger galaxies at similar redshifts. We find that massive compact early-type galaxies selected on the basis of red color and high bulge-to-total ratio are younger than similarly selected larger galaxies, suggesting that size growth in these objects is not driven mainly by progenitor bias, and that individual galaxies grow as their stellar populations age. However, compact early-type galaxies selected on the basis of image smoothness and high bulge-to-total ratio are older than a control sample of larger galaxies. Progenitor bias will play a significant role in defining the apparent size changes of early-type galaxies if they are selected on the basis of the smoothness of their light distributions.

  6. CBEI: Coordinating RTUs in Small and Medium Sized Commercial Buildings -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Peer Review | Department of Energy Coordinating RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: Coordinating RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Coordinating RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review More Documents & Publications Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Lessons

  7. SBA Increases Size Standards for Waste Remediation Services &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information/Admin Support | Department of Energy Increases Size Standards for Waste Remediation Services & Information/Admin Support SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support December 12, 2012 - 10:22am Addthis John H. Hale III John H. Hale III Director, Office of Small and Disadvantaged Business Utilization Earlier this week, the U.S. Small Business Administration announced that they have revised size definitions for small businesses in

  8. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    DOE Patents [OSTI]

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  9. Finite size effects in the static structure factor of dusty plasmas

    SciTech Connect (OSTI)

    Davletov, A. E. Yerimbetova, L. T.; Mukhametkarimov, Ye. S.; Ospanova, A. K.

    2014-07-15

    Based on the previously developed pseudopotential model of the dust particles interaction, which takes into account both the finite size and screening effects, the equilibrium distribution functions are investigated in a broad range of plasma parameters. The treatment stems entirely from the renormalization theory of plasma particles interactions which leads to the so-called generalized Poisson-Boltzmann equation. In particular, an analytical expression for the static structure factor of the dust particles is proposed and its non-monotonic behavior in the hyper-netted chain approximation is found in a specified domain of plasma parameters to indicate the formation of short- or even long-range order in the system.

  10. Solar Trackers Market - Global Industry Analysis, Size, Share...

    Open Energy Info (EERE)

    Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2010 - 2020 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture...

  11. CBEI - Coordinating RTUs in Small & Medium Sized Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    controls for SMSCBs (small and medium-size commercial buildings) are rarely implemented because of poor overall economics. Low-touch, low-cost control implementations are needed. ...

  12. Building America Webinar: HVAC Right-Sizing Part 1-Calculating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the key criteria required to create accurate heating and cooling load calculations. ... HVAC Right-Sizing Part 1: Calculating Loads ZERH Webinar: Low Load HVAC in Zero Energy ...

  13. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    kWh Summary The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy...

  14. Development of Model Filtration Media for Investigating Size...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Model Filtration Media for Investigating Size-Dependent Filtration Efficiency A novel method for fabricating custom porous filtration media for emission control has ...

  15. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation PDF icon ...

  16. Efficient Algorithm for Locating and Sizing Series Compensation...

    Office of Scientific and Technical Information (OSTI)

    Compensation Devices in Large Transmission Grids: Model Implementation We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating...

  17. Nano-sized structured layered positive electrode materials to...

    Office of Scientific and Technical Information (OSTI)

    positive electrode materials to enable high energy density and high rate capability lithium batteries Title: Nano-sized structured layered positive electrode materials to ...

  18. Property:Incentive/EligSysSize | Open Energy Information

    Open Energy Info (EERE)

    minimum
    Recycled Energy: 15 Megawatt maximum Alameda Municipal Power - Solar Photovoltaics Rebate Program (California) + Maximum size is 1 MW or 110% of customer's...

  19. Size and composition-controlled fabrication of VO2 nanocrystals...

    Office of Scientific and Technical Information (OSTI)

    by terminated cluster growth Citation Details In-Document Search Title: Size and composition-controlled fabrication of VO2 nanocrystals by terminated cluster growth You are ...

  20. Size and composition-controlled fabrication of VO2 nanocrystals...

    Office of Scientific and Technical Information (OSTI)

    by terminated cluster growth Citation Details In-Document Search Title: Size and composition-controlled fabrication of VO2 nanocrystals by terminated cluster growth A physical ...

  1. Neutrons measure phase behavior in pores at Angstrom size (Journal...

    Office of Scientific and Technical Information (OSTI)

    Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in ...

  2. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  3. Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma

    SciTech Connect (OSTI)

    Han, Lihao E-mail: A.H.M.Smets@tudelft.nl; Zeman, Miro; Smets, Arno H. M. E-mail: A.H.M.Smets@tudelft.nl

    2015-05-25

    The growth mechanism of silicon nanocrystals (Si NCs) synthesized at a high rate by means of expanding thermal plasma chemical vapor deposition technique are studied in this letter. A bimodal Gaussian size distribution is revealed from the high-resolution transmission electron microscopy images, and routes to reduce the unwanted large Si NCs are discussed. Photoluminescence and Raman spectroscopies are employed to study the size-dependent quantum confinement effect, from which the average diameters of the small Si NCs are determined. The surface oxidation kinetics of Si NCs are studied using Fourier transform infrared spectroscopy and the importance of post-deposition passivation treatments of hydrogenated crystalline silicon surfaces are demonstrated.

  4. Distribution:

    Office of Legacy Management (LM)

    bav@ @esiaw*cp Suppl. file 'Br & Div rf's shealth (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 ...

  5. Uncertainty in Modeling Dust Mass Balance and Radiative Forcing from Size Parameterization

    SciTech Connect (OSTI)

    Zhao, Chun; Chen, Siyu; Leung, Lai-Yung R.; Qian, Yun; Kok, Jasper; Zaveri, Rahul A.; Huang, J.

