Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AVTA Electric Drive Vehicle Testing Activities & Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

considerations 2 AVTA Description * The Idaho National Laboratory (INL) and Electric Transportation Engineering Corporation (eTec) conduct the AVTA for DOE's Vehicle...

2

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing Activities and Results Jim Francfort E.V. Road Map - Preparing Oregon for the Introduction of Electric Vehicles...

3

NREL: Fleet Test and Evaluation - Fleet DNA: Vehicle Drive Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fleet DNA Project graphic depicting a trail of data emerging from trucks. Fleet DNA helps vehicle manufacturers and fleet managers understand the broad operational range for many...

4

Electric Drive Vehicles and Their Infrastructure Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Webinar - Electric Drive Vehicles and Their Infrastructure Issues (March 2010) Jim Francfort and Don Karner Advanced Vehicle Testing Activity March 24, 2010 This...

5

Cycle timer for testing electric vehicles. [Device to assist test driver to follow stop-and-go driving cycles  

DOE Green Energy (OSTI)

A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct-current analog signal that drives a speedometer displayed on one scale of a dual-movement meter. The second scale of the dual-movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. One second before a speed transition (such as acceleration to cruise or cruise to coast), a small buzzer sounds for /sup 1///sub 2/ s to forewarn the operator of a change. A longer signal of 1 s is used to emphasize the start of a new cycle. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-V accessory battery, through a 5-V regulator and a 12-V dc-to-dc converter.

Soltis, R.F.

1978-01-01T23:59:59.000Z

6

NREL: Vehicles and Fuels Research - DRIVE: Drive-Cycle Rapid...  

NLE Websites -- All DOE Office Websites (Extended Search)

representative drive cycles from raw data, the tool is capable of comparing vehicle operation to industry standard test cycles and can even select a representative...

7

Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of Research Engine and Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation Thomas Wallner, Henning Lohse-Busch, Henry Ng Argonne National Laboratory Robert Peters University of Alabama at Birmingham NHA Annual Hydrogen Conference 2007 San Antonio/Texas March 19 th - 22 nd 2007 DOE-Sponsors: Lee Slezak, Gurpreet Singh Government license The submitted manuscript was developed by the UChicago Argonne LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC-02-06CH11357 with DOE. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on

8

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

9

PHEV and Other Electric Drive Testing Results and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity PHEV and Other Electric Drive Testing Results and Resources Jim Francfort Electric Drive Session Alternative Fuels & Vehicles Las Vegas, Nevada -...

10

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

11

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

12

Electric vehicle drive train with contactor protection ...  

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the ...

13

Drive reconfiguration mechanism for tracked robotic vehicle  

SciTech Connect

Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

Willis, W. David (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

14

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

15

Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Vehicle Technologies Program Vehicle Technologies Program - Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles and Charging Infrastructure...

16

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

17

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

18

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

19

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

20

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Vehicle Testing Activity: American Recovery and Reinvestment...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing to someone by E-mail Share Advanced Vehicle Testing Activity:...

22

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

23

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

24

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

25

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DRIVE U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). Specifically, the Partnership is a forum for pre-competitive technical information exchange among partners to discuss R&D needs, develop joint goals and technology roadmaps, and evaluate R&D progress for a broad range of technical areas. By providing a framework for frequent and regular interaction among technical experts in a common area of expertise, the Partnership -

26

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

27

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

28

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

29

Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

30

Electric vehicle drive train with contactor protection  

DOE Patents (OSTI)

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

Konrad, C.E.; Benson, R.A.

1994-11-29T23:59:59.000Z

31

Electric vehicle drive train with contactor protection  

SciTech Connect

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

1994-01-01T23:59:59.000Z

32

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities...

33

Personalized driving behavior monitoring and analysis for emerging hybrid vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles, such as hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs), hold the potential for substantial reduction of fuel consumption and greenhouse gas emissions. User driving behavior, which varies from person ...

Kun Li; Man Lu; Fenglong Lu; Qin Lv; Li Shang; Dragan Maksimovic

2012-06-01T23:59:59.000Z

34

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

35

Vehicle Technologies Office: Fact #452: January 15, 2007 Driving  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 15, 2: January 15, 2007 Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on AddThis.com... Fact #452: January 15, 2007 Driving Differences Those living in the center city drive fewer miles in a day than those in

36

Vehicle Technologies Office: Materials for Hybrid and Electric Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

for Hybrid and for Hybrid and Electric Drive Systems to someone by E-mail Share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Facebook Tweet about Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Twitter Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Google Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Delicious Rank Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Digg Find More places to share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

37

Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

DOE Green Energy (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1995-09-01T23:59:59.000Z

38

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DEPARTMENT OF ENERGY HYBRID DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors

39

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Energy Storage Testing on Facebook Tweet about Advanced Vehicle Testing Activity: Energy...

40

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

42

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

43

How Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

simulates cycling. The energy required to move the rollers can be adjusted to account for wind resistance and the vehicle's weight. Photo: Driver running car through test cycle on...

44

Vehicle Technologies Office: Fact #420: April 17, 2006 Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: April 17, 2006 Driving Less Due to Gasoline Prices to someone by E-mail Share Vehicle Technologies Office: Fact 420: April 17, 2006 Driving Less Due to Gasoline Prices on...

45

Battery Electric Vehicle Driving and Charging Behavior Observed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America...

46

Electric vehicle drive train with direct coupling transmission ...  

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode ...

47

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric...

48

Design of Electric Drive Vehicle Batteries for Long Life and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kandler Smith, NREL EDV Battery Robust Design - 1 Design of Electric Drive Vehicle Batteries for Long Life and Low Cost Robustness to Geographic and Consumer-Usage Variation...

49

EA-1722: Toxco, Inc. Electric Drive Vehicle Battery and Component...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EA-1722: Toxco, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative, Lancaster, OH EA-1722: Toxco, Inc. Electric...

50

DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

Not Available

2013-04-01T23:59:59.000Z

51

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

52

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's Vehicle Technologies Office to conduct various types of energy storage...

53

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

54

Advanced Vehicle Testing Activity: Urban Electric Vehicle Specificatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

55

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specificati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

56

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

57

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

58

Advanced Vehicle Testing Activity: Testing Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports NEVAmerica Baseline Performance Testing Summaries A neighborhood electric vehicle (NEV) is defined as a "low-speed vehicle" (LSV) by the National Highway Traffic...

59

Vehicle brake testing system  

SciTech Connect

This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

2002-11-19T23:59:59.000Z

60

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

62

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

63

Advanced Vehicle Testing Activity: Urban Electric Vehicle Special...  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

64

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

65

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

66

Advanced Vehicle Testing Activity: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

67

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

DOE Green Energy (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

68

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

Konrad, Charles E. (Roanoke, VA)

1994-01-01T23:59:59.000Z

69

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

Konrad, C.E.

1994-12-27T23:59:59.000Z

70

Vehicle Technologies Office: Fact #797: September 16, 2013 Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

driving ranges for electric vehicles (EVs) offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV offered, ranging from 139 miles for the 40...

71

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have...

72

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

electrochemical energy storage Electric propulsion systems (e.g., power electronics, electric motors) Fuel cell power systems Lightweight materials Vehicle systems and...

73

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

74

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

75

Drive cycle analysis of the performance of hybrid electric vehicles  

Science Conference Proceedings (OSTI)

This paper presents a drive cycle analysis of hybrid electric vehicle power train configurations. Based on fuel economy and emissions factors, a tradeoff between conventional, series hybrid, parallel hybrid, and a parallel-series hybrid is drawn. The ... Keywords: emissions, fuel consumption, hybrid electric vehicles, modeling and simulation

Behnam Ganji; Abbas Z. Kouzani; H. M. Trinh

2010-09-01T23:59:59.000Z

76

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

D. (1995), Future Drive Electric Vehicles and Sustainable1996), "The Case for Electric Vehicles," Sclent~c American,Emissions Impacts of Electric Vehicles," Journal of the Alr

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

77

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

78

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

79

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Basics to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing...

80

Advanced Vehicle Testing Activity: Full-Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity:...

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Vehicle Testing and Evaluation  

SciTech Connect

The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

Garetson, Thomas

2013-03-31T23:59:59.000Z

82

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

83

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

84

Advanced Vehicle Testing Activity - Hybrid Electric Vehicle and...  

NLE Websites -- All DOE Office Websites (Extended Search)

max speed, braking, & handling DOE - Advanced Vehicle Testing Activity Hybrid Electric Vehicle Testing * Fleet and accelerated reliability testing - 6 Honda Insights...

85

Advanced Vehicle Testing Activity - Full Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Size Electric Vehicles What's New Baseline Performance Testing for 2011 Nissan Leaf Battery Testing for 2011 Nissan Leaf - When New The Advanced Vehicle Testing Activity...

86

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

DOE Green Energy (OSTI)

This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

Pesaran, A. A.

2011-05-01T23:59:59.000Z

87

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing Activity:...

88

NREL: Vehicles and Fuels Research - Fleet Test and Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory works in partnership with commercial and government fleets and industry groups to evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles. The team's project areas include: Fleet DNA: Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric and Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification Alternative Fuels Truck Efficiency Key aspects of this work involve meeting with industry stakeholders to understand market factors and customer requirements, evaluating the performance of advanced technology vehicles versus their conventional

89

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Fleet and Reliability Test Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Fleet and Reliability Test...

90

The drive toward hydrogen vehicles just got shorter  

NLE Websites -- All DOE Office Websites (Extended Search)

The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter Researchers have revealed a new single-stage method for recharging the hydrogen storage compound ammonia borane. March 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

91

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

92

Nissan Hypermini Urban Electric Vehicle Testing  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

James Francfort; Robert Brayer

2006-01-01T23:59:59.000Z

93

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

94

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

95

Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

DOE Green Energy (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1996-06-01T23:59:59.000Z

96

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network (OSTI)

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M for electric/hybrid electric vehicles where each phase of a three-phase cascaded multilevel converter can vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid

Tolbert, Leon M.

97

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

98

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles The Advanced Vehicle Testing Activity (AVTA) is tasked by the U.S. Department of Energy's (DOE) Vehicle Technology Office (VTO) to conduct...

99

Heel and toe driving on fuel cell vehicle  

DOE Patents (OSTI)

A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

Choi, Tayoung; Chen, Dongmei

2012-12-11T23:59:59.000Z

100

Hydrogen ICE Vehicle Testing Activities  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hybrid Electric and Pure Electric vehicle testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric and Pure Electric Vehicle Testing (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INLCON-05-00693 HEV & EV Testing...

102

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

103

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

104

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

Electric-Drive Vehicles In the very early years of the automotive industry,electric-drive vehicles, especially battery-powered EVs The programs are almost aU in countries with major automotive manufacturing industries.

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

105

Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies  

Science Conference Proceedings (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

Neubauer, J.; Brooker, A.; Wood, E.

2012-07-01T23:59:59.000Z

106

Advanced Vehicle Testing Activity: Oil Bypass Filter Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Oil Bypass Filter Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity: Oil...

107

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

108

Advanced Vehicle Testing Activity: Chevrolet Silverado Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Silverado Hybrid Electric Vehicle Accelerated Reliability Testing - April 2009 to someone by E-mail Share Advanced Vehicle Testing Activity: Chevrolet Silverado Hybrid...

109

Electric Vehicle Supply Equipment (EVSE) Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing What's New PLUGLESS Level 2 EV Charging System by Evatran Group Inc. - August 2013 The Advanced Vehicle Testing Activity is tasked...

110

Large-scale battery system modeling and analysis for emerging electric-drive vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles demonstrate the potential for significant reduction of petroleum consumption and greenhouse gas emissions. Existing electric-drive vehicles typi- cally include a battery system consisting of thousands of Lithium-ion battery ... Keywords: analysis, battery system model, electric-drive vehicles

Kun Li; Jie Wu; Yifei Jiang; Zyad Hassan; Qin Lv; Li Shang; Dragan Maksimovic

2010-08-01T23:59:59.000Z

111

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions and torque ripples. Keywords- Electric Vehicle, Plug-in Hybrid Vehicle, On-board Battery Charger, H on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger

Paris-Sud XI, Université de

112

Evaluation of near-term electric vehicle battery systems through in-vehicle testing: Interim report  

SciTech Connect

EVTF personnel tested 10 batteries, including lead-acid (flat plate and tubular design), Gel Cell III, advanced lead-acid, nickel iron, nickel zinc, nickel cadmium, and zinc chloride systems. The assessment encompassed the following tasks: initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static discharge tests under computer control. Performance data were based on specific energy versus accumulated vehicle mileage and vehicle driving range over a fixed operating cycle at 35-mph constant speed and the SAE J227a C cycle. A battery's life cycle was terminated when its measured capacity dropped below 60% of the rating, at a 2-h rate, after 25% of the battery modules had been replaced. The EVs used for the tests were 10 Volkswagen vans and 2 General Motors Griffin vans.

Blickwedel, T.W.

1986-12-01T23:59:59.000Z

113

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

114

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

115

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

116

nissan hypermini urban electric vehicle testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy FreedomCAR & Vehicle Technologies Program Nissan Hypermini Urban Electric Vehicle Testing TECHNICAL REPORT Roberta Brayer James Francfort January 2006...

117

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have questions? Ask us here or on #LabChat. Ask Us Addthis What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet your questions to @ENERGY using #LabChat. Send questions via email to NewMedia@hq.doe.gov.

118

Conventional and fuzzy PI control of voltage-source inverter-fed induction motor drive for electric vehicle  

Science Conference Proceedings (OSTI)

Keywords: adaptive control, control algorithm, electric vehicle, fuzzy control, inverter drive system

Tadeusz Stefanski

1995-12-01T23:59:59.000Z

119

Search on Modeling and Collaborative Simulation for Electric Drive Wheeled Armored Vehicle  

Science Conference Proceedings (OSTI)

In order to evaluate the performance of electric transmission wheeled armored vehicle, models of motor driving system and dynamics of the 8 wheels drive vehicles based on ADAMS/Car were constructed, which compose the model of collaborative simulation ... Keywords: ADAMS/Car, Matlab, electric transmission, wheeled armored vehicle, collaborative simulation, dynamic performance

Zili Liao, Guibing Yang, Chunguang Liu, Yu Xiang

2012-07-01T23:59:59.000Z

120

Design of Electric Vehicles DC Traction Motor Drive System Based on Optimal Control  

Science Conference Proceedings (OSTI)

The traditional electric vehicle DC motor drive system can not automatically weaken magnetic field. This paper designs DC motor drive system which control optimally the motor to meet the requirement. The study results show that: the drive system can ... Keywords: electric vehicles, DC motor, controller, optimal control

Yan Jun

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

October 1-2, 2013 2013 Natural Gas Vehicle Conference & Expo November 18-21, 2013 World LNG Fuels Conference & Expo January 21-23, 2014 More Events Contacts | Web Site Policies |...

