Powered by Deep Web Technologies
Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Efficient Driving Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Management Strategies

2

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

3

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

4

Alternative Fuels Data Center: Fuel-Efficient Driving Training  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Driving Training to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Driving Training on Facebook Tweet about Alternative Fuels Data Center:...

5

NREL: News Feature - NREL Drives Toward the Future with Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drives Toward the Future with Fuel Cell EVs June 21, 2013 A hydrogen fuel cell powered Toyota sport utility vehicle emblazoned with an NREL logo drives past a building on the NREL...

6

Alternative Fuels Data Center: Indiana Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Driving / Idling

7

Alternative Fuels Data Center: Delaware Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Driving / Idling

8

Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Driving / Idling

9

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Driving / Idling

10

Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Driving / Idling

11

Alternative Fuels Data Center: Virginia Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Driving / Idling

12

Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Driving / Idling

13

Alternative Fuels Data Center: Oregon Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Driving / Idling

14

Alternative Fuels Data Center: Texas Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Driving / Idling

15

Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Driving / Idling

16

Alternative Fuels Data Center: Maine Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Driving / Idling

17

Alternative Fuels Data Center: Federal Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Driving / Idling

18

Alternative Fuels Data Center: Florida Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Driving / Idling

19

Alternative Fuels Data Center: Iowa Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Driving / Idling

20

Alternative Fuels Data Center: Maryland Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Driving / Idling

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Alaska Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Driving / Idling

22

Alternative Fuels Data Center: Vermont Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Driving / Idling

23

Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Driving / Idling

24

Alternative Fuels Data Center: Missouri Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Driving / Idling

25

Alternative Fuels Data Center: Utah Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Driving / Idling

26

Alternative Fuels Data Center: Idaho Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Driving / Idling

27

Alternative Fuels Data Center: Illinois Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Driving / Idling

28

Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Driving / Idling

29

Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Driving / Idling

30

Alternative Fuels Data Center: Arizona Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Driving / Idling

31

Alternative Fuels Data Center: Nevada Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Driving / Idling

32

Alternative Fuels Data Center: Montana Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Driving / Idling

33

Alternative Fuels Data Center: Colorado Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Driving / Idling

34

Alternative Fuels Data Center: Kansas Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Driving / Idling

35

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Driving / Idling

36

Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

37

Alternative Fuels Data Center: California Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

38

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

39

Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

40

Alternative Fuels Data Center: Washington Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: Vehicles and Fuels Research - DRIVE: Drive-Cycle Rapid...  

NLE Websites -- All DOE Office Websites (Extended Search)

representative drive cycles from raw data, the tool is capable of comparing vehicle operation to industry standard test cycles and can even select a representative...

42

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL; Aguilar, Juan P. [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

43

NREL: Hydrogen and Fuel Cells Research - Automakers Drive toward...  

NLE Websites -- All DOE Office Websites (Extended Search)

Automakers Drive toward Fuel Cell Electric Vehicles February 4, 2013 A recent Science Friday segment on National Public Radio (NPR) featured Jen Kurtz of the U.S. Department of...

44

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So it’s unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

45

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So it’s unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

46

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas station—if that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

47

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas station—if that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

48

Alternative Fuels Data Center: New York Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Driving / Idling

49

Alternative Fuels Data Center: New Mexico Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

50

Alternative Fuels Data Center: North Dakota Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

51

Alternative Fuels Data Center: New Jersey Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

52

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

53

Pattern recognition monitoring of PEM fuel cell  

DOE Patents (OSTI)

The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

54

Pattern recognition monitoring of PEM fuel cell  

DOE Patents (OSTI)

The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

Meltser, M.A.

1999-08-31T23:59:59.000Z

55

Fuel Economy Driver Interfaces: Driving Simulator Study of Component Concepts  

E-Print Network (OSTI)

A fuel economy driver interface (FEDI) gives a driver an indication of fuel usage or efficiency. Many passenger vehicles in recent model years have FEDIs and they have been included in some vehicle models for decades. FEDIs present fuel economy information in a variety of forms. Some show fuel economy in miles per gallon (mpg) while others provide a relative measure of economy or provide an alert if fuel economy is especially poor. The appearances of FEDIs vary drastically between vehicle makes and models. FEDIs can provide numerical output, analog or digital gauges, bar charts, illuminator lamps, and a variety of other display features. With the recent emergence of high-resolution LCD screens in cars, detailed and complex color displays are possible, and these make feasible a variety of new FEDI concepts. FEDIs may even include vehicle-adaptive features that influence some aspect of vehicle performance in response to inefficient driver behaviors. While FEDIs have the potential to encourage efficient and safe driving, it is possible that the displays themselves might cause distraction at the expense

unknown authors

2010-01-01T23:59:59.000Z

56

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

57

Heel and toe driving on fuel cell vehicle  

DOE Patents (OSTI)

A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

Choi, Tayoung; Chen, Dongmei

2012-12-11T23:59:59.000Z

58

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Can't Wait: Driving Forward with New Fuel Economy Standards Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. Heather Zichal Deputy Assistant to the President for Energy and Climate Change What does this project do? Saves you money by increasing the fuel efficiency equivalent of light-duty trucks and cars to 54.5 miles per gallon by 2025. Drives innovation in the manufacturing sector and helps create

59

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

Barnitt, R.; Gonder, J.

2011-04-01T23:59:59.000Z

60

Effects of battery technologies, driving patterns, and climate comfort control on the performance of electric vehicles  

SciTech Connect

A computer software package, EAGLES, has been developed at Argonne National Laboratory to analyze electric vehicle (EV) performance. In this paper, we present EAGLES predictions of EV driving range, acceleration rate, and energy consumption under various driving patterns, with different battery technologies, and with assumptions concerning use of air conditioners and/or heaters for climate comfort control. The specifications of a baseline, four-passenger EV for given design performance requirements are established, assuming urban driving conditions represented by the Los Angeles 92 (LA-92) driving cycle and using battery characteristics similar to those of the United States Advanced Battery Consortium (USABC) midterm battery performance goals. To examine the impacts of driving patterns, energy consumption is simulated under three different driving cycles: the New York City Cycle, the Los Angeles 92 Cycle, and the ECE-15 Cycle. To test the impacts of battery technologies, performance attributes of an advanced lead-acid battery, the USABC midterm battery goals, and the USABC long-term battery goals are used. Finally, EV energy consumption from use of air conditioners and/or heaters under different climates is estimated and the associated driving range penalty for one European city (Paris) and two United States cities (Chicago and Los Angeles) is predicted. The results of this paper show the importance of considering various effects, such as battery technology, driving pattern, and climate comfort control, in the determination of EV performances. Electric vehicle energy consumption decreases more than 20% when a battery with characteristics similar to the USABC long-term goals is used instead of an advanced lead-acid battery.

Marr, W.W.; Wang, M.Q.; Santini, D.J.

1994-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Hydrogen and Fuel Cells Program: U.S. DRIVE Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background U.S. DRIVE Partnership Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > Background > U.S. DRIVE Partnership Printable Version U.S. DRIVE Partnership The U.S. DRIVE Partnership is a collaborative effort among DOE and companies from the automotive, fuels, and electric utility industries, focused on advanced automotive and related infrastructure technology research and development. U.S. DRIVE Logo The U.S. DRIVE partners are: Automobile industry: U.S. Council for Automotive Research LLC (USCAR, the cooperative research organization for Chrysler Group, Ford Motor Company, and General Motors Company); Tesla Motors Electric utility industry: DTE Energy Company, Southern California

62

Fuel Economy of the 2013 smart fortwo electric drive convertible  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 107 Combined 122 City 93 Highway...

63

Fuel Economy of the 2013 smart fortwo electric drive coupe  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 107 Combined 122 City 93 Highway...

64

Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies  

Science Conference Proceedings (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

Neubauer, J.; Brooker, A.; Wood, E.

2012-07-01T23:59:59.000Z

65

Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Back to the Future": Flex-Fuel Vehicle Awareness "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, these flex fuel vehicles help to decrease our reliance on imported oil and reduce carbon pollution. The "Big Three" U.S. auto makers (Ford, General Motors, and Chrysler) recently announced that half of their entire 2012 vehicle line will be FFVs-including the

66

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

67

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

Science Conference Proceedings (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

68

The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV  

SciTech Connect

On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicle’s fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energy’s Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

Richard Barney Carlson

2009-10-01T23:59:59.000Z

69

Simulation of a novel electromechanical engine valve drive to quantify performance gains in fuel consumption  

E-Print Network (OSTI)

This thesis describes the modeling and simulation of a novel electromechanical valve drive known as the MIT EMV. This valve drive allows an engine to achieve variable valve timing which has been shown to produce improvements ...

Miller, Justin (Justin Lee)

2011-01-01T23:59:59.000Z

70

Driving it home: choosing the right path for fueling North America's transportation future  

Science Conference Proceedings (OSTI)

North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

2007-06-15T23:59:59.000Z

71

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network (OSTI)

the public willing to pay for hydrogen buses? A comparativeon the attitude towards hydrogen fuel cell buses in the CUTEInternational Journal of Hydrogen Energy 2007; 32: 4295- 4.

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

72

Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks  

DOE Green Energy (OSTI)

The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

Santini, Danilo

2001-08-05T23:59:59.000Z

73

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

74

Drive5 | Open Energy Information  

Open Energy Info (EERE)

Drive5 Drive5 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drive5 Agency/Company /Organization: Drive5 Sector: Energy Focus Area: Vehicles Resource Type: Software/modeling tools User Interface: Website, Mobile Device Website: www.drive5.us Web Application Link: www.drive5.us Cost: Free OpenEI Keyword(s): Challenge Generated Drive5 Screenshot References: Drive5[1] Challenge.gov[2] Challenge.gov Submission Page[3] Measure your fuel economy real time with five metrics to save on fuel costs. Overview Drive1: Fuel Economy Drive5 gives you real time fuel economy feedback for any car 1984 and newer by simply utilizing the sensors embedded in your phone or tablet. It uses a statistical algorithm which leverages the fueleconomy.gov's open dataset along with data from thousands of automobile trips. No connections to the

75

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

DOE Green Energy (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

76

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving Patterns Driving Patterns All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 9 results Generated_thumb20130810-31804-1cr1wpv Annual Vehicle Miles Traveled in the U.S. Generated_thumb20130810-31804-1cr1wpv Trend of Vehicle-Miles Traveled in the U.S. from 1970-2013 Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-pe0nga Average Vehicle Trip Length by Purpose Generated_thumb20130810-31804-pe0nga

77

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles  

Science Conference Proceedings (OSTI)

In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

2012-10-01T23:59:59.000Z

78

Hydrogen--electric power drives  

SciTech Connect

Hydrogen--electric power drives would consist of most or all of these: chilled hydrogen gas tank, liquid oxygen tank, a bank of fuel cells, dc/ac inverter, ac drive motors, solid state ac speed control, dc sputter-ion vacuum pumps, steam turbine generator set and steam condenser. Each component is described. Optional uses of low pressure extraction steam and warm condensate are listed. Power drive applications are listed. Impact on public utilities, fuel suppliers, and users is discussed.

Hall, F.F.

1978-10-01T23:59:59.000Z

79

Drill drive mechanism  

DOE Patents (OSTI)

A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

Dressel, Michael O. (Englewood, CO)

1979-01-01T23:59:59.000Z

80

PHEV and Other Electric Drive Testing Results and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity PHEV and Other Electric Drive Testing Results and Resources Jim Francfort Electric Drive Session Alternative Fuels & Vehicles Las Vegas, Nevada -...

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Transportation Leapfrog: Using Smart Phones to Collect Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Leapfrog: Using Smart Phones to Collect Driving Data and Model Fuel Economy in India Title The Transportation Leapfrog: Using Smart Phones to Collect Driving Data...

82

Fuel Economy Web Services  

NLE Websites -- All DOE Office Websites (Extended Search)

FuelEconomy.gov Web Services FuelEconomy.gov Web Services Data Description atvtype - alternative fuel or advanced technology vehicle Bifuel (CNG) - Bi-fuel gasoline and compressed natural gas vehicle Bifuel (LPG) - Bi-fuel gasoline and propane vehicle CNG - Compressed natural gas vehicle Diesel - Diesel vehicle EV - Electric vehicle FFV - Flexible fueled vehicle (gasoline or E85) Hybrid - Hybrid vehicle Plug-in Hybrid - Plug-in hybrid vehicle drive - drive axle type 2-Wheel Drive 4-Wheel Drive* 4-Wheel or All-Wheel Drive* All-Wheel Drive* Front-Wheel Drive Part-time 4-Wheel Drive* Rear-Wheel Drive *Prior to Model Year 2010 EPA did not differentiate between All Wheel Drive and Four Wheel Drive salesArea - EPA sales area code. The area of the country where the vehicle can legally be sold. New federally certified vehicles can be sold in all states except California

83

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maps & Data Maps & Data Printable Version Share this resource Send a link to Alternative Fuels Data Center: Maps and Data to someone by E-mail Share Alternative Fuels Data Center: Maps and Data on Facebook Tweet about Alternative Fuels Data Center: Maps and Data on Twitter Bookmark Alternative Fuels Data Center: Maps and Data on Google Bookmark Alternative Fuels Data Center: Maps and Data on Delicious Rank Alternative Fuels Data Center: Maps and Data on Digg Find More places to share Alternative Fuels Data Center: Maps and Data on AddThis.com... Maps and Data Find maps and charts showing transportation data and trends related to alternative fuels and vehicles. Vehicles All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure

84

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels & Infrastructure Fuels & Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 49 results Fuel Trends - Generated_thumb20131212-30432-1q2ycmx Average Retail Fuel Prices in the U.S. Generated_thumb20131212-30432-1q2ycmx Trend of alternative and traditional motor fuel prices from 2000-2013 Last update December 2013 View Graph Graph Download Data Generated_thumb20130810-31804-eaiva6 Consumption of Natural Gas in the U.S.

85

Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemption from Driving Restrictions to someone by E-mail Exemption from Driving Restrictions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on AddThis.com... More in this section...

86

Electricity use by machine drives varies significantly by ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Fossil fuels may be used to drive turbines, reciprocating engines, ...

87

Electrical Motor Drive Apparatus and Method - Energy Innovation Portal  

Vehicles and Fuels Industrial Technologies Electrical ... Auto manufacturers ; Industrial motor drive manufacturers; Patents and Patent Applications. ID Number.

88

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maps & Data Maps & Data Printable Version Share this resource Send a link to Alternative Fuels Data Center: Maps and Data to someone by E-mail Share Alternative Fuels Data Center: Maps and Data on Facebook Tweet about Alternative Fuels Data Center: Maps and Data on Twitter Bookmark Alternative Fuels Data Center: Maps and Data on Google Bookmark Alternative Fuels Data Center: Maps and Data on Delicious Rank Alternative Fuels Data Center: Maps and Data on Digg Find More places to share Alternative Fuels Data Center: Maps and Data on AddThis.com... Maps and Data Find maps and charts showing transportation data and trends related to alternative fuels and vehicles. Browse by Category All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns

89

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Stations Alternative Fueling Stations All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Arra-thumb ARRA Electrification Projects Arra-thumb Last update November 2012 View Map Graph Biofuelsatlas BioFuels Atlas Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location. This tool helps users select from and apply biomass data layers to a map, as well as query and download biofuels and feedstock

90

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

DOE Green Energy (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

91

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Market Vehicle Market All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 6 results Biofuelsatlas BioFuels Atlas Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location. This tool helps users select from and apply biomass data layers to a map, as well as query and download biofuels and feedstock data. The state zoom function summarizes state energy use and infrastructure for traditional and bioenergy power, fuels, and resources.