    2013-11-05

    This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the aerosol size parameterization. Simulations are conducted quasi-globally (180oW-180oE and 60oS-70oN) using the WRF24 Chem model with three different approaches to represent aerosol size distribution (8-bin, 4-bin, and 3-mode). The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode pproach retains more fine dust particles but fewer coarse dust particles due to its prescribed og of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days) on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (~6000 Tg yr-1), the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg) and 25% (49.1 Tg) higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (<10%) near the surface over the dust source regions. The three size approaches also result in significantly different dry and wet deposition fluxes and number concentrations of dust. The difference in dust aerosol optical depth (AOD) (a factor of 3) among the three size approaches is much larger than their difference (25%) in dust mass loading. Compared to the 8-bin approach, the 4-bin approach yields stronger dust absorptivity, while the 3-mode approach yields weaker dust absorptivity. Overall, on quasi-global average, the three size parameterizations result in a significant difference of a factor of 2~3 in dust surface cooling (-1.02~-2.87 W m-2) and atmospheric warming (0.39~0.96 W m-2) and in a tremendous difference of a factor of ~10 in dust TOA cooling (-0.24~-2.20 W m-2). An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size parameterizations, and motivates further investigation of the impact of size parameterizations on modeling dust impacts on air quality, climate, and ecosystem.

  6. Distributed resource management: garbage collection

    SciTech Connect (OSTI)

    Bagherzadeh, N.

    1987-01-01

    In recent years, there has been a great interest in designing high-performance distributed symbolic-processing computers. These architectures have special needs for resource management and dynamic reclamation of unused memory cells and objects. The memory management or garbage-collection aspects of these architectures are studied. Also introduced is a synchronous distributed algorithm for garbage collection. A special data structure is defined to handle the distributed nature of the problem. The author formally expresses the algorithm and shows the results of a synchronous garbage-collection simulation and its effect on the interconnection-network message to traffic. He presents an asynchronous distributed garbage collection to handle the resource management for a system that does not require a global synchronization mechanism. The distributed data structure is modified to include the asynchronous aspects of the algorithm. This method is extended to a multiple-mutator scheme, and the problem of having several processors share portion of a cyclical graph is discussed. Two models for the analytical study of the garbage-collection algorithms discussed are provided.

  7. Distributed Wind Policy Comparison Tool

    SciTech Connect (OSTI)

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE’s '20% Wind Energy by 2030' report and helping to meet COE targets.

  8. Method of producing submicron size particles and product produced thereby

    DOE Patents [OSTI]

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  9. CHARACTERIZATION OF HETEROGENEITIES AT THE RESERVOIR SCALE: SPATIAL DISTRIBUTION AND INFLUENCE ON FLUID FLOW

    SciTech Connect (OSTI)

    Michael R. Gross; Kajari Ghosh; Alex K. Manda; Sumanjit Aich

    2006-05-08

    The theory behind how chemically reactive tracers are used to characterize the velocity and temperature distribution in steady flowing systems is reviewed. Kinetic parameters are established as a function of reservoir temperatures and fluid residence times for selecting appropriate reacting systems. Reactive tracer techniques are applied to characterize the temperature distribution in a laminar-flow heat exchanger. Models are developed to predict reactive tracer behavior in fractured geothermal reservoirs of fixed and increasing size.

  10. Improved particle impactor assembly for size selective high volume air sampler

    DOE Patents [OSTI]

    Langer, G.

    1987-03-23

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.

  11. Nuclear design of small-sized high temperature gas-cooled reactor for developing countries

    SciTech Connect (OSTI)

    Goto, M.; Seki, Y.; Inaba, Y.; Ohashi, H.; Sato, H.; Fukaya, Y.; Tachibana, Y.

    2012-07-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries such as Kazakhstan in the 2020's. The nuclear design of the HTR50S is performed by upgrading the proven technology of the High Temperature Engineering Test Reactor (HTTR) to reduce the cost for the construction. In the HTTR design, twelve kinds of fuel enrichment was used to optimize the power distribution, which is required to make the maximum fuel temperature below the thermal limitation during the burn-up period. However, manufacture of many kinds of fuel enrichment causes increase of the construction cost. To solve this problem, the present study challenges the nuclear design by reducing the number of fuel enrichment to as few as possible. The nuclear calculations were performed with SRAC code system whose validity was proven by the HTTR burn-up data. The calculation results suggested that the optimization of the power distribution was reasonably achieved and the maximum fuel temperature was kept below the limitation by using three kinds of fuel enrichment. (authors)

  12. Method for producing solid or hollow spherical particles of chosen chemical composition and of uniform size

    DOE Patents [OSTI]

    Hendricks, Charles D.

    1988-01-01

    A method is provided for producing commercially large quantities of high melting temperature solid or hollow spherical particles of a predetermined chemical composition and having a uniform and controlled size distribution. An end (18, 50, 90) of a solid or hollow rod (20, 48, 88) of the material is rendered molten by a laser beam (14, 44, 82). Because of this, there is no possibility of the molten rod material becoming contaminated with extraneous material. In various aspects of the invention, an electric field is applied to the molten rod end (18, 90), and/or the molten rod end (50, 90) is vibrated. In a further aspect of the invention, a high-frequency component is added to the electric field applied to the molten end of the rod (90). By controlling the internal pressure of the rod, the rate at which the rod is introduced into the laser beam, the environment of the process, the vibration amplitude and frequency of the molten rod end, the electric field intensity applied to the molten rod end, and the frequency and intensity of the component added to the electric field, the uniformity and size distribution of the solid or hollow spherical particles (122) produced by the inventive method is controlled. The polarity of the electric field applied to the molten rod end can be chosen to eliminate backstreaming electrons, which tend to produce run-away heating in the rod, from the process.

  13. The dependence of cloud particle size and precipitation probability on non-aerosol-loading related variables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explaining and reducing the uncertainties in the first aerosol i Explaining and reducing the uncertainties in the first aerosol indirect effect ndirect effect Hongfei Shao and Guosheng Liu Meteorology Department, Florida State University INTRODUCTION INTRODUCTION Anthropogenic aerosols enhance cloud reflectance of solar radiation by increasing the cloud droplet number concentrations. This so-called first Aerosol Indirect Effect (AIE) has a potentially large cooling tendency on our planet.

  14. Alternative Fuels Data Center: Natural Gas Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Distribution to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Distribution on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Distribution on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Distribution on Google Bookmark Alternative Fuels Data Center: Natural Gas Distribution on Delicious Rank Alternative Fuels Data Center: Natural Gas Distribution on Digg Find More places to share Alternative Fuels Data Center: Natural Gas

  15. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

  16. Confined energy distribution for charged particle beams

    DOE Patents [OSTI]

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  17. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, ...