122

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

123

Performance testing of the AC propulsion ELX electric vehicle  

DOE Green Energy (OSTI)

Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

1994-06-01T23:59:59.000Z

124

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Modeling, Testing and Analysis to someone by E-mail Share Vehicle Technologies Office: Modeling, Testing and Analysis on Facebook Tweet about Vehicle Technologies Office: Modeling, Testing and Analysis on Twitter Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Google Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Delicious Rank Vehicle Technologies Office: Modeling, Testing and Analysis on Digg Find More places to share Vehicle Technologies Office: Modeling, Testing and Analysis on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by

125

Electric vehicle test report, Cutler-Hammer Corvette  

DOE Green Energy (OSTI)

The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

Not Available

1981-01-01T23:59:59.000Z

126

AUTHORIZATION TO OBTAIN DRIVING RECORDS FROM THE DEPARTMENT OF MOTOR VEHICLES  

E-Print Network (OSTI)

AUTHORIZATION TO OBTAIN DRIVING RECORDS FROM THE DEPARTMENT OF MOTOR VEHICLES (INF 254) Section necessary driver and motor vehicle record data to support this status check. X (Employee Signature) (Date

de Lijser, Peter

127

Effects of battery technologies, driving patterns, and climate comfort control on the performance of electric vehicles  

SciTech Connect

A computer software package, EAGLES, has been developed at Argonne National Laboratory to analyze electric vehicle (EV) performance. In this paper, we present EAGLES predictions of EV driving range, acceleration rate, and energy consumption under various driving patterns, with different battery technologies, and with assumptions concerning use of air conditioners and/or heaters for climate comfort control. The specifications of a baseline, four-passenger EV for given design performance requirements are established, assuming urban driving conditions represented by the Los Angeles 92 (LA-92) driving cycle and using battery characteristics similar to those of the United States Advanced Battery Consortium (USABC) midterm battery performance goals. To examine the impacts of driving patterns, energy consumption is simulated under three different driving cycles: the New York City Cycle, the Los Angeles 92 Cycle, and the ECE-15 Cycle. To test the impacts of battery technologies, performance attributes of an advanced lead-acid battery, the USABC midterm battery goals, and the USABC long-term battery goals are used. Finally, EV energy consumption from use of air conditioners and/or heaters under different climates is estimated and the associated driving range penalty for one European city (Paris) and two United States cities (Chicago and Los Angeles) is predicted. The results of this paper show the importance of considering various effects, such as battery technology, driving pattern, and climate comfort control, in the determination of EV performances. Electric vehicle energy consumption decreases more than 20% when a battery with characteristics similar to the USABC long-term goals is used instead of an advanced lead-acid battery.

Marr, W.W.; Wang, M.Q.; Santini, D.J.

1994-05-15T23:59:59.000Z

128

Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint  

SciTech Connect

Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

O' Keefe, M.; Vlahinos, A.

2009-08-01T23:59:59.000Z

129

Advanced Vehicle Testing Activity: Oil Bypass Filter  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Bypass Filter to someone by E-mail Share Advanced Vehicle Testing Activity: Oil Bypass Filter on Facebook Tweet about Advanced Vehicle Testing Activity: Oil Bypass Filter on...

130

Electric vehicle drive train with rollback detection and ...  

The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement.

131

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

1995-01-01T23:59:59.000Z

132

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

1995-04-04T23:59:59.000Z

133

#LabChat Recap: Innovations Driving More Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations Driving More Efficient Vehicles Innovations Driving More Efficient Vehicles #LabChat Recap: Innovations Driving More Efficient Vehicles December 21, 2012 - 10:47am Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #LabChat Recap: Innovations Driving More Efficient Vehicles The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy. Three researchers answered questions about advanced combustion, lightweighting and hybridization. Here is an overview of some of the conversations. Storified by Energy Department · Fri, Dec 21 2012 08:19:22 We kicked off the #LabChat with introductions from all the researchers. Each researcher focuses on a different vehicle technology that is expected to make great strides in improving vehicle

134

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

135

Advanced Vehicle Testing Activity- Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles What's New 2012 Honda Civic CNG Baseline Performance Testing (PDF 292KB) 2013 Volkswagen Jetta TDI Baseline Performance Testing (PDF...

136

Highway vehicle electric drive in the United States : 2009 status and issues.  

DOE Green Energy (OSTI)

The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

Santini, D. J.; Energy Systems

2011-02-16T23:59:59.000Z

137

Would You Consider Driving a Vehicle that Can Run on Biodiesel? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? September 16, 2010 - 7:30am Addthis On Monday, Shannon told you about biodiesel, a renewable fuel that can power a vehicle using less fuel and producing fewer greenhouse gas emissions. DOE has an Alternative Fuel Station Locator that can help drivers find the nearest fueling station to fill up their vehicles. Would you consider driving a vehicle that can run on biodiesel? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at

138

Evaluation of electric vehicle battery systems through in-vehicle testing: Third annual report, April 1989  

SciTech Connect

This third annual summary report documents the performance from October 1986 through September 1987 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction battery packs. Detailed test procedures and test data are available from EPRI in an informal data report. The purpose of this field test activity is to provide an impartial life evaluation and comparison of the performance of various battery systems in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. This year's report gives the final results on a NiZn, NiCd, Gel Cell, and two lead-acid battery packs. Specific energy and monthly driving ranges (SAE J227a ''C'' cycle and 35 mi/h constant speed cycles) are maintained throughout battery life. Vehicle range test data is analyzed statistically and variable conditions are normalized for comparative purposes. Battery modules in the pack are replaced when their measured ampere-hour capacity at a fixed discharge rate drops to 60 percent of the manufacturer's rated value. The life of a test battery pack is terminated when 25 percent of the modules in the pack have been replaced or require replacement. 26 figs., 8 tabs.

Blickwedel, T.W.; Thomas, W.A.; Whitehead, G.D.

1989-04-01T23:59:59.000Z

139

Advanced Vehicle Testing Activity: Honda Accord Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accord Hybrid Electric Vehicle Accelerated Reliability Testing - April 2008 to someone by E-mail Share Advanced Vehicle Testing Activity: Honda Accord Hybrid Electric Vehicle...

140

Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report  

DOE Green Energy (OSTI)

Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

Kevin Morrow; Dimitri Hochard; Jeff Wishart

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Analysis Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by modeling, testing, and analysis. This work complements the research on batteries, power electronics, and materials, helping researchers integrate these components and ensure the whole vehicle meets consumer and commercial needs. Modeling allows researchers to build "virtual vehicles" that simulate fuel economy, emissions and performance of a potential vehicle. The Office has supported the development of several software-based analytic tools that researchers can use or license. Integration and Validation allows researchers to test physical component and subsystem prototypes as if they are in a real vehicle. Laboratory and Fleet Testing provides data on PEVs through both dynamometer and on-the-road testing. Researchers use the data to benchmark current vehicles, as well as validate the accuracy of software models.

142

Advanced Vehicle Testing Activity: Transit Vehicle Testing Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Planning and Transit Division: Advanced Technology Vehicles in Service: LNG Turbine Hybrid Electric Buses, February 2002 (PDF 446 KB PDF ) Dallas Area Rapid...

143

Advanced Batteries for Electric-Drive Vehicles: A Technology and Cost-Effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

Availability of affordable advanced battery technology is a crucial challenge to the growth of the electric-drive vehicle (EDV) market. This study assesses the state of advanced battery technology for EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles (HEV 0s -- hybrids without electric driving range), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. The first part of this study presents assessments of current battery performance and cycle life ca...

2004-05-31T23:59:59.000Z

144

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Plan Partnership Plan March 2013 U.S. DRIVE Partnership Plan Table of Contents Foreword ....................................................................................................................................................... 2 Definition ...................................................................................................................................................... 3 Partners ......................................................................................................................................................... 3 U.S. DRIVE Vision ........................................................................................................................................... 3 U.S. DRIVE Mission ........................................................................................................................................ 4

145

Electric and Hybrid Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

results. Generally, hotel loads while on charge in fleet use contributes to lower energy efficiencies. These hotel loads can include heating and cooling vehicle battery...

146

Advanced Vehicle Testing Activity: Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

VehiclesExtended Range Electric Vehicles Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric VehiclesExtended Range Electric...

147

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

148

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

Science Conference Proceedings (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

149

Electric-Drive Vehicles: A Source of Power and Reliability to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric-Drive Vehicles: A Source of Power and Reliability to the California Electric Grid Speaker(s): Willett M. Kempton Date: April 30, 2001 - 3:00pm Location: Bldg. 90 Seminar...

150

NREL: Learning - Vehicle Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Testing and Analysis Vehicle Testing and Analysis Photo of two large semi-trailer truck cabs parked side by side on a hillside with a shrub-covered hill and sky in the background. Researchers at NREL obtain useful data on energy efficiency during tests conducted both in the laboratory and outdoors in truck cabs like these. Credit: Ken Proc Researchers and engineers test new technologies and vehicles to find out if they will help manufacturers produce more energy-efficient cars, vans, trucks, and buses. They also carry out studies using computer simulations. These studies help to identify the vehicles and components that will provide the best fuel economy and performance at the lowest cost. Fleet Tests and Evaluations NREL's engineers use the latest equipment and techniques to conduct vehicle

151

Analysis Tool Generates Custom Vehicle Drive Cycles Based on...  

NLE Websites -- All DOE Office Websites (Extended Search)

usage, supplying information needed to perform vital development tasks, such as sizing electric motors in a hybrid vehicle configuration or optimizing battery storage in an...

152

Real Time Simulation and Online Control for Virtual Test Drives of Cars  

E-Print Network (OSTI)

Virtual prototyping plays a key role in modern car engineering. For virtual test drives of entire cars in the computer, mathematical and computational models of the vehicle, the road, and the driver are presented. The numerical simulation must be performed in real time for application in Hardware-in-the-Loop experiments. Numerical results are presented for the ISO slalom test.

Cornelius Chucholowski; Martin Vögel; Oskar von Stryk; Thiess-Magnus Wolter

1999-01-01T23:59:59.000Z

153

Study on Regenerative Brake Method of Hybrid Electric Drive System of Armored Vehicle  

Science Conference Proceedings (OSTI)

Aiming at characteristics of regenerative brake of hybrid electric drive system of tracked armored vehicle, mechanism of regenerative brake by pulse width modulation is in-depth analyzed, motor speed, brake current, feedback current, feedback energy ... Keywords: hybrid electric drive, motor, regenerative brake

Li Hua; Zhong Meng-chun; Zhang Jian; Xu Da; Lin Hai

2011-10-01T23:59:59.000Z

154

DOE News Release - DOE Conducts Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

21, 2003 DOE conducts Hybrid Electric Vehicle testing The U.S. Department of Energy, through its Advanced Vehicle Testing Activity, is Baseline Performance and Fleet testing the...

155

Advanced Vehicle Testing Activity: U.S. Postal Service  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Testing Hydrogen Internal Combustion Engine Vehicles Full-Size Electric Vehicles Basics Specifications & Test Procedures Testing Reports Special Projects Neighborhood...

156

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

DOE Green Energy (OSTI)

The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

157

ASME Treasure Valley Section - Electric Drive Vehicles and Infrastruct...  

NLE Websites -- All DOE Office Websites (Extended Search)

- NEV 9 to 13 hours 8 Level 2 Charging Level * Expected to be most common method for residential and commercial charging * EVSE (electric vehicle supply equipment) for AC energy...

158

Treasure Valley CCC - Electric Drive Vehicles and Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

- NEV 9 to 13 hours 8 Level 2 Charging Level * Expected to be most common method for residential and commercial charging * EVSE (electric vehicle supply equipment) for AC energy...

159

Advanced Vehicle Testing Activity - Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

INL and testing partner Electric Transportation Engineering Corporation conduct Plug-in Hybrid Electric Vehicle (PHEV) and Extended Range Electric Vehicle (EREV) testing as part...

160

Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Back to the Future": Flex-Fuel Vehicle Awareness "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, these flex fuel vehicles help to decrease our reliance on imported oil and reduce carbon pollution. The "Big Three" U.S. auto makers (Ford, General Motors, and Chrysler) recently announced that half of their entire 2012 vehicle line will be FFVs-including the

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

162

Methanol fuel vehicle demonstration: Exhaust emission testing. Final report  

DOE Green Energy (OSTI)

Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

1993-07-01T23:59:59.000Z

163

Advanced Vehicle Testing Activity: 2004 Toyota Prius Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Toyota Prius Hybrid Electric Vehicle Accelerated Reliability Testing - October 2007 to someone by E-mail Share Advanced Vehicle Testing Activity: 2004 Toyota Prius Hybrid...

164

Advanced Vehicle Testing Activity - Medium and Heavy Duty Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

an electric vehicle. Medium and heavy duty HEV testing results to date are posted below. Vehicle Testing Reports INL Hybrid Shuttle Busses INL Hybrid Shuttle Busses INL Hybrid...

165

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pilot Plant and Hydrogen ICE Vehicle Testing Jim Francfort (INEEL) Don Karner (ETA) 2004 Fuel Cell Seminar - San Antonio Session 5B - Hydrogen DOE - Advanced Vehicle Testing...

166

laura.schewel@berkeley.edu 1 VIRTUAL EV TEST DRIVE: INTRODUCTION AND PROJECT SUMMARY  

E-Print Network (OSTI)

, and battery electric vehicles (4) (5). · Many consumers are not interested in strict economic rationality when costs? Her fundamental question: "What does an EV mean for me?" Virtual EV Test Drive helps answer all a plug-in hybrid probably would switch into gasoline mode, and if/where a battery electric would have run

Kammen, Daniel M.

167

Advanced Vehicle Testing Activity - Stop-Start Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop-Start Vehicles Stop-start Vehicles allow the internal combustion engine to shut-down when the vehicle stops in traffic, and re-start quickly to launch the vehicle. Fuel is...

