National Library of Energy BETA

Sample records for droplet size distribution

  1. Evolution of droplet size distribution and autoconversion parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in turbulent clouds Evolution of droplet size distribution and autoconversion parameterization in turbulent clouds McGraw, Robert Brookhaven National Laboratory Liu, Yangang Brookhaven National Laboratory Category: Modeling Effects from turbulence-induced fluctuations in water vapor saturation on cloud droplet growth are examined using a Brownian diffusion model [McGraw and Liu, 2006]. The model predicts diffusive broadening of the droplet size distribution, tempered by enhanced

  2. Dispersion of Cloud Droplet Size Distributions, Cloud Parameterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broomfield, Colorado, March 31-April 4, 2003 indicates that for a given liquid water content and droplet concentration, the effect of spectral dispersion alone can cause...

  3. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect (OSTI)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  4. The effect of turbulence on the stability of liquid jets and the resulting droplet size distributions. Third quarterly technical report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Mansour, A.; Chigier, N.

    1993-12-01

    Laminar and turbulent columns of liquids issuing from capillary tubes were studied in order to determine the effects of turbulence on the stability of liquid jets and to establish the influence of liquid turbulence on droplet size distributions after breakup. Two capillary tubes were chosen with diameters D{sub 1}=3.0mm and D{sub 2}=1.2mm; jet Reynolds numbers were 1000--30000, and 400--7200. For water injection into stagnant air, stability curve is bounded by a laminar portion, where a jet radius and {delta}{sub o} initial disturbance amplitude, and a fully developed turbulent portion characterized by high initial disturbance amplitude (ln(a/{delta}{sub o,T}) {approximately} 4.85). In the transition region, ln(a/{delta}{sub o}) is not single valued; it decreases with increasing Reynolds number. In absence of aerodynamic effects, turbulent jets are as stable as laminar jets. For this breakup mode turbulence propagates initial disturbances with amplitudes orders of magnitude larger than laminar jets ({delta}{sub o,T}=28{times}10{sup 6} {delta}{sub o,L}). Growth rates of initial disturbances are same for both laminar and turbulent columns with theoretical Weber values. Droplet size distribution is bi-modal; the number ratio of large (> D/2), to small (< D/2) droplets is 3 and independent of Reynolds number. For laminar flow optimum wavelength ({lambda}{sub opt}) corresponding to fastest growing disturbance is equal to 4.45D, exactly the theoretical Weber value. For turbulent flow conditions, the turbulent column segments. Typically, segments with lengths of one to several wavelengths, detach from the liquid jet. The long ligaments contract under the action of surface tension, resulting in droplet sizes larger than predicted by Rayleigh and Weber. For turbulent flow conditions, {lambda}{sub opt} = 9.2D, about 2 times the optimum Weber wavelength.

  5. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOE Patents [OSTI]

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  6. ARM - Measurement - Particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle size distribution The number of particles present in any given volume of air within a specified size range. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  7. Pore size distribution and accessible pore size distribution...

    Office of Scientific and Technical Information (OSTI)

    both rank and type (expressed as either hydrogen or vitrinite content) in the size range ... Subject: 01 COAL, LIGNITE, AND PEAT; 03 NATURAL GAS; 08 HYDROGEN; AMBIENT TEMPERATURE; ...

  8. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    SciTech Connect (OSTI)

    Chen, Hong; Duan, Lian; Lan, Hui; Wang, Xinbing Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  9. ARM - Measurement - Hydrometeor Size Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hydrometeors observed in a given size range. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  10. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  11. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  12. Particle size distribution instrument. Topical report 13

    SciTech Connect (OSTI)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  13. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air...

  14. Angular ion species distribution in droplet-based laser-produced plasmas

    SciTech Connect (OSTI)

    Giovannini, Andrea Z.; Gambino, Nadia; Rollinger, Bob; Abhari, Reza S.

    2015-01-21

    The angular distribution of the ion species generated from a laser irradiated droplet target is measured. The employed instrument was an electrostatic energy analyzer with differential pumping. Singly and doubly charged ions were detected at an argon ambient gas pressure of 2 × 10{sup −2} mbar. The amount of Sn{sup +} and Sn{sup 2+} and their kinetic energy is measured from 45° to 120° from the laser axis. Sn{sup +} expands approximately isotropically, and Sn{sup 2+} expansion is peaked towards the incoming laser radiation. The singly charged ion kinetic energy is close to constant over the measurement range, while it decreases by around 30% for Sn{sup 2+}. A calibrated model of the ion expansion that includes recombinations correctly predicts the mean ion charge distribution. The model is able to qualitatively estimate the influence of the laser wavelength on the mean ion charge distribution. The results show a more pronounced isotropic distribution for shorter wavelengths, and a more forward-peaked distribution for longer wavelengths. The ion charge distribution expected without the ambient gas is estimated through the measured ion kinetic energy. The presence of the ambient gas results in a decrease of the mean ion charge state and a decrease in angular anisotropy.

  15. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud

  16. Pore size distribution and accessible pore size distribution in bituminous coals

    SciTech Connect (OSTI)

    Sakurovs, Richard; He, Lilin; Melnichenko, Yuri B; Radlinski, Andrzej Pawell; Blach, Tomasz P

    2012-01-01

    The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total

  17. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    SciTech Connect (OSTI)

    Hashimoto, Takeshi; Yokokawa, Takumi; Endo, Yuriko; Iwanaka, Nobumasa; Higashida, Kazuhiko; Faculty of Sport Science, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 ; Taguchi, Sadayoshi

    2013-10-11

    Highlights: Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via decreased

  18. Measuring the Raindrop Size Distribution, ARM's Efforts at Darwin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Raindrop Size Distribution, ARM's Efforts at Darwin and SGP Bartholomew, Mary Jane Brookhaven National Laboratory Category: Instruments ARM has purchased two impact...

  19. Inertial migration of deformable droplets in a microchannel

    SciTech Connect (OSTI)

    Chen, Xiaodong; Xue, Chundong; Hu, Guoqing E-mail: sunjs@nanoctr.cn; Zhang, Li; Jiang, Xingyu; Sun, Jiashu E-mail: sunjs@nanoctr.cn

    2014-11-15

    The microfluidic inertial effect is an effective way of focusing and sorting droplets suspended in a carrier fluid in microchannels. To understand the flow dynamics of microscale droplet migration, we conduct numerical simulations on the droplet motion and deformation in a straight microchannel. The results are compared with preliminary experiments and theoretical analysis. In contrast to most existing literature, the present simulations are three-dimensional and full length in the streamwise direction and consider the confinement effects for a rectangular cross section. To thoroughly examine the effect of the velocity distribution, the release positions of single droplets are varied in a quarter of the channel cross section based on the geometrical symmetries. The migration dynamics and equilibrium positions of the droplets are obtained for different fluid velocities and droplet sizes. Droplets with diameters larger than half of the channel height migrate to the centerline in the height direction and two equilibrium positions are observed between the centerline and the wall in the width direction. In addition to the well-known Segré-Silberberg equilibrium positions, new equilibrium positions closer to the centerline are observed. This finding is validated by preliminary experiments that are designed to introduce droplets at different initial lateral positions. Small droplets also migrate to two equilibrium positions in the quarter of the channel cross section, but the coordinates in the width direction are between the centerline and the wall. The equilibrium positions move toward the centerlines with increasing Reynolds number due to increasing deformations of the droplets. The distributions of the lift forces, angular velocities, and the deformation parameters of droplets along the two confinement direction are investigated in detail. Comparisons are made with theoretical predictions to determine the fundamentals of droplet migration in microchannels. In

  20. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect (OSTI)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  1. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect (OSTI)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  2. Particle size and shape distributions of hammer milled pine

    SciTech Connect (OSTI)

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  3. Concentrations and Size Distributions of Particulate Matter Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel | Department of Energy Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel 2002 DEER Conference Presentation: West Virginia

  4. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect (OSTI)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  5. A new model of cloud drop distribution that simulates the observed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Michigan Technological University Wiscombe, Warren BNLNASA Goddard Space Flight Center Category: Modeling Cloud droplet size distribution is one of the most fundamental...

  6. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  7. Effect of Engine-Out NOx Control Strategies on PM Size Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in ...

  8. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect (OSTI)

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between the two

  9. Effects of the dynamics of droplet-based laser-produced plasma on angular extreme ultraviolet emission profile

    SciTech Connect (OSTI)

    Giovannini, Andrea Z.; Abhari, Reza S.

    2014-05-12

    The emission distribution of extreme ultraviolet (EUV) radiation from droplet targets is dependent on the dynamics of the laser-produced plasma. The EUV emission is measured on a 2% bandwidth centered at 13.5 nm (in-band). The targets of the laser are small (sub-50 μm) tin droplets, and the in-band emission distribution is measured for different laser irradiances and droplet sizes at various angular positions. Larger droplets lead to a faster decay of EUV emission at larger angles with respect to the laser axis. A decrease in laser irradiance has the opposite effect. The measurements are used together with an analytical model to estimate plume dynamics. Additionally, the model is used to estimate EUV emission distribution for a desired droplet diameter and laser irradiance.

  10. Lossless droplet transfer of droplet-based microfluidic analysis

    DOE Patents [OSTI]

    Kelly, Ryan T (West Richland, WA); Tang, Keqi (Richland, WA); Page, Jason S (Kennewick, WA); Smith, Richard D (Richland, WA)

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  11. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect (OSTI)

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the

  12. ARM - Measurement - Cloud droplet size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impactor MIRAI : JAMSTEC Research Vessel Mirai PDI : Phase Doppler Interferometer UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments SPEC-CPI : Stratton Park ...

  13. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect (OSTI)

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  14. Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy

    SciTech Connect (OSTI)

    Li, C.; Zeng, Z. Q.; Hirono, Y.; Morgan, T. A.; Hu, X.; Salamo, G. J.; Fan, D. S.; Wu, J.; Yu, S. Q.; Wang, Zh. M.

    2011-12-12

    Self-assembly of bismuth droplets at nanoscale on GaAs(100) surface using molecular beam epitaxy was demonstrated. Fine control of density and size was achieved by varying growth temperature and total bismuth deposition. Droplet density was tuned by roughly 3 orders of magnitude, and the density-temperature dependence was found to be consistent with classical nucleation theory. These results may extend the flexibility of droplet epitaxy by serving as templates for group V based droplet epitaxy, which is in contrast to conventional group III based droplet epitaxy and may encourage nanostructure formation of bismuth-containing materials.

  15. THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Trujillo, Chadwick A.

    2010-11-10

    We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

  16. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    SciTech Connect (OSTI)

    Ishak-Boushaki, M.; Djellout, D.; Annou, R.

    2012-07-15

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  17. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura

    2014-05-15

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  18. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  19. Measurements of Aerosol Charge and Size Distribution for Graphite, Gold, Palladium, and Silver Nanoparticles

    SciTech Connect (OSTI)

    Simones, Matthew P.; Gutti, Veera R.; Meyer, Ryan M.; Loyalka, Sudarshan K.

    2011-11-01

    The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.

  20. Consideration of Grain Size Distribution in the Diffusion of Fission Gas to Grain Boundaries

    SciTech Connect (OSTI)

    Paul C. Millett; Yongfeng Zhang; Michael R. Tonks; S. B. Biner

    2013-09-01

    We analyze the accumulation of fission gas on grain boundaries in a polycrystalline microstructure with a distribution of grain sizes. The diffusion equation is solved throughout the microstructure to evolve the gas concentration in space and time. Grain boundaries are treated as infinite sinks for the gas concentration, and we monitor the cumulative gas inventory on each grain boundary throughout time. We consider two important cases: first, a uniform initial distribution of gas concentration without gas production (correlating with post-irradiation annealing), and second, a constant gas production rate with no initial gas concentration (correlating with in-reactor conditions). The results show that a single-grain-size model, such as the Booth model, over predicts the gas accumulation on grain boundaries compared with a polycrystal with a grain size distribution. Also, a considerable degree of scatter, or variability, exists in the grain boundary gas accumulation when comparing all of the grain boundaries in the microstructure.

  1. Low pressure shock initiation of porous HMX for two grain size distributions and two densities

    SciTech Connect (OSTI)

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1995-09-01

    Shock initiation measurements have been made on granular HMX (octotetramethylene tetranitrainine) for two particle size distributions and two densities. Samples were pressed to either 65% or 73% of crystal density from fine ({approx} 10 {mu}m grain size) and coarse (broad distribution of grain sizes peaking at {approx} 150 {mu}m) powders. Planar shocks of 0.2--1 GPa were generated by impacting gas gun driven projectiles on plastic targets containing the HMX. Wave profiles were measured at the input and output of the {approx} 3.9 mm thick HMX layer using electromagnetic particle velocity gauges. The initiation behavior for the two particle size distributions was very different. The coarse HMX began initiating at input pressures as low as 0.5 GPa. Transmitted wave profiles showed relatively slow reaction with most of the buildup occurring at the shock front. In contrast, the fine particle HMX did not begin to initiate at pressures below 0.9 GPa. When the fine powder did react, however, it did so much faster than the coarse HMX. These observations are consistent with commonly held ideas about bum rates being correlated to surface area, and initiation thresholds being correlated with the size and temperature of the hot spots created by shock passage. For each size, the higher density pressings were less sensitive than the lower density pressings.