  18. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory ...

  19. Building a Smarter Distribution System in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PPL is installing a distribution management system (DMS), distribution automation (DA) ... allows PPL to move forward with future automation projects. "Lack of an advanced DMS was ...

  20. Hydrogen Transmission and Distribution Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Transmission and Distribution Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Hydrogen Transmission and Distribution ...

  1. US Solar Distributing | Open Energy Information

    Open Energy Info (EERE)

    Distributing Place: California Product: California-based distributor of PV modules, inverters, mounting systems and accessories. References: US Solar Distributing1 This article...

  2. Building America Webinar: Ductless Hydronic Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team...

  3. Structure Learning in Power Distribution Networks (Technical...

    Office of Scientific and Technical Information (OSTI)

    Structure Learning in Power Distribution Networks Citation Details In-Document Search Title: Structure Learning in Power Distribution Networks You are accessing a document from ...

  4. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helping Policymakers Evaluate Distributed Wind Options Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options...

  5. Distributed Energy Systems Corp | Open Energy Information

    Open Energy Info (EERE)

    Distributed Energy Systems Corp Jump to: navigation, search Name: Distributed Energy Systems Corp Place: Wallingford, Connecticut Zip: CT 06492 Product: The former holding company...

  6. IPCC Data Distribution Centre | Open Energy Information

    Open Energy Info (EERE)

    Data Distribution Centre Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IPCC Data Distribution Centre AgencyCompany Organization: World Meteorological Organization,...

  7. ARM - Data Sharing and Distribution Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DocumentationData Sharing and Distribution Policy Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan ...

  8. Fact Sheet: 2012 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Alice Orrell, Bret Barker

    2013-04-06

    This fact sheet summarizes findings from the forthcoming 2012 Distributed Wind Market Report, offering a snapshot of the distributed wind market based on 2012 data.

  9. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    Other Distributed Generation Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:...

  10. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect (OSTI)

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  11. Miniature heat pumps for portable and distributed space conditioning applications

    SciTech Connect (OSTI)

    Drost, M.K.; Friedrich, M.

    1997-12-31

    The Pacific Northwest National Laboratory (PNNL) is developing a miniature absorption heat pump for a range of microclimate control applications, including manportable cooling and distributed space conditioning. The miniature absorption heat pump will be sized to provide 350 W cooling, will have dimensions of 9 cm x 9 cm x 6 cm, and will weigh approximately 0.65 kg. Compared to a macroscale absorption heat pump, this represents reduction in volume by a factor of 60. A complete manportable cooling system including the heat pump, an air-cooled heat exchanger, batteries, and fuel is estimated to weight between 4 and 5 kg, compared to the 10 kg weight of alternative systems. Size and weight reductions are obtained by developing a device that can simultaneously take advantage of the high heat and mass transfer rates attainable in microscale structures while being large enough to allow electric powered pumping.

  12. A stochastic method for stand-alone photovoltaic system sizing

    SciTech Connect (OSTI)

    Cabral, Claudia Valeria Tavora; Filho, Delly Oliveira; Martins, Jose Helvecio; Toledo, Olga Moraes

    2010-09-15

    Photovoltaic systems utilize solar energy to generate electrical energy to meet load demands. Optimal sizing of these systems includes the characterization of solar radiation. Solar radiation at the Earth's surface has random characteristics and has been the focus of various academic studies. The objective of this study was to stochastically analyze parameters involved in the sizing of photovoltaic generators and develop a methodology for sizing of stand-alone photovoltaic systems. Energy storage for isolated systems and solar radiation were analyzed stochastically due to their random behavior. For the development of the methodology proposed stochastic analysis were studied including the Markov chain and beta probability density function. The obtained results were compared with those for sizing of stand-alone using from the Sandia method (deterministic), in which the stochastic model presented more reliable values. Both models present advantages and disadvantages; however, the stochastic one is more complex and provides more reliable and realistic results. (author)

  13. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0.036kWh Summary The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy...

  14. Model catalysis by size-selected cluster deposition

    SciTech Connect (OSTI)

    Anderson, Scott

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  15. 1999 Commercial Building Characteristics--Detailed Tables--Size...

    U.S. Energy Information Administration (EIA) Indexed Site

    Complete Set of 1999 CBECS Detailed Tables Detailed Tables- of Buildings Table B6. Building Size, Number of Buildings b6.pdf (PDF file), b6.xls (Excel spreadsheet file), b6.txt...

  16. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  17. Photoluminescent 1-2 nm sized silicon nanoparticles: A surface...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoluminescent 1-2 nm sized silicon nanoparticles: A surface-dependent system Authors: Romero, J.J., Llansola-Portols, M.J., Dell'Arciprete, M.L., Rodrguez, H.B., Moore,...

  18. Global Nuclear Energy Partnership Triples in Size to 16 Members...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On to International Cooperation for Safe Expansion of Nuclear ...

  19. TVA- Mid-Sized Renewable Standard Offer Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy generators between 50kW and 20MW to...

  20. Knowledge-based sizing of cogeneration plant in buildings

    SciTech Connect (OSTI)

    Williams, J.M.; Griffiths, A.J.; Knight, I.P.

    1998-10-01

    Cogeneration is now accepted as a cost-effective and environmentally friendly means of meeting some of a building`s heating and power needs. Cogeneration plants have been installed in many buildings throughout the United Kingdom. Because of commercial pressures, building owners and cogeneration companies are keen to reduce the time and money involved in sizing units, and a decision support tool has been developed to aid the engineer in selecting the unit size. An initial assessment of the sizing can be made with only knowledge of the building`s type, size, and location, which enables the model to be used in new build situations. For an existing building, the accuracy of the predictions can then be progressively improved by providing more information about the building`s energy use, enabling the optimum unit to be identified. This paper briefly describes the model and demonstrates its use through an example feasibility study.

  1. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation Green Power Providers Program by providing incentives for mid-sized renewable energy generators between 50kW and 20MW to enter into long term price contracts. The goal...