92

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State & Alt Fuel Providers State & Alt Fuel Providers All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 6 results Generated_thumb20130810-31804-1ch454p AFV Acquisitions by Regulated Fleets (by Fleet Type) Generated_thumb20130810-31804-1ch454p Trend of S&FP AFV acquisitions by fleet type from 1992-2010 Last update May 2011 View Graph Graph Download Data Generated_thumb20130810-31804-14nv4j5 AFV Acquisitions by Regulated Fleets (by Fuel Type)

93

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 17 results Generated_thumb20130810-31804-ue59qa Advanced Fuels RFS2 Mandates and Consumption Generated_thumb20130810-31804-ue59qa Last update August 2012 View Graph Graph Download Data Biofuelsatlas BioFuels Atlas Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location. This tool helps users select from and apply biomass

94

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Consumption and Efficiency Consumption and Efficiency All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-ufdolp Average Annual Vehicle Miles Traveled of Major Vehicle Categories

95

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Emissions All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 3 results Generated_thumb20130810-31804-53z5da Carbon Intensity of Alternative Fuels in California Heavy-Duty Vehicles Generated_thumb20130810-31804-53z5da California Low Carbon Fuel Program's assessment of lifecycle GHG emissions from alternative fuels Last update March 2011 View Graph Graph Download Data Generated_thumb20130810-31804-1b2rnlz

96

HybriDrive Propulsion System  

NLE Websites -- All DOE Office Websites (Extended Search)

HybriDrive HybriDrive ® Propulsion System Cleaner, smarter power for transit DOE/FTA Fuel Cell Research Priorities Workshop Washington, DC 7 June 2010 Bart W. Mancini Sr. Principal Systems Engineer BAE Systems Ph: 607-770-4103 bart.mancini@baesystems.com 2 Overview 3 * BAE Systems FC Experience / Deployments * Technology gaps/barriers to full commercialization of fuel cell buses * Well-to-wheels energy efficiency and emissions * Cost metrics * Bus integration issues * Fuel cell bus R&D needs * Future plans BAE Systems FC Experience / Deployments 4 * 1998 - Georgetown/FTA/DOE Fuel Cell Bus #1 (still serviceable) * UTC 100 kW Phosphoric Acid FC using on-board Methanol Reformate, Hybrid propulsion & Electric accessories * 2000 - Georgetown/FTA/DOE Fuel Cell Bus #2 (retired) *

97

Simulation study of areal sweep efficiency versus a function of mobility ratio and aspect ratio for staggered line-drive waterflood pattern.  

E-Print Network (OSTI)

??Pattern geometry plays a major role in determining oil recovery during waterflooding and enhanced oil recovery operations. Although simulation is an important tool for design… (more)

Guliyev, Ruslan

2008-01-01T23:59:59.000Z

98

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

99

Gas Mileage Tips - Driving More Efficiently  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving More Efficiently Driving More Efficiently Personalize Fuel Prices Select the fuel type and enter your fuel price to personalize savings estimates. Regular Midgrade Premium Diesel E85 CNG LPG $ 3.33 /gal Save My Prices Use Default Prices Click "Save My Prices" to apply your prices to other pages, or click "Use Default Prices" use national average prices. Drive Sensibly frustrated driver Aggressive driving (speeding, rapid acceleration and braking) wastes gas. It can lower your gas mileage by 33% at highway speeds and by 5% around town. Sensible driving is also safer for you and others, so you may save more than gas money. Fuel Economy Benefit: 5%-33% Equivalent Gasoline Savings: $0.17-$1.10/gallon Observe the Speed Limit (New Information) Graph showing MPG decreases rapidly at speeds above 50 mph

100

Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions  

DOE R&D Accomplishments (OSTI)

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R. J.; Marland, G.

1994-06-00T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions  

SciTech Connect

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R.J.; Marland, G.

1994-10-01T23:59:59.000Z

102

Power from the Fuel Cell  

E-Print Network (OSTI)

Power for Buildings Using Fuel-Cell Cars,” Proceedings ofwell as to drive down fuel-cell system costs through productis most likely to be the fuel-cell vehicle. Fuel cells are

Lipman, Timothy E.

2000-01-01T23:59:59.000Z

103

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

104

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Trends Trends All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 9 results Generated_thumb20131212-30432-1q2ycmx Average Retail Fuel Prices in the U.S. Generated_thumb20131212-30432-1q2ycmx Trend of alternative and traditional motor fuel prices from 2000-2013 Last update December 2013 View Graph Graph Download Data Generated_thumb20130810-31804-eaiva6 Consumption of Natural Gas in the U.S. Generated_thumb20130810-31804-eaiva6

105

Used Car Fuel Economy Label  

NLE Websites -- All DOE Office Websites (Extended Search)

Actual fuel economy will vary for many reasons, including driving conditions and how the car was driven and maintained. Aftermarket modifications to the vehicle can affect fuel...

106

Personalized driving behavior monitoring and analysis for emerging hybrid vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles, such as hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs), hold the potential for substantial reduction of fuel consumption and greenhouse gas emissions. User driving behavior, which varies from person ...

Kun Li; Man Lu; Fenglong Lu; Qin Lv; Li Shang; Dragan Maksimovic

2012-06-01T23:59:59.000Z

107

1998 Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

purpose vehicles (2-wheel drive and 4-wheel drive). By using this Guide consumers can estimate the average yearly fuel cost for any vehicle. The mileage figures included in...

108

The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles  

E-Print Network (OSTI)

Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

Berry, Irene Michelle

2010-01-01T23:59:59.000Z

109

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Clean Cities All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 10 results Petroleum Use Reduction - Generated_thumb20131211-30676-7w9hmt Clean Cities Cumulative Petroleum Savings Generated_thumb20131211-30676-7w9hmt Trend of displacement by all fuel and technology types from 1994-2012 Last update December 2013 View Graph Graph Download Data Generated_thumb20131211-30676-1y0adz7 Clean Cities Petroleum Savings by AFV Type

110

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Petroleum Use Reduction Petroleum Use Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 4 results Generated_thumb20131211-30676-7w9hmt Clean Cities Cumulative Petroleum Savings Generated_thumb20131211-30676-7w9hmt Trend of displacement by all fuel and technology types from 1994-2012 Last update December 2013 View Graph Graph Download Data Generated_thumb20131211-30676-1y0adz7 Clean Cities Petroleum Savings by AFV Type

111

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFVs and HEVs AFVs and HEVs All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 21 results Generated_thumb20130810-31804-1ch454p AFV Acquisitions by Regulated Fleets (by Fleet Type) Generated_thumb20130810-31804-1ch454p Trend of S&FP AFV acquisitions by fleet type from 1992-2010 Last update May 2011 View Graph Graph Download Data Generated_thumb20130810-31804-14nv4j5 AFV Acquisitions by Regulated Fleets (by Fuel Type)

112

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Laws & Incentives Laws & Incentives All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 11 results - Biodiesel_li_by_state Biodiesel Incentives and Laws, by State Biodiesel_li_by_state View Map Graph L_i-electric Electric Vehicle Incentives and Laws, by State L_i-electric View Map Graph L_i-ethanol Ethanol Incentives and Laws, by State L_i-ethanol View Map Graph Generated_thumb20130810-31804-1h8ookf Fuel Taxes by Country Generated_thumb20130810-31804-1h8ookf

113

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Regulated Fleets Regulated Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 7 results Federal Fleets - Generated_thumb20130810-31804-rbol8w AFV Acquisitions, Requirements, and Credits for Federal Agencies Generated_thumb20130810-31804-rbol8w Last update May 2012 View Graph Graph Download Data State & Alt Fuel Providers - Generated_thumb20130810-31804-1ch454p AFV Acquisitions by Regulated Fleets (by Fleet Type)

114

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

115

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Champion Bus Inc. - Defender Azure Dynamics - Balance Parallel Hybrid Drive Fuel Type: Hybrid - Gasoline...

116

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Vision Motor Corp. - Tyrano Eaton - Hybrid Drive System Fuel Type: Hybrid - Diesel Electric...

117

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

118

Distribution Drive | Open Energy Information  

Open Energy Info (EERE)

Drive Drive Jump to: navigation, search Name Distribution Drive Place Dallas, Texas Zip 75205 Product Biodiesel fuel distributor. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Fleets Federal Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 1 result Generated_thumb20130810-31804-rbol8w AFV Acquisitions, Requirements, and Credits for Federal Agencies Generated_thumb20130810-31804-rbol8w Last update May 2012 View Graph Graph Download Data AFV Acquisitions, Requirements, and Credits for Federal Agencies 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AFV Requirements 15606 16182 13555 19874 13827 13953 13702 13153 12321 14581 14059 12519

120

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 2 results Generated_thumb20130810-31804-cpho29 Truck Stop Electrification Sites Generated_thumb20130810-31804-cpho29 Trend of TSE sites by state from 2006-2012 Last update November 2012 View Graph Graph Download Data Map_thumbnail Truckstop Electrification Facilities Map_thumbnail Last update May 2013 View Graph Graph Truck Stop Electrification Sites

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Program Program All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 3 results Cc-coalitions-thumb Clean Cities Coalitions Cc-coalitions-thumb Last update December 2012 View Image Graph Generated_thumb20130810-31804-vrlv1v Clean Cities Funding Generated_thumb20130810-31804-vrlv1v Trend of budgets, stakeholder grants, and matching funds from 1998-2010 Last update December 2012 View Graph Graph Download Data Generated_thumb20130810-31804-1374mkv

122

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Transportation Infrastructure Transportation Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results Freight_tons_thumbnail Daily Truck Freight Tons Freight_tons_thumbnail Last update February 2013 View Image Graph Generated_thumb20130810-31804-v750g6 Miles of U.S. Transportation Infrastructure Generated_thumb20130810-31804-v750g6 Distance covered by different types of transportation infrastructure Last update April 2013

123

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2011-01-18T23:59:59.000Z

124

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D.; Dumesic, James A.

2013-04-02T23:59:59.000Z

125

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2012-04-10T23:59:59.000Z

126

Holiday Food Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Food Drive Food Drive Holiday Food Drive During the recent holiday food drive, employees donated enough food to provide about 23,604 holiday meals for Northern New Mexico families. More than 432 frozen turkeys were donated this year by employees and other donors during 'Bring a Turkey to Work Day,' an annual Lab event that takes places Thanksgiving week. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Giving Drives Ed Vigil Community Programs Office (505) 665-9205 Email Giving Drives Enrique Trujillo Community Programs Office (505) 665-6384 Email Helping feed Northern New Mexico families Community partners The Food Depot (Santa Fe) Del Norte Credit Union Smith's Food and Drug Giving Holiday Food Drive Holiday Gift Drive LANL Laces Los Alamos Employees' Scholarship Fund

127

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

128

USING THE FUEL ECONOMY GUIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

allows you to insert your local gasoline prices and typical driving conditions (% city & highway) to achieve the most accurate fuel cost information for your vehicle. Strengthen...

129

Alternative Fuels Data Center: Publications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Colorado Clean Cities Now, October 2006, reports on states that have taken the lead in developing alternative fuel policies; changes in driving behavior due to high gasoline...

130

2011 Summer Transportation Fuels Outlook  

U.S. Energy Information Administration (EIA)

Key factors driving the short-term outlook. 2011 Summer Transportation Fuels Outlook. 2 • Disruption of crude oil and liquefied natural gas supply from

131

AOCS USB Flash Drive  

Science Conference Proceedings (OSTI)

1 GB flash drive. AOCS logo printed on aluminum cover. AOCS USB Flash Drive Membership Merchandise Membership Merchandise 7F95621DF44FEA960BA8EE1D1E39CED4 1 GB USB flash drive. AOCS logo printed on aluminum cover. M-USB 17770

132

Department of Energy Awards Nearly $7 Million to Advance Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy, raw materials, and various components that will help identify ways to drive down production costs of transportation fuel cell systems, stationary fuel cell systems, and...

133

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have...

134

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

and even buyers of hybrid vehicles. The interviews unfoldedarticles contended that hybrid vehicles cost $2,000 to $Our small group of hybrid vehicle buyers confessed they had

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

135

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

and even buyers of hybrid vehicles. The interviews unfoldedarticles contended that hybrid vehicles cost $2,000 to $Our small group of hybrid vehicle buyers confessed they had

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

136

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles,” Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

137

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles,” Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

138

Holiday Gift Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Holiday Gift Drive Holiday Gift Drive Holiday Gift Drive Every year, Laboratory employees help fulfill the holiday wishes of children and seniors in our communities. In 2012, our employees helped more than 1,030 Northern New Mexico children, senior citizens and families have a brighter holiday season. September 16, 2013 Every holiday season, employees of Los Alamos National Laboratory donate and distribute gifts to families in need throughout Northern New Mexico. Contacts Giving Drives Ed Vigil Community Programs Office (505) 665-9205 Email Giving Drives Enrique Trujillo Community Programs Office (505) 665-6384 Email Helping New Mexico families feel the holiday spirit The 2013 campaign runs from November 21-December 18. 2012 Holiday Gift Drive partners Boys and Girls Club Del Norte (Abiquiu Site)

139

World Fossil Fuel Economics - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... World Fossil Fuel Economics ... in world energy demand, particularly in the U. S. and Europe; the consumption patterns and cost patterns of oil, ...

140

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

Treu, Jr., Charles A. (Raymore, MO)

1999-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

Treu, C.A. Jr.

1999-08-31T23:59:59.000Z

142

Traction Drive Systems Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Drive Systems Breakout Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov EV Everywhere Traction Drive System * DOE goals for Electric Traction Drive System (TDS) innovations must be disruptive innovation focused to meet the CY2022 price target ($20,000 $25,000) for a mid-sized 5 passenger sedan having 5 year simple payback. Enhanced Efficiency Reduced Cost Traction Drive System EETT Roadmap: "Therefore, research is needed to develop technologies that are less expensive and, at the same time, smaller, lighter, more efficient, and equally reliable as conventional automotive technologies. "

143

Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Maintenance to Vehicle Maintenance to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Vehicle Maintenance to Conserve Fuel A comprehensive vehicle maintenance strategy can help fleet managers and

144

Drive cycle analysis of the performance of hybrid electric vehicles  

Science Conference Proceedings (OSTI)

This paper presents a drive cycle analysis of hybrid electric vehicle power train configurations. Based on fuel economy and emissions factors, a tradeoff between conventional, series hybrid, parallel hybrid, and a parallel-series hybrid is drawn. The ... Keywords: emissions, fuel consumption, hybrid electric vehicles, modeling and simulation

Behnam Ganji; Abbas Z. Kouzani; H. M. Trinh

2010-09-01T23:59:59.000Z

145

Driving for $1.14 Per Gallon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving for $1.14 Per Gallon Driving for $1.14 Per Gallon Driving for $1.14 Per Gallon June 11, 2013 - 7:30am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today launched the eGallon - a quick and simple way for consumers to compare the costs of fueling electric vehicles vs. driving on gasoline. Today's national average eGallon price is about $1.14, meaning that a typical electric vehicle could travel as far on $1.14 worth of electricity as a similar vehicle could travel on a gallon of gasoline. "Consumers can see gasoline prices posted at the corner gas station, but are left in the dark on the cost of fueling an electric vehicle. The eGallon will bring greater transparency to vehicle operating costs, and help drivers figure out how much they might save on fuel by choosing an

146

Alternative Fuels Data Center: North Carolina Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

147

Alternative Fuels Data Center: South Carolina Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: South Carolina Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: South Carolina Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: South Carolina Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: South Carolina Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

148

Alternative Fuels Data Center: Massachusetts Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Massachusetts Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Massachusetts Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

149

Alternative Fuels Data Center: West Virginia Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

150

Alternative Fuels Data Center: New Hampshire Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: New Hampshire Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

151

Intrusions: What Drives Them?  