  2. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ≈50 fs, 800 nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (≈90%) of small nanoparticles, and a residual part (≈10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  3. COLOR DEPENDENCE IN THE SIZE DISTRIBUTION OF MAIN BELT ASTEROIDS REVISITED

    SciTech Connect (OSTI)

    August, Tyler M.; Wiegert, Paul A.

    2013-06-15

    The size distribution of the asteroid belt is examined with 16956 main belt asteroids detected in data taken from the Canada-France-Hawaii Telescope Legacy Survey in two filters (g' and r'). The cumulative H (absolute magnitude) distribution is examined in both filters, and both match well to simple power laws down to H = 17, with slopes in rough agreement with those reported the literature. This implies that disruptive collisions between asteroids are gravitationally dominated down to at least this size, and probably sub-kilometer scales. The slopes of these distributions appear shallower in the outer belt than the inner belt, and the g' distributions appear slightly steeper than the r'. The slope shallowing in the outer belt may reflect a real compositional difference: the inner asteroid belt has been suggested to consist mostly of stony and/or metallic S-type asteroids, whereas carbonaceous C-types are thought to be more prevalent further from the Sun. No waves are seen in the size distribution above H = 15. Since waves are expected to be produced at the transition from gravitationally-dominated to internal strength-dominated collisions, their absence here may imply that the transition occurs at sub-kilometer scales, much smaller than the H = 17 (diameter {approx} 1.6 km) cutoff of this study.

  4. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    SciTech Connect (OSTI)

    Henager, Charles H.; Alvine, Kyle J.; Bliss, Mary; Riley, Brian J.; Stave, Jean A.

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-µm apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000°C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te

  5. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    SciTech Connect (OSTI)

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  6. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  7. Size and spacial distribution of micropores in SBA-15 using CM-SANS

    SciTech Connect (OSTI)

    Pollock, Rachel A; Walsh, Brenna R; Fry, Jason A; Ghampson, Tyrone; Centikol, Ozgul; Melnichenko, Yuri B; Kaiser, Helmut; Pynn, Roger; Frederick, Brian G

    2011-01-01

    Diffraction intensity analysis of small-angle neutron scattering measurements of dry SBA-15 have been combined with nonlocal density functional theory (NLDFT) analysis of nitrogen desorption isotherms to characterize the micropore, secondary mesopore, and primary mesopore structure. The radial dependence of the scattering length density, which is sensitive to isolated surface hydroxyls, can only be modeled if the NLDFT pore size distribution is distributed relatively uniformly throughout the silica framework, not localized in a 'corona' around the primary mesopores. Contrast matching-small angle neutron scattering (CM-SANS) measurements, using water, decane, tributylamine, cyclohexane, and isooctane as direct probes of the size of micropores indicate that the smallest pores in SBA-15 have diameter between 5.7 and 6.2 {angstrom}. Correlation of the minimum pore size with the onset of the micropore size distribution provides direct evidence that the shape of the smallest micropores is cylinderlike, which is consistent with their being due to unraveling of the polymer template.

  8. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  9. The effect of a dust size distribution on electrostatic sheaths in unmagnetized dusty plasmas

    SciTech Connect (OSTI)

    Benlemdjaldi, D.; Tahraoui, A.; Hugon, R.; Bougdira, J.

    2013-04-15

    In this work, the structure of plasma sheaths in presence of dust particles with different sizes is investigated numerically in a multifluid framework, where the dust size distribution is modeled by Gauss' law. For this, we have established a 1D, stationary, unmagnetized, and weakly collisional electronegative dusty plasma sheath model. The electrons and negative ions are considered in a local thermodynamic equilibrium, therefore, described by a Boltzmann distribution. On the other hand, positive ions and dust grains are described by fluid equations. The charging process is described by the orbit motion limited model. It is shown that taking into account dust grains with different sizes reduces considerably the sheath thickness. The behavior of dust surface potential is not affected, but the dust charge number is reduced, as well as the electrostatic force. It results in a decrease of layered structure. The presence of negative ions makes the structure of the electrostatic potential more oscillatory. The other physical parameters are also analyzed and discussed.

  10. OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL

    SciTech Connect (OSTI)

    H.J. Walqui; T.C. Eisele; S.K. Kawatra

    2003-07-01

    The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced can be minimized. The goal is to save energy by reducing the amount of material that is ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) determining whether new technologies, such as high-pressure roll crushing, can be used to alter particle breakage behavior to minimize fines production.

  11. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  12. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect (OSTI)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 13 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ? 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  13. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect (OSTI)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  14. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect (OSTI)

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  15. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect (OSTI)

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  16. OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL

    SciTech Connect (OSTI)

    S.K. Kawatra; T.C. Eisele; H.J. Walqui

    2002-10-01

    The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing he product size distribution, so that the amount of excessively fine material produced can be minimized. This will save energy by reducing the amount of material that is ground below the target size, and will also reduce the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) determining whether new technologies, such as high-pressure roll crushing, can be used to alter particle breakage behavior to minimize fines production. In the seventh quarter of this project, analysis of the plant operation identified sources of overgrinding in the circuit. Overgrinding was primarily caused by two effects: (1) The hydrocyclones used to close the circuit and remove fully-ground particles from the circuit were preferentially returning high-density ore particles to the secondary mills for regrinding even after they were already ground to pass the desired product size, and (2) The primary grinding mills were operating at less than full capacity, suggesting that a shift of grinding load to the primary mills could liberate more material before it reached the secondary mills, allowing more complete liberation with a coarser grind. Circuit modeling is underway to determine how best to modify the circuit to reduce these effects.

  17. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, Eric R.; Perl, Martin L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  18. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    SciTech Connect (OSTI)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav; Wang, Tianhan; Wu, Benny; Graves, Catherine; Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  19. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    SciTech Connect (OSTI)

    Lu, Gui; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104 ; Hu, Han; Sun, Ying E-mail: ysun@coe.drexel.edu; Duan, Yuanyuan E-mail: ysun@coe.drexel.edu

    2013-12-16

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger.

  20. Deviations from the Gutenberg–Richter law on account of a random distribution of block sizes

    SciTech Connect (OSTI)

    Sibiryakov, B. P.

    2015-10-27

    This paper studies properties of a continuum with structure. The characteristic size of the structure governs the fact that difference relations are nonautomatically transformed into differential ones. It is impossible to consider an infinitesimal volume of a body, to which the major conservation laws could be applied, because the minimum representative volume of the body must contain at least a few elementary microstructures. The corresponding equations of motion are equations of infinite order, solutions of which include, along with usual sound waves, unusual waves with abnormally low velocities without a lower limit. It is shown that in such media weak perturbations can increase or decrease outside the limits. The number of complex roots of the corresponding dispersion equation, which can be interpreted as the number of unstable solutions, depends on the specific surface of cracks and is an almost linear dependence on a logarithmic scale, as in the seismological Gutenberg–Richter law. If the distance between one pore (crack) to another one is a random value with some distribution, we must write another dispersion equation and examine different scenarios depending on the statistical characteristics of the random distribution. In this case, there are sufficient deviations from the Gutenberg–Richter law and this theoretical result corresponds to some field and laboratory observations.

  1. Paleozoic expulsion in Bolivia-its influence on field size and distribution

    SciTech Connect (OSTI)

    Beer, J.A. ); Lopez, O. )

    1993-02-01

    Production within the Chaco Basin of Bolivia may be grouped into three areas: a northern area with several large fields (> 100 MMBOE), a central area nearly devoid of fields, and a southern area with numerous small fields. Models for the timing of hydrocarbon charge suggest that field size and distribution can be tied to spatial variation in the magnitude of a Paleozoic expulsion event. In the central Chaco, the Devonian Los Monos Formation source rock interval was deeply buried beneath a Carboniferous depocenter (1600 to 2000 m of sediment). An in-house thermal modeling program, constrained by vitrinite reflectance data, indicates that the source rock interval entered the oil window as early as 270 Ma. Basal Los Monos kerogen was completely converted to oil prior to Neogene trap formation, making oil accumulations impossible. In the southern Chaco, an intermediate Carboniferous thickness (1300-1600 m) resulted in a less pronounced pre-Cenzoic expulsion event. Expulsion began at 150 Ma, with 80% of basal Los Monos kerogen converted to oil prior to trap formation. The southern Chaco thus has limited exploration opportunity for large accumulations. The northern Chaco has a thin Carboniferous veneer (01300 m), and experienced insignificant pre-Cenozoic expulsion. As a result, 90% of the basal Los Monos kerogen was available for conversion to oil at the time of trap formation, and large accumulations were possible. Given the relationship between field presence/size and subsidence history, a Carboniferous isopach map is a powerful exploration tool. Where there is a thin Carboniferous section, unconverted Devonian source rocks are able to charge Cenozoic structures. One area that meets this criterium is the western Subandean, a relatively unexplored province adjacent to the Chaco Basin.

  2. Chip-based droplet sorting

    DOE Patents [OSTI]

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  3. Arrays of Ru Nanoclusters with Narrow Size Distribution Templated by Monolayer Graphene on Ru

    SciTech Connect (OSTI)

    Sutter, P.; Sutter, E.; Albrecht, P.; Wang, B.; Bocquet M.-L.; Wu, L.; Zhu, Y.

    2011-09-01

    Ru nanoclusters self-assemble over macroscopic sample areas during vapor deposition of Ru on monolayer graphene (MLG) on Ru(0001). The Ru nanoclusters form arrays with a mean lateral cluster diameter of {approx} 20 {angstrom}, cluster heights of 1 or 2 ML, and a size distribution that remains nearly constant with increasing coverage. Combined scanning tunneling microscopy and density functional theory (DFT) show that the clusters are templated by the MLG/Ru(0001) moire unit cell and identify the preferred binding site of the clusters as the low fcc region of the moire. Cross-sectional transmission electron microscopy (TEM) and high-resolution TEM contrast simulations experimentally demonstrate that the interaction of the Ru clusters with the underlying MLG/Ru(0001) leads to a local lifting of the graphene layer of the template. DFT calculations confirm this mechanism of interaction of the Ru clusters with the strongly coupled MLG/Ru(0001). Weakening of the graphene-support coupling via oxygen intercalation is shown to have a major effect on the assembly of Ru nanocluster arrays. With a preferred binding site lacking on decoupled graphene, the Ru nanoclusters grow significantly larger, and clusters with 1 to 4 ML height can coexist.

  4. Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities

    SciTech Connect (OSTI)

    Giangrande S. E.; Luke, E. P.; Kollias, P.

    2012-02-01

    Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0-10 cm{sup -1}) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s{sup -1} with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3-0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

  5. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash).he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions.he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns.here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD.he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal).hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  6. Method development and validation for measuring the particle size distribution of pentaerythritol tetranitrate (PETN) powders.

    SciTech Connect (OSTI)

    Young, Sharissa Gay

    2005-09-01

    Currently, the critical particle properties of pentaerythritol tetranitrate (PETN) that influence deflagration-to-detonation time in exploding bridge wire detonators (EBW) are not known in sufficient detail to allow development of a predictive failure model. The specific surface area (SSA) of many PETN powders has been measured using both permeametry and gas absorption methods and has been found to have a critical effect on EBW detonator performance. The permeametry measure of SSA is a function of particle shape, packed bed pore geometry, and particle size distribution (PSD). Yet there is a general lack of agreement in PSD measurements between laboratories, raising concerns regarding collaboration and complicating efforts to understand changes in EBW performance related to powder properties. Benchmarking of data between laboratories that routinely perform detailed PSD characterization of powder samples and the determination of the most appropriate method to measure each PETN powder are necessary to discern correlations between performance and powder properties and to collaborate with partnering laboratories. To this end, a comparison was made of the PSD measured by three laboratories using their own standard procedures for light scattering instruments. Three PETN powder samples with different surface areas and particle morphologies were characterized. Differences in bulk PSD data generated by each laboratory were found to result from variations in sonication of the samples during preparation. The effect of this sonication was found to depend on particle morphology of the PETN samples, being deleterious to some PETN samples and advantageous for others in moderation. Discrepancies in the submicron-sized particle characterization data were related to an instrument-specific artifact particular to one laboratory. The type of carrier fluid used by each laboratory to suspend the PETN particles for the light scattering measurement had no consistent effect on the resulting

  7. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect (OSTI)

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  8. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions

    DOE Patents [OSTI]

    Ryon, Allen D.; Haas, Paul A.; Vavruska, John S.