168

Equivalent circuit modeling of hybrid electric vehicle drive train  

E-Print Network (OSTI)

The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool. The objective of this work is to develop and validate a modeling and design method adapted to advanced vehicles conception. The designer, as a system engineer, needs performances predictions and physical understanding of the system dynamics. In order to achieve this objective, a methodology based on electrical analogies and transducers theory is presented in this work. Using the powerful circuit theory to solve multi-disciplinary problems is not revolutionary, but applied to the design of advanced vehicles, it brings a strong insight and a visual, intuitive interpretation of the set of differential equations. The equivalent circuit obtained from this method offers an elegant alternative to traditional methods and is especially adapted to the study of the interactions between the mechanical and the electrical side of any electromechanical system.

Routex, Jean-Yves

2001-01-01T23:59:59.000Z

169

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

170

Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles  

DOE Green Energy (OSTI)

In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

2012-06-01T23:59:59.000Z

171

Near-term electric test vehicle ETV-2. Phase II. Final report  

DOE Green Energy (OSTI)

A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

Not Available

1981-04-01T23:59:59.000Z

172

Position and force control of a vehicle with two or more steerable drive wheels  

DOE Green Energy (OSTI)

When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach to the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.

Reister, D.B.; Unseren, M.A.

1992-10-01T23:59:59.000Z

173

Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

DOE Green Energy (OSTI)

This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

2013-06-01T23:59:59.000Z

174

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives  

DOE Green Energy (OSTI)

Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

Giorgio Rizzoni

2005-09-30T23:59:59.000Z

175

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity Activity Maintenance Sheet for 2007 Saturn Vue VIN # 5GZCZ33Z07S838122 Date Mileage Description Cost 12/8/2006 5,055 Changed oil $33.95 1/9/2007 12,509 Changed oil $25.88 2/8/2007 17,916 Changed oil $42.78 2/15/2007 19,841 Installed Lojack antitheft system $625.00 4/17/2007 30,124 Changed oil $42.36 6/19/2007 45,307 Changed oil $40.70 6/20/2007 45,695 Replaced two tires $257.46 7/10/2007 50,522 Changed oil $38.94 8/15/2007 55,654 Changed oil $32.85 9/3/2007 Vehicle involved in motor vehicle accident - deer hit car windshield and car was under repair 9/12/2007 60,395 Changed oil and replaced air filter $73.48 10/4/2007 65,226 Changed oil and replaced oil filter $37.16 10/19/2007 65,278 Transaxle service and replaced faulty AC compressor $1,056.62 (paid deductible) $100.00

176

Integrated test vehicle program plan: revision C  

DOE Green Energy (OSTI)

This edition dated August 26, 1977, is Revision C of the Integrated Test Vehicle, Program Plan, Phase II - Deliverable Item 2-7-1. The original edition was issued on May 27, 1977. Corrections were made and issued as Proposed Modifications for Integrated Test Vehicle, Program Plan, dated July 8, 1977. For the purpose of documenting changes, the July 8, 1977, version is caled Revision A. The edition dated August 5, 1977, is called Revision B. Each paragraph in this edition is marked to indicate technical changes from previous editions.

Not Available

1977-08-26T23:59:59.000Z

177

Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 120V EVSE Features Low and High Current Settings Integrated Flashlight Auto-restart EVSE...

178

Tyre parameter identification from road tests on a complete vehicle.  

E-Print Network (OSTI)

??Vehicle manufacturers notice a difference between the tyre behaviour observed in road tests with a complete vehicle and the behaviour of the tyre as provided… (more)

Lo Conte, D.

2010-01-01T23:59:59.000Z

179

Advanced Vehicle Testing Activity - Diesel Engine Idling Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Idling Test In support of the Department of Energys FreedomCAR and Vehicle Technologies Program goal to minimize diesel engine idling and reduce the consumption of...

180

Evaluation of near-term electric vehicle battery systems through in-vehicle testing: Second annual final report  

SciTech Connect

This report documents the performance from October 1985 through September 1986 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction batteries. This second annual report includes the addition of four new batteries and the termination of two sets. The purpose of this field test activity is to provide an impartial evaluation and comparison of battery performance in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. Battery performance data is typically presented on the basis of specific energy versus accumulated vehicle mileage and vehicle driving range over fixed operating cycle (35 mi/h) constant speed (SAE J227a ''C'' Cycle). Data is analyzed statistically with variable conditions normalized. The life-cycle is terminated when a battery system's measured capacity drops below 60 percent of rating (at the 2-hour rate) and/or after 25 percent of the battery modules have been replaced. 120 figs., 2 tabs.

Blickwedel, T.W.; Whitehead, G.D.; Thomas, W.A.

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Test Drive: Honda FCX Clarity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Stepping into the driver's seat of the hydrogen powered Honda FCX Clarity is like stepping into the future. A glowing blue 3-D dashboard displays hydrogen and battery levels and a power button fires up fuel cells that provide electricity. An advanced braking system warns the driver about

182

Test Drive: Honda FCX Clarity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Stepping into the driver's seat of the hydrogen powered Honda FCX Clarity is like stepping into the future. A glowing blue 3-D dashboard displays hydrogen and battery levels and a power button fires up fuel cells that provide electricity. An advanced braking system warns the driver about

183

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

184

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

185

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

186

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

187

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

188

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

189

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

190

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

191

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

192

Advanced Vehicle Testing Activity: Oil Bypass Filter Specifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Oil Bypass Filter Specifications and Test Procedures on Facebook Tweet about Advanced...

193

V2X communication in Europe - From research projects towards standardization and field testing of vehicle communication technology  

Science Conference Proceedings (OSTI)

Following the success story of passive and autonomous active safety systems, cooperative Intelligent Transportation Systems based on vehicular communication are the next important step to the vision of accident-free driving. In recent years, various ... Keywords: Cooperative systems, Field operational test (FOT), Intelligent Transportation Systems (ITS), Safe intelligent mobility - test field Germany (simTD), Vehicle-to-infrastructure (V2I), Vehicle-to-vehicle (V2V)

Christian Weií

2011-10-01T23:59:59.000Z

194

Fire Tests of Amtrak Passenger Rail Vehicle Interiors  

Science Conference Proceedings (OSTI)

Page 1. Fire Tests of Amtrak Passenger Rail Vehicle Interiors R. D. Peacock E. Braun Center for Fire Research National ...

2004-06-22T23:59:59.000Z

195

Evaluation of half wave induction motor drive for use in passenger vehicles. Final report  

SciTech Connect

This report describes research performed to devise and design a lower cost inverter-induction motor drive for electrical propulsion of passenger vehicles. A two-phase inverter-motor system is recommended. It is predicted to provide comparable vehicle performance, improved reliability and nearly a 10% cost advantage for a high production vehicle because of the reduction in total parts count, decreased total rating of the power semiconductor switches and somewhat simpler control hardware compared to the conventional three-phase bridge inverter-motor drive system. The major disadvantages of the two-phase inverter-motor drive are that the tow-phase motor is larger and more expensive than a three-phase machine, the design of snubbers for the power switches is difficult because motor lead and bifilar winding leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency. An actuall model of the two-phase system must be constructed and evaluated. The most challenging engineering design task will be to design the inverter, motor and snubber circuits to minimize transient voltages with high system efficiency.

Hoft, R.G.; Kawamura, A.; Goodarzi, A.; Yang, G.Q.; Erickson, C.L.

1985-05-01T23:59:59.000Z

196

hybrid electric vehicle and lithium polymer nev testing  

NLE Websites -- All DOE Office Websites (Extended Search)

P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing James Edward Francfort Advanced Vehicle Testing Activity Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID. 83415-3830 james.francfort@inl.gov Abstract: The U.S. Department of Energy's Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery. Keywords: hybrid; neighborhood; electric; battery; fuel;

197

Test Drive EIA's New Interactive Electricity Data Browser | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive EIA's New Interactive Electricity Data Browser Test Drive EIA's New Interactive Electricity Data Browser Test Drive EIA's New Interactive Electricity Data Browser April 6, 2012 - 4:27pm Addthis Check out EIA’s beta test site and leave your feedback. Check out EIA's beta test site and leave your feedback. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs The Energy Information Administration (EIA) - the statistical and analytical agency within the Energy Department - recently launched an interactive electricity data browser on a test website that allows users to search in one location much of EIA's electricity data and to customize it to meet their information needs. As an experimental product, EIA is encouraging the public to submit

198

Advanced Vehicle Testing Activity - Publications by Date  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Infrastructure and Usage Information (SLIDES) - February 2013 (PDF 2.8MB) SAE Hybrid Vehicle Technologies Symposium: On-Road Results from Charging Infrastructure and...

199

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use  

SciTech Connect

The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

Rugh, J. P.

2010-04-01T23:59:59.000Z

200

Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment  

NLE Websites -- All DOE Office Websites (Extended Search)

pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities  

SciTech Connect

Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

Wang, M.Q.; Marr, W.W.

1994-02-10T23:59:59.000Z

202

Idle Stop Vehicle Testing Downloadable Dynamometer Database  

E-Print Network (OSTI)

Battery Electric Vehicle (BEV) PHEV EREV Charge Sustaining (CS) Hybrid Electric Vehicle (HEV) Fuel Cell vehicle terminology map for SAE J1715 Increased electric power and energy Increasedelectricpowerandenergy #12;Note: Manual Transmission Vehicle Shift schedules for Dynamometers Most cars in the US use

Kemner, Ken

203

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

2003 City of Los Angeles Bureau of Sanitation Advanced Technology Vehicles in Service: LNG Heavy-Duty Trucks Coca-Cola Hybrid Electric Delivery Trucks Coca-Cola Refreshments...

204

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

background not only to vehicle manufacturers, but also todomestic and foreign vehicle manufacturers, and millions ofmakers as well as vehicle manufacturers. For example, as

Choo, S; Mokhtarian, Patricia L

2004-01-01T23:59:59.000Z

205

Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...  

NLE Websites -- All DOE Office Websites (Extended Search)

VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE...

206

U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles  

Science Conference Proceedings (OSTI)

Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

Mindy Kirpatrick; J. E. Francfort

2003-11-01T23:59:59.000Z

207

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

vehicle demand. Plug-in hybrid vehicles are found to reduceto conventional hybrid vehicles is further considered inBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

208

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, Volume 1: NationwideBEVs or plug-in hybrid electric vehicles (PHEVs) requirescell vehicle; HEV = Hybrid electric vehicle; ICE = Internal

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

209

Vehicle test report: South Coast Technology electric cconversion of a Volkswagen Rabbit  

DOE Green Energy (OSTI)

The South Coast Technology Volkswagen Rabbit, an electric vehicle manufactured by South Coast Technology of Santa Barbara, California was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility in Pasadena and at JPL's Edwards Test Station (ETS) located near Lancaster, California. The tests were conducted between April and July, 1979. These tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near-term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document State of the Art assessment of Electric and Hybrid Vehicles. The Rabbit performance was near to the best of the 1977 vehicles.

Price, T.W.; Shain, T.W.; Bryant, J.A.

1981-02-15T23:59:59.000Z

210

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

211

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

212

Plug-In Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

The goal of this analysis was to investigate the different impacts that driver behavior and environment can have on fuel economy and battery energy consumption in plug-in hybrid electric vehicles (PHEVs). Specifically, the PHEVs studied were part of the Ford Escape Advanced Research Fleet, which is composed of over 20 vehicles used by utilities and government agencies during a multi-year project. Results of this analysis can be used to educate drivers with more optimal driving practices to maximize ...

2012-12-20T23:59:59.000Z

213

Modelling vehicle emissions from an urban air-quality perspective:testing vehicle emissions interdependencies.  

E-Print Network (OSTI)

??Abstract This thesis employs a statistical regression method to estimate models for testing the hypothesis of the thesis of vehicle emissions interdependencies. The thesis at… (more)

Dabbas, Wafa M

2010-01-01T23:59:59.000Z

214

Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle  

E-Print Network (OSTI)

The automobile industry is moving fast towards Electric Vehicles (EV); however this paradigm shift is currently making its smooth transition through the phase of Hybrid Electric Vehicles. There is an ever-growing need for integration of hybrid energy sources especially for vehicular applications. Different energy sources such as batteries, ultra-capacitors, fuel cells etc. are available. Usage of these varied energy sources alone or together in different combinations in automobiles requires advanced power electronic circuits and control methodologies. An exhaustive literature survey has been carried out to study the power electronic converter, switching modulation strategy to be employed and the particular machine to be used in an EV. Adequate amount of effort has been put into designing the vehicle specifications. Owing to stronger demand for higher performance and torque response in an EV, the Permanent Magnet Synchronous Machine has been favored over the traditional Induction Machine. The aim of this thesis is to demonstrate the use of a multi level inverter fed Brush Less Direct Current (BLDC) motor in a field oriented control fashion in an EV and make it follow a given drive cycle. The switching operation and control of a multi level inverter for specific power level and desired performance characteristics is investigated. The EV has been designed from scratch taking into consideration the various factors such as mass, coefficients of aerodynamic drag and air friction, tire radius etc. The design parameters are meant to meet the requirements of a commercial car. The various advantages of a multi level inverter fed PMSM have been demonstrated and an exhaustive performance evaluation has been done. The investigation is done by testing the designed system on a standard drive cycle, New York urban driving cycle. This highly transient driving cycle is particularly used because it provides rapidly changing acceleration and deceleration curves. Furthermore, the evaluation of the system under fault conditions is also done. It is demonstrated that the system is stable and has a ride-through capability under different fault conditions. The simulations have been carried out in MATLAB and Simulink, while some preliminary studies involving switching losses of the converter were done in PSIM.

Emani, Sriram S.

2010-05-01T23:59:59.000Z

215

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various countries and US cities  

SciTech Connect

Past studies have shown that use of electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled internal-combustion-engine vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, the authors estimate greenhouse gas emission reductions for EVs, including these important aspects. They select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the US) and analyze greenhouse emission impacts of EVs in each city or country. These selected cities and countries have distinct differences in electric power-plant fuel mixes. They also select six driving cycles developed around the world. They choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Thus, the city- or country-specific vehicle energy consumption estimates reflect effects of both vehicle driving cycles and electric power-plant mixes. Finally, they estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and power-plant and vehicle operations. They estimate that relative to GVs, EVs reduce greenhouse gas emissions in all selected US cities and countries.