Science Conference Proceedings (OSTI)

The driving mechanism for the observed interleaving of water masses is generally assumed to be double-diffusive mixing. However, some observations of intrusions have been made in regions where the mean stratification is stable to double-diffusive ...

Dave Hebert

1999-06-01T23:59:59.000Z

152

Control rod drive  

DOE Patents (OSTI)

A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

Hawke, Basil C. (Solana Beach, CA)

1986-01-01T23:59:59.000Z

153

DistributionDrive | Open Energy Information  

Open Energy Info (EERE)

DistributionDrive DistributionDrive Jump to: navigation, search Name DistributionDrive Place Addison, Texas Zip 75001 Product Supplier of Biodiesel, Straight Vegetable Oil (SVO), Recycled Vegetable Oil (WVO) and Engine Conversion Kits to use this fuels. Coordinates 38.477365°, -80.412149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.477365,"lon":-80.412149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Argonne's GREET Model - Driving Transportation Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Driving Transportation Solutions Model Argonne's GREET D r i v i n g Tr a n s p o r t a t i o n S o l u t i o n s ARGONNE'S GREET Argonne's GREET model is widely recognized as the "gold standard" for evaluating and comparing the energy and environmental impacts of transportation fuels and advanced vehicles. The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model is a one-of-a-kind analytical tool that simulates the energy use and emissions output of various vehicle and fuel combinations. Sponsored by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, the free software program gives researchers the unique ability to analyze technologies over an entire life cycle - from well to wheels and from raw material mining to vehicle disposal.

155

CONTROL ROD DRIVE  

DOE Patents (OSTI)

BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

Chapellier, R.A.

1960-05-24T23:59:59.000Z

156

Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Techniques for Drivers Techniques for Drivers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Management Strategies Driver Techniques Fleet Rightsizing

157

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

158

School supply drive winding down  

NLE Websites -- All DOE Office Websites (Extended Search)

submit School supply drive winding down The drive is collecting materials for schools throughout Northern New Mexico and will be distributed by the Lab and Self Help, Inc....

159

Electric Drive Status and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

to Achieve Traction Drive Cost Target * Inverter: cold plate, drive boards, thermal interface material, bus bar, current sensors, housing, control board, etc. Motor:...

160

Assessment of high-burnup LWR fuel response to reactivity-initiated accidents  

E-Print Network (OSTI)

The economic advantages of longer fuel cycle, improved fuel utilization and reduced spent fuel storage have been driving the nuclear industry to pursue higher discharge burnup of Light Water Reactor (LWR) fuel. A design ...

Liu, Wenfeng, Ph.D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ceramic vane drive joint  

SciTech Connect

A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

Smale, Charles H. (Indianapolis, IN)

1981-01-01T23:59:59.000Z

162

Current drive, anticurrent drive, and balanced injection  

SciTech Connect

In lower hybrid (LH) discharges, the number of suprathermal electrons is limited by the upper bound on the current density from the q = 1 condition, which is caused by the onset of the m = 1 MHD instability. The stored energy of suprathermal electrons, measured in terms of a poloidal beta, scales with plasma current as I/sub p//sup -1/. Potentially, these bounds represent very restrictive conditions for heating in larger machines. Consequently, it seems necessary to perform experiments where the electrons are driven in both directions, parallel and antiparallel to the magnetic field, i.e., bidirectional scenarios like anticurrent drive or balanced injection. Data from PLT relevant to these ideas are discussed. 6 refs., 4 figs.

von Goeler, S.; Stevens, J.; Beiersdorfer, P.; Bell, R.; Bernabei, S.; Bitter, M.; Cavallo, A.; Chu, T.K.; Fishman, H.; Hill, K.

1987-08-01T23:59:59.000Z

163

LCLS Injector Drive Laser  

SciTech Connect

Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

2007-11-02T23:59:59.000Z

164

CONTROL ROD DRIVE  

DOE Patents (OSTI)

Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

Chapellier, R.A.; Rogers, I.

1961-06-27T23:59:59.000Z

165

Cruising to Energy Savings This Summer Driving Season | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cruising to Energy Savings This Summer Driving Season Cruising to Energy Savings This Summer Driving Season Cruising to Energy Savings This Summer Driving Season May 11, 2010 - 7:30am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy My dad is obsessed with fuel efficiency. I joked with him on a recent road trip that when he retires, he'll have more time to pursue his dream career as a fuel-economy promoter. Well guess what, I just found the treasure trove of information on smart driving that's going to make his whole week-it's at fueleconomy.gov. Now, I know we've blogged on this in the past. But it's been a while, and this stuff is good to keep fresh in your mind as the price of gasoline creeps up this summer. The site provides information on everything

166

Test Drive: Honda FCX Clarity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Stepping into the driver's seat of the hydrogen powered Honda FCX Clarity is like stepping into the future. A glowing blue 3-D dashboard displays hydrogen and battery levels and a power button fires up fuel cells that provide electricity. An advanced braking system warns the driver about

167

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

168

Test Drive: Honda FCX Clarity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Stepping into the driver's seat of the hydrogen powered Honda FCX Clarity is like stepping into the future. A glowing blue 3-D dashboard displays hydrogen and battery levels and a power button fires up fuel cells that provide electricity. An advanced braking system warns the driver about

169

Car buyers and fuel economy?  

E-Print Network (OSTI)

Fuel ef?ciency; Automobiles; Car buyers 1. Introduction 1.1.M. , ‘‘We probably drive each car about 7000 or 6000 milesgallons per year [for one car]; B. thinks this might be too

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

170

Multilevel converters for large electric drives  

SciTech Connect

Traditional two-level high frequency pulse width modulation (PWM) inverters for motor drives have several problems associated with their high frequency switching which produces common-mode voltage and high voltage change (dV/dt) rates to the motor windings. Multilevel inverters solve these problems because their devices can switch at a much lower frequency. Two different multilevel topologies are identified for use as a converter for electric drives, a cascade inverter with separate dc sources and a back-to-back diode clamped converter. The cascade inverter is a natural fit for large automotive all electric drives because of the high VA ratings possible and because it uses several levels of dc voltage sources which would be available from batteries or fuel cells. The back to back diode damped converter is ideal where a source of ac voltage is available such as a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over PWM based drives.

Tolbert, L.M.; Peng, F.Z.

1997-11-01T23:59:59.000Z

171

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

172

New EPA Fuel Economy and Environment Label - Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

you compare to gasoline vehicles Kilowatt-hours per 100 miles to help you estimate fuel costs Driving Range Driving range is an estimate of the distance the vehicle can travel on...

173

Gas Mileage Tips - Driving More Efficiently  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving More Efficiently Drive Sensibly frustrated driver Aggressive driving (speeding, rapid acceleration and braking) wastes gas. It can lower your gas mileage by 33 percent at...

174

Student Entrepreneurs Driving Loyola Biodiesel Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Student Entrepreneurs Driving Loyola Biodiesel Program Student Entrepreneurs Driving Loyola Biodiesel Program Student Entrepreneurs Driving Loyola Biodiesel Program August 19, 2010 - 11:00am Addthis Zach Waickman works on a biodiesel project at Loyola University. | Photo courtesy of Mark Beane, Loyola University Zach Waickman works on a biodiesel project at Loyola University. | Photo courtesy of Mark Beane, Loyola University Maya Payne Smart Former Writer for Energy Empowers, EERE Students convert used dining hall cooking oil into biodiesel The alternative fuel to supply 2,500 gallons of fuel to campus shuttles Lab-created biodiesel and biosoap sales support biofuels education program Communications major Zachary Waickman had no idea what he was getting into when he signed up for Loyola University's undergraduate Solutions to

175

Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search

176

What Eco-Driving Techniques Do You Use on the Road? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 - 7:30am Addthis On Tuesday, you read about eco-driving and how it can improve fuel economy and reduce your greenhouse gas emissions. Simple measures such as observing...

177

Would You Consider Driving a Vehicle that Can Run on Biodiesel? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? September 16, 2010 - 7:30am Addthis On Monday, Shannon told you about biodiesel, a renewable fuel that can power a vehicle using less fuel and producing fewer greenhouse gas emissions. DOE has an Alternative Fuel Station Locator that can help drivers find the nearest fueling station to fill up their vehicles. Would you consider driving a vehicle that can run on biodiesel? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at

178

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Champion Bus Inc. - Defender Application: Bus - Shuttle Fuel Type: Hybrid - Gasoline Electric Hybrid System(s): Azure Dynamics - Balance Parallel Hybrid Drive Additional...

179

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hino - 195h Application: Vocational truck Fuel Type: Hybrid - Diesel Electric Power Source(s): Hino - Hino 5L Hybrid System(s): Hino - Hino Hybrid Drive...

180

Driving on "Green" Electrons | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving on "Green" Electrons Driving on "Green" Electrons Driving on "Green" Electrons September 6, 2011 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program So you've decided you want to drive on electricity. You've considered your commute, how often you could plug in your car, and whether you want a plug-in hybrid electric (PHEV) or all-electric vehicle (EV) . But you have one more decision to make - your electricity source. Although electricity is cleaner than petroleum once it gets to your car, not all electricity is created equal. Greenhouse gases that contribute to climate change and smog-forming emissions can come from two different sources in cars - the vehicle's tailpipe and the production of the fuel. The total of these sources is the

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EcoCar Drives Students to Innovate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate October 26, 2010 - 5:21pm Addthis EcoCar Drives Students to Innovate Shannon Brescher Shea Communications Manager, Clean Cities Program Last year, Americans used about 138 billion gallons of gasoline - mostly imported - for transportation, costing Americans about $300 billion. The Department of Energy, through the Recovery Act, is investing in more fuel-efficient battery and electric vehicles to reduce these costs and training a strong, talented workforce to develop these cleaner, more sustainable technologies. Recognizing the importance of engaging students in this endeavor, the Department of Energy and General Motors (GM) established the EcoCar Challenge - a three-year Advanced Vehicle

182

Rotary drive mechanism  

Science Conference Proceedings (OSTI)

This patent describes a rotary drive mechanism which includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de- energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti- overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

Kenderdine, E.W.

1991-10-08T23:59:59.000Z

183

Rotary drive mechanism  

Science Conference Proceedings (OSTI)

A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

Kenderdine, Eugene W. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

184

QUICK RELEASABLE DRIVE  

DOE Patents (OSTI)

A quick releasable mechanical drive system suitable for use in a nuclear reactor is described. A small reversible motor positions a control rod by means of a worm and gear speed reducer, a magnetic torque clutch, and a bell crank. As the control rod is raised to the operating position, a heavy coil spring is compressed. In the event of an emergency indicated by either a''scram'' signal or a power failure, the current to the magnetic clutch is cut off, thereby freeing the coil spring and the bell crank positioner from the motor and speed reduction gearing. The coil spring will immediately act upon the bell crank to cause the insertion of the control rod. This arrangement will allow the slow, accurate positioning of the control rod during reactor operation, while providing an independent force to rapidly insert the rod in the event of an emergency.

Dickson, J.J.

1958-07-01T23:59:59.000Z

185

Optimization of direct drive induction motors for electric ship propulsion with high speed propellers  

Science Conference Proceedings (OSTI)

Direct drive electric ship propulsion can offer increased flexibility and reduced overall fuel consumption compared to geared mechanical systems [Davis 1987, Doerry 2007]. As a well-established technology, induction motors are a dependable and economical ... Keywords: AC motors, induction motor drives, induction motors, thermal analysis

S. C. Englebretson; J. L. Kirtley, Jr; C. Chryssostomidis

2009-07-01T23:59:59.000Z

186

NEUTRONIC REACTOR FUEL PUMP  

DOE Patents (OSTI)

A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

Cobb, W.G.

1959-06-01T23:59:59.000Z

187

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

188

Driving for $1.14 Per Gallon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for $1.14 Per Gallon for $1.14 Per Gallon Driving for $1.14 Per Gallon June 11, 2013 - 7:30am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today launched the eGallon - a quick and simple way for consumers to compare the costs of fueling electric vehicles vs. driving on gasoline. Today's national average eGallon price is about $1.14, meaning that a typical electric vehicle could travel as far on $1.14 worth of electricity as a similar vehicle could travel on a gallon of gasoline. "Consumers can see gasoline prices posted at the corner gas station, but are left in the dark on the cost of fueling an electric vehicle. The eGallon will bring greater transparency to vehicle operating costs, and help drivers figure out how much they might save on fuel by choosing an

189

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

190

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

driving-behavior Go driving-behavior Go Generated_thumb20130810-31804-1c5lrlb Commuter Responses to the 2008 Oil Price Spike Generated_thumb20130810-31804-1c5lrlb Ways that workers changed their commutes in response to high gasoline prices Last update May 2012 View Graph Graph Download Data Generated_thumb20130810-31804-1jtc9qa Fuel Economy at Various Driving Speeds Generated_thumb20130810-31804-1jtc9qa Trend of fuel efficiency at different speeds, grouped by vehicle age Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-pe0nga Average Vehicle Trip Length by Purpose Generated_thumb20130810-31804-pe0nga Average trip length and distribution by trip type in U.S., 2009 Last update May 2012 View Graph Graph Download Data Commuter Responses to the 2008 Oil Price Spike

191

NREL: Fleet Test and Evaluation - Alternative Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Alternative Fuels NREL's Fleet Test and Evaluation Team works with industry partners to evaluate the use of alternative fuels in delivery, transit, and freight vehicles. Although biodiesel is the most commonly used alternative fuel in medium- and heavy-duty diesel vehicles, compressed and liquefied natural gas and Fischer-Tropsch diesel are also viable options for trucking companies. Learn more about the team's evaluations of alternative fuels in fleet operations: Biodiesel Compressed Natural Gas Fischer-Tropsch Diesel Liquefied Natural Gas Printable Version Fleet Test and Evaluation Home Research & Development Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric & Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification

192

A study of replacement rules for a parallel fleet replacement problem based on user preference utilization pattern and alternative fuel considerations  

Science Conference Proceedings (OSTI)

Parallel fleet replacement problems deal with determining an optimal replacement schedule that results in a minimal total cost of owning and operating a fleet within a finite planning horizon. In this paper, the fleet consists of service vehicles, varying ... Keywords: Alternative fuels, Parallel fleet replacement, Replacement rules, User preference utilization

Parthana Parthanadee; Jirachai Buddhakulsomsiri; Peerayuth Charnsethikul

2012-08-01T23:59:59.000Z

193

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vision Motor Corp. - Tyrano Application: Tractor Fuel Type: Hydrogen Power Source(s): Vision Motor Corp. - 65kW Hydrogen Fuel Cell Hybrid System(s): Eaton - Hybrid Drive System...