    1984-01-01

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  9. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling

    SciTech Connect (OSTI)

    Kornilov, Oleg; Toennies, J. Peter

    2015-02-21

    The size distribution of para-H{sub 2} (pH{sub 2}) clusters produced in free jet expansions at a source temperature of T{sub 0} = 29.5 K and pressures of P{sub 0} = 0.91.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, N{sub k} = A?k{sup a} e{sup ?bk}, shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH{sub 2}){sub k} magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b{sup ?(a+1)} on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections ?{sub 11} with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

  10. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions. [Patent application

    DOE Patents [OSTI]

    Ryon, A.D.; Haas, P.A.; Vavruska, J.S.

    1982-01-19

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. This is accomplished by subjecting aqueous dispersions of a sol, within a water-immiscible organic liquid to a turbulent flow. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  11. Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts

    SciTech Connect (OSTI)

    Benavidez, Angelica D.; Kovarik, Libor; Genc, Arda; Agrawal, Nitin; Larsson, Elin M.; Hansen, Thomas W.; Karim, Ayman M.; Datye, Abhaya K.

    2012-10-31

    In this Environmental TEM (ETEM) study of supported Pt and Pd model catalysts, individual nanoparticles were tracked during heat treatments at temperatures up to 600C in H2, O2, and vacuum. We found anomalous growth of nanoparticles occurred during the early stages of catalyst sintering wherein some particles started to grow significantly larger than the mean, resulting in a broadening of the particle size distribution. We can rule out sample non-uniformity as a cause for the growth of these large particles, since images were recorded prior to heat treatments. The anomalous growth of these particles may help explain particle size distributions in heterogeneous catalysts which often show particles that are significantly larger than the mean, resulting in a long tail to the right. It has been suggested that particle migration and coalescence could be the likely cause for the broad size distributions. This study shows that anomalous growth of nanoparticles can occur under conditions where Ostwald ripening is the primary sintering mechanism.

  12. Shoreline, grain-size, and total-carbon distribution changes before and after Hurricane Alicia, Galveston Island, Texas, 1983

    SciTech Connect (OSTI)

    Rothammer, C.M.; Morrison, L.R.; Warkentin, S.L.

    1985-02-01

    Shoreline, grain-size, and sediment total-carbon changes were monitored, on a monthly basis, on three Galveston Island beaches, from January through December 1983. The study area included: (1) East Beach, obstructed by groins and a seawall; (2) Galveston Island State Park, obstructed by fences artificially stabilizing the dunes; and (3) West Beach, an unobstructed beach. Beach profiles revealed the effects of beach obstruction, such as erosion and undercutting at East Beach, and truncation of the dunes at Galveston Island State Park. Approximately 20 m of expansional cutback occurred on the beaches after Hurricane Alicia hit on August 18, 1983. Contour maps of grain-size and total-carbon distributions reflect the movement of beach sand by either onshore-offshore transport during low-energy periods, or longshore, edge-wave transport during high-energy periods. Statistical analyses revealed a small variation in grain size throughout the year. There were well-defined times of either no correlation or strong correlation between total carbon vs. mean grain size, skewness vs. mean grain size, kurtosis vs. mean grain size, skewness vs. mean grain size, kurtosis vs. mean grain size, total carbon vs. percent sand, total carbon vs. skewness, and skewness vs. kurtosis. Strong correlation was found in response to high-energy events, whereas no correlation was found in response to low-energy events. Galveston Island is undergoing net erosion and appears to be in a metastable state, still capable of responding to oceanographic conditions. The economic effects of Hurricane Alicia include considerable loss of the shoreline and destruction of property. Beach nourishment appears to be the only economically feasible solution to counteract the extensive erosion.

  13. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect (OSTI)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  14. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil

    SciTech Connect (OSTI)

    Song, Wenji; Zhao, Chen; Lercher, Johannes A.

    2013-07-22

    Improved synthetic approaches for preparing small-sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brnsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brnsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability.

  15. Universal Fluid Droplet Ejector - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and horizontal inter-droplet spacing of a two-dimensional droplet array in real time. ... Vertical and horizontal interdroplet spacings may be varied in real time. Applications ...

  16. Lithium Droplet Injector......Inventors ..--..Lane Roquemore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Droplet Injector......Inventors ..--..Lane Roquemore, Daniel Andruczyk A liquid lithium device has been invented that produces spherical droplets of lithium for the control ...

  17. Controlled Dispensing and Mixing of Pico- to Nanoliter Volumes Using On-Demand Droplet-Based Microfluidics

    SciTech Connect (OSTI)

    Sun, Xuefei; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2013-07-08

    We present an integrated droplet-on-demand microfluidic platform for dispensing, mixing, incubating, extracting and analyzing by mass spectrometry pico- to nanoliter sized droplets. Droplet generation is accomplished using computer-controlled pneumatic valves. Controlled actuation of valves for different aqueous streams enables controlled dosing and rapid mixing of reagents within droplets in the droplet generation area or in a region with widening channel cross-section. Following incubation, which takes place while droplets travel in the oil stream, the droplet contents are extracted to an aqueous channel for subsequent ionization at an integrated nanoelectrospray emitter. As an initial demonstration of the platform, rapid enzymatic digestions of a model protein are performed in droplets and detected on-line by nanoelectrospray ionization mass spectrometry.

  18. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    SciTech Connect (OSTI)

    Durand, O.; Soulard, L.

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  19. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect (OSTI)

    Mendoza Herrera, Luis J.; Arboleda, David Muetn; Schinca, Daniel C.; Scaffardi, Luca B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ?{sub P}?? and the damping constant ?{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ?{sub p} (0.5%1.6%) and for ?{sub free} (3%8%), which are smaller than those reported in the literature. These small uncertainties in ?{sub p} and ?{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ?{sub p} and ?{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  20. Laser Transmission Measurements and Plume Particle Size Distributions for Propellant Burn Tests at ATK Elkton in May 2012

    SciTech Connect (OSTI)

    Willitsford, Adam H.; Brown, David M.; Brown, Andrea M.; Airola, Marc B.; Dinello-Fass, Ryan P.; Thomas, Michael E.; Siegrist, Karen M.

    2014-08-28

    Multi-wavelength laser transmittance was measured during a series of open-air propellant burn tests at Alliant Techsystems, Inc., in Elkton, MD, in May 2012. A Mie scattering model was combined with an alumina optical properties model in a simple single-scatter approach to fitting plume transmittance. Wavelength-dependent plume transmission curves were fit to the measured multi-wave- length transmittance data to infer plume particle size distributions at several heights in the plume. Tri-modal lognormal distributions described transmittance data well at all heights. Overall distributions included a mode with nanometer-scale diameter, a second mode at a diameter of ~0.5 µm, and a third, larger particle mode. Larger parti- cles measured 2.5 µm in diameter at 34 cm (14 in.) above the burning propellant surface, but grew to 4 µm in diameter at a height of 57 cm (22 in.), indicative of particle agglomeration in progress as the plume rises. This report presents data, analysis, and results from the study.

  1. Intercomparison of Large-eddy Simulations of Arctic Mixed-phase Clouds: Importance of Ice Size Distribution Assumptions

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-14

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.

  2. Ice and water droplets on graphite: A comparison of quantum and classical simulations

    SciTech Connect (OSTI)

    Ramírez, Rafael; Singh, Jayant K.; Müller-Plathe, Florian; Böhm, Michael C.

    2014-11-28

    Ice and water droplets on graphite have been studied by quantum path integral and classical molecular dynamics simulations. The point-charge q-TIP4P/F potential was used to model the interaction between flexible water molecules, while the water-graphite interaction was described by a Lennard-Jones potential previously used to reproduce the macroscopic contact angle of water droplets on graphite. Several energetic and structural properties of water droplets with sizes between 10{sup 2} and 10{sup 3} molecules were analyzed in a temperature interval of 50–350 K. The vibrational density of states of crystalline and amorphous ice drops was correlated to the one of ice Ih to assess the influence of the droplet interface and molecular disorder on the vibrational properties. The average distance of covalent OH bonds is found 0.01 Å larger in the quantum limit than in the classical one. The OO distances are elongated by 0.03 Å in the quantum simulations at 50 K. Bond distance fluctuations are large as a consequence of the zero-point vibrations. The analysis of the H-bond network shows that the liquid droplet is more structured in the classical limit than in the quantum case. The average kinetic and potential energy of the ice and water droplets on graphite has been compared with the values of ice Ih and liquid water as a function of temperature. The droplet kinetic energy shows a temperature dependence similar to the one of liquid water, without apparent discontinuity at temperatures where the droplet is solid. However, the droplet potential energy becomes significantly larger than the one of ice or water at the same temperature. In the quantum limit, the ice droplet is more expanded than in a classical description. Liquid droplets display identical density profiles and liquid-vapor interfaces in the quantum and classical limits. The value of the contact angle is not influenced by quantum effects. Contact angles of droplets decrease as the size of the water droplet

  3. The Occurrence of Particle Size Distribution Bimodality in Midlatitude Cirrus as Inferred from Ground-Based Remote Sensing Data

    SciTech Connect (OSTI)

    Zhao, Yang; Mace, Gerald G.; Comstock, Jennifer M.

    2011-06-01

    To better understand the role of small particles in the microphysical processes and the radiative properties of cirrus, the reliability of historical in-situ data must be understood. Recent studies call into question the validity of that data because of shattering of large crystals on probe and aircraft surfaces thereby artificially amplifying the concentration of crystals smaller than approximately 50 ?m. We contend that the general character of the in-situ measurements must be consistent, in a broad sense, with statistics derived from long-term remote sensing data. To examine this consistency, an algorithm using Doppler radar moments and Raman lidar extinction is developed to retrieve a bimodal particle size distribution and its uncertainty. Using case studies and statistics compiled over one year we show that the existence of high concentrations (> 1 cm-3 ) of small (sub 50 ?m) particles in cirrus are not consistent with any reasonable interpretation of the remote sensing data. We conclude that the high concentrations of small particles found in many aircraft data sets are therefore likely an artifact of the in situ measurement process.

  4. In-situ droplet monitoring for self-tuning spectrometers

    DOE Patents [OSTI]

    Montaser, Akbar; Jorabchi, Kaveh; Kahen, Kaveh

    2010-09-28

    A laser scattering based imaging technique is utilized in order to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from an aerosol source to the site of analytical measurements. The resulting snapshots provide key information about the spatial distribution of the aerosol introduced by direct and indirect injection devices: 1) a direct injection high efficiency nebulizer (DIHEN); 2) a large-bore DIHEN (LB-DIHEN); and 3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry (PIV) is used to study the in-situ behavior of the aerosol before interaction with, for example, plasma, while the individual surviving droplets are explored by particle tracking velocimetry (PTV). Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are important in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and for developing smart spectrometers. For example, a controller can be provided to control the output of the aerosol source by controlling the configuration of the source or the gas flow rate via feedback information concerning the aerosol.

  5. Vortices catapult droplets in atomization

    SciTech Connect (OSTI)

    Jerome, J. John Soundar Zaleski, Stphane; Hoepffner, Jrme; Marty, Sylvain; Matas, Jean-Philippe

    2013-11-15

    A droplet ejection mechanism in planar two-phase mixing layers is examined. Any disturbance on the gas-liquid interface grows into a Kelvin-Helmholtz wave, and the wave crest forms a thin liquid film that flaps as the wave grows downstream. Increasing the gas speed, it is observed that the film breaks up into droplets which are eventually thrown into the gas stream at large angles. In a flow where most of the momentum is in the horizontal direction, it is surprising to observe these large ejection angles. Our experiments and simulations show that a recirculation region grows downstream of the wave and leads to vortex shedding similar to the wake of a backward-facing step. The ejection mechanism results from the interaction between the liquid film and the vortex shedding sequence: a recirculation zone appears in the wake of the wave and a liquid film emerges from the wave crest; the recirculation region detaches into a vortex and the gas flow over the wave momentarily reattaches due to the departure of the vortex; this reattached flow pushes the liquid film down; by now, a new recirculation vortex is being created in the wake of the wavejust where the liquid film is now located; the liquid film is blown up from below by the newly formed recirculation vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by the recirculation vortex.

  6. Evaluation of moist processes during intense precipitation in km-scale NWP models using remote sensing and in-situ data: Impact of microphysics size distribution assumptions

    SciTech Connect (OSTI)

    VanWeverberg, K.; vanLipzig, N. P. M.; Delobbe, L.