Wang, M.Q.; Marr, W.W. (Argonne National Lab., IL (United States). Center for Transportation Research)

1994-09-01T23:59:59.000Z

216

Comparison of simulation and test for electric vehicles of recent design  

DOE Green Energy (OSTI)

Comparisons have been made between data obtained from dynamometer tests of various electric vehicles and computer simulations of the same vehicle-battery combinations for several driving cycles. The vehicles included in the study were the ETV-1, Bedford Van, Unique Mobility, ETX-1 and DSEP(TB-1). The batteries studied were the ALCO 2200, Gel/cel 3, EV5T, ETX-100(CHL12), and the NIF-170. The comparisons indicated that the energy consumption values obtained using ELVEC agree within 10% with test data for both constant speed and variable power driving schedules. The range comparisons were less consistent, but the predictions agreed with the data to within 10% if the vehicle battery was in good condition and the controller did not limit battery power at low states-of-charge. Second-by-second comparisons of measured and calculated values of battery power and current during transient vehicle operation showed the agreement worse than would have been expected based on the good agreement found for cycle energy consumption. Further development of ELVEC is needed to complete its validation as an electric vehicle simulation code. 12 refs., 6 figs., 9 tabs.

Burke, A.F.

1988-01-01T23:59:59.000Z

217

Electric Vehicle Supply Equipment (EVSE) Test Report: ChargePoint  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOgIES PROgRAM Electric Vehicle Supply Equipment (EVSE) Test Report: ChargePoint EVSE Features WiFi, cellular communications Automated meter infrastructure Vacuum florescent...

218

Advanced Vehicle Testing Activity - Electric Ground Support Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the course of performing work sponsored by the U.S. Department of Energy's Advanced Vehicle Testing Activity, Electric Power Research Institute, Southern California Edison...

219

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Fleet and Vehicle Fleet and Baseline Performance Testing James Francfort Idaho National Laboratory 2 Paper #2006-01-1267 Presentation Outline Background & goals Testing partners Baseline performance testing new HEVs Fleet testing (160k miles in 36 months) End-of-life testing (fuel economy & battery testing at 160k miles) WWW information location 3 Paper #2006-01-1267 Background Advanced Vehicle Testing Activity (AVTA) - part of DOE's FreedomCAR and Vehicle Technologies Program Goal - provide benchmark data for technology modeling, and research and development programs Idaho National Laboratory manages these activities, and performs data analysis and reporting activities 4 Paper #2006-01-1267 Testing Partners Qualified Vehicle Testers hElectric Transportation Applications (lead)

220

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

The Relationship of Vehicle Type Choice to Personality,on revealed and stated vehicle type choice and utilizationA disaggregate model of auto-type choice. Transportation

Choo, S; Mokhtarian, Patricia L

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

222

Advanced Vehicle Testing Activity: Oil Bypass Filter  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Bypass Filter The Idaho National Laboratory (INL) is evaluating oil bypass filter technology for the U.S. Department of Energy's (DOE's) Vehicle Technologies Office. Eight...

223

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network (OSTI)

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The… (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

224

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network (OSTI)

Science Knoxville, TN, 37996, USA tolbert@utk.edu Abstract ­ In hybrid electric vehicles (HEV), a battery-source inverter, dc bus capacitor, Electric vehicle, Harmonic current, Hybrid electric vehicle. I. INTRODUCTION Electric Vehicle Traction Drive Shengnan Li Student Member, IEEE The University of Tennessee Department

Tolbert, Leon M.

225

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle SymposiumSystem. 23rd International Electric Vehicle Symposium andof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

226

hydrogen pilot plant, H2ICE vehicle testing INL alternative energy vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Pilot Plant, H2ICE Hydrogen Pilot Plant, H2ICE Vehicle Testing, & INL Alternative Energy Vehicles (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INL/CON-05-00694 AVTA Presentation Outline * Arizona Public Service's Alternative Fuel (Hydrogen) Pilot Plant Design and Operations * Hydrogen internal combustion engine vehicle testing * Oil bypass filter system evaluation * Diesel engine idling testing * INL alternative fuel infrastructure * INL alternative fuel fleet * WWW information APS Alternative Fuel (Alt-Fuel) Pilot Plant - Partners * Arizona Public Service (APS) * Electric Transportation Applications (ETA) * Idaho National Laboratory (INL) * Started operations - 2002 Alt-Fuel Pilot Plant & Vehicle Testing - Objectives * Evaluate the safety & reliability of operating ICE

227

Program on Technology Innovation: Preliminary Test Protocol for Vehicle/Grid System Compatibility Testing  

Science Conference Proceedings (OSTI)

This report defines step-by-step procedures for performing system compatibility compliance testing of plug-in electric vehicles. The tests described cover both the vehicle as a load (charging operation) and as a generation source (vehicle-to-grid operation). With many original equipment manufacturers of automobiles poised to release plug-in electric vehicles in the coming months, evaluating the interaction of these vehicles with the power grid has become an important issue. Because consumers are likely t...

2009-09-15T23:59:59.000Z

228

Highway Vehicle Electric Drive in the United States: 2009 Status and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL/ESD/10-9 ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States: 2009 Status and Issues Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

229

Electric Vehicle Supply Equipment (EVSE) Test Report: Blink  

NLE Websites -- All DOE Office Websites (Extended Search)

1,500 2,000 2,500 3,000 Time (s) Power (Watts) Charge Start EVSE Power In EVSE Power Out Electric Vehicle Supply Equipment (EVSE) Test Report: Blink EVSE Tested Blink Residential...

230

Electric Vehicle Supply Equipment (EVSE) Test Report: SPX  

NLE Websites -- All DOE Office Websites (Extended Search)

1,500 2,000 2,500 3,000 Time (s) Power (Watts) Charge Start EVSE Power In EVSE Power Out Electric Vehicle Supply Equipment (EVSE) Test Report: SPX EVSE Tested SPX Residential...

231

US advanced battery consortium in-vehicle battery testing procedure  

DOE Green Energy (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

232

Advanced Vehicle Testing Activity (AVTA) - North American and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Schedule) dynamometer test cycles 8 4 Hymotion Prius Gen I - UDDS Fuel Use * 5 kWh A123Systems (Li) and Prius packs (AC kWh) Hymotion PHEV Prius MPG & kWh - UDDS Testing...

233

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

234

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

235

Evaluation of Near-Term Electric Vehicle Battery Systems through In-Vehicle Testing  

Science Conference Proceedings (OSTI)

Electric vehicles (EVs) using today's technology are suitable for certain commercial fleets. Yet expanding the EV market largely depends on developing and marketing batteries with performance characteristics superior to those already commercially available. The in-vehicle test results summarized in this report provide valuable information on the performance, life, and maintenance of 10 new batteries under real-world operating conditions.

1986-12-01T23:59:59.000Z

236

Hydrogen Station & ICE Vehicle Operations and Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Station & ICE Vehicle Operations and Testing Jim Francfort for Lee Slezak WestStart CALSTART Hydrogen Internal Combustion Engine Symposium - February 2006 INL/CON-06-01109 Presentation Outline * Background and Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design and operations * Fuel Dispensing * Prototype Dispenser Testing * Hydrogen and HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * WWW Information AVTA Background and Goal * AVTA is part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications * AVTA Goal - Provide benchmark data for technology

237

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

238

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

DOE Green Energy (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

239

Testing of TEC-Based TMS for Patrol EV and Bus Fleet Vehicles  

Science Conference Proceedings (OSTI)

This project was a continuation of a study to help improve the driving range and reliability of electric vehicles (EVs) and to encourage their commercial growth

1999-12-14T23:59:59.000Z

240

Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint  

SciTech Connect

Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

Science Conference Proceedings (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

242

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

from Plug-in Hybrid Electric Vehicles, Chapter Nine inD.B. (editor) Plug-In Electric Vehicles: What Role Forplug-in hybrid electric vehicles. Eviron. Res. Lett. 2008,

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

243

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

from Plug-in Hybrid Electric Vehicles, Chapter Nine incompetitive plug-in hybrid electric vehicles. Eviron. Res.of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

244

High power battery test methods for hybrid vehicle applications  

DOE Green Energy (OSTI)

Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

1997-11-01T23:59:59.000Z

245

Model Year 2011 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXT03.7M19 SUV 6 16 21 18 3 no ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT03.7M19 SUV 5 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 17 22 19 3 no ACURA RL 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXV03.7PB9 midsize car

246

Model Year 2012 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT03.7R19 SUV 5 16 21 18 3 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV CHNXT03.7R19 SUV 6 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 19 24 21 4 no ACURA TL 3.5 6 SemiAuto-6 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXV03.5EB3 midsize car 5

247

Model Year 2010 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV AHNXT03.7W19 SUV 7 16 21 18 4 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT03.7W19 SUV 6 16 21 18 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 17 22 19 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 17 22 19 4 no ACURA RL 3.7 6 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXV03.7PB9 midsize car

248

Electric Vehicle Supply Equipment (EVSE) Test Report: ClipperCreek  

NLE Websites -- All DOE Office Websites (Extended Search)

(Vrms) 208.89 Supply frequency (Hz) 60.00 Initial ambient temperature (F) 52 Test Vehicle 1,3 Make and model 2011 Chevrolet Volt Battery type Li-ion Steady state charge power...

249

Electric Vehicle Supply Equipment (EVSE) Test Report: Leviton  

NLE Websites -- All DOE Office Websites (Extended Search)

(Vrms) 239.69 Supply frequency (Hz) 59.99 Initial ambient temperature (F) 58 Test Vehicle 1,3 Make and model 2011 Chevrolet Volt Battery type Li-ion Steady state charge power...

250

DOE News Release - DOE Supports USPS Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

July 12, 2001 DOE Supports USPS Electric Vehicle Testing The U.S. Department of Energy (DOE), through its Field Operations Program, is supporting the U.S. Postal Services' (USPS)...

251

Hydrogen Internal Combustion Engine (ICE) Vehicle Testing Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Combustion Internal Combustion Engine (ICE) Vehicle Testing Activities James Francfort Idaho National Laboratory 2 Paper #2006-01-0433 Presentation Outline Background and goal APS Alternative Fuel (Hydrogen) Pilot Plant - design and operations Fuel dispensing and prototype dispenser Hydrogen (H2) and HCNG (compressed natural gas) internal combustion engine (ICE) vehicle testing WWW Information 3 Paper #2006-01-0433 Background Advanced Vehicle Testing Activity (AVTA) is part of DOE's FreedomCAR and Vehicle Technologies Program These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications (ETA) 4 Paper #2006-01-0433 AVTA Goal Provide benchmark data for technology modeling, research and development programs, and help fleet managers and

252

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

253

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

on revealed and stated vehicle type choice and utilizationA disaggregate model of auto-type choice. Transportationforecasting automobile type-choice. Transportation Research

Choo, Sangho; Mokhtarian, Patricia L.

2004-01-01T23:59:59.000Z

254

Vehicle Testing and Analysis Group: Center for Transportation Technologies and Systems (CTTS) (Brochure)  

DOE Green Energy (OSTI)

Describes NREL's Vehicle Testing and Analysis Group's work in vehicle and fleet evaluations, testing, data, and analysis for government and industry partners.

Not Available

2008-10-01T23:59:59.000Z

255

Integration and system tests of the Ford/General Electric ac electric drive system  

SciTech Connect

An advanced alternating current electric drive system is being developed by the General Electric Company for Ford Motor Company's ''Advanced Electric Vehicle Powertrain Effort,'' which is a major element of DOE's Single Shaft Electric Propulsion System Program. The integrated transaxle consists of an oil-cooled 50 hp ac induction motor mounted within a 2-speed transaxle. Direct current from the nominal 204 V battery pack is converted to variable frequency, variable voltage 3-phase ac current by a liquid-cooled transistor inverter. A custom-designed inverter motor controller, containing two 8751 microcomputers plus analog and digital circuitry, translates torque commands from the controller to the inverter transistor base drivers that turn on/off power Darlington transistors at appropriate times. After a review of the electric drive system ratings, details of the transistor inverter are presented. Control strategy and controller design are summarized. Electric drive integration and system test results are given.

King, R.D.; Park, J.N.

1985-01-01T23:59:59.000Z

256

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

DOE Green Energy (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

257

Potential use of battery packs from NCAP tested vehicles.  

Science Conference Proceedings (OSTI)

Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

Lamb, Joshua; Orendorff, Christopher J.

2013-10-01T23:59:59.000Z

258

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

DOE Green Energy (OSTI)

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

259

Fountain Valley Electric Carrier Route Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

13 miles per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of- Charge (SOC) data was collected for only 28 of the route tests....

260

Vehicle Pre-test Check-In  

NLE Websites -- All DOE Office Websites (Extended Search)

1 5 2006 Electric Transportation Applications All Rights Reserved significant to test conduct, a Non-Conformance Report (ETA-GAC002, "Control of Test Conduct," Appendix B)...

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

262

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Not Available

2008-03-01T23:59:59.000Z

263

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

264

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

265

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

266

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

F-150 16V Hydrogen ICE Conversion - Testing Results (PDF 110 KB) 2003 Ford F-150 Pickup Truck Ford F-150 HydrogenCNG Blended Fuels Performance Testing in a Ford F-150 (up to 30%...

267

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

268

Electric vehicle/photovoltaic test and evaluation program. Final report  

DOE Green Energy (OSTI)

The University of South Florida (USF) in collaboration with Florida utilities and other organizations have executed a research and development program for the test and evaluation of Electric Vehicles. Its activity as one of 13 US Department of Energy (DOE) Electric Vehicle Test Site Operators was funded by DOE and the Florida Energy Office (FEO). The purpose of this program was to determine the efficiency of electric vehicles under commuter and fleet conditions in Florida. An additional feature of this program was the development of a utility interconnected photovoltaic (PV) system for charging electric vehicles with solar energy. USF developed an effective and economical automated on board Mobile Data Acquisition System (MDAS) that records vehicle operating data with minimum operator interface. Computer programs were written by the USF team to achieve processing and analysis of the vehicles` MDAS data, again minimizing human involvement, human effort and human error. A large number of passenger cars, vans and pickup trucks were studied. Procedures for monitoring them were developed to a point where the equipment is commercially available and its operation has become routine. The nations first PV solar powered electric vehicle charging station and test facility was designed, developed and put into operation under this program. The charging station is capable of direct DC-DC (PV to battery) or AC-DC (power grid to battery) charging and it routes unused PV power to the University`s power grid for other use. The DC-DC charging system is more efficient, more dependable and safer than DC-AC-DC and traditional methods of DC-DC charging. A fortuitous correlation was observed between battery charging demand and solar power availability in commuter application of electric vehicles.