  2. Size Dependence of Two-Photon Absorption in Semiconductor Quantum...

    Office of Scientific and Technical Information (OSTI)

    In this work, we combine experiment and modeling to systematically investigate the size dependence of the degenerate two-photon absorption (TPA) of below-band-gap radiation in CdSe ...

  3. Distribution Integrity Management Plant (DIMP)

    SciTech Connect (OSTI)

    Gonzales, Jerome F.

    2012-05-07

    This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records for all piping system installed after the effective date of this Plan will be captured and retained in the UI records documentation system. Primary Utility Asbuilts are maintained by Utilities Mapping (UMAP) and additional records are maintained on the N drive. Engineering Change Notices (ECNs) are stored on the N drive under configuration management and kept up by Utilities and Infrastructure Division Office (UI-DO). Records include, at a minimum, the location where new piping and appurtenances are installed and the material of which they are constructed.

  4. Size Effects in the Electrochemical Alloying and Cycling of

    Office of Scientific and Technical Information (OSTI)

    Electrodeposited Aluminum with Lithium. (Journal Article) | SciTech Connect Size Effects in the Electrochemical Alloying and Cycling of Electrodeposited Aluminum with Lithium. Citation Details In-Document Search Title: Size Effects in the Electrochemical Alloying and Cycling of Electrodeposited Aluminum with Lithium. Abstract not provided. Authors: Hudak, Nicholas ; Huber, Dale L. Publication Date: 2011-10-01 OSTI Identifier: 1106948 Report Number(s): SAND2011-7589J 464917 DOE Contract

  5. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full-Size Electric Vehicle Specifications and Test Procedures AVTA: Full-Size Electric Vehicle Specifications and Test Procedures PDF icon EV America Test Specifications PDF icon ETA-TP001 Implementation of SAE Standard J1263, February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques PDF icon ETA-TP002 Implementation of SAE Standard J1666, May 1993 - Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure PDF icon

  6. Scalable Heuristics for Planning, Placement and Sizing of Flexible AC

    Office of Scientific and Technical Information (OSTI)

    Transmission System Devices (Technical Report) | SciTech Connect Technical Report: Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices Citation Details In-Document Search Title: Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices Aiming to relieve transmission grid congestion and improve or extend feasibility domain of the operations, we build optimization heuristics, generalizing standard AC Optimal

  7. Size selective absorption of DNA tetrahedra in ATO nanomaterials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size selective absorption of DNA tetrahedra in ATO nanomaterials 22 Jun 2011 A group of Center for Bio-inspired Solar Fuel Production researchers collaborating on Subtask 2 (Water oxidation catalyst) and Subtask 5 (Functional nanostructured transparent electrode materials) have found that transparent and conducting antimony tin oxide with controlled pore size incorporates DNA nanocages with high affinity and without damage. Results of the study have been published in the June 2011 issue of ACS

  8. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    1 Market Share of Major HVAC Equipment Manufacturers ($2009 Million) Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123 Source(s): Total Market Size BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

  9. UCRL-53311 Distribution Category UC-41 U C R L

    Office of Scientific and Technical Information (OSTI)

    311 Distribution Category UC-41 U C R L - - 5 3 3 1 1 DE83 0 0 8 4 3 9 Particle Size for Greatest Penetration of HEPA Filters- and Their True Efficiency R. A. da Roza Manuscript date: December 1,1982 DISCLAIMER This report was prepared as aa accouat of work spoasored by aa ageacy of the Uaited S u t e s Government. Neither the Unite? States Government aor aay ageacy thereof, aor aay of their employee*, makes aay warranty, CSI^N^M or implied, or assumes aay legal liability or rcspoaci- bilily for

  10. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  11. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    SciTech Connect (OSTI)

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.

  12. Secure key storage and distribution

    DOE Patents [OSTI]

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  13. Nation Radiobiology Archives Distributed Access

    Energy Science and Technology Software Center (OSTI)

    1992-06-01

    NRADA1.1 is a supplement to NRADA1.0. This version eliminates several bugs, and includes a few new features. The diskettes consist of a distributed subset of information representative of the extensive NRA databases and database access software maintained at the Pacific Northwest Laboratory which provide an introduction to the scope and style of the NRA Information Systems. Information in the NRA Summary, Inventory, and Bibliographic database is available upon request. Printed reports have been provided inmore » the past. The completion of the NRADA1.1 is the realization of a long standing goal of the staff and advisory committee. Information may be easily distributed to the user in an electronic form which preserves the relationships between the various databases.« less

  14. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Kravitz, Stanley H. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  15. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  16. Antenna structure with distributed strip

    DOE Patents [OSTI]

    Rodenbeck, Christopher T. (Albuquerque, NM)

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  17. Antenna structure with distributed strip

    DOE Patents [OSTI]

    Rodenbeck, Christopher T. (Albuquerque, NM)

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  18. Enhanced distributed energy resource system

    DOE Patents [OSTI]

    Atcitty, Stanley; Clark, Nancy H.; Boyes, John D.; Ranade, Satishkumar J.

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  19. Annual Coal Distribution Report 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 Annual Coal Distribution Report 2014 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as

  20. NREL: Distributed Grid Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a man in safety glasses working with laboratory equipment. NREL's distributed grid integration researchers conduct testing and evaluation at the one-of-a-kind Energy Systems Integration Facility. NREL researchers work on advanced approaches to grid interconnection and control technologies, energy management, and grid support applications by performing testing, data visualization, modeling and analysis, and developing standards and codes. Through these efforts, NREL helps

  1. Benchmark Distribution & Run Rules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rules Benchmark Distribution & Run Rules Applications and micro-benchmarks for the Crossroads/NERSC-9 procurement. You can find more information by clicking on the header for each of the topics listed below. Change Log Change and update notes for the benchmark suite. Application Benchmarks The following applications will be used by the Sustained System Improvement metric in measuring the performance improvement of proposed systems relative to NERSC's Edison platform. General Run Rules