    2011-02-01

    This study investigates the sensitivity of moist processes and surface precipitation during three extreme precipitation events over Belgium to the representation of rain, snow and hail size distributions in a bulk one-moment microphysics parameterisation scheme. Sensitivities included the use of empirically derived relations to calculate the slope parameter and diagnose the intercept parameter of the exponential snow and rain size distributions and sensitivities to the treatment of hail/graupel. A detailed evaluation of the experiments against various high temporal resolution and spatially distributed observational data was performed to understand how moist processes responded to the implemented size distribution modifications. Net vapor consumption by microphysical processes was found to be unaffected by snow or rain size distribution modifications, while it was reduced replacing formulations for hail by those typical for graupel, mainly due to intense sublimation of graupel. Cloud optical thickness was overestimated in all experiments and all cases, likely due to overestimated snow amounts. The overestimation slightly deteriorated by modifying the rain and snow size distributions due to increased snow depositional growth, while it was reduced by including graupel. The latter was mainly due to enhanced cloud water collection by graupel and reduced snow depositional growth. Radar reflectivity and cloud optical thickness could only be realistically represented by inclusion of graupel during a stratiform case, while hail was found indispensable to simulate the vertical reflectivity profile and the surface precipitation structure. Precipitation amount was not much altered by any of the modifications made and the general overestimation was only decreased slightly during a supercell convective case.

  7. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    SciTech Connect (OSTI)

    Plionis, Alexander A; Peterson, Dominic S; Tandon, Lav; Lamont, Stephen P

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  8. Asymmetric Wettability Directs Leidenfrost Droplets (Journal...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Asymmetric Wettability Directs Leidenfrost Droplets Citation Details ... Here, we report the fabrication and characterization of ...

  9. Effects of current on droplet generation and arc plasma in gas metal arc welding

    SciTech Connect (OSTI)

    Hu, J.; Tsai, H. L.

    2006-09-01

    In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the molten metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.

  10. Comparison of the Vertical Velocity Used to Calculate the Cloud Droplet Number Concentration in a Cloud Resolving and a Global Climate Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor, Michigan Introduction Anthropogenic aerosols are effective cloud condensation nuclei (CCN). The availability of CCN affects the initial cloud droplet number concentration (CDNC) and droplet size; therefore, cloud optical

  11. Particulate and droplet diagnostics in spray combustion

    SciTech Connect (OSTI)

    Semerjian, H.G.

    1986-07-01

    There is a critical need for detailed data on the structure of spray flames, including information on the particle field, droplets, velocity and temperature fields, as well as gaseous species concentrations. The objective of this project is to obtain such a comprehensive data base, as a complementary effort to the spray modelling work being carried out at JPL and LANL. In addition, this study will provide data on the effect of fuel properties and flow field characteristics on the spray combustion processes. Finally, this research effort will focus on identification of the most important sub-processes, such as droplet vaporization, droplet-droplet interactions, droplet-air interactions, radiative energy transfer, etc., which have the greatest impact on the overall characteristics of spray flames. 57 refs., 18 figs., 2 tabs.

  12. Kinetics of complex plasma with liquid droplets

    SciTech Connect (OSTI)

    Misra, Shikha; Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India); Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India)] [Institute for Plasma Research (IPR), Gandhinagar 382428 (India)

    2013-12-15

    This paper provides a theoretical basis for the reduction of electron density by spray of water (or other liquids) in hot plasma. This phenomenon has been observed in a hypersonic flight experiment for relief of radio black out, caused by high ionization in the plasma sheath of a hypersonic vehicle, re-entering the atmosphere. The analysis incorporates a rather little known phenomenon for de-charging of the droplets, viz., evaporation of ions from the surface and includes the charge balance on the droplets and number cum energy balance of electrons, ions, and neutral molecules; the energy balance of the evaporating droplets has also been taken into account. The analysis has been applied to a realistic situation and the transient variations of the charge and radius of water droplets, and other plasma parameters have been obtained and discussed. The analysis through made in the context of water droplets is applicable to all liquids.

  13. Length Scale of Leidenfrost Ratchet Switches Droplet Directionality...

    Office of Scientific and Technical Information (OSTI)

    Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in ... controlling droplet motion on Leidenfrost ratchets with nanoscale and microscale features. ...

  14. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

    SciTech Connect (OSTI)

    VanWeverberg K.; Vogelmann A.; vanLipzig, N. P. M.; Delobbec, L.

    2012-04-01

    We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

  15. Models of crystallization in evaporating droplets

    SciTech Connect (OSTI)

    Ford, I.J.

    1996-12-31

    The spray drying of a droplet containing a substance in solution can produce solid particles with a variety of final shapes: hollow, punctured, squashed, as well as solid spheres. The geometry affects the properties of the product. Models are presented here which describe the processes of solvent evaporation and solute crystallization as drying takes place. The formation of a crust on the surface of the droplet is addressed. It is proposed that such a crust with a thickness of two crystallite diameters can develop into dry hollow shell. Some example calculations of the spray drying of droplets of sodium chloride solution are described.

  16. The effect of acidity variations in cloud droplet populations on aqueous-phase sulfate production

    SciTech Connect (OSTI)

    Gurciullo, C.S.; Pandis, S.N.

    1995-12-31

    The majority of global atmospheric sulfate production occurs in clouds. Experimental evidence suggests that significant chemical heterogeneities exist in cloud droplet populations. Both theoretical and field studies suggest that the acidity of a cloud droplet population can differ by 1 pH unit or more between the smallest and largest droplets. Traditionally, cloud chemistry has been studied using bulk models that assume that the aqueous- phase chemistry can be accurately modeled using {open_quotes}mean droplet{close_quotes} properties. The average droplet population pH is then used as the basis for calculating reaction rates. Using this bulk chemistry approach in cloud or fog models may lead to significant errors in the predicted aqueous-phase reaction rates. We prove analytically that the use of a droplet Population`s average pH always results in the underestimation of the rate of sulfate production. In order to examine the magnitude of this error, we have developed two aqueous-phase chemistry models: a droplet size-resolved model and a bulk chemistry model. The discrepancy between the results of these two models indicates the degree of error introduced by assuming bulk aqueous-phase properties. The magnitude of this error depends on the availability of SO{sub 2}, H{sub 2}O{sub 2}, NH{sub 3}, and acidity, and can range from zero to a factor of three for reasonable ambient conditions. A modeling approach that combines the accuracy of the size-resolved model and the low computing requirements of the bulk model is developed.

  17. THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA

    SciTech Connect (OSTI)

    Temim, Tea; Dwek, Eli, E-mail: tea.temim@nasa.gov [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-09-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 M{sub Sun }, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 {mu}m. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  18. Distribution:

    Office of Legacy Management (LM)

    JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive

  19. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    SciTech Connect (OSTI)

    Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric; Jacobson, Jacob; Schwab, Amy; Wu, May; Argo, Andrew; Brandt, Craig C.; Cafferty, Kara; Chiu, Yi-Wen; Dutta, Abhijit; Eaton, Laurence M.; Searcy, Erin

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  20. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  1. Glass bead size and morphology characteristics in support of Crystal Mist field experiments

    SciTech Connect (OSTI)

    Einfeld, W.

    1995-03-01

    One of the tasks of the Lethality Group within US Army Space and Strategic Defense Command (USASSDC) is the development of a capability to simulate various missile intercept scenarios using computer codes. Currently under development within USASSDC and its various contractor organizations is a group of codes collected under a master code called PEGEM for Post Event Ground Effects Model. Among the various components of the code are modules which are used to predict atmospheric dispersion and transport of particles or droplets following release at the altitude specified in the missile intercept scenario. The atmospheric transport code takes into account various source term data from the intercept such as: initial cloud size; droplet or particle size distribution; and, total mass of agent released. An ongoing USASSDC experimental program termed Crystal Mist involved release of precision glass beads under various altitude and meteorological conditions to assist in validation and refinement of various codes that are components of PEGEM used to predict particle atmospheric transport and diffusion following a missile intercept. Here, soda-lime glass beads used in the Crystal Mist series of atmospheric transport and diffusion tests were characterized by scanning electron microscopy and automated image processing routines in order to fully define their size distributions and morphology. Four bead size classifications ranging from a median count diameter of 45 to 200 micrometers were found to be approximately spherical and to fall within the supplier`s sizing specifications. Log-normal functions fit to the measured size distributions resulted in geometric standard deviations ranging from 1.08 to 1.12, thereby fulfilling the field trial requirements for a relatively narrow bead size distribution.

  2. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  3. Freezing a Droplet to Stop the Ice | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Freezing a Droplet to Stop the Ice Advances in simulating water molecules in droplets ... Million molecule simulation of ice formation in a single water droplet. The location of ...

  4. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator

    SciTech Connect (OSTI)

    Lian, Meng; Collier, Pat; Doktycz, Mitchel John; Retterer, Scott T

    2012-01-01

    Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of backing pressures, in the absence of surfactants, is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level.

  5. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    SciTech Connect (OSTI)

    Gambino, Nadia Brandsttter, Markus; Rollinger, Bob; Abhari, Reza

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device has been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zrich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.

  6. Control of membrane permeability in air-stable droplet interface...

    Office of Scientific and Technical Information (OSTI)

    Title: Control of membrane permeability in air-stable droplet interface bilayers Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model ...

  7. Phenomenology of electrostatically charged droplet combustion in normal gravity

    SciTech Connect (OSTI)

    Anderson, Eric K.; Koch, Jeremy A.; Kyritsis, Dimitrios C.

    2008-08-15

    Experimental findings are provided on the effect of electrostatically charging a fuel on single-burning droplet combustion in normal gravity. It was established that significant modification of the flame morphology and the droplet burning time could be achieved, solely by the droplet charge, without the application of external electric fields. Negative charging of the droplets of mixtures of isooctane with either ethanol or a commercially available anti-static additive generated intense motion of the flame and abbreviated the droplet burning time by as much as 40% for certain blend compositions. Positive charging of the droplets generated almost spherical flames, because electrostatic attraction toward the droplets countered the effect of buoyancy. By comparing combustion of droplets of the same conductivity but different compositions, coupling of electrostatics with combustion chemistry was established. (author)

  8. An interface tracking model for droplet electrocoalescence.

    SciTech Connect (OSTI)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  9. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect (OSTI)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  10. Acoustic behavior of ordered droplets in a liquid: A phase space approach

    SciTech Connect (OSTI)

    Rivera, A.L.; Lozada-Cassou, M.; Palomino, M.R.; Icaza, M. de; Castano, V.M.

    2005-03-01

    The transmission of an acoustical signal through a spatial arrangement consisting of a bidimensional crystal of droplets (liquid spheres) immersed into another liquid is analyzed. As a first approximation, the paraxial case is solved by considering a set of acoustical lenses which allow us to model the effect of each droplet on the signal. An expression for the Wigner distribution function that lets us evaluate the corresponding image, diffraction pattern, and even the output signal of any given paraxial input signal to that crystalline substrate is obtained, with particular emphasis on the case of an incoming plane wave. To solve the nonparaxial situation, a generalization of the concept of focal distance interpreting every sphere as a superposition of concentric rings of different radius, which permits us to find a general expression for the Wigner distribution function is proposed.

  11. Effect of Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010

    Broader source: Energy.gov [DOE]

    A distinct relationship was found between engine-out and SCR-out PM distributions for single-mode testing.

  12. Understanding the Effect of Aerosol Properties on Cloud Droplet...

    Office of Scientific and Technical Information (OSTI)

    5-055 ENERGY Science Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report D Cziczo May 2016 ARM CLIMATE RESEARCH FACILITY ...

  13. Control of membrane permeability in air-stable droplet interface...

    Office of Scientific and Technical Information (OSTI)

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. ...

  14. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  15. Air-stable droplet interface bilayers on oil-infused surfaces...

    Office of Scientific and Technical Information (OSTI)

    Title: Air-stable droplet interface bilayers on oil-infused surfaces Droplet interface bilayers (DIBs) are versatile model membranes useful for synthetic biology and biosensing; ...

  16. Vaporization dynamics of volatile perfluorocarbon droplets: A theoretical model and in vitro validation

    SciTech Connect (OSTI)

    Doinikov, Alexander A. Bouakaz, Ayache; Sheeran, Paul S.; Dayton, Paul A.