NONE

1997-06-01T23:59:59.000Z

269

Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle  

SciTech Connect

In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

Gao, Zhiming [ORNL; Curran, Scott [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

270

Transonic Pressure-- Sensing Studies Using Drop Test Vehicles  

SciTech Connect

Free-flight drop vehicle tests have been made to investigate devices for measuring ambient pressure in the vicinity of a high-fineness-ratio weapon shape throughout the transonic speed range. Various types of nose probes and trailing probes were tested.

Pepper, W.B., Jr. [Organization 5141

1954-05-01T23:59:59.000Z

271

Summary of electric vehicle dc motor-controller tests  

DOE Green Energy (OSTI)

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

McBrien, E F; Tryon, H B

1982-09-01T23:59:59.000Z

272

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

DOE Green Energy (OSTI)

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

273

ALTERNATIVE ENERGY TESTBED ELECTRIC VEHICLE AND THERMAL MANAGEMENT SYSTEM INVESTIGATION.  

E-Print Network (OSTI)

??Methodology of and details on designing, constructing, and testing an efficient low power electric vehicle for alternative energy testing purposes. Experimental analysis of the drive… (more)

Gregg, Christopher B

2007-01-01T23:59:59.000Z

274

Regional Economic Impacts of Electric Drive Vehicles and Technologies: Case Study of the Greater Cleveland Area  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs), which combine desirable aspects of battery electric vehicles and hybrid electric vehicles, offer owners the advantages of increased fuel efficiency and lower annual fuel bills without concern for dead batteries, long recharge time, or limited range. This study examines the potential regional economic impacts due to increasing electric transportation in the Greater Cleveland Area (GCA). By applying regional input-output (RIO) analysis, the study determines the imp...

2009-07-31T23:59:59.000Z

275

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

electricity rates in California and across the United States (STATES ABSTRACT This study examines the relative economics of electric vehicle operation in the context of current electricity rates

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

276

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

DOE Green Energy (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

277

Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends  

DOE Green Energy (OSTI)

The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

2012-03-01T23:59:59.000Z

278

Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving  

E-Print Network (OSTI)

and found to work satisfactorily. Keywords / Hybrid Electric Vehicles, Powertrain Control, Heavy DutyProceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

Peng, Huei

279

ROYAL HOLLOWAY, UNIVERSITY OF LONDON COLLEGE DRIVING AND VEHICLE SAFETY POLICY  

E-Print Network (OSTI)

Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202 Abstract- In this preliminary paper we propose new intersection collision avoidance architecture. This system allows vehicles where vehicles start to share their current state with the roadside unit. Early link establishment

280

Integration of electric drive vehicles with the electric power grid—a new value stream  

E-Print Network (OSTI)

Battery-electric vehicles and grid-connected hybrid vehicles rely on the power grid for energy-- they have to plug in to charge their batteries. With power alerts and blackouts a recent reality in California, it is easy to conclude that the energy requirements of grid-connected electric vehicles will make the energy crisis worse. Actually, quite the opposite may be true. With a bi-directional grid power interface, virtually any vehicle that can plug into the grid can potentially provide beneficial support to the grid. Battery electric vehicles can support the grid exceptionally well by providing any of a number of functions known collectively as ancillary services. These services are vital to the smooth and efficient operation of the power grid. A hybrid vehicle can provide ancillary services, and can also generate power. Fuel cells are already being commercialized for small stationary power sources, so a vehiclemounted fuel cell could also serve as a vehicle-to-grid power source. Sharing power assets between transportation and power generation functions can create a compelling new economics for electrically-propelled vehicles.

Alec Brooks; Tom Gage; Ac Propulsion

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report  

Science Conference Proceedings (OSTI)

The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and was used to develop an algorithm to normalize stopping data for weight and initial speed.

Lascurain, Mary Beth [ORNL] ORNL; Capps, Gary J [ORNL] ORNL; Franzese, Oscar [ORNL] ORNL

2013-10-01T23:59:59.000Z

282

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

283

NREL: Fleet Test and Evaluation - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development The Fleet Test and Evaluation Team conducts research that supports the development and deployment of alternative fuel and advanced vehicle technologies in medium- and heavy-duty fleet vehicles. Technology evaluation projects focus on drive cycle analysis, hybrid electric vehicles, all-electric vehicles, truck stop electrification, and alternative fuels. Learn more about the team's project areas: Fleet DNA: Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric and Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification Alternative Fuels Truck Efficiency Printable Version Fleet Test and Evaluation Home Research & Development Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems

284

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructu...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some...

285

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

286

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles  

Science Conference Proceedings (OSTI)

In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

2012-10-01T23:59:59.000Z

287

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Vehicles Get Put to the Test at General Motors' Proving EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? EcoCar challenges students to reduce the environmental impact of vehicles by minimizing the vehicle's fuel consumption and emissions -- while retaining the vehicle's performance, safety and consumer appeal.

288

Advanced Vehicle Testing Activity - PHEV Testing Results and...  

NLE Websites -- All DOE Office Websites (Extended Search)

on cycles 7 Baseline Performance Testing Results 8 EnergyCS Prius - UDDS Fuel Use * 9 kWh Valence lithium pack - AC kWh EnergyCS PHEV Prius MPG & kWh - UDDS Testing 180 9 170...

289

2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

290

2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

291

2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

292

2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

293

Roadmap for Testing and Validation of Electric Vehicle Communication Standards  

SciTech Connect

Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2012-07-12T23:59:59.000Z

294

Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards  

DOE Green Energy (OSTI)

Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

2011-10-19T23:59:59.000Z

295

Influence of alcohol on reliability and safety driver during driving on vehicle simulators  

Science Conference Proceedings (OSTI)

Alcohol, drugs and consequent serious attention decrease and aggression of human operators is one of the most common causes of accidents in traffic. Measure this situations are very dangerous and in real traffic. The paper describes objective methods ... Keywords: alcohol, measure, vehicle simulator, virtual reality

Roman Pieknik

2009-11-01T23:59:59.000Z

296

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

297

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

298

Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint  

DOE Green Energy (OSTI)

Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

2010-12-01T23:59:59.000Z

299

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

in and Batttery Electric Vehicles, The 5 th IEEE VehiclePlug-in and Battery Electric Vehicles, The 1 st IEEE EnergyE. Plug-in Hybrid-Electric Vehicle Powertrain Design and

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

300

Test and evaluation of 23 electric vehicles for state-of-the-art assessment  

DOE Green Energy (OSTI)

The Electric and Hybrid Research, Development and Demonstration Act of 1976 required ERDA to develop data to determine the state-of-the-art of electric and hybrid vehicles. NASA, in response to ERDA's request, tested 18 electric vehicles. The U.S. Army's MERADCOM tested four electric vehicles and the Canadian Government tested one. Eleven of the electric vehicles were passenger cars and 12 were commerical vans. Tests were conducted in accordance with an ERDA test prodecure which is based on the SAE J227a Test Proceduce. Tests included range, acceleration, coast-down, and braking. The results of the tests and comments on reliability are presented.

Dustin, M.O.; Denington, R.J.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of vibration loading profiles for accelerated durability tests of ground vehicles.  

E-Print Network (OSTI)

??The accelerated durability test is an important part for design and manufacturing ground vehicles. It consists of test designed to quantify the life characteristics of… (more)

Xu, Ke

2011-01-01T23:59:59.000Z

302

Laboratory testing of high energy density capacitors for electric vehicles  

DOE Green Energy (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

303

Liquid-hydrogen-fueled-vehicle tests. Executive summary  

DOE Green Energy (OSTI)

A program for the development of a baseline liquid-hydrogen fueled vehicle and a liquid-hydrogen-refueling system was completed at the Los Alamos National Laboratory on September 30, 1981. This program involved the cooperative efforts of the Laboratory (funded by the US Department of Energy), the Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt (DFVLR) of the Federal Republic of Germany, and the State of New Mexico through the New Mexico Energy Institute (NMEI). The results of the program provide a reference point from which future progress and improvements in liquid-hydrogen on-board storage and refueling capabilities may be measured. The NMEI provided the program a 1979 Buick Century 4-door sedan with 3.8-L (231-in./sup 3/) displacement turbocharged V6 engine and automatic transmission. The DFVLR provided an on-board liquid-hydrogen storage tank and a refueling station. The DFVLR tank, and the engine modifications for operation on hydrogen rather than gasoline, represented readily available, state-of-the-art capabilities when the program began in March 1979. The original tank provided by the DFVLR was replaced with a larger capacity tank, which was fabricated using more advanced cryogenic engineering technology. The vehicle was refueled at least 60 times with liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and the semiautomatic refueling station designed and built by the DFVLR. At the end of program, the engine had been operated for 133 h and the car driven for 3540 km (2200 miles) on hydrogen without any major difficulties. The vehicle obtained 2.4 km/L (5.7 miles/gal) of liquid hydrogen or 8.9 km/L (21 miles/gal) of gasoline on an equivalent energy basis for driving in the high-altitude Los Alamos, Santa Fe, and Albuquerque areas. Without refueling, the car had a range of about 274 km (170 miles) with the first liquid-hydrogen tank and about 362 km (225 miles) with the second tank.

Stewart, W.F.

1981-01-01T23:59:59.000Z

304

Liquid-hydrogen-fueled-vehicle tests. Executive summary  

DOE Green Energy (OSTI)

A program for the development of a baseline liquid-hydrogen fueled vehicle and a liquid-hydrogen-refueling system was completed at the Los Alamos National Laboratory on September 30, 1981. This program involved the cooperative efforts of the Laboratory (fundd by the US Department of Energy), the Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt (DFVLR) of the Federal Republic of Germany, and the State of New Mexico through the New Mexico Energy Institute (NMEI). The results of the program provide a reference point from which future progress and improvements in liquid-hydrogen on-board storage and refueling capabilities may be measured. The NMEI provided the program a 1979 Buick Century 4-door sedan with 3.8-L (231-in./sup 3/) displacement turbocharged V6 engine and automatic transmission. The DFVLR provided an on-board liquid-hydrogen storage tank and a refueling station. The DFVLR tank, and the engine modifications for operation on hydrogen rather than gasoline, represented readily available, state-of-the-art capabilities when the program began in March 1979. The original tank provided by the DFVLR was replaced with a larger capacity tank, which was fabricated using more advanced cryogenic engineering technology. The vehicle was refueled at least 60 times with liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and the semiautomatic refueling station designed and built by the DFVLR. At the end of program, the engine had been operated for 133 h and the car driven for 3540 km (2200 miles) on hydrogen without any major difficulties. The vehicle obtained 2.4 km/L (5.7 miles/gal) of liquid hydrogen or 8.9 km/L (21 miles/gal) of gasoline on an equivalent energy basis for driving in the high-altitude Los Alamos, Santa Fe, and Albuquerque areas. Without refueling, the car had a range of about 274 km (170 miles) with the first liquid-hydrogen tank and about 362 km (225 miles) with the second tank.

Stewart, W.F.

1981-01-01T23:59:59.000Z

305

Advancing Next-Generation Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

306

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

DOE Green Energy (OSTI)

The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

2011-06-01T23:59:59.000Z

307

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

308

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

DOE Green Energy (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

309

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

310

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

311

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

312

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

313

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

314

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

315

Advanced Vehicle Testing Activity Hybrids, Hydrogen and other...  

NLE Websites -- All DOE Office Websites (Extended Search)

avoided 318 INL Alternative Fuel Vehicles * 79 B20 motor coach buses * 7 Dedicated LNG motor coach buses * 154 Bi-fuel light-duty CNG vehicles * 52 Bi-fuel E85 (85% ethanol)...

316

Acronyms and Abbreviations for Advanced Technology Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project LDV Light-duty vehicle LEV Low emission vehicle LF Low-floor Li Lithium LNG Liquid natural gas LPG Liquid petroleum gas LSR Low storage requirement MCI Motor Coach...

317

Advanced Vehicle Testing Activity: American Recovery and Reinvestment...  

NLE Websites -- All DOE Office Websites (Extended Search)

deployment of 5,700 battery electric vehicle (BEV) Nissan Leafs and 2,600 extended range electric vehicle (EREV) General Motors Volts, that will be recharged in private residence,...

318

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

Gelder E. Plug-in Hybrid-Electric Vehicle Powertrain DesignIntegration for Hybrid Electric Vehicles, IEEE Transactionsmodels [1-3] of hybrid-electric vehicles using Advisor have

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

319

Electric Vehicle Battery Testing: It's Hot Stuff! | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efficiency in a wide range of driving conditions and climates. The next generation of electric-drive cars and light trucks will be required to travel farther on electric power...

320

Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development and deployment of alternative fuels for environmental and national security reasons, NREL has managed a series of light-duty vehicle emissions tests on alternative fuel vehicles (AFVs). The purpose of this report is to give a detailed evaluation of the final emissions test results on vehicles tested on methanol, ethanol, and compressed natural gas.

Kelly, K.; Eudy, L.; Coburn, T.

1999-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas, 2009­04­11). Plug-in vehicles, including plug-in hybrid electric vehicles (PHEVs) and battery electric

Michalek, Jeremy J.

322

The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles  

E-Print Network (OSTI)

Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

Berry, Irene Michelle

2010-01-01T23:59:59.000Z

323

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

Science Conference Proceedings (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

324

Vehicle Infrastructure Connectivity and Communications -- Requirements and Testing  

Science Conference Proceedings (OSTI)

It is expected that consumers will charge electric vehicles in a variety of locations under varying weather conditions. In order to ensure that charging can be safely carried out in conditions that may include moisture, rain, and snow, the National Electric Code (NEC) requires that certain safety features be provided for as part of plug-in electric vehicle (PEV) charging equipment. While the NEC defines electric vehicle supply equipment (EVSE) more broadly, the term EVSE is commonly used to refer only to...

2011-12-30T23:59:59.000Z

325

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

326

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

327

Idaho National Laboratory Testing of Advanced Technology Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's goal of petroleum reduction and energy security - Provide benchmarked real-world vehicle performance and sub-system data to DOE target goal setters, modelers, and...