  2. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. • Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. • Run timing for small-size fish (~65-90 mm) peaked (702 fish) on December 18. Downstream passage of small-size juvenile fish was variable, occurring on two days in the spring, eight days in the summer, and at times throughout late fall and winter. A total of 7,017 ± 690 small-size fish passed through the turbine penstock intakes during the study period. • Relatively few fish passed into the ROs when they were open in summer (2 fish/d) and winter (8 fish/d). • Fish were surface-oriented with 62-80% above 10 m deep. The highest percentage of fish (30-60%) was in the 5-10 m depth bin. We draw the following conclusions from the study. • The non-obtrusive hydroacoustic data from this study are reliable because passage estimates and patterns were similar with those observed in the direct capture data from the tailrace screw trap and were consistent with distribution patterns observed in other studies of juvenile salmonid passage at dams. • Fish passage at LOP was apparently affected but not dominated by dam operations and reservoir elevation. • The surface-oriented vertical distribution of fish we observed supports development of surface passage or collector devices. In summary, the high-resolution spatially and temporally data reported herein provide detailed estimates of vertical, horizontal, diel, daily, and seasonal passage and distributions at LOP during March 2010 through January 2011. This information is applicable to management decisions on design and development of surface passage and collections devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above Lookout Point Dam.

  3. Jefferson Lab's Distributed Data Acquisition

    SciTech Connect (OSTI)

    Trent Allison; Thomas Powers

    2006-05-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) occasionally experiences fast intermittent beam instabilities that are difficult to isolate and result in downtime. The Distributed Data Acquisition (Dist DAQ) system is being developed to detect and quickly locate such instabilities. It will consist of multiple Ethernet based data acquisition chassis distributed throughout the seven-eights of a mile CEBAF site. Each chassis will monitor various control system signals that are only available locally and/or monitored by systems with small bandwidths that cannot identify fast transients. The chassis will collect data at rates up to 40 Msps in circular buffers that can be frozen and unrolled after an event trigger. These triggers will be derived from signals such as periodic timers or accelerator faults and be distributed via a custom fiber optic event trigger network. This triggering scheme will allow all the data acquisition chassis to be triggered simultaneously and provide a snapshot of relevant CEBAF control signals. The data will then be automatically analyzed for frequency content and transients to determine if and where instabilities exist.

  4. Commercial % Sold by Local Distribution Companies

    Gasoline and Diesel Fuel Update (EIA)

    Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average Commercial Price Commercial Price - Local Distribution Companies Commerical Price - Marketers Commercial % Sold by Local Distribution Companies Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 View History District of

  5. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar May 23, 2012 | Department of Energy Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory Considerations for Developing Distributed Generation Projects. PDF icon regulatory_considerations_052312.pdf More Documents & Publications Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for

  6. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar May 23, 2012 | Department of Energy Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects PDF icon regulatory_considerations_052312.pdf More Documents & Publications Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory

  7. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect (OSTI)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  8. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.; Yamaguchi, K.

    1983-01-01

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  9. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect (OSTI)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  10. Invariant distributions on compact homogeneous spaces

    SciTech Connect (OSTI)

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting asub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  11. Modeling of stress distributions on the microstructural level in Alloy 600

    SciTech Connect (OSTI)

    Kozaczek, K.J.; Petrovic, B.G.; Ruud, C.O.; Mcllree, A.R.

    1995-04-01

    Stress distribution in a random polycrystalline material (Alloy 600) was studied using a topologically correct microstructural model. Distributions of von Mises and hydrostatic stresses at the grain vertices, which could be important in intergranular stress corrosion cracking, were analyzed as functions of microstructure, grain orientations and loading conditions. Grain size, shape, and orientation had a more pronounced effect on stress distribution than loading conditions. At grain vertices the stress concentration factor was higher for hydrostatic stress (1.7) than for von Mises stress (1.5). The stress/strain distribution in the volume (grain interiors) is a normal distribution and does not depend on the location of the studied material volume i.e., surface vs/bulk. The analysis of stress distribution in the volume showed the von Mises stress concentration of 1.75 and stress concentration of 2.2 for the hydrostatic pressure. The observed stress concentration is high enough to cause localized plastic microdeformation, even when the polycrystalline aggregate is in the macroscopic elastic regime. Modeling of stresses and strains in polycrystalline materials can identify the microstructures (grain size distributions, texture) intrinsically susceptible to stress/strain concentrations and justify the correctness of applied stress state during the stress corrosion cracking tests. Also, it supplies the information necessary to formulate the local failure criteria and interpret of nondestructive stress measurements.

  12. Distributed optimization system and method

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  13. 2014 Distributed Wind Market Report

    Energy Savers [EERE]

    5 2014 Distributed Wind Market Report PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov Available to the public from the National Technical Information Service 5301 Shawnee

  14. Universality of Charged Multiplicity Distributions

    SciTech Connect (OSTI)

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  15. 2014 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 2014 Distributed Wind Market Report PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov Available to the public from the National Technical Information Service 5301 Shawnee

  16. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  17. The CJ12 parton distributions

    SciTech Connect (OSTI)

    Accardi, Alberto; Owens, Jeff F.

    2013-07-01

    Three new sets of next-to-leading order parton distribution functions (PDFs) are presented, determined by global fits to a wide variety of data for hard scattering processes. The analysis includes target mass and higher twist corrections needed for the description of deep-inelastic scattering data at large x and low Q^2, and nuclear corrections for deuterium targets. The PDF sets correspond to three different models for the nuclear effects, and provide a more realistic uncertainty range for the d quark PDF compared with previous fits. Applications to weak boson production at colliders are also discussed.

  18. NREL: Distributed Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Distributed Grid Integration Home Capabilities Projects Research Staff Working with Us Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a

  19. ASYMMETRIC SOLAR WIND ELECTRON DISTRIBUTIONS

    SciTech Connect (OSTI)

    Yoon, Peter H.; Kim, Sunjung; Lee, Junggi; Lee, Junhyun; Park, Jongsun; Park, Kyungsun; Seough, Jungjoon [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hong, Jinhy [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2012-08-20

    The present paper provides a possible explanation for the solar wind electron velocity distribution functions possessing asymmetric energetic tails. By numerically solving the electrostatic weak turbulence equations that involve nonlinear interactions among electrons, Langmuir waves, and ion-sound waves, it is shown that different ratios of ion-to-electron temperatures lead to the generation of varying degrees of asymmetric tails. The present finding may be applicable to observations in the solar wind near 1 AU and in other regions of the heliosphere and interplanetary space.