    2014-10-15

    Purpose: Perfluorocarbon (PFC) microdroplets, called phase-change contrast agents (PCCAs), are a promising tool in ultrasound imaging and therapy. Interest in PCCAs is motivated by the fact that they can be triggered to transition from the liquid state to the gas state by an externally applied acoustic pulse. This property opens up new approaches to applications in ultrasound medicine. Insight into the physics of vaporization of PFC droplets is vital for effective use of PCCAs and for anticipating bioeffects. PCCAs composed of volatile PFCs (with low boiling point) exhibit complex dynamic behavior: after vaporization by a short acoustic pulse, a PFC droplet turns into a vapor bubble which undergoes overexpansion and damped radial oscillation until settling to a final diameter. This behavior has not been well described theoretically so far. The purpose of our study is to develop an improved theoretical model that describes the vaporization dynamics of volatile PFC droplets and to validate this model by comparison with in vitro experimental data. Methods: The derivation of the model is based on applying the mathematical methods of fluid dynamics and thermodynamics to the process of the acoustic vaporization of PFC droplets. The used approach corrects shortcomings of the existing models. The validation of the model is carried out by comparing simulated results with in vitro experimental data acquired by ultrahigh speed video microscopy for octafluoropropane (OFP) and decafluorobutane (DFB) microdroplets of different sizes. Results: The developed theory allows one to simulate the growth of a vapor bubble inside a PFC droplet until the liquid PFC is completely converted into vapor, and the subsequent overexpansion and damped oscillations of the vapor bubble, including the influence of an externally applied acoustic pulse. To evaluate quantitatively the difference between simulated and experimental results, the L2-norm errors were calculated for all cases where the

  17. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    SciTech Connect (OSTI)

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.

  18. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; et al

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less

  19. Determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer quantum dots via spectral analysis of optical signature of the Aharanov-Bohm excitons

    SciTech Connect (OSTI)

    Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha; Kuskovsky, Igor L.; Shuvayev, Vladimir; Deligiannakis, Vasilios; Tamargo, Maria C.; Ludwig, Jonathan; Smirnov, Dmitry; Wang, Alice

    2014-10-28

    For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, even though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.

  20. The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium

    SciTech Connect (OSTI)

    Van Weverberg, K.; VanLipzig, N. P. M.; Delobbe, L.

    2011-04-01

    In this research the impact of modifying the size distribution assumptions of the precipitating hydrometeors in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics has been explored for long-lived low-topped supercells in Belgium. It was shown that weighting the largest precipitating ice species of the microphysics scheme to small graupel results in an increase of surface precipitation because of counteracting effects. On the one hand, the precipitation formation process slowed down, resulting in lower precipitation efficiency. On the other hand, latent heat release associated with freezing favored more intense storms. In contrast to previous studies finding decreased surface precipitation when graupel was present in the microphysics parameterization, storms were rather shallow in the authors simulations. This left little time for graupel sublimation. The impact of size distribution assumptions of snow was found to be small, but more realistic size distribution assumptions of rain led to the strongest effect on surface precipitation. Cold pools shrunk because of weaker rain evaporation at the cold pool boundaries, leading to a decreased surface rain area.

  1. Metals processing control by counting molten metal droplets

    DOE Patents [OSTI]

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  2. Temperature dependent droplet impact dynamics on flat and textured surfaces

    SciTech Connect (OSTI)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  3. Results from Analysis of Avian Retina Oil Droplets

    Office of Scientific and Technical Information (OSTI)

    @T n i: SAND2014-18406PE National Laboratories Avian Retina Oil Droplets 3-26-2014 & 3-27-2014 Sample preparation: Matt Toomey Imaging: Thomas Beechem, Anthony McDonald ...

  4. Prediction of cloud droplet number in a general circulation model

    SciTech Connect (OSTI)

    Ghan, S.J.; Leung, L.R.

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  5. Material forming apparatus using a directed droplet stream

    DOE Patents [OSTI]

    Holcomb, David E. (Oak Ridge, TN); Viswanathan, Srinath (Knoxville, TN); Blue, Craig A. (Knoxville, TN); Wilgen, John B. (Oak Ridge, TN)

    2000-01-01

    Systems and methods are described for rapidly forming precision metallic and intermetallic alloy net shape parts directly from liquid metal droplets. A directed droplet deposition apparatus includes a crucible with an orifice for producing a jet of material, a jet destabilizer, a charging structure, a deflector system, and an impact zone. The systems and methods provide advantages in that fully dense, microstructurally controlled parts can be fabricated at moderate cost.

  6. Ultrasonic estimation of the contact angle of a sessile droplet

    SciTech Connect (OSTI)

    Quintero, R.; Simonetti, F.

    2014-02-18

    Radiation of energy by large amplitude leaky Rayleigh waves is regarded as one of the key physical mechanisms regulating the actuation and manipulation of droplets in surface acoustic wave (SAW) microfluidic devices. The interaction between a SAW and a droplet is highly complex and is presently the subject of extensive research. This paper investigates the existence of an additional interaction mechanism based on the propagation of quasi-Stoneley waves inside sessile droplets deposited on a solid substrate. In contrast with the leaky Rayleigh wave, the energy of the Stoneley wave is confined within a thin fluid layer in contact with the substrate. The hypothesis is confirmed by three-dimensional finite element simulations and ultrasonic scattering experiments measuring the reflection of Rayleigh waves from droplets of different diameters. Moreover, real-time monitoring of the droplet evaporation process reveals a clear correlation between the droplet contact angle and the spectral information of the reflected Rayleigh signal, thus paving the way for ultrasonic measurements of surface tension.

  7. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  8. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    SciTech Connect (OSTI)

    Singaravelu, Ragunath; National Research Council of Canada, Ottawa, Ontario K1A 0R6 ; Lyn, Rodney K.; National Research Council of Canada, Ottawa, Ontario K1A 0R6 ; Srinivasan, Prashanth; Delcorde, Julie; National Research Council of Canada, Ottawa, Ontario K1A 0R6 ; Steenbergen, Rineke H.; Tyrrell, D. Lorne; Li Ka Shing Institute of Virology, Katz Centre for Pharmacy and Health Research, Edmonton, Alberta T6G 2S2 ; Pezacki, John P.

    2013-11-15

    Highlights: Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. The observed increase in LD size correlates with increased PGC-1? and CIDEB expression. Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. This system represents a cost-efficient model to study CIDEBs role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEBs role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1?, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEBs role in LD fusion, and presents a new model system to study the PGC-1?/CIDEB pathways role in LD dynamics and the VLDL pathway.

  9. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  10. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    SciTech Connect (OSTI)

    Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.; Smith, Richard D.; Watts, Jennifer

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type and high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.

  11. System for sensing droplet formation time delay in a flow cytometer...

    Office of Scientific and Technical Information (OSTI)

    System for sensing droplet formation time delay in a flow cytometer Citation Details In-Document Search Title: System for sensing droplet formation time delay in a flow cytometer A ...

  12. System for sensing droplet formation time delay in a flow cytometer...

    Office of Scientific and Technical Information (OSTI)

    System for sensing droplet formation time delay in a flow cytometer Citation Details In-Document Search Title: System for sensing droplet formation time delay in a flow cytometer ...

  13. ARM - Measurement - Aerosol particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer HTDMA : Humidified Tandem Differential Mobility Analyzer SMPS : Scanning mobility particle sizer TDMA : Tandem...

  14. Characterizing Uncertainties in Ice Particle Size Distributions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight In many parameterization schemes for numerical models or remote sensing...

  15. Size distributions of boundary-layer clouds

    SciTech Connect (OSTI)

    Stull, R.; Berg, L.; Modzelewski, H.

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  16. Dynamics of lipid droplets induced by the hepatitis C virus core protein

    SciTech Connect (OSTI)

    Lyn, Rodney K.; Department of Chemistry, University of Ottawa, Ottawa ; Kennedy, David C.; Stolow, Albert; Ridsdale, Andrew; Pezacki, John Paul

    2010-09-03

    Research highlights: {yields} Hepatitis C virus uses lipid droplets (LD) onto which HCV core proteins bind. {yields} HCV core proteins on LDs facilitate viral particle assembly. {yields} We used a novel combination of CARS, two-photon fluorescence, and DIC microscopies. {yields} Particle tracking experiments show that core slowly affects LD localization. {yields} Particle tracking measured the change in speed and directionality of LD movement. -- Abstract: The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV core proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.

  17. Dilution-Free Analysis from Picoliter Droplets by Nano-Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Page, Jason S.; Marginean, Ioan; Tang, Keqi; Smith, Richard D.

    2009-09-01

    The expanding role of microfluidics for chemical and biochemical analysis is due to factors including the favorable scaling of separation performance with reduced channel dimensions,[1] flexibility afforded by computer-aided device design, and the ability to integrate multiple sample handling and analysis steps into a single platform.[2] Such devices enable smaller liquid volumes and sample sizes to be handled than can be achieved on the benchtop, where sub-microliter volumes are difficult to work with and where sample losses to the surfaces of multiple reaction vessels become prohibitive. A particularly attractive microfluidic platform for sample-limited analyses employs aqueous droplets or plugs encapsulated by an immiscible oil.[3,4] Each droplet serves as a discrete compartment or reaction chamber enabling, e.g., high throughput screening[5,6] and kinetic studies[7-9] of femto- to nanoliter samples, as well as the encapsulation[10-12] and lysis[10] of individual cells with limited dilution of the cellular contents

  18. Length Scale Selects Directionality of Droplets on Vibrating Pillar Ratchet

    SciTech Connect (OSTI)

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, Pat; Lavrik, Nickolay V.

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the length scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. The ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.

  19. Length scale selects directionality of droplets on vibrating pillar ratchet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V.

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the lengthmore » scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. As a result, the ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.« less

  20. ARM - Campaign Instrument - csphot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol optical properties Cloud optical depth Cloud droplet size Particle number concentration Particle size distribution Precipitable water Shortwave narrowband radiance...

  1. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent to the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded

  2. Composition profiling of GaAs/AlGaAs quantum dots grown by droplet epitaxy

    SciTech Connect (OSTI)

    Bocquel, J.; Koenraad, P. M.; Giddings, A. D.; Prosa, T. J.; Larson, D. J.; Mano, T.

    2014-10-13

    Droplet epitaxy (DE) is a growth method which can create III-V quantum dots (QDs) whose optoelectronic properties can be accurately controlled through the crystallisation conditions. In this work, GaAs/AlGaAs DE-QDs have been analyzed with the complimentary techniques of cross-sectional scanning tunneling microscopy and atom probe tomography. Structural details and a quantitative chemical analysis of QDs of different sizes are obtained. Most QDs were found to be pure GaAs, while a small proportion exhibited high intermixing caused by a local etching process. Large QDs with a high aspect ratio were observed to have an Al-rich crown above the GaAs QD. This structure is attributed to differences in mobility of the cations during the capping phase of the DE growth.

  3. Instability of nano- and microscale liquid metal filaments: Transition from single droplet collapse to multidroplet breakup

    SciTech Connect (OSTI)

    Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson; Afkhami, Shahriar; Rack, P. D.; Kondic, L.

    2015-11-23

    We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.

  4. Investigation of thermochemical biorefinery sizing and environmental...

    Office of Scientific and Technical Information (OSTI)

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs...

  5. Two-dimensional fluid droplet arrays generated using a single nozzle

    DOE Patents [OSTI]

    Lee, Eric R.; Perl, Martin L.

    1999-11-02

    Amplitudes of drive pulses received by a horizontally-placed dropper determine the horizontal displacements of droplets relative to an ejection aperture of the dropper. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  6. ON-DEMAND SERIAL DILUTION USING QUANTIZED NANO/PICOLITER-SCALE DROPLETS

    SciTech Connect (OSTI)

    Jambovane, Sachin R.; Prost, Spencer A.; Sheen, Allison M.; Magnuson, Jon K.; Kelly, Ryan T.

    2014-10-29

    This paper describes a fully automated droplet-based microfluidic device for on-demand serial dilution that is capable of achieving a dilution ratio of >6000 (concentration ranges from 1 mM to 160nM) over 35 nanoliter-scale droplets. This serial diluter can be applied to high throughput and label-free kinetic assays by integrating with our previously developed on-demand droplet-based microfluidic with mass spectrometry detection.

  7. Robust Extraction Interface for Coupling Droplet-Based and Continuous Flow Microfluidics

    SciTech Connect (OSTI)

    Sun, Xuefei; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2012-03-07

    Reliable and highly efficient extraction of droplets from oil to aqueous phase is key for downstream coupling with chemical separations and nonoptical detection methods such as amperometry and mass spectrometry. This paper presents an improved interface providing robust extraction for droplet-based poly(dimethylsiloxane) (PDMS) microfluidic devices. The extraction interface consists of an array of cylindrical posts with narrow apertures in between. The aqueous flow channel into which droplets coalesced was simply and selectively modified to be hydrophilic, while the continuous oil phase flow channel that contained encapsulated aqueous droplets retained a hydrophobic surface. The different surfaces on both sides of the extraction region form a highly stable liquid interface between the two immiscible phases, allowing rapid droplet transfer to the aqueous stream. Entire droplets could be completely extracted within broad ranges of aqueous and oil flow rates (0 - 1 and 0.1 - 1 uL/min, respectively). After extraction, the droplet contents could be transported electrophoretically or by pressure-driven flow to a monolithically integrated emitter for nano-electrospray ionization mass spectrometry (nanoESI-MS) analysis. This interface should be amenable to the separation and identification of droplet contents and on-line monitoring of in-droplet reactions.