328

Advanced Vehicle Testing Activity: 2002/2003 Toyota Prius Fleet...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact sheets and maintenance logs for these vehicles give detailed information such as miles driven, fuel economy, operations and maintenance requirements, operating costs,...

329

Advanced Vehicle Testing Activity: Honda Civic Fleet and Accelerated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact sheets and maintenance logs for these vehicles give detailed information such as miles driven, fuel economy, operations and maintenance requirements, operating costs,...

330

Advanced Vehicle Testing Activity: Honda Insight Fleet and Accelerated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact sheets and maintenance logs for these vehicles give detailed information such as miles driven, fuel economy, operations and maintenance requirements, operating costs,...

331

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, James Edward

2003-01-01T23:59:59.000Z

332

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

333

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

334

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

SciTech Connect

The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

2011-06-01T23:59:59.000Z

335

Development of a Hardware-in-the-loop Simulation System for Hybrid Electric Vehicle Performance Test  

Science Conference Proceedings (OSTI)

In order to facilitate control strategy development and performance test of hybrid electric vehicle, a hardware-in-the-loop simulation system is developed. The system is constructed with LabVIEW and PXI hardware. Hardware-in-the-loop simulation test ... Keywords: hybrid electric vehicle, hardware-in-the-loop simulation, fuel economy, exhaust emission

Yanyi Zhang, Zhenhua Jin, Haoduan Wang, Qingchun Lu

2012-07-01T23:59:59.000Z

336

Correlation of I/M240 and FTP emissions for Alternative Motor Fuels Act test vehicles  

SciTech Connect

The National Remewable Energy Laboratory (NREL) is managing a series of light duty vehicle chasis dynamometer chasis tests on alternative fuel vehicles for the US Department of Energy (DOE). This testing program is part of a larger demonstration of alternative fuel vehicles that was mandated by the Alternative Motor Fuels Act of 1988 (AMFA). In Phase I of the AMFA emissions test program (AMFA I) 18 vehicles were tested by three laboratories. All the vehicles tested were 1991 model year. In Phase II of the program (AMFA II), the number of vehicles was increased to nearly 300, including M85 Dodge Spirits, E85 Chevrolet Luminas, and compressed natural gas Dodge passenger vans. Phase II testing includes a Federal Test Procedure (FTP) test, followed by two of the EPA`s Inspection/Maintenance (I/M240) tests. It is concluded that the I/M240 test is not an appropriate comparison to the FTP. Further the I/M 240 test is not as reliable as the FTP in estimating the `real world` emissions of these relatively low emission vehicles. 7 refs., 10 figs., 8 tabs.

Kelly, K.J.

1994-10-01T23:59:59.000Z

337

DOE ETV-1 electric test vehicle. Phase III: performance testing and system evaluation. Final report  

DOE Green Energy (OSTI)

The DOE ETV-1 represents the most advanced electric vehicle in operation today. Engineering tests have been conducted by the Jet Propulsion Laboratory in order to characterize its overall system performance and component efficiencies within the system environment. A dynamometer was used in order to minimize the ambient effects and large uncertainties present in track testing. Extensive test requirements have been defined and procedures were carefully controlled in order to maintain a high degree of credibility. Limited track testing was performed in order to corroborate the dynamometer results. Test results include an energy flow analysis through the major subsystems and incorporate and aerodynamic and rolling losses under cyclic and various steady speed conditions. A complete summary of the major output from all relevant dynamometer and track tests is also included as an appendix.

Kurtz, D. W.

1981-12-01T23:59:59.000Z

338

Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

339

Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

Karner, D.; Francfort, J.E.

2003-01-16T23:59:59.000Z

340

Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

Karner, D.; Francfort, James Edward

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

342

Ballistic Resistance of Armored Passenger Vehicles: Test Protocols and Quality Methods  

SciTech Connect

This guide establishes a test methodology for determining the overall ballistic resistance of the passenger compartment of assembled nontactical armored passenger vehicles (APVs). Because ballistic testing of every piece of every component of an armored vehicle is impractical, if not impossible, this guide describes a testing scheme based on statistical sampling of exposed component surface areas. Results from the test of the sampled points are combined to form a test score that reflects the probability of ballistic penetration into the passenger compartment of the vehicle.

Jeffrey M. Lacy; Robert E. Polk

2005-07-01T23:59:59.000Z

343

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT â—† PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

344

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Test Procedure Emissions Test Results from Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc. (Telephone: 412.776.4970; E-mail: publications@sae.org)

345

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network (OSTI)

FCV: fuel cell vehicle FEA: finite element analysis GA: Genetic Algorithms GCM: Global Circulation of a power-split architecture with two modes (or configurations) introduced by General Motors Corporation.2 General Motors Designs

Victoria, University of

346

Smart fortwo Micro Hybrid Vehicle Accelerated Testing - September...  

NLE Websites -- All DOE Office Websites (Extended Search)

all maintenance and repairs performed on the vehicles. The Smart fortwo MHVs have been driven a total of 151,288 miles and the cumulative average fuel economy is 36.3 mpg. Note...

347

Volkswagen Golf Micro Hybrid Vehicle Accelerated Testing - September...  

NLE Websites -- All DOE Office Websites (Extended Search)

for all maintenance and repairs performed on the vehicles. The Golf MHVs have been driven a total of 202,643 miles and the cumulative average fuel economy is 42.9 mpg. Note...

348

Mazda 3 Micro Hybrid Vehicle Accelerated Testing - September...  

NLE Websites -- All DOE Office Websites (Extended Search)

for all maintenance and repairs performed on the vehicles. The Mazda 3 MHVs have been driven a total of 225,505 miles and the cumulative average fuel economy is 28.3 mpg. Note...

349

Electric Vehicle Supply Equipment (EVSE) Test and Evaluation  

Science Conference Proceedings (OSTI)

Deployment of electric vehicle supply equipment (EVSE) to support the electrification of transportation continues worldwide. In the United States alone, thousands of EVSEs have been deployed over the last year. EVSE hardware is designed to safely provide AC or DC power to plug-in electric vehicles in both commercial and residential spaces. More than 40 vendors have been identified that manufacture EVSE products for the North American market. EPRI has performed laboratory evaluations for a ...

2012-12-31T23:59:59.000Z

350

Plug-in Electric Vehicle Real-World Data from DOE's AVTA (SAE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience 32 illi il l d 5 500 l i d i * 32 million test miles accumulated on 5,500 electric drive vehicles representing 111 models * Plug-in hybrid electric vehicles: 14 models,...

351

Plug-in Electric Vehicle Real-World Data from DOE's AVTA (Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience 24 illi il l d 5 500 l i d i * 24 million test miles accumulated on 5,500 electric drive vehicles representing 111 models * Plug-in hybrid electric vehicles: 14 models,...

352

FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

In September 2000 the Department of Energy's National Energy Technology Laboratory (DOE/NETL) contracted with Clean Energy Systems, Inc. (CES) of Sacramento, California to design, fabricate, and test a 20 MW{sub t} (10 MW{sub e}) gas generator. Program goals were to demonstrate a non-polluting gas generator at temperatures up to 3000 F at 1500 psi, and to demonstrate resulting drive gas composition, comprising steam and carbon dioxide substantially free of pollutants. Following hardware design and fabrication, testing, originally planned to begin in the summer of 2001, was delayed by unavailability of the contracted test facility. CES designed, fabricated, and tested the proposed gas generator as originally agreed. The CES process for producing near-zero-emissions power from fossil fuels is based on the near-stoichiometric combustion of a clean gaseous fuel with oxygen in the presence of recycled water, to produce a high-temperature, high-pressure turbine drive fluid comprising steam and carbon dioxide. Tests demonstrated igniter operation over the prescribed ranges of pressure and mixture ratios. Ignition was repeatable and reliable through more than 100 ignitions. Injector design ''A'' was operated successfully at both low power ({approx}20% of rated power) and at rated power ({approx}20 MW{sub t}) in more than 95 tests. The uncooled gas generator configuration (no diluent injectors or cooldown chambers installed) produced drive gases at temperatures approaching 3000 F and at pressures greater than 1550 psia. The fully cooled gas generator configuration, with cooldown chambers and injector ''A'', operated consistently at pressures from 1100 to 1540 psia and produced high pressure, steam-rich turbine drive gases at temperatures ranging from {approx}3000 to as low as 600 F. This report includes description of the intended next steps in the gas generator technology demonstration and traces the anticipated pathway to commercialization for the gas generator technology developed in this program.

Eugene Baxter; Roger E. Anderson; Stephen E. Doyle

2003-06-01T23:59:59.000Z

353

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

Unknown

2002-03-31T23:59:59.000Z

354

Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models  

E-Print Network (OSTI)

HC Reduction in S.E. (%) NOx Reduction in S.E. (%) Table 2:c) HC, d) NOx Younglove/Scora/Barth VSP Bin CO2 Reduction inNOx Table 1: Vehicle Specific Power bins used in preliminary MOVES model (4). Table 2: Percent reduction

Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

355

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

DOE Green Energy (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

356

CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control  

E-Print Network (OSTI)

In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

357

Safety Criteria for Isolated Direct Current Systems in Electric Vehicles: Traction Motor and Control Circuitry Under Charging and Driving Conditions  

Science Conference Proceedings (OSTI)

This report explains some of the background of the requirements for isolated DC systems covered by the standard for personnel protection devices for electric vehicle charging circuits (UL2231). The report provides insight that is intended to help achieve better designs of electric vehicles and chargers.

1999-12-01T23:59:59.000Z

358

Test vehicle detector characterization system for the Boeing YAL-1 airborne laser  

E-Print Network (OSTI)

The test vehicle detector characterization system provides a convenient and efficient tool for rapidly evaluating the optical sensitivity of the GAP6012, GAP100, GAP300, and GAP1000 indium gallium arsenide detectors used ...

Steininger-Holmes, Jason Thomas

2008-01-01T23:59:59.000Z

359

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Early Market for Hybrid Electric Vehicles. ” TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyPower Assist Hybrid Electric Vehicles, and Plug-in Hybrid

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

360

Fire Tests of Amtrak Passenger Rail Vehicle Interiors  

Science Conference Proceedings (OSTI)

Page 1. Fire Tests of Amtrak Passenger ... Table 11. Test Procedures and Evaluation Criteria for Small- Scale Testing of Amtrak Furnishings..... ...

2004-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

362

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline performance testing new HEVs Fleet testing (160k miles in 36 months) End-of-life testing (fuel economy & battery testing at 160k miles) WWW information location 3...

363

Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)  

DOE Green Energy (OSTI)

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01T23:59:59.000Z

364

Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels  

DOE Green Energy (OSTI)

The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

Vertin, K.; Glinsky, G.; Reek, A.

2012-08-01T23:59:59.000Z

365

Hybrid and Plug-In Electric Vehicles (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-05-01T23:59:59.000Z

366

Hybrid and Plug-In Electric Vehicles (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-10-01T23:59:59.000Z

367

Issues in emissions testing of hybrid electric vehicles.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

368

Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint  

DOE Green Energy (OSTI)

Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

2012-03-01T23:59:59.000Z

369

Feature - Testing the Tesla  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing the Tesla Testing the Tesla Tesla test Technician Geoff Amann takes the Tesla.through a driving cycle on Argonne's dynamometers. Argonne transportation engineers recently evaluated an all-electric Tesla Roadster at the Advanced Powertrain Research Facility's new two-wheel drive dynamometer laboratory. Data obtained from the Tesla will help researchers develop test procedures that provide an unbiased, consistent and practical approach to evaluating electric vehicles. "As we study these advanced vehicles, our knowledge base of the progression of vehicle electrification technology is enhanced," said chief engineer Mike Duoba. "In a rigorous, controlled manner, we are able to study many vehicle operating conditions to determine the impact on fuel consumption.

370

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

weight, volume, and the cost of the battery unit. It is alsoweight, volume, and the cost of the battery unit. It is alsoCost-Effective Combinations of Ultracapacitors and Batteries for Vehicle Applications, Proceedings of the Second International Advanced Battery

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

371

USABC electric vehicle Battery Test Procedures Manual. Revision 2  

DOE Green Energy (OSTI)

This manual summarizes the procedural information needed to perform the battery testing being sponsored by the United States Advanced Battery Consortium (USABC). This information provides the structure and standards to be used by all testing organizations, including the USABC developers, national laboratories, or other relevant test facilities.

NONE

1996-01-01T23:59:59.000Z

372

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

In contrast to a hybrid vehicle whichcombines multiple1994) "Demand Electric Vehicles in Hybrid for Households:or 180 mile hybrid electric vehicle. Natural gas vehicles (

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

373

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to… (more)

Serrano Guillén, Isabel

2013-01-01T23:59:59.000Z

374

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

375

Subsonic Tests of a Flush Air Data Sensing System Applied to a Fixed-Wing Micro Air Vehicle  

Science Conference Proceedings (OSTI)

Flush air data sensing (FADS) systems have been successfully tested on the nose tip of large manned/unmanned air vehicles. In this paper we investigate the application of a FADS system on the wing leading edge of a micro (unmanned) air vehicle (MAV) ... Keywords: Extended minimum resource allocating neural networks, Fault accommodation, Flush air data sensing systems, Micro (unmanned) air vehicle

Ihab Samy; Ian Postlethwaite; Dawei Gu

2009-03-01T23:59:59.000Z

376

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

377

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

378

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

Unknown

2002-01-31T23:59:59.000Z

379

Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the...

380

Electric Vehicle Supply Equipment (EVSE) Test Report: Siemens...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Limiter Switch LED Power Indicator LED Charge Indicator EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications UL Listed...

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PNGV Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar and cycle life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle and calendar life modeling for hybrid electric vehicle batteries are presented.

Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Haskind, H. J.; Tartamella, T.; Sutula, R.

2002-06-01T23:59:59.000Z

382

Vehicle to Grid Communication Standards Development, Testing and Validation - Status Report  

DOE Green Energy (OSTI)

In the US, more than 10,000 electric vehicles (EV) have been delivered to consumers during the first three quarters of 2011. A large majority of these vehicles are battery electric, often requiring 220 volt charging. Though the vehicle manufacturers and charging station manufacturers have provided consumers options for charging preferences, there are no existing communications between consumers and the utilities to manage the charging demand. There is also wide variation between manufacturers in their approach to support vehicle charging. There are in-vehicle networks, charging station networks, utility networks each using either cellular, Wi-Fi, ZigBee or other proprietary communication technology with no standards currently available for interoperability. The current situation of ad-hoc solutions is a major barrier to the wide adoption of electric vehicles. SAE, the International Standards Organization/International Electrotechnical Commission (ISO/IEC), ANSI, National Institute of Standards and Technology (NIST) and several industrial organizations are working towards the development of interoperability standards. PNNL has participated in the development and testing of these standards in an effort to accelerate the adoption and development of communication modules.