  20. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2014 [Data Announcements] Droplet Number Concentration Value-Added Product Now Operational Bookmark and Share As aerosol concentration increases, droplet number concentration will increase and droplet size will decrease. As aerosol concentration increases, droplet number concentration will increase and droplet size will decrease. Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that

  1. Effect of particle size reduction on anaerobic sludge digestion

    SciTech Connect (OSTI)

    Koutsospyros, A.D.

    1990-01-01

    The majority of organic pollutants in primary sludge are suspended in the form of particulate rather than soluble matter. Microbial organisms cannot assimilate this material without initial solubilization. In anaerobic digestion, the initial size breakdown is accomplished by hydrolytic bacteria. The extent of solubilization is limited by the size of particulate matter. Thus, size reduction prior to digestion is a sound alternative. Size reduction pretreatment was achieved by means of ultrasonic waves. Sonication proved an effective method for size reduction of particulate matter in primary sludge. In addition, although the method produced relatively high amounts of finely dispered solids, the filtration properties of resulting sludges were not affected. Chemical characteristics of sludge, important in anaerobic digestion, were not affected, at least within the attempted range of sonication time and amplitude. The effect of size reduction of primary sludge solids was studied under batch and semi-continuous feed conditions. Preliminary batch digestion experiments were conducted in five 1.5 liter reactors that accepted sonicated feeds of varying pretreatment at four different feed loads (3.3-13.3% by volume). The digestion efficiency and gas production were increased by as much as 30 percent as a result of sonication without any deterioration in the filtration properties of the digester effluent. At higher feed loads the digester efficiency dropped drastically and significant deterioration of the effluent filtration properties from all reactors was evident. Semi-continuous runs were conducted in four reactors. Solids retention time (SRT) was varied from 8 to 20 days. Process efficiency and gas production were enhanced as a result of sonication. Process improvement was more evident under short SRT (8-10 days).

  2. Level: National Data; Row: Employment Sizes within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3

  3. Level: National Data; Row: Employment Sizes within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 625.5 3.3 1.7 50-99 882.3 5.8 2.5 100-249 1,114.9 5.8 2.5 250-499 2,250.4

  4. Size-Selective Incorporation of DNA Nanocages into Nanoporous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antimony-Doped Tin Oxide Materials Size-Selective Incorporation of DNA Nanocages into Nanoporous Antimony-Doped Tin Oxide Materials Authors: Simmons, C. R., Schmitt, D., Wei, X., Han, D., Volosin, A. M., Ladd, D. M., Seo, D.-K., Liu, Y., and Yan, H. Title: Size-Selective Incorporation of DNA Nanocages into Nanoporous Antimony-Doped Tin Oxide Materials Source: ACS Nano Year: 2011 Volume: 5 Pages: 6060-6068 ABSTRACT: A conductive nanoporous antimony-doped tin oxide (ATO) powder has been

  5. Agent Communications using Distributed Metaobjects

    SciTech Connect (OSTI)

    Goldsmith, Steven Y.; Spires, Shannon V.

    1999-06-10

    There are currently two proposed standards for agent communication languages, namely, KQML (Finin, Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to design a general-purpose agent communications facility for new agent architectures that is flexible yet provides an architecture that accepts many different specializations. In this paper we exhibit the salient features of an agent communications architecture based on distributed metaobjects. This architecture captures design commitments at a metaobject level, leaving the base-level design and implementation up to the agent developer. The scope of the metamodel is broad enough to accommodate many different communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the metaobject framework. We conclude that with a powerful distributed object substrate that supports metaobject communications, a general framework can be developed that will effectively enable different approaches to agent communications in the same agent system. We have implemented a KQML-based communications protocol and have several special-purpose interaction protocols under development.

  6. Water Distribution and Removal Model

    SciTech Connect (OSTI)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-08-26

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes of this WD&R model (CRWMS M&O 2000b) are to quantify and evaluate the distribution and drainage of seepage water within emplacement drifts during the period of compliance for post-closure performance. The model bounds the fraction of water entering the drift that will be prevented from contacting the waste by the combined effects of engineered controls on water distribution and on water removal. For example, water can be removed during pre-closure operation by ventilation and after closure by natural drainage into the fractured rock. Engineered drains could be used, if demonstrated to be necessary and effective, to ensure that adequate drainage capacity is provided. This report provides the screening arguments for certain Features, Events, and Processes (FEPs) that are related to water distribution and removal in the EBS. Applicable acceptance criteria from the Issue Resolution Status Reports (IRSRs) developed by the U.S. Nuclear Regulatory Commission (NRC 1999a; 1999b; 1999c; and 1999d) are also addressed in this document.

  7. A SIZE-DURATION TREND FOR GAMMA-RAY BURST PROGENITORS

    SciTech Connect (OSTI)

    Barnacka, Anna; Loeb, Abraham, E-mail: abarnacka@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-20, Cambridge, MA 02138 (United States)

    2014-10-10

    Gamma-ray bursts (GRBs) show a bimodal distribution of durations, separated at a duration of ?2s. Observations have confirmed the association of long GRBs with the collapse of massive stars. The origin of short GRBs is still being explored. We examine constraints on the size of emission regions in short and long GRBs detected by Fermi/GBM. We find that the transverse extent of emission regions during the prompt phase, R, and the burst duration, T {sub 90}, are consistent with the relation R ? c T {sub 90}, for both long and short GRBs. We find the characteristic transverse extent for the prompt emission region to be ?2 10{sup 10}cm and ?4 10{sup 11}cm for short and long GRBs, respectively.

  8. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOE Patents [OSTI]

    Tavlarides, L.L.; Bae, J.H.

    1991-12-24

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.