  8. Packaging a liquid metal ESD with micro-scale Mercury droplet...

    Office of Scientific and Technical Information (OSTI)

    There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable ...

  9. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    SciTech Connect (OSTI)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  10. Simple relations for wettability of a droplet on a low-surface-energy solid

    SciTech Connect (OSTI)

    Yonemoto, Yukihiro; Kunugi, Tomoaki

    2014-04-11

    A treatment of the contact angle is very difficult because it exhibits a hysteresis such as dynamic contact angle and does not necessarily take a constant value. For understanding such complicated behavior of droplet, simple but fundamental consideration is very important. In the present study, wettability of a binary mixture droplet on low surface energy solid is experimentally and theoretically investigated. A simple theoretical model is applied to the droplet behavior considering a situation before and after touching the solid surface from a view point of thermodynamic surface energy. The model can explain the relationships among the contact angle (θ), surface energy of liquid (σ{sub lg}) and the droplet radius (R)

  11. Natural discharge after pulse and cooperative electrodes to enhance droplet velocity in digital microfluidics

    SciTech Connect (OSTI)

    Chen, Tianlan; Dong, Cheng; Gao, Jie; Jia, Yanwei; Mak, Pui-In, E-mail: pimak@umac.mo; Vai, Mang-I; Martins, Rui P. [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)] [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)

    2014-04-15

    Digital Microfluidics (DMF) is a promising technology for biological/chemical micro-reactions due to its distinct droplet manageability via electronic automation, but the limited velocity of droplet transportation has hindered DMF from utilization in high throughput applications. In this paper, by adaptively fitting the actuation voltages to the dynamic motions of droplet movement under real-time feedback monitoring, two control-engaged electrode-driving techniques: Natural Discharge after Pulse (NDAP) and Cooperative Electrodes (CE) are proposed. They together lead to, for the first time, enhanced droplet velocity with lower root mean square voltage value.

  12. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  13. Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach

    SciTech Connect (OSTI)

    Xu, W.; Lan, Z.; Peng, B. L.; Wen, R. F.; Ma, X. H.

    2015-02-07

    Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation

  14. On-demand production of uniform DT droplets using pulsed electrohydrodynamic spraying. Charged Particle Research Laboratory report No. 1-82

    SciTech Connect (OSTI)

    Kim, K.; Gavrilovic, P.

    1982-04-01

    A technique suitable for on-demand production of uniform DT droplets is investigated using pulsed electrohydrodynamic (EHD) spraying. Liquid hydrogen is employed as the working liquid, into which charge is injected using a sharp tungsten needle raised to high voltage. By controlling this high voltage, the amount of charge injection required for disrupting the liquid surface into a smooth liquid jet of desired size is determined. For on-demand production of the liquid jet (which breaks up into uniform droplets), high voltage pulses of appropriate height and duration are applied to the charge injection electrode. Results obtained with liquid hydrogen and liquid nitrogen are presented. Considering the potential hazard and scarcity of tritium, the present technique may prove to be particularly useful when there is a need for filling ICF targets with a controlled amount of DT micropellets.

  15. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    SciTech Connect (OSTI)

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.

    2014-11-28

    This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.

  16. High speed flow cytometer droplet formation system and method

    DOE Patents [OSTI]

    Van den Engh, Ger

    2000-01-01

    A droplet forming flow cytometer system allows high speed processing without the need for high oscillator drive powers through the inclusion of an oscillator or piezoelectric crystal such as within the nozzle volume or otherwise unidirectionally coupled to the sheath fluid. The nozzle container continuously converges so as to amplify unidirectional oscillations which are transmitted as pressure waves through the nozzle volume to the nozzle exit so as to form droplets from the fluid jet. The oscillator is directionally isolated so as to avoid moving the entire nozzle container so as to create only pressure waves within the sheath fluid. A variation in substance concentration is achieved through a movable substance introduction port which is positioned within a convergence zone to vary the relative concentration of substance to sheath fluid while still maintaining optimal laminar flow conditions. This variation may be automatically controlled through a sensor and controller configuration. A replaceable tip design is also provided whereby the ceramic nozzle tip is positioned within an edge insert in the nozzle body so as to smoothly transition from nozzle body to nozzle tip. The nozzle tip is sealed against its outer surface to the nozzle body so it may be removable for cleaning or replacement.

  17. Method of dispensing droplets to penetration-resistive mediums. [Patent application

    DOE Patents [OSTI]

    Fowler, V.L.; Ryon, A.D.; Haas, P.A.

    1982-06-10

    Uniform, monosized microspheroids are produced in a gelation medium characterized by a high resistance to surface penetration by reducing the effect of impact on entry of the droplets into the medium by contacting the droplet with a stream of medium and by introducing the resulting stream into a gelation column.

  18. Detachment of Liquid-Water Droplets from Gas-Diffusion Layers

    SciTech Connect (OSTI)

    Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

    2011-07-01

    A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

  19. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    SciTech Connect (OSTI)

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.

    2014-11-28

    A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.

  20. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; et al

    2014-11-28

    A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less

  1. Instability of nano- and microscale liquid metal filaments: Transition from single droplet collapse to multidroplet breakup

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson; Afkhami, Shahriar; Rack, P. D.; Kondic, L.

    2015-11-23

    We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less

  2. Quantized vortices in {sup 4}He droplets: A quantum Monte Carlo study

    SciTech Connect (OSTI)

    Sola, E.; Casulleras, J.; Boronat, J.

    2007-08-01

    We present a diffusion Monte Carlo study of a vortex line excitation attached to the center of a {sup 4}He droplet at zero temperature. The vortex energy is estimated for droplets of increasing number of atoms, from N=70 up to 300, showing a monotonous increase with N. The evolution of the core radius and its associated energy, the core energy, is also studied as a function of N. The core radius is {approx}1 A in the center and increases when approaching the droplet surface; the core energy per unit volume stabilizes at a value 2.8 K{sigma}{sup -3} ({sigma}=2.556 A) for N{>=}200.

  3. Hopper Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Hopper Job Size Charts Fractional Jobs The following charts show the fraction of hours used on Hopper in each of five job-core-size bins: 2014 Usage by Job Size Chart 2013 2012 2011 Large Jobs The following charts show the fraction of hours used on Hopper by jobs using greater than 16,384 cores: 2014 2013 2012 Usage by Job Size Chart 2011 Last edited: 2016-05-02 09:20:42

  4. Magnetic detection of underground pipe using timed-release marking droplets

    DOE Patents [OSTI]

    Powell, James R.; Reich, Morris

    1996-12-17

    A system 10 and method of detecting an underground pipe 12 injects magnetic marking droplets 16 into the underground pipe 12 which coat the inside of the pipe 12 and may be detected from aboveground by a magnetometer 28. The droplets 16 include a non-adhesive cover 32 which allows free flow thereof through the pipe 12, with the cover 32 being ablatable for the timed-release of a central core 30 containing magnetic particles 30a which adhere to the inside of the pipe 12 and are detectable from aboveground. The rate of ablation of the droplet covers 32 is selectively variable to control a free flowing incubation zone 12a for the droplets 16 and a subsequent deposition zone 12b in which the magnetic particles 30a are released for coating the pipe 12.

  5. Magnetic detection of underground pipe using timed-release marking droplets

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.

    1996-12-17

    A system and method are disclosed of detecting an underground pipe by injecting magnetic marking droplets into the underground pipe which coat the inside of the pipe and may be detected from aboveground by a magnetometer. The droplets include a non-adhesive cover which allows free flow through the pipe, with the cover being ablatable for the timed-release of a central core containing magnetic particles which adhere to the inside of the pipe and are detectable from aboveground. The rate of ablation of the droplet covers is selectively variable to control a free flowing incubation zone for the droplets and a subsequent deposition zone in which the magnetic particles are released for coating the pipe. 6 figs.

  6. Evalution of long-term surface-retrieved cloud-droplet number...

    Office of Scientific and Technical Information (OSTI)

    Evalution of long-term surface-retrieved cloud-droplet number concentration with in situ aircraft observations Citation Details In-Document Search Title: Evalution of long-term ...

  7. Direct Simulation of Fully Resolved Vaporizing Droplets in a Turbulent Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Direct Simulation of Fully Resolved Vaporizing Droplets in a Turbulent Flow PI Name: Said Elghobashi PI Email: selghoba@uci.edu Institution: University of California, Irvine Allocation Program: INCITE Allocation Hours at ALCF: 20,000,000 Year: 2012 Research Domain: Engineering This project will enhance the understanding of liquid droplet vaporization and mixing processes in a turbulent flow. All liquid fuel combustion devices, mobile or stationary, use

  8. Tiny Droplets... Lead to Exotic Properties | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Tiny Droplets... Lead to Exotic Properties Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 06.07.16 Tiny Droplets... Lead to Exotic

  9. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports » Edison Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size Note: Interactive charts with current and past Cori and Edison data are now available on MyNERSC This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job Size Chart 2014 Fraction of Hours Used by Big Jobs This chart shows the fraction of hours used on Edison by jobs using 16,384 or more cores. 2015 Usage by Job Size Chart 2014 Last edited: 2016-04-21

  10. System for sensing droplet formation time delay in a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1997-01-01

    A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustment which may then act with analysis equipment to revise the time delay estimate actually applied during processing. The automatic sampler can be controlled through a microprocessor and appropriate programming to bracket an initial droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.

  11. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    SciTech Connect (OSTI)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  12. Powder processing for the fabrication of Si{sub 3}N{sub 4} ceramics. 1: Influence of spray-dried granule strength on pore size distribution in green compacts

    SciTech Connect (OSTI)

    Kamiya, Hidehiro; Isomura, Kenji; Jimbo, Genji; Junichiro, Tsubaki

    1995-01-01

    The effect of spray-dried granule strength on the microstructure of green compacts obtained by isostatic pressing was quantitatively analyzed. The fracture strength of single granules of Si{sub 3}N{sub 4} powder made with ultrafine Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} powders was measured directly by diametral compression. It was found that fracture strength increased notably with the increasing relative density of the granule and the decreasing size of agglomerates in suspension before spray-drying. Even when green bodies were prepared at an isostatic pressure of 200 MPa, intergranular pores, which negatively affected densification of the sintered bodies, occurred between unfractured granules. The volume and size of these pores in the green compacts increased with the increasing fracture strength of the granules. In the case of closely packed granules, an isostatic pressure of 800 MPa was required to completely collapse the intergranular pores. A simple equation was derived to calculate the isostatic pressure necessary for complete collapse of intergranular pores in the green compacts, and it was determined that granule strength must be kept as low as possible to obtain uniform green compacts.

  13. High pressure annular two-phase flow in a narrow duct. Part 1: Local measurements in the droplet field, and Part 2: Three-field modeling

    SciTech Connect (OSTI)

    Trabold, T.A.; Kumar, R.

    1999-07-01

    In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with

  14. Correlating Size and Composition-Dependent Effects with Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Correlating Size and Composition-Dependent Effects with Magnetic, Mssbauer, and Pair Distribution Function Measurements in a Family of Catalytically Active Ferrite Nanoparticles ...

  15. Axisymmetric oscillation modes of a double droplet system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  16. Axisymmetric oscillation modes of a double droplet system

    SciTech Connect (OSTI)

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) the pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)?R3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. In particular, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =?/??R? , where ? is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.

  17. The structure of mixed {sup 3}He-{sup 4}He droplets doped with OCS: A density functional approach

    SciTech Connect (OSTI)

    Leal, Antonio; Mateo, David; Pi, Mart; Barranco, Manuel [Departament ECM, Facultat de Fsica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain)] [Departament ECM, Facultat de Fsica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Navarro, Jess [IFIC (CSIC-Universidad de Valencia), P.O. Box 22085, E-46071 Valencia (Spain)] [IFIC (CSIC-Universidad de Valencia), P.O. Box 22085, E-46071 Valencia (Spain)

    2013-11-07

    We have investigated the structure and energetics of mixed {sup 3}He-{sup 4}He droplets doped with a carbonyl sulfide molecule within a density functional approach considering a small but finite temperature of 0.1 K. The molecule is treated as an external field to which the helium droplet is attached. The energetics and appearance of these droplets are discussed for selected numbers of helium atoms, identifying the first magic numbers of the fermionic component.

  18. ARM - Measurement - Hydrometeor size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor size The size of a hydrometeor, measured directly or derived from other measurements. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  19. Nucleation rate of critical droplets on an elastic string in a {phi}{sup 6} potential

    SciTech Connect (OSTI)

    Kerr, W.C.; Graham, A.J.