194

Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990  

SciTech Connect

Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1997-03-01T23:59:59.000Z

195

Driving the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future the Future A r g o n n e ' s v e h i c l e s ys t e m s r e s e A r c h 3 2 v e h i c l e s y s t e m s r e s e a r c h At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help reduce our nation's petroleum consumption and greenhouse gas emissions. Our Vehicle Systems research focuses on maximizing vehicle performance and efficiency through in-depth studies of the interactions and integration of components and controls in a large, complex vehicle system. Working with the U.S. Department of Energy (DOE) and the automotive industry, we investigate the potential of vehicle technologies ranging from alternative fuels to advanced powertrains, such as plug-in hybrids and electric vehicles. Funding

196

Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Parts and Vehicle Parts and Equipment to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Low Rolling Resistance Tires Maintenance Driving Behavior

197

Hydrogen and Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of the back of hydrogen fueling stations inside a black fenceline. The U.S. Department of Energy (DOE) is the lead federal agency for applied research and development (R&D) of cutting edge hydrogen and fuel cell technologies. DOE supports R&D that makes it cheaper and easier to produce, deliver, and store hydrogen, while also working to lower the costs of fuel

198

Voluntary Participation Drives Oklahoma's Coalitions  

DOE Green Energy (OSTI)

Fact sheet describing the Oklahoma and Tulsa Clean Cities Coalitions and their commitment to the alternative fuel industry.

Not Available

2002-05-01T23:59:59.000Z

199

2009 Fuel Cell Market Report, November 2010  

DOE Green Energy (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

200

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Upgrading coal plant damper drives  

Science Conference Proceedings (OSTI)

The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

Hood, N.R.; Simmons, K. [Alamaba Power (United States)

2009-11-15T23:59:59.000Z

202

Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moniz Announces New Biofuels Projects to Drive Cost Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs August 1, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and reduce greenhouse gas emissions from the transportation sector. Secretary Moniz also announced over $22 million in new investments to help develop cost-competitive algae fuels and streamline the biomass feedstock supply chain for advanced biofuels. "By partnering with industry and universities, we can help make clean,

203

Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Announces New Biofuels Projects to Drive Cost Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs August 1, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and reduce greenhouse gas emissions from the transportation sector. Secretary Moniz also announced over $22 million in new investments to help develop cost-competitive algae fuels and streamline the biomass feedstock supply chain for advanced biofuels. "By partnering with industry and universities, we can help make clean,

204

Driving the National Parks Forward | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving the National Parks Forward Driving the National Parks Forward Driving the National Parks Forward June 19, 2012 - 4:02pm Addthis Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Shannon Brescher Shea Communications Manager, Clean Cities Program What does this project do? The Energy Department is partnering with the National Park Service to increase alternative fuel use of vehicle fleets at national parks around the country. Describing America's National Parks, historian Wallace Stegnar once said they were "the best idea we ever had." But like any good idea, the parks are constantly adapting to meet the needs of the present. Clean Cities,

205

Analysis of national pay-as-you-drive insurance systems and other variable driving charges  

SciTech Connect

Under Pay as You Drive insurance (PAYD), drivers would pay part of their automobile insurance premium as a per-gallon surcharge every time they filled their gas tank. By transfering a portion of the cost of owning a vehicle from a fixed cost to a variable cost, PAYD would discourage driving. PAYD has been proposed recently in California as a means of reforming how auto insurance is provided. PAYD proponents claim that, by forcing drivers to purchase at least part of their insurance every time they refuel their car, PAYD would reduce or eliminate the need for uninsured motorist coverage. Some versions of PAYD proposed in California have been combined with a no-fault insurance system, with the intention of further reducing premiums for the average driver. Other states have proposed PAYD systems that would base insurance premiums on annual miles driven. In this report we discuss some of the qualitative issues surrounding adoption of PAYD and other policies that would convert other fixed costs of driving (vehicle registration, safety/emission control system inspection, and driver license renewal) to variable costs. We examine the effects of these policies on two sets of objectives: objectives related to auto insurance reform, and those related to reducing fuel consumption, CO{sub 2} emissions, and vehicle miles traveled. We pay particular attention to the first objective, insurance reform, since this has generated the most interest in PAYD to date, at least at the state level.

Wenzel, T.

1995-07-01T23:59:59.000Z

206

Direct drive field actuator motors  

DOE Patents (OSTI)

A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

Grahn, A.R.

1998-03-10T23:59:59.000Z

207

Mechanical drive for blood pump  

DOE Patents (OSTI)

This patent relates to a highly efficient blood pump to be used as a replacement for a ventricle of the human heart to restore people disabled by heart disease. The mechanical drive of the present invention is designed to operate in conjunction with a thermoelectric converter power source. The mechanical drive system essentially converts the output of a rotary power into pulsatile motion so that the power demand from the thermoelectric converter remains essentially constant while the blood pump output is pulsed. (auth)

Bifano, N.J.; Pouchot, W.D.

1975-07-29T23:59:59.000Z

208

Low backlash direct drive actuator  

DOE Patents (OSTI)

A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

Kuklo, Thomas C. (Oakland, CA)

1994-01-01T23:59:59.000Z

209

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have questions? Ask us here or on #LabChat. Ask Us Addthis What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet your questions to @ENERGY using #LabChat. Send questions via email to NewMedia@hq.doe.gov.

210

Alternative Fuels Data Center: Ridesharing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ridesharing to someone Ridesharing to someone by E-mail Share Alternative Fuels Data Center: Ridesharing on Facebook Tweet about Alternative Fuels Data Center: Ridesharing on Twitter Bookmark Alternative Fuels Data Center: Ridesharing on Google Bookmark Alternative Fuels Data Center: Ridesharing on Delicious Rank Alternative Fuels Data Center: Ridesharing on Digg Find More places to share Alternative Fuels Data Center: Ridesharing on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Ridesharing Photo of people car pooling. Rideshare programs help people share vehicles to commute together. Also known as carpooling, ridesharing conserves fuel and reduces vehicle

211

Cone Drive Operations Inc | Open Energy Information  

Open Energy Info (EERE)

worm gear technology. The company supplies azimuth and elevation drives for solar tracking applications. References Cone Drive Operations Inc1 LinkedIn Connections CrunchBase...

212

Electric vehicle drive train with contactor protection ...  

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the ...

213

Driving Green com | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Driving Green com Jump to: navigation, search Name Driving Green.com Place Melbourne, Florida Zip...

214

New EPA Fuel Economy and Environment Label - Plug-in Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

you compare to gasoline vehicles Kilowatt-hours per 100 miles to help you estimate fuel costs Driving Range Driving range estimates are provided for all-electric operation and...

215

Alternative Fuels Data Center: Transportation System Efficiency  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Transportation System Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share Alternative Fuels Data Center: Transportation System Efficiency on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework

216

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

DOE Green Energy (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

217

Polarization Resistance of La0.85Ca0.15MnO3 Cathodes for Solid Oxide Fuel Cells (SOFCs) Measured Using Patterned Electrodes  

SciTech Connect

Patterned cathodes of calcium-doped lanthanum manganite (LCM) were fabricated on polycrystalline yttria-stabilized zirconia (YSZ) substrates by RF magnetron sputtering and photolithographic techniques. Samples were generated with a constant electrode/electrolyte contact area but different three phase boundary (TPB) lengths (lTPB's). Electrochemical impedance spectroscopy (EIS) was performed in the oxygen partial pressure (pO2) and temperature range of 10-3 atm to 1.00 atm and 600-800 C respectively. The area specific polarization resistance, Rp, was found to scale linearly with the inverse of lTPB, suggesting that the TPB is the active region for oxygen reduction. The resistivity decreased with increased temperature and pO2 and showed an activation energy of 1.17 +/- 0.03 eV.

Miara, Lincoln J.; Yoon, Kyung J.; Topping, Stephen; Saraf, Laxmikant V.; Pal, Uday B.; Gopalan, Srikanth

2010-04-25T23:59:59.000Z

218

Drive reconfiguration mechanism for tracked robotic vehicle  

SciTech Connect

Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

Willis, W. David (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

219

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

220

Alternatives to traditional transportation fuels 1996  

DOE Green Energy (OSTI)

Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

NONE

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel Pathway Integration Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pathway Integration Fuel Pathway Integration Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Fuel Pathway Integration Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

222

Alternative Fuels Data Center: Telework  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Telework to someone by Telework to someone by E-mail Share Alternative Fuels Data Center: Telework on Facebook Tweet about Alternative Fuels Data Center: Telework on Twitter Bookmark Alternative Fuels Data Center: Telework on Google Bookmark Alternative Fuels Data Center: Telework on Delicious Rank Alternative Fuels Data Center: Telework on Digg Find More places to share Alternative Fuels Data Center: Telework on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Telework Photo of a woman working from home. Telework is a flexible work arrangement where employees work from home (telecommute) or attend conferences and meetings from their computer

223

Clean Cities Drive Vol 3 Issue 3 - Summer 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I to the sixth issue of the U.S. I I Department of Energy's [DOE) Clean Cities Drive. Each issue of the newsletter will bring you valuable information from the Clean Cities pro- I 1 gram to help you succeed in putting more alternative fuel vehicles ( A M ) 11 onto our roads. If you have a story to ( I tell, a p i h r e to share, or information of interest to Clean Cities participants, 1 1 please call h e Clean Cities Hotline at 1 -800-CCITIES. 1 1 5 Journal: An Electric Vehicle Road Trip Airports Provide a Centerpiece for Clean Cities Programs Alternative Fuels Take to the Skies fnlifnrnin I l c a c Tarhnnlnnv tn Funnnd the Fueling Network 8 Police Departments Hot on the Trail o Cleaner Vehicles 9 Clean Cities a "Dream Job" for D Program Manager

224

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

225

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

226

Hydromechanical transmission with hydrodynamic drive  

DOE Patents (OSTI)

This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.

Orshansky, Jr., deceased, Elias (LATE OF San Francisco, CA); Weseloh, William E. (San Diego, CA)

1979-01-01T23:59:59.000Z

227

Water drives peptide conformational transitions  

E-Print Network (OSTI)

Transitions between metastable conformations of a dipeptide are investigated using classical molecular dynamics simulation with explicit water molecules. The distribution of the surrounding water at different moments before the transitions and the dynamical correlations of water with the peptide's configurational motions indicate that water is the main driving force of the conformational changes.

Nerukh, Dmitry

2011-01-01T23:59:59.000Z

228

Anomalous-viscosity current drive  

DOE Patents (OSTI)

The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

Stix, T.H.; Ono, M.

1986-04-25T23:59:59.000Z

229

Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Strategies for Fleet Strategies for Fleet Managers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Management Strategies

230

Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rightsizing Your Rightsizing Your Vehicle Fleet to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior

231

NREL: Technology Transfer - Automakers Drive toward Fuel Cell ...  

... featured Jen Kurtz of the U.S. Department of Energy’s National Renewable Energy Laboratory ... Hawaii, and the Northeast ... Technology Transfer H ...

232

NETL: News Release - Major Milestone Met in Government-Industry Drive to  

NLE Websites -- All DOE Office Websites (Extended Search)

January 3, 2005 January 3, 2005 Major Milestone Met in Government-Industry Drive to Develop Affordable Fuel Cell Achievement Brightens Prospects for Environmentally Clean Technology to Move into Mainstream Energy Markets Squeezing more watts of electric power from smaller and smaller volumes of fuel cell materials is one of the "holy grails" of fuel cell developers. Combined with advances in mass production, such improvements in a fuel cell's "power density" could provide one of the much needed technological leaps that could make this environmentally attractive technology economically competitive with today's traditional ways of generating electricity. Now Delphi Corp., a partner in the U.S. Department of Energy's advanced fuel cell development program, has reported that it has exceeded the power density level required to meet the government's $400 per kilowatt cost goal for fuel cells. Meeting the cost target is essential if fuel cells are to expand beyond their current niche markets into widespread commercial use.

233

Top 3 Driving Tools That Will Help Save You Money at the Pump | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Driving Tools That Will Help Save You Money at the Pump 3 Driving Tools That Will Help Save You Money at the Pump Top 3 Driving Tools That Will Help Save You Money at the Pump November 25, 2013 - 11:33am Addthis Save time and money on your next road trip with our top three driving tools. | Photo courtesy of iStockphoto.com/gioadventures. Save time and money on your next road trip with our top three driving tools. | Photo courtesy of iStockphoto.com/gioadventures. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs This year, nearly 38.9 million Americans will pack up their cars and hit the road for the Thanksgiving holiday, traveling 50 miles or more, according to AAA. While gas prices are at a two-year low -- selling for less than $3 a gallon in many states -- fuel costs can still add up

234

2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Fuel Economy Guide and FuelEconomy.gov 09 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than 30 seconds, as Elizabeth pointed out last week. Driving conservatively and buying a fuel efficient car can make even more of an impact. The 2009 Fuel Economy Guide, released on October 15, can help you choose the most fuel efficient car for your needs, both new and used. Whether

235

NREL: Vehicles and Fuels Research - Fleet Test and Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory works in partnership with commercial and government fleets and industry groups to evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles. The team's project areas include: Fleet DNA: Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric and Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification Alternative Fuels Truck Efficiency Key aspects of this work involve meeting with industry stakeholders to understand market factors and customer requirements, evaluating the performance of advanced technology vehicles versus their conventional

236

Raising H2 and Fuel Cell Awareness in Ohio - DOE Hydrogen and...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Patrick Valente Ohio Fuel Cell Coalition 151 Innovation Drive, Suite 240D Elyria, OH 44035 Phone: (614)...

237

Final Report on the Fuel Saving Effectiveness of Various Driver Feedback Approaches  

SciTech Connect

This final report quantifies the fuel-savings opportunities from specific driving behavior changes, identifies factors that influence drivers' receptiveness to adopting fuel-saving behaviors, and assesses various driver feedback approaches.

Gonder, J.; Earleywine, M.; Sparks, W.