  9. Generative model selection using a scalable and size-independent complex network classifier

    SciTech Connect (OSTI)

    Motallebi, Sadegh, E-mail: motallebi@ce.sharif.edu; Aliakbary, Sadegh, E-mail: aliakbary@ce.sharif.edu; Habibi, Jafar, E-mail: jhabibi@sharif.edu [Department of Computer Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)] [Department of Computer Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2013-12-15

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named Generative Model Selection for Complex Networks, outperforms existing methods with respect to accuracy, scalability, and size-independence.

  10. A DETECTION OF WEAK-LENSING MAGNIFICATION USING GALAXY SIZES AND MAGNITUDES

    SciTech Connect (OSTI)

    Schmidt, Fabian; Rhodes, Jason; Leauthaud, Alexie; Tanaka, Masayuki; Massey, Richard; George, Matthew R.; Koekemoer, Anton M.; Finoguenov, Alexis

    2012-01-10

    Weak lensing is commonly measured using shear through galaxy ellipticities or using the effect of magnification bias on galaxy number densities. Here, we report on the first detection of weak-lensing magnification with a new, independent technique using the distribution of galaxy sizes and magnitudes. These data come for free in galaxy surveys designed for measuring shear. We present the magnification estimator and apply it to an X-ray-selected sample of galaxy groups in the COSMOS Hubble Space Telescope survey. The measurement of the projected surface density {Sigma}(r) is consistent with the shear measurements within the uncertainties and has roughly 40% of the signal to noise of the latter. We discuss systematic issues and challenges to realizing the potential of this new probe of weak lensing.

  11. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOE Patents [OSTI]

    Tavlarides, Lawrence L. (Fayetteville, NY); Bae, Jae-Heum (Daejeon, KR)

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  12. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, Milton H.; Collins, Jack L.; Shell, Sam E.

    1985-01-01

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  13. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, M.H.; Collins, J.L.; Shell, S.E.

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  14. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect (OSTI)

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of ?m-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ?210 K), ?m-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup 1}, which is approximately 10times higher than the sticking threshold of ?m-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup 1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  15. Distributed PV Adoption in Maine Through 2021

    SciTech Connect (OSTI)

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  16. DWEA July Webinar: Financing Distributed Wind

    Broader source: Energy.gov [DOE]

    Join the Distributed Wind Energy Association (DWEA) for a webinar on financing distributed wind. Presenters are Chris Diaz, Seminole Financial Services LLC, and Russell Tencer, founder and CEO of...

  17. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  18. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

  19. Screen bowl centrifuge: a high-efficiency particle size separator

    SciTech Connect (OSTI)

    Mohanty, M.K.; Zhang, B.; Khanna, N.; Palit, A.; Dube, B.

    2008-05-15

    Over the years, screen bowl centrifuges have been widely used for dewatering fine coal in coal preparation plants in the United States and elsewhere. It is generally recognized in the engineering and scientific communities that screen bowl centrifuges provide some degree of particle size separation while dewatering fine coal in a common application. However, the extent of differential partitioning of coarse and fine particles achievable by a screen bowl centrifuge has not been systematically studied in the past. The present investigation was aimed at conducting a parametric study using a statistically designed experimental program to better understand and optimize the size classification performance of a screen bowl centrifuge. A continuously operating screen bowl centrifuge having a bowl diameter of 0.5 m was used for this study at the Illinois Coal Development Park. Three key operating parameters, i.e., feed flow rate, feed solid content and pool depth, were varied to conduct a total of 17 experiments using a three-level factorial test matrix. Some of the best size separation performances achieved in this study may be described as having an imperfection value of 0.13 at an effective separation size (d(50c)) of 38 mu m and an imperfection value of 0.27 at an effective separation size (d(50c)) of 2.8 mu m. Due to an effective separation of ultrafine high ash materials, the ash content of the screen bowl feed was reduced from 22.3% to a minimum of 8.84% with a combustible recovery of 84.1% and an ash rejection of 71.6%. A higher combustible recovery of 92.1% was achieved at a product ash content of 12.5% with a d(50c) of 2.8 mu m and imperfection of 0.27.

  20. TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED...

    Office of Scientific and Technical Information (OSTI)

    AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS The displacement or deferral of substation...

  1. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural ...

  2. Tips: Booklet Distribution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Booklet Distribution Tips: Booklet Distribution Tips: Booklet Distribution There are many ways to obtain Energy Saver-Tips on Saving Money and Energy at Home! You can access Energy Saver, as well as the Spanish-language Energy Saver, in the following ways. Order booklets in bulk quantities through the Energy Saver Partnership. Organizations can order booklet copies in bulk for distribution to your customers, members, or employees. The Energy Saver booklet and the Spanish Energy Saver

  3. NREL: Electric Infrastructure Systems Research - Distributed Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Test Facility Virtual Tour Electricity Integration Research Printable Version Distributed Energy Resources Test Facility Virtual Tour The Distributed Energy Resources Test Facility (DERTF), located at the National Renewable Energy Laboratory in Golden, Colorado, was designed to assist the distributed power industry in the development and testing of distributed power systems. Researchers use state-of-the-art laboratories and outdoor test beds to characterize the performance and

  4. Agenda: Electricity Transmission and Distribution- East

    Broader source: Energy.gov [DOE]

    Quadrennial Energy Review Public Meeting in Newark, NJ. September 8, 2014. Electricity Transmission and Distribution - Eastern Interconnection

  5. Ductless Hydronic Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Systems Ductless Hydronic Distribution Systems This presentation is from a Building America webinar conducted on November 8, 2011, by the Alliance for Residential Building Innovation (ARBI) about ductless hydronic distribution systems. PDF icon arbi_hydronic_webinar.pdf More Documents & Publications Ductless Hydronic Distribution Issue #2: What Emerging Innovations are the Key to Future Homes? Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for

  6. SIZE AND SURFACE AREA OF ICY DUST AGGREGATES AFTER A HEATING EVENT AT A PROTOPLANETARY NEBULA

    SciTech Connect (OSTI)

    Sirono, Sin-iti

    2013-03-01

    The activity of a young star rises abruptly during an FU Orionis outburst. This event causes a temporary temperature increase in the protoplanetary nebula. H{sub 2}O icy grains are sublimated by this event, and silicate cores embedded inside the ice are ejected. During the high-temperature phase, the silicate grains coagulate to form silicate core aggregates. After the heating event, the temperature drops, and the ice recondenses onto the aggregates. I determined numerically the size distribution of the ice-covered aggregates. The size of the aggregates exceeds 10 {mu}m around the snow line. Because of the migration of the ice to large aggregates, only a small fraction of the silicate core aggregate is covered with H{sub 2}O ice. After the heating event, the surface of an ice-covered aggregate is totally covered by silicate core aggregates. This might reduce the fragmentation velocity of aggregates when they collide. It is possible that the covering silicate cores shield the UV radiation field which induces photodissociation of H{sub 2}O ice. This effect may cause the shortage of cold H{sub 2}O vapor observed by Herschel.