    2004-12-01

    We obtain the nucleation rate of critical droplets for an elastic string moving in a {phi}{sup 6} local potential and subject to noise and damping forces. The critical droplet is a bound soliton-antisoliton pair that carries a section of the string out of the metastable central minimum into one of the stable side minima. The frequencies of small oscillations about the critical droplet are obtained from a Heun equation. We solve the Fokker-Planck equation for the phase-space probability density by projecting it onto the eigenfunction basis obtained from the Heun equation. We employ Farkas' 'flux-overpopulation' method to obtain boundary conditions for solving the Fokker-Planck equation; these restrict the validity of our solution to the moderate to heavy damping regime. We present results for the rate as a function of temperature, well depth, and damping.

  20. Bright tunable femtosecond x-ray emission from laser irradiated micro-droplets

    SciTech Connect (OSTI)

    Yu, Tong-Pu Hu, Li-Xiang; Yin, Yan; Shao, Fu-Qiu; Zhuo, Hong-Bin; Ma, Yan-Yun; Yang, Xiao-Hu; Luo, Wen; Pukhov, Alexander

    2014-09-15

    It is demonstrated that bright femtosecond X-rays can be obtained by irradiating a moderate laser onto a helium micro-droplet. The laser ponderomotive force continuously sweeps electrons from the droplets and accelerates them forward. The electrons exposed in the outrunning laser field oscillate transversely and emit photons in the forward direction. The total flux of photons with energies above 1?keV is as high as 10{sup 9}/shot which is about 10-fold enhancement compared with betatron oscillation under similar laser conditions. The maximum achieved peak brightness is up to 10{sup 21} photons/s/mm{sup 2}/mrad{sup 2}/0.1%BW. By adjusting laser and droplet parameters, we can get tunable X-rays with required brightness and energy.

  1. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  2. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    SciTech Connect (OSTI)

    Kosch, Sebastian E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser E-mail: ashgriz@mie.utoronto.ca

    2015-04-15

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  3. In-Situ Microphysics from the RACORO IOP (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Cloud particle size distribution; Cloud droplet size; Cloud extinction; Liquid water content; Radar ...

  4. Oxidation Behavior of In-Flight Molten Aluminum Droplets in the Twin-Wire Electric Arc Thermal Spray Process

    SciTech Connect (OSTI)

    Donna Post Guillen; Brian G. Williams

    2005-05-01

    This paper examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment and mixing of the surface oxides within the droplet, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a droplet without internal circulation. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of an average droplet at impact agrees well with the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating, which ranges from 3.3 to 12.7%. An explanation is provided for the elevated, nearly constant surface temperature (~ 2000 oC) of the droplets during flight to the substrate and shows that the majority of oxide content in the coating is produced during flight, rather than after deposition.

  5. Does size matter?

    SciTech Connect (OSTI)

    Carreras, B. A.; Physics Department, College of Natural Science and Mathematics and Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775; Physics Department, Universidad Carlos III de Madrid, Madrid ; Newman, D. E.; Dobson, Ian

    2014-06-15

    Failures of the complex infrastructures society depends on having enormous human and economic cost that poses the question: Are there ways to optimize these systems to reduce the risks of failure? A dynamic model of one such system, the power transmission grid, is used to investigate the risk from failure as a function of the system size. It is found that there appears to be optimal sizes for such networks where the risk of failure is balanced by the benefit given by the size.

  6. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  7. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  8. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets

    SciTech Connect (OSTI)

    Beer, N R; Wheeler, E; Lee-Houghton, L; Watkins, N; Nasarabadi, S; Hebert, N; Leung, P; Arnold, D; Bailey, C; Colston, B

    2007-12-19

    The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing thermal cycling for reverse transcription and subsequent PCR amplification without droplet motion. This combination of the established real-time reverse transcription-PCR assay with digital microfluidics is ideal for isolating single-copy RNA and virions from a complex environment, and will be useful in viral discovery and gene-profiling applications.

  9. An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Berkel, Gary J.; Weiskittel, Taylor M.; Kertesz, Vilmos

    2014-11-07

    Droplet-based liquid microjunction surface sampling coupled with high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) for spatially resolved analysis provides the possibility of effective analysis of complex matrix samples and can provide a greater degree of chemical information from a single spot sample than is typically possible with a direct analysis of an extract. Described here is the setup and enhanced capabilities of a discrete droplet liquid microjunction surface sampling system employing a commercially available CTC PAL autosampler. The system enhancements include incorporation of a laser distance sensor enabling unattended analysis of samples and sample locations of dramatically disparatemore » height as well as reliably dispensing just 0.5 μL of extraction solvent to make the liquid junction to the surface, wherein the extraction spot size was confined to an area about 0.7 mm in diameter; software modifications improving the spatial resolution of sampling spot selection from 1.0 to 0.1 mm; use of an open bed tray system to accommodate samples as large as whole-body rat thin tissue sections; and custom sample/solvent holders that shorten sampling time to approximately 1 min per sample. Lastly, the merit of these new features was demonstrated by spatially resolved sampling, HPLC separation, and mass spectral detection of pharmaceuticals and metabolites from whole-body rat thin tissue sections and razor blade (“crude”) cut mouse tissue.« less

  10. Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

    2013-06-24

    Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of

  11. Distributed PV Interconnection: Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Make Smart Solar Decisions Distributed Solar Interconnection: Challenges and Best ... 50, Arizona: 54, Colorado: 63, New York: 68 New Jersey: 90 System Size Mean Median Std. ...

  12. Concentrations and Size Distributions of Particulate Matter Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Devices on the Emission Profiles of Trucks and Buses CNG and Diesel Transite Bus Emissions in Review ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses

  13. Characterization of Vertical Velocity and Drop Size Distribution...

    Office of Scientific and Technical Information (OSTI)

    to within the typical uncertainty of the retrieval methods. ... This study will be useful in assessing uncertainties ... Country of Publication: United States Language: English ...

  14. Radio-frequency capacitive discharge with non-flow-type and droplet-jet electrolytic electrodes

    SciTech Connect (OSTI)

    Gaisin, A. F.; Abdullin, I. Sh.; Basyrov, R. Sh.; Khaziev, R. M.; Samitova, G. T.; Shakirova, E. F.

    2014-12-15

    Results are presented from experimental studies of the shape, structure, and spectral characteristics of an RF capacitive discharge operating between a droplet-jet electrolytic electrode and an electrolytic cell in air at pressures of P = 10{sup 3}10{sup 5} Pa, as well as of a discharge burning between a copper rod and the surface of non-flow electrolyte at atmospheric pressure. It is found that, at voltages of U ? 3500 V, the multichannel discharge burning between the rod and the electrolyte (saturated solution of NaCl in technical water) surface transforms into a torch discharge. Specific features of the burning of a discharge with a droplet electrolytic electrode are investigated. Different forms of discharges burning on the surface of a copper tube and an electrolyte jet are revealed.

  15. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, ...

  16. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  17. DOE/SC-ARM-TR-140 Droplet Number Concentration Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Droplet Number Concentration Value-Added Product L Riihimaki S McFarlane C Sivaraman June 2014 Version 1.0 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its

  18. Tiny Droplets... Lead to Exotic Properties | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Tiny Droplets... Lead to Exotic Properties Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More Information »

  19. Cloud Droplet Spectral Shape Sheds New Light on Aerosol- Cloud-Interaction Regimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Droplet Spectral Shape Sheds New Light on Aerosol- Cloud-Interaction Regimes For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Despite decades of research, aerosol indirect effects remain among the most uncertain climate forcings according to the latest Intergovernmental Panel on Climate Change report. Furthermore, climate models tend to overestimate the cooling of aerosol indirect effects and are more susceptible than

  20. Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms

    SciTech Connect (OSTI)

    Swaminathan, Vikhram Vilasur; Dak, Piyush; Alam, Muhammad A. E-mail: alam@purdue.edu; Reddy, Bobby; Duarte-Guevara, Carlos; Zhong, Yu; Salm, Eric; Fischer, Andrew; Bashir, Rashid E-mail: alam@purdue.edu

    2015-02-02

    The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ∼250 μm. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt concentrations, respectively. Through self-consistent simulations and experimental measurements, we demonstrate that conventional double-layer theory over-predicts the desalting capacity and, hence, cannot be used to model systems that are mass limited or undergoing significant salt removal from the bulk. Our results will provide a better understanding of capacitive desalination, as well as a method for salt manipulation in high-throughput droplet-based microfluidic sensing platforms.

  1. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition

    SciTech Connect (OSTI)

    Emery, S. B. Little, B. K.; Xin, Y.; Ridge, C. J.; Lindsay, C. M.; Buszek, R. J.; Boatz, J. A.; Boyle, J. M.

    2015-02-28

    We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.

  2. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect (OSTI)

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  3. Computational insights of water droplet transport on graphene sheet with chemical density

    SciTech Connect (OSTI)

    Zhang, Liuyang; Wang, Xianqiao, E-mail: xqwang@uga.edu [College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602 (United States)

    2014-05-21

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  4. How Distributed Wind Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Distributed Wind Works How Distributed Wind Works Your browser does not support iframes. Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kilowatt turbine at a home to a multi-megawatt (MW) turbine at a manufacturing facility. Distributed wind systems are connected on the customer side of the meter to meet the onsite load or directly to distribution or

  5. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project ...

  6. Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time

    SciTech Connect (OSTI)

    Nguyen, Vanthan; Yan, Lihe Si, Jinhai; Hou, Xun

    2015-02-28

    Photoluminescent carbon nanodots (C-dots) with size tunability and uniformity were fabricated in polyethylene glycol (PEG{sub 200N}) solution using femtosecond laser ablation method. The size distributions and photoluminescence (PL) properties of C-dots are well controlled by adjusting the combined parameters of laser fluence, spot size, and irradiation time. The size reduction efficiency of the C-dots progressively increases with decreasing laser fluence and spot size. The optimal PL spectra are red-shifted and the quantum yields decrease with the increase in C-dots size, which could be attributed to the more complex surface functional groups attached on C-dots induced at higher laser fluence and larger spot size. Moreover, an increase in irradiation time leads to a decrease in size of C-dots, but long-time irradiation will result in the generation of complex functional groups on C-dots, subsequently the PL spectra are red-shifted.

  7. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOE Patents [OSTI]

    Huber, Dale L.

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  8. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS

    SciTech Connect (OSTI)

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.; Changelian, Armen; Laws, Edward R.; Santagata, Sandro; Agar, Nathalie Y. R.; Van Berkel, Gary J.

    2015-06-18

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.

  9. Profiling of Adrenocorticotropic Hormone and Arginine Vasopressin in Human Pituitary Gland and Tumor Thin Tissue Sections using Droplet-Based Liquid Microjunction Surface Sampling-HPLC-ESI-MS/MS

    SciTech Connect (OSTI)

    Kertesz, Vilmos; Van Berkel, Gary J; Calligaris, David; Feldman, Daniel R; Changelian, Armen; Laws, Edward R; Santagata, Sandro; Agar, Nathalie YR

    2015-01-01

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.

  10. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R.; Changelian, Armen; Laws, Edward R.; Santagata, Sandro; Agar, Nathalie Y. R.; Van Berkel, Gary J.

    2015-06-18

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially resolved sampling, HPLC separation, and mass spectral detection. Excellent correlation was found between the protein distribution data obtained with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system and those data obtained with matrix assisted laser desorption ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland.more » AVP was most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH secreting adenomas and in normal anterior adenohypophysis compared to non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis as anticipated. This work demonstrates that a fully automated droplet-based liquid microjunction surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, such as AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity and specificity of the current methodology support the potential of this basic technology with further advancement for assisting surgical decision-making.« less

  11. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces

    SciTech Connect (OSTI)

    Starr, David E.; Wong, Ed K.; Worsnop, Douglas R.; Wilson, Kevin R.; Bluhm, Hendrik

    2008-05-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50...150 {micro}m is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100...1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a {chi} = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  12. Packaging a liquid metal ESD with micro-scale Mercury droplet.

    SciTech Connect (OSTI)

    Barnard, Casey Anderson

    2011-08-01

    A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable amounts of mercury to the appropriate channels in volumes under 1 uL. Issues of hermetic sealing and avoidance of mercury contamination are also addressed.

  13. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-04-01

    A computer code ICRKFLO was used to simulate the multiphase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that are in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  14. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-12-31

    A computer code ICRKFLO was used to simulate the multi-phase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  15. An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decade of Observations at a Mid-Continental Site An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a Decade of Observations at a Mid-Continental Site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Category: Aerosols Continuing observations of aerosol and cloud optical property have been made using MFRSR and MWR at the ARM SGP site since

  16. Structure of droplet-epitaxy-grown InAs/GaAs quantum dots

    SciTech Connect (OSTI)

    Cohen, Eyal; Yochelis, Shira; Westreich, Ohad; Shusterman, Sergey; Kumah, Divine P.; Clarke, Roy; Yacoby, Yizhak; Paltiel, Yossi

    2011-09-06

    We have used a direct x-ray phasing method, coherent Bragg rod analysis, to obtain sub-angstrom resolution electron density maps of the InAs/GaAs dot system. The dots were grown by the droplet heteroepitaxy (DHE) technique and their structural and compositional properties are compared with those of dots grown by the strain-driven Stranski-Krastanov method. Our results show that the Ga diffusion into the DHE-grown dots is somewhat larger; however, other characteristics such as the composition of the dots uppermost layers, the interlayer spacing, and the bowing of the atomic layers are similar.