2011-03-01T23:59:59.000Z

238

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Plan Partnership Plan March 2013 U.S. DRIVE Partnership Plan Table of Contents Foreword ....................................................................................................................................................... 2 Definition ...................................................................................................................................................... 3 Partners ......................................................................................................................................................... 3 U.S. DRIVE Vision ........................................................................................................................................... 3 U.S. DRIVE Mission ........................................................................................................................................ 4

239

Magnetically Coupled Adjustable Speed Drive Systems  

DOE Green Energy (OSTI)

Adjustable speed drive (ASD) technologies have the ability to precisely control motor sytems output and produce a numbr of benefits including energy and demand savings. This report examines the performance and cost effectiveness of a specific class of ASDs called magnetically-coupled adjustable speed drives (MC-ASD) which use the strength of a magnetic field to control the amount of torque transferred between motor and drive shaft. The MagnaDrive Adjustable Speed Coupling System uses fixed rare-earth magnets and varies the distance between rotating plates in the assembly. the PAYBACK Variable Speed Drive uses an electromagnet to control the speed of the drive

Chvala, William D.; Winiarski, David W.

2002-08-18T23:59:59.000Z

240

Granular gases under extreme driving  

E-Print Network (OSTI)

We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady-state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

W. Kang; J. Machta; E. Ben-Naim

2010-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

242

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

243

Direct-Drive Inertial Fusion Research at the University of Rochester's Laboratory for Laser Energetics: A Review  

SciTech Connect

This paper reviews the status of direct-drive inertial confinement fusion (ICF) research at the University of Rochester's Laboratory for Laser Energetics (LLE). LLE's goal is to demonstrate direct-drive ignition on the National Ignition Facility (NIF) by 2014. Baseline "all-DT" NIF direct-drive ignition target designs have been developed that have a predicted gain of 45 (1-D) at a NIF drive energy of ~1.6 MJ. Significantly higher gains are calculated for targets that include a DT-wicked foam ablator. This paper also reviews the results of both warm fuel and initial cryogenic-fuel spherical target implosion experiments carried out on the OMEGA UV laser. The results of these experiments and design calculations increase confidence that the NIF direct-drive ICF ignition goal will be achieved.

McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Bahr, R.E.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Donaldson, W.R.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Jaanimagi, P.A.; Keck, R.L.; Kelly, J.H.; Kessler, T.J.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Lund, L.D.; Marozas, J.A.; McKenty, P.W.; Marshall, F.J.; Morse, S.F.B.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Roberts, S.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Thorp, K.A.; Yaakobi, B.; Zuegel, J.D.

2010-04-16T23:59:59.000Z

244

Optimizing Consumer Utility Systems to Drive Engagement and Action  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing Consumer Utility Systems to Drive Engagement and Action Optimizing Consumer Utility Systems to Drive Engagement and Action Speaker(s): Stephen Malloy V. Rory Jones Date: November 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Christopher Payne This presentation reviews a new software tool that recommends specific actions for homeowners and others to undertake to optimize their utility system configuration and operation. The tool, the "Utility System Optimizer" (USO), may be configured to optimize across all utilities (electricity, gas, water - and other fuels as propane, oil and wood) to meet objectives that are defined by the owner/operator (homeowner, retailer, etc.). Such objectives may be to maximize net wealth over time, to minimize carbon footprint for the best economics, to maximize health

245

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

246

BNL Blood Drives: Iron-rich foods  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL Blood Drives: Iron-Rich Foods Blood Drive Home Seafood: Fish (cod, sardines, tuna, clams, oysters, shrimp) Poultry: Chicken, eggs, yolk Lean Red Meats: Beef, lamb, veal, pork,...

247

Novel Stack Concepts: Patterned Aligned Carbon Nanotubes as Electrodes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stack Concepts: Patterned Aligned Carbon Nanotubes as Electrodes in MEAs Di-Jia Liu Chemical Engineering Division Argonne National Laboratory Presentation at Fuel Cell Kickoff...

248

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

249

Response to P-887 Adoption of a Fuel Adjustment Mechanism (FAM) for Nova Scotia Power Incorporated  

E-Print Network (OSTI)

, all are intended to ensure that the cost of the fuel used to generate electricity is reflected associated the electricity reflect the cost of fuel used to generate electricity for each consumer. Two periods. Since fuel costs drive the price of electricity, incorrectly estimated fuel costs can impact both

Hughes, Larry

250

Indirect Drive Warm-Loaded Ignition Target Design  

SciTech Connect

This document summarizes the Indirect Drive Warm-Loaded Ignition Target design. These targets either use a fill tube or the capsule is strong enough to withstand the room temperature pressure of the DT fuel. Only features that affect the design of the NIF Cryogenic Target System (NCTS) are presented. The design presented is the current thinking and may evolve further. The NCTS should be designed to accommodate a range of targets and target scales, as described here. The interface location between the target and the NCTS cryostat is at the target base / gripper joint, the tamping gas gland/gland joint, and the electrical plug/receptacle joint.

Bernat, T P; Gibson, C R

2004-09-03T23:59:59.000Z

251

Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.  

DOE Green Energy (OSTI)

The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

Ahluwalia, R.; Doss, E.D.; Kumar, R.

1998-10-19T23:59:59.000Z

252

eGallon: Understanding the Cost of Driving EVs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » eGallon: Understanding the Cost of Driving EVs Initiatives » eGallon: Understanding the Cost of Driving EVs eGallon: Understanding the Cost of Driving EVs For most drivers, a trip to the fuel pump is an easy reminder of the day-to-day cost of gasoline or diesel fuel. But for electric vehicle (EV) drivers, who typically charge their car at home, there isn't a similar measurement to determine the cost of driving on electricity. To help both current and potential EV drivers better understand the cost of driving an EV, the Energy Department created the eGallon. The eGallon represents the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. For example, if gasoline costs $3.60 a gallon in your state and the eGallon price for your state is $1.20, that means that for $1.20 worth of electricity you can

253

Adjustable Speed Drive Industrial Applications  

E-Print Network (OSTI)

Electric motors are significant users of electricity in the United States. Approximately 66 percent of the total electricity in the U.S. is used by electric motors. Electronic adjustable speed drives (ASDs) can save energy, lower maintenance cost and improve product quality. By providing a variable frequency output to ac motors the speed of the motors can be controlled and matched to the process requirements. The benefits that may be derived from using ASDs are described and the type of ASDs, applications and specific case studies of ASD installations are also discussed.

Poole, J. N.

1989-09-01T23:59:59.000Z

254

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

255

Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the...

256

Efficient Driving Tips to Help Ease the Pain at the Pump | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Driving Tips to Help Ease the Pain at the Pump Efficient Driving Tips to Help Ease the Pain at the Pump Efficient Driving Tips to Help Ease the Pain at the Pump March 15, 2011 - 7:30am Addthis Allison Casey Senior Communicator, NREL No doubt you've heard-or noticed yourself-that gas prices are rising again. It's always painful to fill up when you know the total will be more than it would have been yesterday. I can't do a lot about the total when you fill your tank, but I do have a few tips to help you fill up a little less often and save a bit of fuel and money. It's been awhile since we pointed you to FuelEconomy.gov, but this site is the best place to start if you're looking for info on efficient driving and vehicles. To get you started, remember these tips: Drive the speed limit. For every 5 miles per hour (mph) you drive

257

Efficient Driving Tips to Help Ease the Pain at the Pump | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Driving Tips to Help Ease the Pain at the Pump Efficient Driving Tips to Help Ease the Pain at the Pump Efficient Driving Tips to Help Ease the Pain at the Pump March 15, 2011 - 7:30am Addthis Allison Casey Senior Communicator, NREL No doubt you've heard-or noticed yourself-that gas prices are rising again. It's always painful to fill up when you know the total will be more than it would have been yesterday. I can't do a lot about the total when you fill your tank, but I do have a few tips to help you fill up a little less often and save a bit of fuel and money. It's been awhile since we pointed you to FuelEconomy.gov, but this site is the best place to start if you're looking for info on efficient driving and vehicles. To get you started, remember these tips: Drive the speed limit. For every 5 miles per hour (mph) you drive

258

Fuel cell system  

DOE Patents (OSTI)

A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

Early, Jack (Perth Amboy, NJ); Kaufman, Arthur (West Orange, NJ); Stawsky, Alfred (Teaneck, NJ)

1982-01-01T23:59:59.000Z

259

Intelligent Energy Management Based on the Driving Cycle Sensitivity Identification Using SVM  

Science Conference Proceedings (OSTI)

Hybrid Electric Vehicles (HEV) offer the ability to significantly reduce fuel consumptions and emission. Management of energy is one of essential elements in the implementation of hybrid electric vehicles. Engine and motor should satisfy the driver’s ... Keywords: driving cycle sensitivity, support vector machine, control strategy, genetic

Zhang Liang; Zhang Xin; Tian Yi; Zhang Xinn

2009-12-01T23:59:59.000Z

260

Hybrid fuel cell for mobile devices : an integrated approach  

E-Print Network (OSTI)

As mobile devices advance to 3G and beyond, there will be a pressing need for increased power to drive these devices, which the current batteries cannot provide. The direct methanol fuel cell has been identified as a ...

Sohn, Munhee, 1981-

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Enova Systems - Enova Ze step van Application: Van Fuel Type: Electricity Power Source(s): Enova Systems - 120kW all-electric drive system Additional Description: Built on a...

262

Driving Green: Spring has Sprung, but don't 'Spring Ahead' | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green: Spring has Sprung, but don't 'Spring Ahead' Green: Spring has Sprung, but don't 'Spring Ahead' Driving Green: Spring has Sprung, but don't 'Spring Ahead' March 14, 2012 - 2:32pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory With gas prices skyrocketing, it may be time to evaluate your driving habits. No, I'm not talking about "hypermilling" (going to extreme lengths to get the best fuel economy possible), which can involve some dangerous techniques. (There actually is a Hypermiling Safety Foundation, which advocates legal techniques to get the best mileage possible.) You can still "drive green" safely to help save fuel and operating costs. First, of course, you should keep your car well maintained, whatever its age - regular oil changes, tires properly inflated and aligned, engine tuned up

263

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

264

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

265

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

266

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests to Drive Down Costs of Carbon Capture, Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

267

#LabChat Recap: Innovations Driving More Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations Driving More Efficient Vehicles Innovations Driving More Efficient Vehicles #LabChat Recap: Innovations Driving More Efficient Vehicles December 21, 2012 - 10:47am Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #LabChat Recap: Innovations Driving More Efficient Vehicles The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy. Three researchers answered questions about advanced combustion, lightweighting and hybridization. Here is an overview of some of the conversations. Storified by Energy Department · Fri, Dec 21 2012 08:19:22 We kicked off the #LabChat with introductions from all the researchers. Each researcher focuses on a different vehicle technology that is expected to make great strides in improving vehicle

268

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests to Drive Down Costs of Carbon Capture, Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

269

In-line drivetrain and four wheel drive work machine using same  

DOE Patents (OSTI)

A four wheel drive articulated mine loader is powered by a fuel cell and propelled by a single electric motor. The drivetrain has the first axle, second axle, and motor arranged in series on the work machine chassis. Torque is carried from the electric motor to the back differential via a pinion meshed with the ring gear of the back differential. A second pinion oriented in an opposite direction away from the ring gear is coupled to a drive shaft to transfer torque from the ring gear to the differential of the front axle. Thus, the ring gear of the back differential acts both to receive torque from the motor and to transfer torque to the forward axle. The in-line drive configuration includes a single electric motor and a single reduction gear to power the four wheel drive mine loader.

Hoff, Brian (East Peoria, IL)

2008-08-05T23:59:59.000Z

270

Optimally Controlled Flexible Fuel Powertrain System  

SciTech Connect

A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

2011-06-30T23:59:59.000Z

271

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

272

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

273

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

274

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

275

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

276

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

277

DOE Drives Big Data Push  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Volume 9 Issue 2 2 Volume 9 Issue 2 From YAGS to Planetary Biology . . . . . . . . . . . . . . . 2 DOE Drives Big Data Push . . . . . . . . . . . . . . . . . . . . 3 Sweating Small Scale Genomics . . . . . . . . . . . . . . . 6 The Future of the DOE JGI . . . . . . . . . . . . . . . . . . . . 7 Save the Date for Meeting 8 . . . . . . . . . . . . . . . . . . . 8 also in this issue With a record 488 genomics researchers and bioinformaticians sitting in the Marriott Walnut Creek ballroom, New York Times science writer Carl Zimmer opened the DOE Joint Genome Institute's 7th Annual Genomics of Energy & Environment Meeting on March 20, 2012. Sharing his thoughts about being "On the Genome Beat," he informed the audience that he was worn down by seeing news about scientists successfully sequencing yet another genome sequence, and that "maybe some genomes shouldn't be written about." Zimmer's words engaged the audience in a discussion that

278

Current Drive in Recombining Plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

P.F. Schmit and N.J. Fisch

2012-05-15T23:59:59.000Z

279

Current drive in recombining plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the influence of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero ''residual'' current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

Schmit, P. F.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

2011-10-15T23:59:59.000Z

280

EAGLES 1.1: A microcomputer software package for analyzing fuel efficiency of electric and gasoline vehicles  

SciTech Connect

As part of the U.S. Department of Energy`s electric/hybrid vehicle research program, Argonne National Laboratory has developed a computer software package called EAGLES. This paper describes the capability of the software and its many features and potential applications. EAGLES version 1.1 is an interactive microcomputer software package for the analysis of battery performance in electric-vehicle applications, or the estimation of fuel economy for a gasoline vehicle. The principal objective of the electric-vehicle analysis is to enable the prediction of electric-vehicle performance (e.g., vehicle range) on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile, taking into consideration the effects of battery depth-of-discharge and regenerative braking. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements (e.g., range and driving patterns). For gasoline-vehicle analysis, an empirical model relating fuel economy, vehicle parameters, and driving-cycle characteristics is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be simulated. The software package includes many default data sets for vehicles, driving cycles, and battery technologies. EAGLES 1.1 is written in the FORTRAN language for use on IBM-compatible microcomputers.

Marr, W.M.

1994-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Economy and Environment Labels  

NLE Websites -- All DOE Office Websites (Extended Search)

note that these labels are examples and do not represent real automobiles. The sample labels are intended to note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 1 A New Fuel Economy Label for a New Generation of Cars Gasoline Label Please note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 2 Flexible Fuel Vehicle: Gasoline-Ethanol (E85) Without Driving Range

282

Fuel Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Fuel Economy Fuel Economy Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel. Featured New Investment in Energy-Efficient Manufacturing The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility.

283

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DRIVE U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). Specifically, the Partnership is a forum for pre-competitive technical information exchange among partners to discuss R&D needs, develop joint goals and technology roadmaps, and evaluate R&D progress for a broad range of technical areas. By providing a framework for frequent and regular interaction among technical experts in a common area of expertise, the Partnership -

284

Electric vehicle drive train with contactor protection  

DOE Patents (OSTI)

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

Konrad, C.E.; Benson, R.A.

1994-11-29T23:59:59.000Z

285

Electric vehicle drive train with contactor protection  

SciTech Connect

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

1994-01-01T23:59:59.000Z

286

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

287

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

288

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

289

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

290

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

291

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

292

Marketing & Driving Demand: Social Media Tools & Strategies ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing & Driving Demand: Social Media Tools & Strategies January 16, 2011 Maryanne Fuller (MF): Hi there. This is Maryanne Fuller from Lawrence Berkeley National Laboratory....