Gowri, Krishnan; Pratt, Richard M.; Tuffner, Francis K.; Kintner-Meyer, Michael CW

2011-09-01T23:59:59.000Z

383

Electric Vehicle Supply Equipment (EVSE) Test Report: Eaton  

NLE Websites -- All DOE Office Websites (Extended Search)

kW) 3.37 EVSE Test Results 1,2,4 EVSE consumption prior to charge (AC W) 3.2 EVSE consumption during steady state charge (AC W) 17.4 EVSE consumption post charge (AC W) 2.8...

384

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer (OSTI)

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

385

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Green Energy (OSTI)

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

2012-04-01T23:59:59.000Z

386

Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems  

DOE Green Energy (OSTI)

The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO{sub x,} SO{sub x} - are estimated. CO{sub 2} emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO{sub 2} emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO{sub x}. NO{sub x} emissions are reduced in all four cities. An ``avoided cost`` value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA`s draft Mobile5 model for GV emissions, high values by using California`s EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

Wang, Q. [California Univ., Davis, CA (United States); Santini, D.L. [Argonne National Lab., IL (United States)

1992-12-31T23:59:59.000Z

387

Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems  

DOE Green Energy (OSTI)

The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO[sub x,] SO[sub x] - are estimated. CO[sub 2] emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO[sub 2] emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO[sub x]. NO[sub x] emissions are reduced in all four cities. An avoided cost'' value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA's draft Mobile5 model for GV emissions, high values by using California's EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

Wang, Q. (California Univ., Davis, CA (United States)); Santini, D.L. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

388

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

389

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

390

Novel Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles. Tests include both characterization and cycle life and/or calendar life. Tests have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacitance, and the modeling of calendar and cycle life data. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries.

Motloch, Chester George; Batt, J. R.; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn

2001-06-01T23:59:59.000Z

391

Plug-in Hybrid Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a three-part collaborative effort to 1) develop and demonstrate a plug-in hybrid electric vehicle (PHEV) based on the Sprinter vehicle platform, 2) deliver prototype Sprinter PHEVs to fleets within the United States, and 3) explore these benefits in the context of commercial fleet use. As part of this effort, EPRI assumed the responsibility of managing data acquisition and analysis. This report focuses on evaluation of the PHEV Sprinter tested by the South Coas...

2009-12-07T23:59:59.000Z

392

Baseline and verification tests of the electric vehicle associates' current fare station wagon. Final test report, March 27, 1980-November 6, 1981  

DOE Green Energy (OSTI)

The EVA Current Fare Wagon was manufactured by Electric Vehicle Associates, Incorporated (EVA) of Cleveland, Ohio. It is now available from Lectra Motors Corp. of Las Vegas, Nevada. The vehicle was tested under the direction of MERADCOM from 27 March 1980 to 6 November 1981. The tests are part of a Department of Energy project to assess advances in electric vehicle design. This report presents the performance test results on the EVA Current Fare Wagon. The EVA Current Fare Wagon is a 1980 Ford Fairmont station wagon which has been converted to an electric vehicle. The propulsion system is made up of a Cableform controller, a series-wound 30-hp Reliance Electric Motor, and 22 6-V lead-acid batteries. The Current Fare Wagon is also equipped with regenerative braking. Further details of the vehicle are given in the Vehicle Summary Data Sheet, Appendix A. The results of this testing are given in Table 1.

Dowgiallo, E.J. Jr.; Chapman, R.D.

1983-01-01T23:59:59.000Z

393

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

1994) Demand for Electric Vehicles in Hybrid Households: A nand the Household Electric Vehicle Market: A Constraintsthe mar- ket for electric vehicles in California. Presented

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

394

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

the demand electric vehicles’, TransportationResearchA,1994) ~tive NewsCalifornia Electric Vehicle ConsumerStudy.1995) Forecasting Electric Vehicle Ownership Use in the

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

395

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

396

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network (OSTI)

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup as the surrogate for all light truck subclasses. This standard test vehicle, the 3/4-ton pick-up truck (designated as the 2000P test vehicle in NCHRP Report 350) replaced the 2040 kg (4500 lb) passenger car which till its replacement in 1993, was the standard test vehicle of that weight class for all formal vehicle crash testing procedures. The study approach consisted of the following main tasks:, 1. Identification and comparison of key vehicle parameters. 2.literature review. 3.Statistical study 4. Simulation study. 5.Synthesize results. 6.Prepare thesis. In the initial part of the study key vehicle parameters were identified and used in a preliminary assessment of the 2000P test vehicle. These parameters were then used as statistical variables in the statistical study undertaken. The HVOSM computer simulation program was then used to evaluate representatives of the larger light truck subclasses and the 2000P test vehicle on impact with selected roadside features. A comparison scheme developed using NCHRP Report 350 was then utilized in the evaluation of simulation results. Results were then synthesized and a thesis prepared on the surrogate sufficiency of the 2000P test vehicle. Drawbacks and limitations experienced during tasks were outlined as well as the contribution and significance of the entire study. A six year ceiling was recommended by the NCHRP Report 350 by Ross et al. (1993) for the purpose of vehicle selection for crash testing purposes. Hence this study focuses on the modern light truck fleet, model years 1990 through present.

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

397

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL; Aguilar, Juan P. [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

398

Field Operations Program - U.S. Postal Service - Fountain Valley Electric Carrier Route Vehicle Testing  

Science Conference Proceedings (OSTI)

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valley Post Office and eighteen mail carriers primarily drove the ECRVs on ''park and loop'' mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, J.E.

2002-01-21T23:59:59.000Z

399

Field Operations Program - US Postal Service Fountain Valley Electric Carrier Route Vehicle Testing  

SciTech Connect

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valey Post Office and eighteen mail carriers primarily drove the ECRVs on "park and loop" mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, James Edward

2002-01-01T23:59:59.000Z

400

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings  

DOE Green Energy (OSTI)

These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

Not Available

1991-12-31T23:59:59.000Z

402

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

experiences with plug-in hybrid vehicles (PHEVs). At theA.A. (2007) “Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric Utilities

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

403

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Interim Test Procedures for Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel, and A. Hoke Technical Report NREL/TP-5500-51001 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel,

404

Developing a standardized test procedure for hybrid vehicles: The challenge of the SAE HEV task force  

DOE Green Energy (OSTI)

In 1992, the Society of Automotive Engineers (SAE) established a task force to develop a procedure for measuring electric energy consumption, all-electric range, fuel economy, and exhaust emissions for hybrid vehicles; the procedure will be submitted to regulatory agencies as representing the automotive industry`s recommendations. The draft procedure is currently being tested on hybrid vehicles. The University of Maryland`s parallel hybrid was tested in September 1994, and the University of California-Davis` parallel hybrid and the University of Illinois` series hybrid will be tested in November 1994 and January 1995, respectively. The procedure is being modified to incorporate any lessons learned, and the task force hopes to recommend the final procedure to the SAE by mid 1995.

Penney, T; Christensen, D [National Renewable Energy Lab., Golden, CO (United States); Poulos, S [General Motors Corp., Warren, MI (United States)

1994-11-01T23:59:59.000Z

405

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

or 180 mile hybrid electric vehicle. Natural gas vehicles (1994) Demand for Electric Vehicles in Hybrid Households: A nof Electric, Hybrid and Other Alternative Vehicles. A r t h

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

406

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

gas vehicles and hybrid electric vehicles, in addition toof range, and hybrid electric vehicles with 140 and 180possible designs of hybrid electric vehicles pose complex

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

407

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

for Flex-Fuel Vehicles Including E85, Plug-in Hybrids Peakfor-flex-fuel-vehicles-including-e85-plug-in- hybrids-peak-

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

408

Design, Control and Evaluation of a Prototype Three Phase Inverter in a BLDC Drive System for an Ultra-Light Electric Vehicle.  

E-Print Network (OSTI)

??With an evolving vehicle industry there has been an increase in the demand for light electric vehicles. This thesis was conducted in order to gain… (more)

Larsson, Philip

2013-01-01T23:59:59.000Z

409

Test Profile Development for the Evaluation of Battery Cycle Life for Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

EPRI and DaimlerChrysler have developed a plug-in hybrid electric vehicle (PHEV) concept for the DaimlerChrysler Sprinter Van in an effort to reduce the emissions, fuel consumption, and operating costs of the vehicle while maintaining equivalent or superior functionality and performance. This report describes the development of a test profile to evaluate the life cycle of the batteries for the PHEV vehicle.

2004-03-29T23:59:59.000Z

410

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

411

Passenger vehicle tire rolling resistance can be predicted from a flat-belt test rig  

Science Conference Proceedings (OSTI)

The rolling resistance of fifteen different types of tire was determined on-road by coastdown tests, using several vehicles variously fitted with 14 and 15 inch wheels. Corrections for tire pressure, and for external temperature, were deduced by data regression. The rolling resistance of the same tires was measured on a flat-belt tire test machine, and correction for tire pressure was determined in a like manner. In this paper, the results, in terms of the characteristic rolling resistance, are compared between rig and road. The various test procedures are discussed.

Ivens, J.

1989-01-01T23:59:59.000Z

412

Vehicle Technologies Office: Ultracapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

converter, which would increase the cost of the vehicle. The use of ultracapacitors for regenerative braking can greatly improve fuel efficiency under stop-and-go urban driving...

413

Plug-in Hybrid Electric Vehicle (PHEV) Prototype Testing and Evaluation -- Data Collection and Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a collaborative effort to develop and demonstrate a Plug-in Hybrid Electric Vehicle (PHEV) version of DaimlerChrysler's Sprinter commercial van. PHEV Sprinters were subsequently developed and used in limited fleet testing at several locations within the United States. As part of this effort, EPRI took on the responsibility of managing data acquisition and analysis. This report describes the data analysis toolkit EPRI created as part of an ongoing effort to eval...

2008-12-16T23:59:59.000Z

414

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

415

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

416

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

417

How Would You Use a Neighborhood Electric Vehicle? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle? October 8, 2009 - 4:22pm Addthis This week, John discussed hybrid electric vehicles and neighborhood electric vehicles. We know many of you are driving...

418

Household Markets for Neighborhood Electric Vehicles in California  

E-Print Network (OSTI)

A Statewide ELECTRIC ELECTRIC and VEHICLES: Survey Sandrafor Neighborhood Electric Vehicles. Report prepared for theD. (1994). Future Drive: Electric Vehicles and Sustainable

Kurani, Kenneth S.; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

2001-01-01T23:59:59.000Z

419

Household Markets for Neighborhood Electric Vehicles in California  

E-Print Network (OSTI)

for Neighborhood Electric Vehicles. Report prepared for theD. (1994). Future Drive: Electric Vehicles and Sustainablefor Neighborhood Electric Vehicles. Report prepared for the

Kurani, Kenneth S; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

1995-01-01T23:59:59.000Z

420

Closure Report for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada  

SciTech Connect

The Area 25 Vehicle Washdown, Corrective Action Unit (CAU) 240, was clean-closed following the approved Corrective Action Decision Document closure alternative and in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU consists of thee Corrective Action Sites (CASs): 25-07-01 - Vehicle Washdown Area (Propellant Pad); 25-07-02 - Vehicle Washdown Area (F and J Roads Pad); and 25-07-03 - Vehicle Washdown Station (RADSAFE Pad). Characterization activities indicated that only CAS 25-07-02 (F and J Roads Pad) contained constituents of concern (COCs) above action levels and required remediation. The COCs detected were Total Petroleum Hydrocarbons (TPH) as diesel, cesium-137, and strontium-90. The F and J Roads Pad may have been used for the decontamination of vehicles and possibly disassembled engine and reactor parts from Test Cell C. Activities occurred there during the 1960s through early 1970s. The F and J Roads Pad consisted of a 9- by 5-meter (m) (30- by 15-foot [ft]) concrete pad and a 14- by 13-m (46-by 43-ft) gravel sump. The clean-closure corrective action consisted of excavation, disposal, verification sampling, backfilling, and regrading. Closure activities began on August 21, 2000, and ended on September 19, 2000. Waste disposal activities were completed on December 12, 2000. A total of 172 cubic meters (223 cubic yards) of impacted soil was excavated and disposed. The concrete pad was also removed and disposed. Verification samples were collected from the bottom and sidewalls of the excavation and analyzed for TPH diesel and 20-minute gamma spectroscopy. The sample results indicated that all impacted soil above remediation standards was removed. The closure was completed following the approved Corrective Action Plan. All impacted waste was disposed in the Area 6 Hydrocarbon Landfill. All non-impacted debris was disposed in the Area 9 Construction Landfill and the Area 23 Sanitary Landfill.

D. L. Gustafason

2001-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Detailed Test Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Test Information Detailed Test Information EPA tests vehicles by running them through a series of driving routines, also called cycles or schedules, that specify vehicle speed for each point in time during the laboratory tests. For 2007 and earlier model year vehicles, only the city and highway schedules were used. Beginning with 2008 models, three additional tests will be used to adjust the city and highway estimates to account for higher speeds, air conditioning use, and colder temperatures. Note: EPA has established testing criteria for electric vehicles and plug-in hybrids that are slightly different than those for conventional vehicles. New Tests City Highway High Speed Air Conditioning Cold Temperature Detailed Comparison EPA Federal Test Procedure (City Schedule): Shows vehicle speed (mph) at each second of test

422

Compare Fuel Cell Vehicles Side-by-Side  

NLE Websites -- All DOE Office Websites (Extended Search)

Recently Tested Vehicles Recently Tested Vehicles Fuel cell vehicles (FCVs) are not yet for sale in the United States. However, manufacturers are producing small fleets of FCVs for evaluation and have estimated the fuel economy of some vehicles using EPA test procedures. Fuel economy estimates and other information for recently tested vehicles are provided below. 2012 Honda FCX Clarity Honda FCX Clarity 2012 Mercedes-Benz F-Cell Mercedes F-Cell Fuel Economy and Driving Range Fuel Economy (miles/kg) Note: One kg of hydrogen is roughly equivalent to one gallon of gasoline. Hydrogen 60 Combined 60 City 60 Hwy Hydrogen 52 Combined 52 City 53 Hwy Range (miles) 240 190 Vehicle Characteristics Vehicle Class Midsize Car Small Station Wagon Motor DC Brushless 100kW DC Permanent Magnet (brushless) Type of Fuel Cell Proton Exchange Membrane Proton Exchange Membrane

423

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

424

FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.  