  17. Impact of aerosol size representation on modeling aerosol-cloud interactions: AEROSOL SIZE REPRESENTATION

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    We use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approachmore » with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  18. In-Situ Microphysics from the MPACE IOP (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Best estimates of the size distributions of supercooled water droplets and ice crystals ... Our best estimates of the bulk microphysical properties such as ice water content (IWC), ...

  19. ARM - Publications: Science Team Meeting Documents: Response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in cloud droplet size distribution Barker, Howard Meteorological Service of Canada Cole, Jason Meteorological Service of Canada Marshak, Alexander NASA Goddard Space Flight...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Numerical models of droplet nucleation are capable of representing much of the complexity ... the cooling rate and the size distribution of aerosol number and hygroscopicity. ...

  1. The balanced-force volume tracking algorithm and global embedded interface formulation for droplet dynamics with mass transfer

    SciTech Connect (OSTI)

    Francois, Marianne M; Carlson, Neil N

    2010-01-01

    Understanding the complex interaction of droplet dynamics with mass transfer and chemical reactions is of fundamental importance in liquid-liquid extraction. High-fidelity numerical simulation of droplet dynamics with interfacial mass transfer is particularly challenging because the position of the interface between the fluids and the interface physics need to be predicted as part of the solution of the flow equations. In addition, the discontinuity in fluid density, viscosity and species concentration at the interface present additional numerical challenges. In this work, we extend our balanced-force volume-tracking algorithm for modeling surface tension force (Francois et al., 2006) and we propose a global embedded interface formulation to model the interfacial conditions of an interface in thermodynamic equilibrium. To validate our formulation, we perform simulations of pure diffusion problems in one- and two-dimensions. Then we present two and three-dimensional simulations of a single droplet dynamics rising by buoyancy with mass transfer.

  2. Finite element thermomechanical simulation of droplets impacting on a rigid substrate

    SciTech Connect (OSTI)

    Bertagnolli, M.; Marchese, M.; Jacucci, G.; St. Doltsinis, I.; Noelting, S.

    1994-12-31

    The plasma spray process is a convenient way to coat a piece of material with a layer of another material, to protect the first from thermal shock or environmental degradation. Finite Element simulation techniques (FEM) for the spreading process of a ceramic liquid droplet impacting on a flat cold surface have been developed. The goal of the present investigation is (1) to predict the geometrical form of the splat as a function of process parameters, such as initial temperature and velocity, and (2) to follow the thermal field developing in the droplet up to solidification. A non-linear finite element procedure has been extended in order to model the complex physical phenomena involved in the impact process. The dynamic motion of the viscous melt in the drops as constrained by elastic surface tensions in interaction with the developing contact with the target, ultimately has been coupled to transient thermal phenomena accounting also for the solidification of the material. In a first model description, spherical particles of liquid ceramic of given temperature and velocity impact on a flat, cool rigid surface. The deformation of the splat geometry as well as the evolution of the thermal field within the splat are followed up to the final state and require adaptive discretization techniques. The authors discuss an utilization of the proposed model in correlating flattening degrees with the initial process parameters.

  3. Morphology Of Diesel Soot Residuals From Supercooled Water Droplets And Ice Crystals: Implications For Optical Properties

    SciTech Connect (OSTI)

    China, Swarup; Kulkarni, Gourihar; Scarnatio, Barbara; Sharma, Noopur; Pekour, Mikhail S.; Shilling, John E.; Wilson, Jacqueline M.; Zelenyuk, Alla; Chand, Duli; Liu, Shang; Aiken, Allison; Dubey, Manvendra K.; Laskin, Alexander; Zaveri, Rahul A.; Mazzoleni, Claudio

    2015-11-04

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those from supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. These results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.

  4. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  5. Distribution Category:

    Office of Legacy Management (LM)

    - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist

  6. Strategic Petroleum Reserve: Analysis of size options

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This report presents the results of the deliberations of the interagency group formed to study the costs and benefits of expanding the size of the SPR. The study concentrated on severe oil supply disruptions involving sharp reductions in world oil production that were 2 to 4 times larger than the largest 1970s interruption. The disruption sizes and estimated probability of occurrence of these scenarios were supplied by the CIA. The most critical part of the CIA's analysis was the assessment of likelihood of these cases occurring. The CIA approached the likelihood problem by combining an examination of past oil supply disruptions with qualitative analysis of important oil market and regional trends. The study group then used statistical techniques and probability distributions to synthesize the historical data with CIA evaluations of as yet unobserved events. The SPR size study assumed direct purchases of SPR oil and did not assume the use of alternative financing mechanisms. Members of the working group with foreign policy and national security responsibilities provided an in-depth review of strategic considerations affecting SPR size. A number of prior studies, some classified, have addressed the strategic importance and insurance value of the SPR to the US and its allies. The results of these studies have also been incorporated in the current effort. 10 refs., 5 figs.

  7. Wide size range fast integrated mobility spectrometer

    DOE Patents [OSTI]

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  8. Glitter-Sized Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    Featured in this photograph are tiny glitter-sized photovoltaic cells, developed by Sandia National Laboratories scientists, that could revolutionize the way solar energy is collected and used....

  9. Water droplet behavior on superhydrophobic SiO{sub 2} nanocomposite films during icing/deicing cycles

    SciTech Connect (OSTI)

    Lazauskas, A.; Guobienė, A.; Prosyčevas, I.; Baltrušaitis, V.; Grigaliūnas, V.; Narmontas, P.; Baltrusaitis, J.

    2013-08-15

    This work investigates water droplet behavior on superhydrophobic (water contact angle value of 162 ± 1°) SiO{sub 2} nanocomposite films subjected to repetitive icing/deicing treatments, changes in SiO{sub 2} nanocomposite film surface morphology and their non-wetting characteristics. During the experiment, water droplets on SiO{sub 2} nanocomposite film surface are subjected to a series of icing and deicing cycles in a humid (∼ 70% relative humidity) atmosphere and the resulting morphological changes are monitored and characterized using atomic force microscopy (AFM) and contact angle measurements. Our data show that the formation of the frozen or thawed water droplet, with no further shape change, on superhydrophobic SiO{sub 2} nanocomposite film, is obtained faster within each cycle as the number of the icing/deicing cycles increases. After 10 icing and deicing cycles, the superhydrophobic SiO{sub 2} nanocomposite film had a water contact angle value of 146 ± 2° which is effectively non-superhydrophobic. AFM analysis showed that the superhydrophobic SiO{sub 2} nanocomposite film surface area under the water droplet undergoes gradual mechanical damage during the repetitive icing/deicing cycles. We propose a possible mechanism of the morphological changes to the film surface that take place during the consecutive icing/deicing experiments. - Highlights: • Superhydrophobic film is subjected to repetitive icing/deicing treatments. • Water droplet shape transition is recorded and characterized thereafter. • Atomic force microscopy and contact angle measurements are performed. • The surface undergoes gradual mechanical damage during repetitive icing/deicing. • Mechanism for the observed surface morphological changes is suggested.

  10. Defect distributions in weld-deposited cladding

    SciTech Connect (OSTI)

    Li, Y.Y.; Mabe, W.R.

    1998-11-01

    Defect distributions in stainless steel and nickel-chromium alloy weld-deposited cladding over a low alloy steel base were characterized by destructive evaluation (DE). An evaluation of the observed defects was conducted to characterize the defects by type or classification. Size distributions of cladding defect types were developed from the information obtained. This paper presents the results of the cladding evaluation.

  11. Method for sizing hollow microspheres

    DOE Patents [OSTI]

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  12. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributions and Detailed Exhaust Chemical Composition | Department of Energy Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition 2003 DEER Conference Presentation: University of Wisconsin-Madison 2003_deer_foster.pdf (1.18 MB) More Documents & Publications Mass Correlation of Engine Emissions with

  13. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  14. Evaluate the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction The earth's radiation budget is sensitive to changes in the microphysical properties of low-level stratiform clouds. Their extensive coverage can significantly reduce the solar energy

  15. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems

    SciTech Connect (OSTI)

    Factorovich, Matas H.; Scherlis, Damin A.

    2014-02-14

    In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

  16. Control of membrane permeability in air-stable droplet interface bilayers

    SciTech Connect (OSTI)

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G.; Taylor, Graham; Sarles, Stephen A.; Boreyko, Jonathan; Hayes, Douglas G.; Collier, Pat

    2015-03-19

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results in loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.

  17. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    SciTech Connect (OSTI)

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya; Kennedy, Anne M.

    2009-04-14

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  18. Control of membrane permeability in air-stable droplet interface bilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G.; Taylor, Graham; Sarles, Stephen A.; Boreyko, Jonathan; Hayes, Douglas G.; Collier, Pat

    2015-03-19

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results inmore » loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.« less

  19. 2015 Distributed Wind Market Report Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Market Report Fact Sheet 2015 Distributed Wind Market Report Fact Sheet 2015-Distributed-Wind-Market-Report-Fact-Sheet_Page_1.jpg Wind turbines in distributed applications are found in all 50 states, Puerto Rico, and the U.S. Virgin Islands to provide energy locally, either serving on-site electricity needs or a local grid. Distributed wind is defined by the wind project's location relative to end-use and powerdistribution infrastructure, rather than turbine or project size.

  20. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  1. Site-controlled fabrication of Ga nanodroplets by focused ion beam

    SciTech Connect (OSTI)

    Xu, Xingliang; Wang, Zhiming M.; Wu, Jiang; Li, Handong; Zhou, Zhihua; Wang, Xiaodong

    2014-03-31

    Ga droplets are created by focused ion beam irradiation of GaAs surface. We report that ordered Ga droplets can be formed on the GaAs surface without any implantation damage. The droplets are characterized with bigger sizes than those droplets formed on damaged area. These aligned Ga droplets are formed via the migration of Ga atoms from ion irradiation area to the edge of undamaged GaAs surface and further nucleation into droplets. The morphological evolution and size distribution of these nanodroplets are investigated systematically with different beam irradiation time and incident angles. Based on this method, well positioned Ga nanodroplets, such as chains, are achieved by using focus ion beam patterning. The controllable assembly of droplets on undamaged semiconductor surface can be used to fabricate templates, to fabricate quantum structures and quantum devices by droplet epitaxy technique.

  2. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  3. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  4. Size exclusion deep bed filtration: Experimental and modelling uncertainties

    SciTech Connect (OSTI)

    Badalyan, Alexander You, Zhenjiang; Aji, Kaiser; Bedrikovetsky, Pavel; Carageorgos, Themis; Zeinijahromi, Abbas

    2014-01-15

    A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspended particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.

  5. Size and concentration measurements of particles produced in commercial chromium plating processes

    SciTech Connect (OSTI)

    Bonin, M.P.; Flower, W.L.; Renzi, R.F.; Peng, L.W.

    1995-11-01

    Optical measurements of particle size and concentration were made at the chromium plating tank and exhaust system at a commercial hexavalent chromium plating facility. Particles were examined at three locations in the exhaust system: (1) directly at the hexavalent chromium plating bath surface, (2) at the exit of a cyclone separator located in the exhaust system approximately three to four meters downstream of the bath, and (3) in the exhaust stack, downstream of the induced draft fan and all abatement devices. Particle diameters at the bath surface ranged from 0.3 to 25 {mu}m. Downstream of the cyclone exit and mesh pad filters, particle top sizes were approximately 5 and 0.7 mm, respectively. On a mass basis, the collection efficiency of all abatement devices was 99.997%. Assuming that droplets in the flow consist primarily of water and chromium, correcting the total particle mass flow against water content gives a chromium emission rate of 64,000 {mu}g/hr, which compares favorably with a value of 77,000 {mu}g/hr measured with EPA methods. This initial agreement, which should be validated through additional measurements over a broad range of flow conditions, raises the possibility of continuous monitoring for chromium metal emissions using particle size/mass as a surrogate. 6 refs., 7 figs.

  6. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; Scalia, Alexander; Mullen, Jeffrey D.; Sweet, Robert M.; Soares, Alexei S.

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using thismore » system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known

  7. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    SciTech Connect (OSTI)

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; Scalia, Alexander; Mullen, Jeffrey D.; Sweet, Robert M.; Soares, Alexei S.

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme

  8. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  9. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  10. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...