293

Electric Drive Vehicles and Their Infrastructure Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Webinar - Electric Drive Vehicles and Their Infrastructure Issues (March 2010) Jim Francfort and Don Karner Advanced Vehicle Testing Activity March 24, 2010 This...

294

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

295

Wind Turbine Design Innovations Drive Industry Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Innovations Drive Industry Transformation For more than 20 years, the National Renewable Energy Laboratory (NREL) has helped GE and its predecessors achieve...

296

High-megawatt Electric Drive Motors  

Science Conference Proceedings (OSTI)

... Page 2. © ABB BU Machines April 10, 2009 | Slide 2 High-megawatt Electric Drive Motors ... motor concept ... A selection of compressor motors >30MW. ...

2012-10-21T23:59:59.000Z

297

Learn More About the Fuel Economy Label for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

298

Nuclear core and fuel assemblies  

DOE Patents (OSTI)

A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

Downs, Robert E. (Monroeville, PA)

1981-01-01T23:59:59.000Z

299

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

300

The eGallon: How Much Cheaper Is It to Drive on Electricity? | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The eGallon: How Much Cheaper Is It to Drive on Electricity? The eGallon: How Much Cheaper Is It to Drive on Electricity? The eGallon: How Much Cheaper Is It to Drive on Electricity? June 10, 2013 - 11:00pm Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about 3 times less to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 · 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon 0 4 1 7 2 3 3 · 0 4 2 0 4 6 0 8 5 9 1 5 0 Data and Methodology The eGallon price is calculated using the most recently available state by state residential electricity prices. The state gasoline price above is either the statewide average retail price or a multi-state regional average

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

302

Control rod drive hydraulic system  

DOE Patents (OSTI)

A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

Ose, Richard A. (San Jose, CA)

1992-01-01T23:59:59.000Z

303

Hidden Rotational Symmetries in Magnetic Domain Patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Rotational Symmetries in Hidden Rotational Symmetries in Magnetic Domain Patterns Hidden Rotational Symmetries in Magnetic Domain Patterns Print Wednesday, 27 June 2012 00:00 Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the ALS, the University of Oregon, and the University of California, San Diego, have recently used coherent soft x-ray scattering with angular Fourier analysis to discover that the disordered domain patterns do, in fact, exhibit rotational symmetries, which can be as small as two-fold or as large as 30-fold. Their study of magnetic symmetries gives scientists a toolbox for discovering hidden symmetries in diverse material systems.

304

Hidden Rotational Symmetries in Magnetic Domain Patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Rotational Symmetries in Magnetic Domain Patterns Print Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the ALS, the University of Oregon, and the University of California, San Diego, have recently used coherent soft x-ray scattering with angular Fourier analysis to discover that the disordered domain patterns do, in fact, exhibit rotational symmetries, which can be as small as two-fold or as large as 30-fold. Their study of magnetic symmetries gives scientists a toolbox for discovering hidden symmetries in diverse material systems.

305

UCDavis University of California Learning By Driving  

E-Print Network (OSTI)

% 29% 0% 2% 10% 37% 39% 71% Solar Wind Hydro Nuclear Natural Gas Coal The electricity for charging fun with it. "I love the regenerative braking. In fact, I miss it when I drive my other cars." ­ Household 8 "It is like driving a slot car. It is exciting; it is as much fun as accelerating" ­ Survey

California at Davis, University of

306

Electric top drives gain wide industry acceptance  

Science Conference Proceedings (OSTI)

Since its introduction, the top drive drilling system has gained acceptance as a productive and safe method for drilling oil and gas wells. Originally, the system was used mostly for offshore and higher cost land drilling, and it had to be installed as a permanent installation because of its enormous weight and size. Essentially, a top drive replaces the kelly and rotary table as the means of rotating drillpipe on oil, gas and geothermal rigs and is considered to be 15% to 40% more efficient than a kelly drive. Top drive systems allow the operator to drill and maintain directional orientation for triple stands and provide tripping efficiency because of the ability to ream and circulate with triple stands, to reduce the risk of stuck pipe or lost wells, and to improve well control and pipe handling safety. The paper describes electric top drives with DC motors, top drives with AC motors, top drives with permanent magnet motors, and top drives with permanent magnet brushless synchronous motors.

Riahi, M.L.

1998-05-01T23:59:59.000Z

307

An Assessment of High Performance AC Motor Drives Versus DC Motor Drives  

Science Conference Proceedings (OSTI)

In today's rapidly changing market place, drive users are applying AC and DC drives in applications that require more demanding speed and torque performance. Properly matching a drive's rating and unit characteristics to an application are two very effective ways of managing unit cost and cost reduction.

1998-12-29T23:59:59.000Z

308

DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

Not Available

2013-04-01T23:59:59.000Z

309

Electrifying Your Drive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrifying Your Drive Electrifying Your Drive Electrifying Your Drive April 27, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For anyone who grew up watching The Jetsons (or Back to the Future, depending on your generation), the "Car of the Future!" flew through the skies with the greatest of ease. Although most of us have given up on our hopes of a flying car, anything beyond the internal combustion engine has seemed hopelessly out of reach until recently. However, with several manufacturers planning on producing plug-in and all-electric vehicles, the Car of the Future will be available soon! But before you put down a deposit, it's helpful to understand the different types of electric drive technologies. The most basic form of electric drive

310

Electrifying Your Drive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrifying Your Drive Electrifying Your Drive Electrifying Your Drive April 27, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For anyone who grew up watching The Jetsons (or Back to the Future, depending on your generation), the "Car of the Future!" flew through the skies with the greatest of ease. Although most of us have given up on our hopes of a flying car, anything beyond the internal combustion engine has seemed hopelessly out of reach until recently. However, with several manufacturers planning on producing plug-in and all-electric vehicles, the Car of the Future will be available soon! But before you put down a deposit, it's helpful to understand the different types of electric drive technologies. The most basic form of electric drive

311

Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

Paul Belard

2006-09-21T23:59:59.000Z

312

NREL: Vehicles and Fuels Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles and Fuels Research News Vehicles and Fuels Research News The following news stories highlight vehicles and fuels research at NREL. December 23, 2013 NREL and Thought Leaders Gather at Electric Vehicle Battery Management Summit NREL researchers will gather with U.S. Department of Energy program directors and technology managers, and other thought leaders to exchange strategies for maximizing the performance, safety, and lifespan of electric-drive vehicle batteries. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile

313

National Fuel Cell and Hydrogen Energy Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell and Hydrogen National Fuel Cell and Hydrogen Energy Overview Total Energy USA Houston, Texas Dr. Sunita Satyapal Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy 11/27/2012 National Support for Clean Energy "We've got to invest in a serious, sustained, all-of- - President Barack Obama "Advancing hydrogen and fuel cell technology is an important part of the Energy Department's efforts to support the President's all-of-the-above energy strategy, helping to diversify America's energy sector and reduce our dependence on foreign oil." - Energy Secretary Steven Chu "Fuel cells are an important part of our energy portfolio...deployments in early markets are helping to drive innovations in fuel cell technologies

314

Alternative Fuels Data Center: Mass Transit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mass Transit to Mass Transit to someone by E-mail Share Alternative Fuels Data Center: Mass Transit on Facebook Tweet about Alternative Fuels Data Center: Mass Transit on Twitter Bookmark Alternative Fuels Data Center: Mass Transit on Google Bookmark Alternative Fuels Data Center: Mass Transit on Delicious Rank Alternative Fuels Data Center: Mass Transit on Digg Find More places to share Alternative Fuels Data Center: Mass Transit on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Mass Transit Passenger-Miles per Gallon Passenger-miles per gallon (pmpg) is a metric for comparing mass transit and rideshare with typical passenger vehicle travel. Transportation system

315

Alternative Fuels Data Center: Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction on Google Bookmark Alternative Fuels Data Center: Idle Reduction on Delicious Rank Alternative Fuels Data Center: Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles Light-Duty Vehicles School Buses Laws & Incentives Research & Development Related Links Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Idle Reduction Photo of fleet trucks

316

Alternative Fuels Data Center: Active Transit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Active Transit to Active Transit to someone by E-mail Share Alternative Fuels Data Center: Active Transit on Facebook Tweet about Alternative Fuels Data Center: Active Transit on Twitter Bookmark Alternative Fuels Data Center: Active Transit on Google Bookmark Alternative Fuels Data Center: Active Transit on Delicious Rank Alternative Fuels Data Center: Active Transit on Digg Find More places to share Alternative Fuels Data Center: Active Transit on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Active Transit Photo of people riding bikes. Active transit is human-powered transportation such as biking and walking. Active transportation eliminates vehicle miles traveled altogether, so this

317

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

318

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

319

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

320

Racial and demographic differences in household travel and fuel purchase behavior  

Science Conference Proceedings (OSTI)

Monthly fuel purchase logs from the Residential Energy Consumption Survey's Household Transportation Panel (TP) were analyzed to determine the relationship between various household characteristics and purchase frequency, tank inventories, vehicle-miles traveled, and fuel expenditures. Multiple classification analysis (MCA) was used to relate observed differences in dependent variables to such index-type household characteristics as income and residence location, and sex, race and age of household head. Because it isolates the net effect of each parameter, after accounting for the effects of all other parameters, MCA is particularly appropriate for this type of analysis. Results reveal clear differences in travel and fuel purchase behavior for four distinct groups of vehicle-owning households. Black households tend to own far fewer vehicles with lower fuel economy, to use them more intensively, to purchase fuel more frequently, and to maintain lower fuel inventories than white households. Similarly, poor households own fewer vehicles with lower fuel economy, but they drive them less intensively, purchase fuel more frequently, and maintain lower fuel inventories than nonpoor households. Elderly households also own fewer vehicles with lower fuel economy. But since they drive them much less intensively, their fuel purchases are much less frequent and their fuel inventories are higher than nonelderly households. Female-headed households also own fewer vehicles but with somewhat higher fuel economy. They drive them less intensively, maintain higher fuel inventories, and purchase fuel less frequently than male-headed households. 13 refs., 8 tabs.

Gur, Y.; Millar, M.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

322

Alternative Fuels Data Center: Low Rolling Resistance Tires  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Rolling Resistance Low Rolling Resistance Tires to someone by E-mail Share Alternative Fuels Data Center: Low Rolling Resistance Tires on Facebook Tweet about Alternative Fuels Data Center: Low Rolling Resistance Tires on Twitter Bookmark Alternative Fuels Data Center: Low Rolling Resistance Tires on Google Bookmark Alternative Fuels Data Center: Low Rolling Resistance Tires on Delicious Rank Alternative Fuels Data Center: Low Rolling Resistance Tires on Digg Find More places to share Alternative Fuels Data Center: Low Rolling Resistance Tires on AddThis.com... More in this section... Idle Reduction Parts & Equipment Low Rolling Resistance Tires Maintenance Driving Behavior Fleet Rightsizing System Efficiency Low Rolling Resistance Tires Close-up photograph of the tires of a light-duty vehicle driving down a road.

323

2008 Fuel Cell Technologies Market Report  

SciTech Connect

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

DOE

2010-06-01T23:59:59.000Z

324

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

325

Evaluation of Fuel Quality Impacts on Heat Rate  

Science Conference Proceedings (OSTI)

The drive to leverage fuel switching to meet more stringent SO2 and NOX emissions requirements has led to both a reduction in power station efficiency and a poorer net plant heat rate (NPHR) in many cases. The root causes include higher fuel moisture content, lower fuel energy content, poorer combustion efficiency, increased station service, and decreased unit capability. This report demonstrates the sensitivity of the key metrics of power station efficiency and heat rate to coal quality parameters, vari...

2010-12-09T23:59:59.000Z

326

Modeling and Validation of a Fuel Cell Hybrid Vehicle  

E-Print Network (OSTI)

This paper describes the design and construction of a fuel cell hybrid electric vehicle based on the conversion of a five passenger production sedan. The vehicle uses a relatively small fuel cell stack to provide average power demands, and a battery pack to provide peak power demands for varied driving conditions. A model of this vehicle was developed using ADVISOR, an A__dvanced Vehicle Simulator that tracks energy flow and fuel usage within the vehicle drivetrain and energy conversion components.

Michael J. Ogburn; Douglas J. Nelson; Keith Wipke; Tony Markel

2000-01-01T23:59:59.000Z

327

Control rod drive for reactor shutdown  

DOE Patents (OSTI)

A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

McKeehan, Ernest R. (Los Gatos, CA); Shawver, Bruce M. (San Jose, CA); Schiro, Donald J. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1976-01-20T23:59:59.000Z

328

Catalytic autothermal reforming of hydrocarbon fuels for fuel cells.  

DOE Green Energy (OSTI)

Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles [1]. The lack of an infrastructure for producing and distributing H{sub 2} has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H{sub 2} [2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines [3]. Existing reforming technology for the production of H{sub 2} from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H{sub 2} for large-scale manufacturing processes.

Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D.; Ahmed, S.

2002-01-11T23:59:59.000Z

329

Fuel Economy in the News  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Economy in the News Fuel Economy in the News Disclaimer: The opinions expressed in the following articles belong to the original authors and do not necessarily reflect the opinions or policies of the U.S. Department of Energy or the Environmental Protection Agency. May 31, 2013 Drive On: Ford rocks hybrid sales - USA Today 2014 Chevrolet Cruze Diesel: Could this be the anti-TDI? - Car and Driver Tips for Buying and Servicing a Used Hybrid Car - The New York Times May 30, 2013 Mercedes' GLK250 joins fuel efficiency with luxury - The Detroit News Honda Fit EV lease drops to $259 with no down payment, unlimited miles - Autoblog Tesla tripling supercharger network for LA to NY trip - CNN May 29, 2013 Musk sticking to plan for 'affordable' Tesla model - Autoblog 2015 Toyota Prius Spy Shots: Next-Gen Hybrid Breaks Cover - Green

330

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

Science Conference Proceedings (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

331

EVALUATION OF RANGE ESTIMATES FOR TOYOTA FCHV-ADV UNDER OPEN ROAD DRIVING CONDITIONS  

DOE Green Energy (OSTI)

The objective of this evaluation was to independently and objectively verify driving ranges of >400 miles announced by Toyota for its new advanced Fuel Cell Hybrid Vehicle (FCHV-adv) utilizing 70 MPa compressed hydrogen. To accomplish this, participants from both Savannah River National Laboratory (SRNL) and the National Renewable Energy Laboratory (NREL) witnessed and participated in a 2-vehicle evaluation with Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA) over a typical open road route for over 11 hours in one day with all relevant data recorded. SRNL and TEMA first entered into discussions of verifying the range of the advanced Toyota Fuel Cell Hybrid Vehicle (FCHV-adv) in August 2008 resulting from reported 400+ mile range by Toyota. After extended negotiations, a CRADA agreement, SRNS CRADA No. CR-04-003, was signed on May 6, 2009. Subsequently, on June 30, 2009 SRNL and NREL participated in an all-day evaluation of the FCHV-adv with TEMA to determine the real-world driving range of this vehicle through on-road driving on an extended round-trip drive between Torrance and San Diego, California. SRNL and NREL observed the vehicles being refueled at Toyota's headquarters the day before the evaluation in Torrance, CA on June 29. At 8:00 AM on June 30, the vehicles departed Torrance north toward downtown Los Angeles, then west to the Pacific Coast Highway, and down to San Diego. After lunch the vehicles retraced their route back to Torrance. The traffic encountered was much heavier than anticipated, causing the vehicles to not return to Torrance until 9 PM. Each vehicle was driven by the same Toyota driver all day, with one SRNL/NREL observer in each vehicle the entire route. Data was logged by Toyota and analyzed by NREL. The maximum range of the FCHV-adv vehicles was calculated to be 431 miles under these driving conditions. This distance was calculated from the actual range of 331.5 miles during over 11 hours driving, plus 99.5 miles of additional range calculated from the average fuel economy from the day times the remaining usable hydrogen. Driving range results were independently calculated for each vehicle, and these results averaged together to achieve the final 431-mile range estimate. The uncertainty on these results is relatively low due to eight independent measurements of distance and six separate measurements of hydrogen usage, with a resulting uncertainty of {+-} 7 miles ({+-} 1.7%) based on spread between the low and high values from all of the multiple measurements. The average fuel economy resulting from the day's driving was 68.3 miles/kg and the total hydrogen stored on-board at 70 MPa was calculated to be 6.31 kg. The speed profiles were analyzed and compared to standard driving cycles, and were determined to be of moderate aggressiveness. The city segments of the route had average speeds slightly greater than the UDDS cycle and the highway segments were close to the HWFET & US06 cycles. The average acceleration for the highway driving was very close to the HWFET cycle, and the city portions had average accelerations lower than the UDDS and US06 cycles. We feel that the route accurately reflects realistic driving behaviors in southern California on a typical weekday, and is an appropriate benchmark to use in the verification of a fuel cell vehicle's range.