  7. NREL: Technology Deployment - Distributed Generation Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Solar Electric Power

  8. Energy Efficiency, Renewables, Advanced Transmission and Distribution

    Energy Savers [EERE]

    Technologies (2008) | Department of Energy Renewables, Advanced Transmission and Distribution Technologies (2008) Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) PDF icon Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) More Documents & Publications Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Nuclear Power Facilities (2008)

  9. NREL: Distributed Grid Integration - Technology Development Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Projects NREL works on several distributed energy integration technology development projects, including the following: High Penetration Photovoltaics Hydrogen Systems Research Metering Solutions Mobile Electric Power Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards Data Collection & Visualization Hawaii Clean Energy Initiative Microgrids Power Systems Modeling Solar Distributed Grid Integration Technology Development High

  10. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Measures for Distributed Interconnection" Michael Coddington with National Renewable Energy Laboratory and Robert Broderick with Sandia National Laboratories July 9, 2014 2 Speakers Michael Coddington Principal Investigator Distributed Grid Integration NREL Robert Broderick Technical Lead Distributed Grid Integration Programs Sandia National Laboratories Kristen Ardani Solar Analyst, (today's moderator) NREL 3 INTERCONNECTION, SCREENING & MITIGATION PRACTICES OF 21 UTILITIES

  11. Distributed Generation Operational Reliability, Executive Summary Report,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the project, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center (ESC), New York State Energy Research and Development Authority

  12. Large Data Visualization on Distributed Memory Mulit-GPU Clusters

    SciTech Connect (OSTI)

    Childs, Henry R.

    2010-03-01

    Data sets of immense size are regularly generated on large scale computing resources. Even among more traditional methods for acquisition of volume data, such as MRI and CT scanners, data which is too large to be effectively visualization on standard workstations is now commonplace. One solution to this problem is to employ a 'visualization cluster,' a small to medium scale cluster dedicated to performing visualization and analysis of massive data sets generated on larger scale supercomputers. These clusters are designed to fit a different need than traditional supercomputers, and therefore their design mandates different hardware choices, such as increased memory, and more recently, graphics processing units (GPUs). While there has been much previous work on distributed memory visualization as well as GPU visualization, there is a relative dearth of algorithms which effectively use GPUs at a large scale in a distributed memory environment. In this work, we study a common visualization technique in a GPU-accelerated, distributed memory setting, and present performance characteristics when scaling to extremely large data sets.

  13. Temperature, pressure, and size dependence of Pd-H interaction in size selected Pd-Ag and Pd-Cu alloy nanoparticles: In-situ X-ray diffraction studies

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.

    2014-03-21

    In this study, in-situ X-ray diffraction has been carried out to investigate the effect of temperature and pressure on hydrogen induced lattice parameter variation in size selected Pd-Ag and Pd-Cu alloy nanoparticles. The nanoparticles of three different mobility equivalent diameters (20, 40, and 60 nm) having a narrow size distribution were prepared by gas phase synthesis method. In the present range of temperature (350 K to 250 K) and pressure (10{sup −4} to 100 millibars), no α (H/Pd ≤ 0.03) ↔ β (H/Pd ≥ 0.54) phase transition is observed. At temperature higher than 300 °C or pressure lower than 25 millibars, there is a large difference in the rate at which lattice constant varies as a function of pressure and temperature. Further, the lattice variation with temperature and pressure is also observed to depend upon the nanoparticle size. At lower temperature or higher pressure, size of the nanoparticle seems to be relatively less important. These results are explained on the basis of the relative dominance of physical absorption and diffusion of H in Pd alloy nanoparticles at different temperature and pressure. In the present study, absence of α ↔ β phase transition points towards the advantage of using Pd-alloy nanoparticles in applications requiring long term and repeated hydrogen cycling.

  14. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-12-31

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) todetermine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e. ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB?s assumed utilization is far higher than is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inlandareas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27 percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  15. Bernstein instability driven by thermal ring distribution

    SciTech Connect (OSTI)

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  16. Table B6. Building Size, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings

  17. A novel hybrid (wind-photovoltaic) system sizing procedure

    SciTech Connect (OSTI)

    Hocaoglu, Fatih O.; Gerek, Oemer N.; Kurban, Mehmet

    2009-11-15

    Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

  18. Method and apparatus for physical separation of different sized nanostructures

    DOE Patents [OSTI]

    Roberts, Christopher B.; Saunders, Steven R.

    2012-07-10

    The present application provides apparatuses and methods for the size-selective fractionation of ligand-capped nanoparticles that utilizes the tunable thermophysical properties of gas-expanded liquids. The nanoparticle size separation processes are based on the controlled reduction of the solvent strength of an organic phase nanoparticle dispersion through increases in concentration of the antisolvent gas, such as CO.sub.2, via pressurization. The method of nanomaterial separation contains preparing a vessel having a solvent and dispersed nanoparticles, pressurizing the chamber with a gaseous antisolvent, and causing a first amount of the nanoparticles to precipitate, transporting the solution to a second vessel, pressurizing the second vessel with the gaseous antisolvent and causing further nanoparticles to separate from the solution.

  19. Buildings","Building Size"

    U.S. Energy Information Administration (EIA) Indexed Site

    B7. Building Size, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings

  20. Buildings","Building Size"

    U.S. Energy Information Administration (EIA) Indexed Site

    A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" ,"Number of Buildings (thousand)" ,"All Buildings","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square