DOE Green Energy (OSTI)

This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

Doughty, Daniel Harvey; Crafts, Chris C.

2006-08-01T23:59:59.000Z

425

Argonne National Laboratory puts alternative-fuel vehicles to the test  

DOE Green Energy (OSTI)

This paper describes the participation in the alternative-fueled vehicles (AFV) program at Argonne National Laboratory. Argonne maintains a fleet of 300 vehicles, including AFV`s.

NONE

1997-07-01T23:59:59.000Z

426

Field Testing Plug-in Hybrid Electric Vehicles with Charge Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

over future resource availability and the environmental impacts of continued fossil-fuel consumption. Plug-in hybrid electric vehicles (PHEVs), electric vehicles, and fuel cell...

427

2009 VW Jetta TDI Test Cell Location Front Vehicle Setup Information  

NLE Websites -- All DOE Office Websites (Extended Search)

VW Jetta TDI VW Jetta TDI Test Cell Location Front Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Diesel Vehicle Dynamometer Input Document Date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3625 35 Target B [lb/mph] Target C [lb/mph^2] 0.18 0.0193 Revision Number 3 Notes: Test Fuel Information Fuel type 2007 Certification Diesel Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.855 18355 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y c l e D i s t a n c e

428

Advanced Vehicle Testing Activity Benchmark Testing of the Chevrolet Volt Onboard Charger  

DOE Green Energy (OSTI)

This is a report for public consumption, for the AVTA website, detailing the testing and analysis of the benchmark testing conducted on the Chevrolet Volt on-board charger.

Richard Carlson

2012-04-01T23:59:59.000Z

429

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

by electric and hybrid vehicles", SAETechmcal Papers No.may response to hybrid vehicles Finally, we suggest thatsamebetweenvehicle tyoes. Hybrid Vehicles for examplecost a

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

430

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

431

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

gas vebacles and hybrid electric vehicles, maddition tocontrast to a hybrid electric vehicle that combines electrichousehold.In contrast to a hybrid electric vehicle that of

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

432

Microsoft Word - Vehicle Battery EA_BASF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lithium-ion battery industry and, more specifically, the electric drive vehicle (EDV) and hybrid-electric vehicle industry (HEV). If approved, DOE would provide approximately 50...

433

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

434

Vehicle Technologies Office: EV Everywhere Grand Challenge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

train college students and those in the workforce on development, maintenance, and emergency response for electric drive vehicles and electric vehicle charging stations....

435

Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.  

SciTech Connect

In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

Nelson, P. A.; Henriksen, G. L.; Amine, K.

2000-12-04T23:59:59.000Z

436

Electric Vehicles: Compare Side-by-Side  

NLE Websites -- All DOE Office Websites (Extended Search)

Cars Station Wagons SUVs & Vans Fuel Economy Specs Personalize 2013 Smart fortwo Electric Drive Convertible 2013 Smart fortwo Electric Drive Coupe Electric Vehicle 2013 Smart...

437

Impact of Lithium Availability on Vehicle Electrification (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the relationship between electric drive vehicles and the availability of lithium.

Neubauer, J.

2011-07-01T23:59:59.000Z

438

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Vision Motor Corp. - Tyrano Eaton - Hybrid Drive System Fuel Type: Hybrid - Diesel Electric...

439

Application of the GSFUDS to advanced batteries and vehicles  

DOE Green Energy (OSTI)

The GSFUDS approach to determining appropriate battery test power profiles is applied to various combinations of advanced batteries and electric vehicles. Computer simulations are used to show that the SFUDS velocity driving profile developed for the IDSEP electric vehicle also yielded energy consumption (Wh/km) and peak power values for other vehicles of greatly different characteristics that are in good agreement with the corresponding values for the same vehicles on the FUDS driving cycle. The computer results also showed that the GSFUDS power steps expressed as multiples of the average power, Pav are applicable to electric vehicles in general for the SFUDS driving profile if the peak power step is altered to reflect the changes in the vehicle design. A general procedure is given for presenting battery test data in terms of the constant power and GSFUDS Ragone curves from which the vehicle range can be determined for the FUDS and other driving cycles for different vehicle designs. 5 refs., 6 figs., 6 tabs.

Burke, A.F.; Cole, G.H.

1990-01-01T23:59:59.000Z

440

Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure), Vehicle Testing and Integration Facility (VTIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Testing and Integration Facility Vehicle Testing and Integration Facility Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil- fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year-not only to get from point A to point B, but also to keep passengers comfortable with air condi- tioning and heat. At the National Renewable Energy Laboratory (NREL), three instal- lations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are develop-

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

of electric vehicles the safety of compressed gas vehicleselectric vehicles the practicality of home recharging or the safety

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

442

Vehicle Technologies Office: Fact #798: September 23, 2013 Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 23, 2013 Plug-in Hybrid Vehicle Driving Range to someone by E-mail Share Vehicle Technologies Office: Fact 798: September 23, 2013 Plug-in Hybrid Vehicle Driving...

443

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

444

Hybrid Electric Vehicle End-of-life Testing on Honda Insights, Honda Gen I Civics, and Toyota Gen I Priuses  

NLE Websites -- All DOE Office Websites (Extended Search)

262 262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses TECHNICAL REPORT James Francfort Donald Karner Ryan Harkins Joseph Tardiolo February 2006 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-06-01262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses James Francfort i Donald Karner and Ryan Harkins ii Joseph Tardiolo iii February 2006 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy

445

The Case for Electric Vehicles  

E-Print Network (OSTI)

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

446

Top 10 tech cars [hybrid electric vehicles  

Science Conference Proceedings (OSTI)

A number of new hybrid electric vehicle owners have expressed their disappointment with their purchase because of poor mileage. Official ratings for fuel use, based on the outdated driving patterns of US government test, turned out to be a poor predictor ...

J. Voelcker

2005-03-01T23:59:59.000Z

447

Physical model of a hybrid electric drive train  

E-Print Network (OSTI)

A motor and flywheel system was designed to simulate the dynamics of the electric drive train and inertial mass of a hybrid electric vehicle. The model will serve as a test bed for students in 2.672 to study the energy ...

Young, Brady W. (Brady William)

2006-01-01T23:59:59.000Z

448

OpenXC sample driving data | OpenEI Community  

Open Energy Info (EERE)

OpenXC sample driving data OpenXC sample driving data Home > Groups > Developer Rmckeel's picture Submitted by Rmckeel(297) Contributor 24 September, 2012 - 10:29 OpenXC This file represents raw data from OpenXC, in the form of single-vehicle trace files. This may be accessed from any programming language or existing system you want, but a Python wrapper will soon be made available and linked to OpenEI's energy hackathon resources. A description of the format for each individual measurement: http://openxcplatform.com/vehicle-interface/output-format.html A description of the trace files (including the driving.txt file), which is simple a list of individual measurements with timestamps: http://openxcplatform.com/android/testing.html Note: when this sample data forms a more complete dataset of real driving

449

Drive5 | Open Energy Information  

Open Energy Info (EERE)

Drive5 Drive5 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drive5 Agency/Company /Organization: Drive5 Sector: Energy Focus Area: Vehicles Resource Type: Software/modeling tools User Interface: Website, Mobile Device Website: www.drive5.us Web Application Link: www.drive5.us Cost: Free OpenEI Keyword(s): Challenge Generated Drive5 Screenshot References: Drive5[1] Challenge.gov[2] Challenge.gov Submission Page[3] Measure your fuel economy real time with five metrics to save on fuel costs. Overview Drive1: Fuel Economy Drive5 gives you real time fuel economy feedback for any car 1984 and newer by simply utilizing the sensors embedded in your phone or tablet. It uses a statistical algorithm which leverages the fueleconomy.gov's open dataset along with data from thousands of automobile trips. No connections to the

450

Electrical Motor Drive Apparatus and Method - Energy Innovation Portal  

Vehicles and Fuels Industrial Technologies Electrical ... Auto manufacturers ; Industrial motor drive manufacturers; Patents and Patent Applications. ID Number.

451

PHEV Energy Storage and Drive Cycle Impacts (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts, presented at the 7th Advanced Automotive Battery Conference.

Markel, T.; Pesaran, A.

2007-05-17T23:59:59.000Z

452

The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV  

SciTech Connect

On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicle’s fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energy’s Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

Richard Barney Carlson

2009-10-01T23:59:59.000Z

453

Validating simulation tools for vehicle system studies using advanced control and testing procedure.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer the potential to increase propulsion system efficiency and decrease pollutant emissions relative to conventional vehicles. The US Department of Energy (DOE) and the auto industry are developing HEV technology as part of the Partnership for a New Generation of Vehicles (PNGV) program. Argonne National Laboratory (ANL) supports the DOE in this program by contributing to technical target setting and evaluating new technologies in a vehicle systems context. In this role, ANL has developed a unique set of interrelated tools and facilities to analyze, develop, and validate components and propulsion systems in a vehicle environment.

Pasquier, M.; Duoba, M.; Rousseau, A.

2001-09-12T23:59:59.000Z

454

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

and the demand electric vehicles", Transportation ResearchA,Critical Review Electric Vehicle MarketStudies", ReleasableR. (1993) Report of the Electric Vehicle at-HomeRefi~ehng

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

455

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

a sidebar to a longer article on electric vehicles. ) Cogan,R. Electric vehicles: Powerplay on the auto circuit. MotorA Critical Review of Electric Vehicle Market Studies",

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

456

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

457

advanced vehicle technologies awards table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

format cells with extremely high energy density, that meet performance, life, and safety requirements of electric drive vehicles. Applied Materials Inc. Santa Clara, CA...

458

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

42] Hakim, D. (2005) “Hybrid-Car Tinkerers Scoff at No-Plug-J. (1969) “…and a Commuter Car with Hybrid Drive. ” PopularCars Initiative (2007) Photo: Technical Photos of Plug-In Hybrids and

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

459

Durability testing of a Toyota LCS-M (lean combustion system-methanol) Carina. Technical report  

Science Conference Proceedings (OSTI)

This report describes the exhaust emissions, fuel economy, and oil-sample analysis from a Toyota LCS-M Carina motor vehicle fueled with M100 fuel. The vehicle accumulated 6,000 miles driven over the AMA durability driving schedule in order to determine if exhaust-emissions levels increase during the first 5,000-15,000 miles of driving with a light-duty methanol-fueled vehicle. The program description, test-vehicle description, test facilities, and the test-vehicle specifications are included.

Piotrowski, G.K.

1989-06-01T23:59:59.000Z

460

Traction Drive Systems Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Drive Systems Breakout Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov EV Everywhere Traction Drive System * DOE goals for Electric Traction Drive System (TDS) innovations must be disruptive innovation focused to meet the CY2022 price target ($20,000 $25,000) for a mid-sized 5 passenger sedan having 5 year simple payback. Enhanced Efficiency Reduced Cost Traction Drive System EETT Roadmap: "Therefore, research is needed to develop technologies that are less expensive and, at the same time, smaller, lighter, more efficient, and equally reliable as conventional automotive technologies. "

Note: This page contains sample records for the topic "drive vehicle testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Front Vehicle Setup Information Downloadable Dynamometer Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Volt- 20F Test cell location Front Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture EREV Vehicle dynamometer...

462

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

463

Overview of Advanced Technology Transportation, 2005 Update. Advanced Vehicle Testing Activity  

DOE Green Energy (OSTI)

Document provides an overview of the transportation market in 2005. Areas covered include hybrid, fuel cell, hydrogen, and alternative fuel vehicles.

Barnitt, R.; Eudy, L.

2005-08-01T23:59:59.000Z

464

Design and testing of the WVU Challenge X competition hybrid diesel electric vehicle.  

E-Print Network (OSTI)

??The WVU Challenge X Team was tasked with improving the fuel economy of a 2005 Chevrolet Equinox while maintaining the stock performance of the vehicle.… (more)

Mearns, Howard Andrew.

2009-01-01T23:59:59.000Z

465

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

new feanlres of compressed natural gas. battery poweredgasoline, compressed natural gas, hybrid dectdc, two typesNatural gas vehicles (NGVs) were available with one two compressed

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

466

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

new features of compressed natural gas, battery poweredgasoline, compressed natural gas, hybrid electric, two typesNatural gas vehicles (NGVs) were available with one or two compressed

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

467

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, vol. 1. Nationwidecompetitive plug-in hybrid electric vehicles. EnvironmentalDriving plug-in hybrid electric vehicles: reports from US

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

468

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

469

Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle  

DOE Green Energy (OSTI)

On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

NONE

1995-07-01T23:59:59.000Z

470

Fuel and emission impacts of heavy hybrid vehicles.  

DOE Green Energy (OSTI)

Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

An, F.; Eberhardt, J. J.; Stodolsky, F.

1999-03-02T23:59:59.000Z

471

Vehicle to Grid Demonstration Project  

SciTech Connect

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

472

Probabilistic evaluation of mobile source air pollution: Volume 1 -- Probabilistic modeling of exhaust emissions from light duty gasoline vehicles. Final report, 1 August 1994--31 May 1997  

Science Conference Proceedings (OSTI)

Emission factors for light duty gasoline vehicles (LDGV) are typically developed based upon laboratory testing of vehicles for prescribed driving cycles. In this project, selected LDGV data sets and modeling assumptions used to develop Mobile5a were revisited. Probabilistic estimates of the inter-vehicle variability in emissions and the uncertainty in fleet average emissions for selected vehicle types and driving cycles were made. Case studies focused upon probabilistic analysis of base emission rate and speed correction estimates used in Mobile5a for throttle body and port fuel injected vehicles. Based upon inter-vehicle variability in the data sets and a probabilistic model in which the standard error terms of regression models employed in Mobile5a are also considered, the uncertainty was estimated for average emission factors for the selected fleets of light duty gasoline vehicles. The 90 percent confidence interval for the average emission factor varied in range with pollutant and driving cycle.

Frey, H.C.; Kini, M.D.

1997-12-01T23:59:59.000Z

473

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

474