Anton, D.; Wipke, K.; Sprik, S.

2009-07-10T23:59:59.000Z

332

Clean Cities Drive Vol 4 Issue 1 May 1997  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cities Cities to the eighth issue of the I I U.S. Department of Energy's (DOE) Clean Cities Drive. Each issue 1 1 of the newsletter will bring you valuable information from the Clean Cities program to help you succeed I I in putting more alternative fuel vehi- cles onto our roads. If you have a I I story to tell, a picture to share, or information of interest to Clean Cities I I participants, call the Clean Cities I I L / National Partners to Be Honored at Clean Cities Stakeholders' Conference The Mid-Continent Trade Corridor .............. : The West .................................................. ; n . . rl . f i l l r 1. e. .. " LNG Trucks to Fleet 4 Coordinators' Corner 5 EV Market Launch New York Richmond R n c t n n DOE Comments on Proposed Priva

333

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

334

Image fusion for a nighttime driving display  

E-Print Network (OSTI)

An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

Herrington, William Frederick

2005-01-01T23:59:59.000Z

335

Driving Efficiencies Track | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Efficiencies Track Driving Efficiencies Track Driving Efficiencies Track Driving Efficiencies Track Tuesday April 17, 2012 From E-Mail to "The Stream" by Don Burke Taking Records Inventory Into the 21st Century by Lorie A. Robb Engineering and Operations Control: Embrace the Culture by Cheryl Bolen IT Project Management Framework by Denise Hill Wednesday April 18, 2012 Records Warehouse Operations and Records Storage for External Customers by Karen Hatch Preservation of Long-Term Temporary Records by Jeanie Gueretta Mobile Initiatives Effecting Change at Hanford by Don Stewart DOE's CIO's EWA by Sarah Gamage, Don Schade and Alan Andon Green IT 2012: Sustainable Electronics by Edwin Luevanos and Jeff Eagan Thursday April 19, 2012 Document Management and Control System by Melissa Ruth

336

Direct drive wind turbine - Energy Innovation Portal  

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The ...

337

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

338

Better Buildings Neighborhood Program: Driving Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

even know they have. This section explains how you can use effective marketing to drive demand for energy upgrades in your community. Following the lead of many Better Buildings...

339

Students Drive Home Innovative Engineering in the EcoCAR2 Competition |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Students Drive Home Innovative Engineering in the EcoCAR2 Students Drive Home Innovative Engineering in the EcoCAR2 Competition Students Drive Home Innovative Engineering in the EcoCAR2 Competition April 18, 2011 - 1:52pm Addthis Participants in the EcoCar2 challenge gather for the spring workshop in Ann Arbor, Michigan. Participants in the EcoCar2 challenge gather for the spring workshop in Ann Arbor, Michigan. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Engineering students work to re-engineer a standard vehicle, minimizing fuel consumption and emissions while retaining its original level of performance, safety and consumer appeal. The wait is over. After enduring a rigorous selection process, 16 teams have been chosen to compete in EcoCAR2: Plugging into the Future- a

340

Photo of the Week: A Driving Force for Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of the Week: A Driving Force for Natural Gas Photo of the Week: A Driving Force for Natural Gas Photo of the Week: A Driving Force for Natural Gas September 28, 2012 - 3:04pm Addthis Since 1977, the people of the U.S. Department of Energy have been delivering the science, innovation and expertise required to advance America's energy, economic and national security. In this photo taken in June 1988, former Secretary of Energy John Herrington takes the wheel of a clean natural gas vehicle in front of the Energy Department in Washington, DC. Today, natural gas powers over 112,000 vehicles in the United States and roughly 14.8 million vehicles worldwide. Natural gas vehicles, which can run on compressed natural gas, are a good option for high-mileage, centrally-fueled fleets that operate within a limited area. | Photo courtesy of the Department of Energy.

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photo of the Week: A Driving Force for Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Driving Force for Natural Gas A Driving Force for Natural Gas Photo of the Week: A Driving Force for Natural Gas September 28, 2012 - 3:04pm Addthis Since 1977, the people of the U.S. Department of Energy have been delivering the science, innovation and expertise required to advance America's energy, economic and national security. In this photo taken in June 1988, former Secretary of Energy John Herrington takes the wheel of a clean natural gas vehicle in front of the Energy Department in Washington, DC. Today, natural gas powers over 112,000 vehicles in the United States and roughly 14.8 million vehicles worldwide. Natural gas vehicles, which can run on compressed natural gas, are a good option for high-mileage, centrally-fueled fleets that operate within a limited area. | Photo courtesy of the Department of Energy.

342

Solar receiver heliostat reflector having a linear drive and position information system  

DOE Patents (OSTI)

A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

Horton, Richard H. (Schenectady, NY)

1980-01-01T23:59:59.000Z

343

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

344

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

345

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

346

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

347

Frequency modulation drive for a piezoelectric motor  

DOE Patents (OSTI)

A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

Mittas, Anthony (Albuquerque, NM)

2001-01-01T23:59:59.000Z

348

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor ...

349

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

350

Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback  

DOE Green Energy (OSTI)

Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

Gonder, J.; Earleywine, M.; Sparks, W.

2012-06-01T23:59:59.000Z

351

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities  

SciTech Connect

Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

Wang, M.Q.; Marr, W.W.

1994-02-10T23:59:59.000Z

352

Catalytic partial oxidation reforming of hydrocarbon fuels.  

DOE Green Energy (OSTI)

The polymer electrolyte fuel cell (PEFC) is the primary candidate as the power source for light-duty transportation systems. On-board conversion of fuels (reforming) to supply the required hydrogen has the potential to provide the driving range that is typical of today's automobiles. Petroleum-derived fuels, gasoline or some distillate similar to it, are attractive because of their existing production, distribution, and retailing infrastructure. The fuel may be either petroleum-derived or other alternative fuels such as methanol, ethanol, natural gas, etc. [1]. The ability to use a variety of fuels is also attractive for stationary distributed power generation [2], such as in buildings, or for portable power in remote locations. Argonne National Laboratory has developed a catalytic reactor based on partial oxidation reforming that is suitable for use in light-duty vehicles powered by fuel cells. The reactor has shown the ability to convert a wide variety of fuels to a hydrogen-rich gas at less than 800 C, temperatures that are several hundreds of degrees lower than alternative noncatalytic processes. The fuel may be methanol, ethanol, natural gas, or petroleum-derived fuels that are blends of various hydrocarbons such as paraffins, olefins, aromatics, etc., as in gasoline. This paper will discuss the results obtained from a bench-scale (3-kWe) reactor., where the reforming of gasoline and natural gas generated a product gas that contained 38% and 42% hydrogen on a dry basis at the reformer exit, respectively.

Ahmed, S.

1998-09-21T23:59:59.000Z

353

Utilizing patterns and pattern languages in education  

Science Conference Proceedings (OSTI)

This paper presents work that has been done in bringing patterns and pattern languages into undergraduate and postgraduate curricula in software engineering. Patterns are masterful designs that solve a real problem; they provide students ...

Elizabeth A. Kendall

1999-04-01T23:59:59.000Z

354

Application of Adjustable Speed Drives to Induced Draft Fans at NSP-SHERCO Power Plant  

Science Conference Proceedings (OSTI)

Induced draft (ID) fans on power boilers control the flow of flue gasses from the boiler to the atmosphere-and their smooth operation is essential to the efficient operation of any generating station. Adjustable speed drive (ASD) control of an electric motor ID fan can provide significant energy savings while increasing the accuracy and precision of boiler draft and fuel gas flow regulation. This study quantified the energy savings and identified other benefits of applying ASDs to four existing electric-...

1999-10-19T23:59:59.000Z

355

Fuel and Power Price Volatilities and Convergence  

Science Conference Proceedings (OSTI)

As more energy is traded in competitive markets, the financial performance of generation companies will be increasingly determined by how well they understand and exploit the price behavior of those markets. How volatile are fuel and power prices? How do they correlate with one another? This report addresses these questions in several wholesale electricity and fuel markets and discusses implications of changing patterns of price behavior to fuel and asset management.

1999-05-27T23:59:59.000Z

356

Passive pavement-mounted acoustical linguistic drive alert system and method  

DOE Patents (OSTI)

Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

Kisner, Roger A. (Knoxville, TN); Anderson, Richard L. (Oak Ridge, TN); Carnal, Charles L. (Cookeville, TN); Hylton, James O. (Clinton, TN); Stevens, Samuel S. (Harriman, TN)

2001-01-01T23:59:59.000Z

357

Microsoft Word - Compare Driving Styles_ ETEC Hymotion Prius...  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving intensity is the energy at the wheels used for propulsion. Recaptured energy through regenerative braking is not considered when calculating driving intensity....

358

Energy Department Announces $60 Million to Drive Affordable,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Million to Drive Affordable, Efficient Solar Power Energy Department Announces 60 Million to Drive Affordable, Efficient Solar Power October 22, 2013 - 11:45am Addthis News...

359

Energy Department Announces $60 Million to Drive Affordable,...  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Million to Drive Affordable, Efficient Solar Power Energy Department Announces 60 Million to Drive Affordable, Efficient Solar Power October 22, 2013 - 11:45am Addthis News...

360

Secretary Moniz Announces New Biofuels Projects to Drive Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological...

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Department Invests to Drive Down Costs of Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in...

362

Fuel Economy Valentines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy Valentines Fuel Economy Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model of your vehicle, you'll choose a way to keep track of your fill-ups at the pump, recording your odometer and/or the amount of fuel you put in your vehicle. The tool then calculates your gallons per mile and saves this information in your account; you can log back in anytime to update and monitor your

363

Fuel Economy Valentines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy Valentines Fuel Economy Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model of your vehicle, you'll choose a way to keep track of your fill-ups at the pump, recording your odometer and/or the amount of fuel you put in your vehicle. The tool then calculates your gallons per mile and saves this information in your account; you can log back in anytime to update and monitor your

364

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

365

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

366

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

367

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

368

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

369

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

370

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

371

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

372

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

373

Energy 101: Algae-to-Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae-to-Fuel Algae-to-Fuel Energy 101: Algae-to-Fuel Addthis Below is the text version for the Energy 101: Algae-to-Fuel video: The video opens with "Energy 101: Algae-to-Fuel." Shots of vehicles driving on highways. We all need fuel to get around. And as America takes steps to improve our energy security, homegrown fuel sources are more important than ever. Close-up shots of algae, followed by a shots of an algae farm and raceway ponds. The Energy Department is researching one of the fuel sources of the future found here: in algae. Have a look at this algae farm. These large, man-made ponds are called raceways, and they cultivate a new crop of algae every few weeks. Various shots of algae in raceway ponds. Text appears on screen: "Microalgae - Up to 60X Oil of Land-Based Plants."

374

Hybrid-drive implosion system for ICF targets  

DOE Patents (OSTI)

Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

Mark, James W. (Danville, CA)

1988-01-01T23:59:59.000Z

375

Hybrid-drive implosion system for ICF targets  

DOE Patents (OSTI)

Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

Mark, J.W.K.

1987-10-14T23:59:59.000Z

376

Thermal Infrared Exposure of Cryogenic Indirect Drive ICF Targets  

DOE Green Energy (OSTI)

Cryogenic inertial confinement fusion targets at the National Ignition Facility and the Laser Megajoule will be protected from thermal infrared radiation by a cold shroud. As the shroud is removed just before the laser pulse, infrared radiation will heat and possibly degrade the symmetry of the solid hydrogen fuel layer. A lumped component mathematical model has been constructed to calculate how long an indirect drive target can be exposed to thermal radiation before the fuel layer degrades. The allowed exposure time sets the maximum shroud removal time and therefore has important implications for the design of the cryogenic shroud systems. The model predicts that the maximum exposure time is approximately 0.18 s for plastic capsules inside hohlraums with transparent laser entrance holes. By covering the laser entrance holes with a partially reflective coating, the exposure time can be increased to approximately 1 s. The exposure time can be increased to about 2 s by using beryllium capsules. Several other design concepts could increase the exposure time even further. Lengthening of the allowed exposure time to 1 s or longer could allow a significant cost savings for the shroud system.

London, R A; Moody, J D; Sanchez, J J; Sater, J D; Haid, B J; Bittner, D N

2005-07-08T23:59:59.000Z

377

202-328-5000 www.rff.orgIs Pay-As-You-Drive Insurance a Better Way to Reduce Gasoline than Gasoline Taxes?  

E-Print Network (OSTI)

Gasoline taxes are widely perceived as the most efficient instrument for reducing gasoline consumption because they exploit all behavioral responses for reducing fuel use, including reduced driving and improved fuel economy. At present, however, higher fuel taxes are viewed as a political nonstarter. Pay-as-you-drive (PAYD) auto insurance, which involves replacing existing lump-sum premiums with premiums that vary in proportion to miles driven, should be more practical, since they do not raise driving costs for the average motorist. We show that when impacts on a broad range of motor vehicle externalities are considered, PAYD also induces significantly higher welfare gains than comparable gasoline tax increases, for fuel reductions below 9%. The reason is that under PAYD, all of the reduction in fuel use, rather than just a fraction, comes from reduced driving; this produces a substantial additional efficiency gain because mileage-related external costs (especially congestion and accidents) are relatively large in magnitude. Key Words: gasoline tax; pay-as-you-drive insurance; mileage tax; welfare effects; motor vehicle externality JEL Classification Numbers: H21, H23, R48

Ian W. H. Parry; Ian W. H. Parry

2005-01-01T23:59:59.000Z

378

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

electrochemical energy storage Electric propulsion systems (e.g., power electronics, electric motors) Fuel cell power systems Lightweight materials Vehicle systems and...

379

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

380

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

382

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

383

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

384

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

385

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

386

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

387

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

388

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

389

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

390

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

391

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

392

Fuel cell powered irrigation system  

SciTech Connect

Set out herein is a fuel cell power plant for use with irrigation systems wherein the fuel cell is utilized to generate electric current to drive a pump motor. This pump motor drives a first water pump which receives water for distribution through a traveling irrigation system, the output of the first pump first conveyed into a condenser heat exchanger connected to a steam engine or turbine cycle. The fuel cell itself is contained within a boiler assembly and the heat of production of the electric power is used to generate steam which is sent to the steam engine. In the course of cooling the condenser gases of the steam engine the irrigating water is passed through a second pump driven by the steam engine and it is through this second pump that the pressure is raised sufficiently to allow for the necessary spraying fans. To improve the condenser efficiency part of the condensate or the ullage thereof is connected to one of the spray heads on the irrigation system in a venturi nozzle which thereby lowers the back pressure thereof. The lower portion of the condenser or the liquid part thereof is fed back through yet another condenser pump to the boiler to be regenerated into steam.

Jacobi, E.F.; Madden, M.R.

1982-01-12T23:59:59.000Z

393

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

394

Mixed Mode Fuel Injector And Injection System  

DOE Patents (OSTI)

A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

Stewart, Chris Lee (Normal, IL); Tian, Ye (Bloomington, IL); Wang, Lifeng (Normal, IL); Shafer, Scott F. (Morton, IL)

2005-12-27T23:59:59.000Z

395

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

396

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

397

Objective methods of assessment of influence of alcohol on driving safety: study performed driving simulators  

Science Conference Proceedings (OSTI)

The paper is focused on an introduction of a set of experiments focused on objective methods used for detection of driving impairment caused by influence of different level of alcohol in blood. It introduces the initial experiments which were performed ... Keywords: alcohol, driver's impairment, driving simulation

Roman Piekník; Stanislav Novotny; Petr Bouchner

2007-09-01T23:59:59.000Z

398

Drive Less, Save More | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive Less, Save More Drive Less, Save More Drive Less, Save More May 24, 2011 - 12:31pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For someone who works in the Vehicle Technologies Program, I actually don't spend that much time in my automobile. I usually get around using a combination of public transit, my bike, and my own two feet. But I'm an exception. In the U.S., the vehicle miles travelled per person is actually twice as high as it is in Western Europe and three times higher than in Japan. However, alternatives to using your car have a wealth of benefits. In addition to reducing petroleum consumption, they can lower greenhouse gas emissions, improve air quality, decrease stress, and bring communities together. Fortunately, there are a variety of ways to minimize the distance

399

Drive Less, Save More | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive Less, Save More Drive Less, Save More Drive Less, Save More May 24, 2011 - 12:31pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For someone who works in the Vehicle Technologies Program, I actually don't spend that much time in my automobile. I usually get around using a combination of public transit, my bike, and my own two feet. But I'm an exception. In the U.S., the vehicle miles travelled per person is actually twice as high as it is in Western Europe and three times higher than in Japan. However, alternatives to using your car have a wealth of benefits. In addition to reducing petroleum consumption, they can lower greenhouse gas emissions, improve air quality, decrease stress, and bring communities together. Fortunately, there are a variety of ways to minimize the distance

400

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fabrication of Yttria stabilized zirconia thin films on porous substrates for fuel cell applications  

E-Print Network (OSTI)

by the cell (to drive a steam turbine for instance). For50%. Unlike gas and steam turbines, fuel cells do not suffercan be used to run steam turbines. SOFC’s are made from

Leming, Andres

2003-01-01T23:59:59.000Z

402

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

403

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

404

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

405

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

406

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

407

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

408

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

409

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

410

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

411

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

412

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

413

Microsoft Word - ORNL Hard Drives Final 08132010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspections and Special Inquires Inspections and Special Inquires Inspection Report Internal Controls over Computer Hard Drives at the Oak Ridge National Laboratory INS-O-10-03 August 2010 Department of Energy Washington, DC 20585 August 16, 2010 MEMORANDUM FOR THE DIRECTOR, OFFICE OF SCIENCE FROM: Sandra D. Bruce Assistant Inspector General for Inspections and Special Inquiries SUBJECT: INFORMATION: Inspection Report on "Internal Controls over Computer Hard Drives at the Oak Ridge National Laboratory" BACKGROUND The Department of Energy's (Department) Oak Ridge National Laboratory (ORNL) in Oak

414

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

415

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

416

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

417

Optimal wind patterns for biological production in shelf ecosystems driven by coastal upwelling  

E-Print Network (OSTI)

accounts for offshore losses due to high winds, with thewinds in the direction out of the plane drive surface waters offshore (wind patterns is the degree of susceptibility to the influence of offshore

Yokomizo, Hiroyuki; Botsford, Louis W.; Holland, Matthew D.; Lawrence, Cathryn A.; Hastings, Alan

2010-01-01T23:59:59.000Z

418

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

419

Fuel injection device and method  

DOE Patents (OSTI)

A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

Carlson, Larry W. (Oswego, IL)

1986-01-01T23:59:59.000Z

420

Fuel injection device and method  

DOE Patents (OSTI)

A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

Carlson, L.W.

1983-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

422

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

423

Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.  

SciTech Connect

This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

1999-06-18T23:59:59.000Z

424

PCTS Local Driving Directions Princeton University  

E-Print Network (OSTI)

PCTS Local Driving Directions Princeton University Princeton Center for Theoretical Science Jadwin to Jadwin Hall, there are several parking options. a) There are limited visitors' parking spots directly, in the first aisle, after you turn into the parking lot, which is located on Ivy Lane. (Use the directions

425

Conditions driving chemical freeze-out  

E-Print Network (OSTI)

We propose the entropy density as the thermodynamic condition driving best the chemical freeze-out in heavy-ion collisions. Taking its value from lattice calculations at zero chemical potential, we find that it is excellent in reproducing the experimentally estimated freeze-out parameters. The two characteristic endpoints in the freeze-out diagram are reproduced as well.

A. Tawfik

2004-10-28T23:59:59.000Z

426

Query processing techniques for solid state drives  

Science Conference Proceedings (OSTI)

Solid state drives perform random reads more than 100x faster than traditional magnetic hard disks, while offering comparable sequential read and write bandwidth. Because of their potential to speed up applications, as well as their reduced power consumption, ... Keywords: columnar storage, flash memory, join index, late materialization, semi-join reduction, ssd

Dimitris Tsirogiannis; Stavros Harizopoulos; Mehul A. Shah; Janet L. Wiener; Goetz Graefe

2009-06-01T23:59:59.000Z

427

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

Slicker, J.M.; Sereshteh, A.

1988-08-30T23:59:59.000Z

428

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

1988-01-01T23:59:59.000Z

429

Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles  

DOE Green Energy (OSTI)

As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

2010-01-01T23:59:59.000Z

430

Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles  

SciTech Connect

As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

2010-01-01T23:59:59.000Z

431

Winters fuels report  

SciTech Connect

The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

1995-10-27T23:59:59.000Z

432

Vehicle Technologies Office: Fact #452: January 15, 2007 Driving  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 15, 2: January 15, 2007 Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on AddThis.com... Fact #452: January 15, 2007 Driving Differences Those living in the center city drive fewer miles in a day than those in

433

Drive piston assembly for a valve actuator assembly  

DOE Patents (OSTI)

A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

Sun, Zongxuan (Troy, MI)

2010-02-23T23:59:59.000Z

434

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

435

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data  

SciTech Connect

Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

LaClair, Tim J [ORNL

2012-01-01T23:59:59.000Z

436

MotorWeek: Fuel Economy Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Navigational links Navigational links Site Map | Videos | Links | More Info | Search | Contacts | HOME www.fueleconomy.gov Photograph of Cars Find and Compare Cars | Gas Mileage Tips | Gasoline Prices | Your MPG Will Vary | Why is Fuel Economy Important? | Your MPG | Hybrids, Diesels, Alt Fuels, Etc. | Tax Incentives | Extreme MPG U.S. Department of Energy | Print the Fuel Economy Guide | U.S. Environmental Protection Agency Gas Mileage Tips Driving more efficiently Keeping your car in shape Planning and combining trips Choosing a more efficient vehicle More Info MotorWeek: Text Version Video: MotorWeek test showing impact of driving style on MPG. Fuel Economy Focus John Davis The window sticker on a new car contains lots of information besides just the price. For instance, down at the bottom are the all important government fuel economy estimates. But just like the price on the sticker may have little in common with what you actually pay for the car, the mileage estimates may also be far different from real world results. So, why does gas mileage vary so much? Well, the answers are as varied as your mileage.

437

Proceedings of the 35th conference on Winter simulation: driving innovation: driving innovation  

Science Conference Proceedings (OSTI)

The 2003 Winter Simulation Conference (WSC) continues a thirty-six year tradition as the premier event in discrete-event and combined discrete-continuous simulation. The conference theme, Driving Innovation, invites you to push the boundaries and find ...

David Ferrin; Douglas J. Morrice

2003-12-01T23:59:59.000Z

438

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network (OSTI)

comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

439

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

440

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "driving patterns fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

442

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

443

FUEL ELEMENT  

DOE Patents (OSTI)

A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

Fortescue, P.; Zumwalt, L.R.

1961-11-28T23:59:59.000Z

444

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various countries and US cities  

SciTech Connect

Past studies have shown that use of electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled internal-combustion-engine vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, the authors estimate greenhouse gas emission reductions for EVs, including these important aspects. They select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the US) and analyze greenhouse emission impacts of EVs in each city or country. These selected cities and countries have distinct differences in electric power-plant fuel mixes. They also select six driving cycles developed around the world. They choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Thus, the city- or country-specific vehicle energy consumption estimates reflect effects of both vehicle driving cycles and electric power-plant mixes. Finally, they estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and power-plant and vehicle operations. They estimate that relative to GVs, EVs reduce greenhouse gas emissions in all selected US cities and countries.

Wang, M.Q.; Marr, W.W. (Argonne National Lab., IL (United States). Center for Transportation Research)

1994-09-01T23:59:59.000Z

445

Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report  

Science Conference Proceedings (OSTI)

Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

Hancock, David, W.

2012-02-14T23:59:59.000Z

446

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

447

Yttria-stabilized zirconia solid oxide electrolyte fuel cells, monolithic solid oxide fuel cells  

DOE Green Energy (OSTI)

Small cell size, thin ceramic components, and high operating temperature are the key features of the MSOFC. The small size of individual cells in the monolithic structure increases the active surface area. For example, an MSOFC with channels about 1 mm in diameter has a ratio of active surface area to volume of about 9.4 sq cm/cu cm. This is about seven times the ratio for conventional fuel cells. On this basis alone, an MSOFC with a channel diameter of 1 mm should produce the same power as a conventional fuel cell seven times as large. The high current density of the MSOFC results from the small cell size and ensuing low internal resistance. The current density is high at the fuel inlet end of the fuel channel where the thermodynamic driving force (Nernst potential) is highest. Similarly, the current density is low at the outlet end of the fuel channel where the Nernst potential is lowest. Because of the high operating temperature of the MSOFC (1000{degrees}C),hydrocarbon fuels can be reformed in the fuel channels. The reform reaction produces hydrogen which is consumed by the fuel cell. Catalytic reforming of methane and natural gas within a solid oxide fuel cell has been demonstrated.

Not Available

1989-01-01T23:59:59.000Z

448

Enhancing cavity cooling with cavity driving  

E-Print Network (OSTI)

Cavity-mediated cooling has the potential to become one of the most efficient techniques to cool molecular species down to very low temperatures. However, theoretical schemes with single-laser driving require relatively strong trapping potentials and relatively long cavity photon life times which are hard to realise experimentally. In this paper we therefore consider an alternative cavity cooling scenario with double-laser driving. It is shown that the second laser can enhance the phonon-photon coherence which governs the time evolution of the mean phonon number, thereby resulting in higher cooling rates and a lower final temperature, when the cavity decay rate kappa is four or more times larger than the phonon frequency nu of the trapped particle.

Blake, Tony; Beige, Almut

2010-01-01T23:59:59.000Z

449

Integrated Inverter For Driving Multiple Electric Machines  

DOE Patents (OSTI)

An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

2006-04-04T23:59:59.000Z

450

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

451

TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY  

E-Print Network (OSTI)

6 TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY Peter C. Chu and Kleanthis, Inc., 70 Dean Knauss Drive, Narragansett, RI 02882, USA ABSTRACT A coupled hydrodynamic-chemical spill model is used to investigate the chemical spill in the San Diego Bay. The hydrodynamic model shows

Chu, Peter C.

452

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

453

Heating and current drive systems for TPX  

SciTech Connect

The heating and current drive (H and CD) system proposed for the TPX tokamak will consist of ion cyclotron, neutral beam, and lower hybrid systems. It will have 17.5 MW of installed H and CD power initially, and can be upgraded to 45 MW. It will be used to explore advanced confinement and fully current-driven plasma regimes with pulse lengths of up to 1,000 s.

Swain, D.; Goranson, P. [Oak Ridge National Lab., TN (United States); Halle, A. von; Bernabei, S.; Greenough, N. [Princeton Univ., NJ (United States). Plasma Physics Lab.

1994-05-24T23:59:59.000Z

454

NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS  

DOE Patents (OSTI)

ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

Oakes, L.C.; Walker, C.S.

1959-12-15T23:59:59.000Z

455

GenDrive Limited | Open Energy Information  

Open Energy Info (EERE)

GenDrive Limited GenDrive Limited Jump to: navigation, search Name GenDrive Limited Place Cambridge, United Kingdom Zip CB23 3GY Sector Renewable Energy, Solar, Wind energy Product Developing a range of grid-connected inverters, 'Plug & Play', for renewable energy (mostly solar and wind) systems. These are intended to improve ease of installation. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Quasi-spherical direct drive fusion.  

SciTech Connect

The authors present designs of quasi-spherical direction drive z-pinch loads for machines such as ZR at 28 MA load current with a 150 ns implosion time (QSDDI). A double shell system for ZR has produced a 2D simulated yield of 12 MJ, but the drive for this system on ZR has essentially no margin. A double shell system for a 56 MA driver at 150 ns implosion has produced a simulated yield of 130 MJ with considerable margin in attaining the necessary temperature and density-radius product for ignition. They also represent designs for a magnetically insulated current amplifier, (MICA), that modify the attainable ZR load current to 36 MA with a 28 ns rise time. The faster pulse provided by a MICA makes it possible to drive quasi-spherical single shell implosions (QSDD2). They present results from 1D LASNEX and 2D MACH2 simulations of promising low-adiabat cryogenic QSDD2 capsules and 1D LASNEX results of high-adiabat cryogenic QSDD2 capsules.