Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

2

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 6,598 All operation Overall gasoline fuel economy (mpg) 73.7 Overall AC electrical energy consumption (AC Whmi) 170...

3

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 145 Number of vehicle days driven: 6,817 All operation Overall gasoline fuel economy (mpg) 66.6 Overall AC electrical energy consumption (AC Whmi) 171...

4

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All operation Overall gasoline fuel economy (mpg) 68.6 Overall AC electrical energy consumption (AC Whmi) 175...

5

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Number of vehicles: 66 Number of vehicle days driven: 845 All operation Overall gasoline fuel economy (mpg) 85.0 Overall AC electrical energy consumption (AC Whmi) 181...

6

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 5,795 All operation Overall gasoline fuel economy (mpg) 67.8 Overall AC electrical energy consumption (AC Whmi) 180...

7

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 110 Number of vehicle days driven: 3,227 All operation Overall gasoline fuel economy (mpg) 74.8 Overall AC electrical energy consumption (AC Whmi) 185...

8

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 144 Number of vehicle days driven: 7,129 All operation Overall gasoline fuel economy (mpg) 72.5 Overall AC electrical energy consumption (AC Whmi) 166...

9

Electric Drive Vehicles and Their Infrastructure Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Webinar - Electric Drive Vehicles and Their Infrastructure Issues (March 2010) Jim Francfort and Don Karner Advanced Vehicle Testing Activity March 24, 2010 This...

10

Electric vehicle drive train with contactor protection ...  

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the ...

11

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 416...

12

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2,405,406 Average Ambient Temperature (deg F) 61.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 355...

13

Drive reconfiguration mechanism for tracked robotic vehicle  

SciTech Connect

Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

Willis, W. David (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

14

Propane Vehicle Demonstration Grant Program  

Science Conference Proceedings (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

15

NREL: Vehicles and Fuels Research - DRIVE: Drive-Cycle Rapid...  

NLE Websites -- All DOE Office Websites (Extended Search)

representative drive cycles from raw data, the tool is capable of comparing vehicle operation to industry standard test cycles and can even select a representative...

16

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

17

Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Vehicle Technologies Program Vehicle Technologies Program - Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles and Charging Infrastructure...

18

Vehicle to Grid Demonstration Project  

SciTech Connect

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

19

Large-scale battery system modeling and analysis for emerging electric-drive vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles demonstrate the potential for significant reduction of petroleum consumption and greenhouse gas emissions. Existing electric-drive vehicles typi- cally include a battery system consisting of thousands of Lithium-ion battery ... Keywords: analysis, battery system model, electric-drive vehicles

Kun Li; Jie Wu; Yifei Jiang; Zyad Hassan; Qin Lv; Li Shang; Dragan Maksimovic

2010-08-01T23:59:59.000Z

20

Demonstrating Ultra-Low Diesel Vehicle Emissions  

DOE Green Energy (OSTI)

Evaluate performance of near-term exhaust emissions control technologies on a modern diesel vehicle over transient drive cycles; Phase 1: Independent (separate) evaluations of engine-out, OEM catalysts, CDPF, and NOx adsorber (Completed March 2000); Phase 2: Combine NOx adsorber and CDPF to evaluate/demonstrate simultaneous reduction of NOx and PM (Underway--interim results available); Establish potential for these technologies to help CIDI engines meet emission reduction targets; and Investigate short-term effects of fuel sulfur on emissions performance

McGill, R.N.

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DRIVE U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). Specifically, the Partnership is a forum for pre-competitive technical information exchange among partners to discuss R&D needs, develop joint goals and technology roadmaps, and evaluate R&D progress for a broad range of technical areas. By providing a framework for frequent and regular interaction among technical experts in a common area of expertise, the Partnership -

22

Electric vehicle drive train with contactor protection  

SciTech Connect

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

1994-01-01T23:59:59.000Z

23

Electric vehicle drive train with contactor protection  

DOE Patents (OSTI)

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

Konrad, C.E.; Benson, R.A.

1994-11-29T23:59:59.000Z

24

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities...

25

Personalized driving behavior monitoring and analysis for emerging hybrid vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles, such as hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs), hold the potential for substantial reduction of fuel consumption and greenhouse gas emissions. User driving behavior, which varies from person ...

Kun Li; Man Lu; Fenglong Lu; Qin Lv; Li Shang; Dragan Maksimovic

2012-06-01T23:59:59.000Z

26

Vehicle Technologies Office: Fact #452: January 15, 2007 Driving  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 15, 2: January 15, 2007 Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on AddThis.com... Fact #452: January 15, 2007 Driving Differences Those living in the center city drive fewer miles in a day than those in

27

Think City Electric Vehicle Demonstration Program  

DOE Green Energy (OSTI)

The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

Ford Motor Company

2005-03-01T23:59:59.000Z

28

Vehicle Technologies Office: Materials for Hybrid and Electric Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

for Hybrid and for Hybrid and Electric Drive Systems to someone by E-mail Share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Facebook Tweet about Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Twitter Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Google Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Delicious Rank Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Digg Find More places to share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

29

All-Terrain Vehicle: Non-Road Electric Vehicle Demonstration  

Science Conference Proceedings (OSTI)

An all-terrain vehicle (ATV) is defined by the American National Standards Institute (ANSI) as one that travels on low-pressure tires, with a seat that is straddled by the operator or the operator and one passenger, along with handlebars for steering control. As the name implies, it is designed to handle a wider variety of terrain than most other vehicles. The gasoline-fueled four-wheel drive option is now the most popular type of ATV, with expanding uses in industries such as farming, ranching, and cons...

2009-12-21T23:59:59.000Z

30

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

31

Electric Drive Vehicle and Charging Infrastructure Demonstrations...  

NLE Websites -- All DOE Office Websites (Extended Search)

P t ti - Energy Critical Infrastructure Protection - Homeland Security and Cyber Security Nuclear 2 Hydropower Geothermal t t AVTA Participants and Goals P ti i t * Participants -...

32

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

33

Vehicle Technologies Office: Fact #420: April 17, 2006 Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: April 17, 2006 Driving Less Due to Gasoline Prices to someone by E-mail Share Vehicle Technologies Office: Fact 420: April 17, 2006 Driving Less Due to Gasoline Prices on...

34

Electric vehicle drive train with direct coupling transmission ...  

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode ...

35

Battery Electric Vehicle Driving and Charging Behavior Observed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America...

36

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric...

37

Design of Electric Drive Vehicle Batteries for Long Life and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kandler Smith, NREL EDV Battery Robust Design - 1 Design of Electric Drive Vehicle Batteries for Long Life and Low Cost Robustness to Geographic and Consumer-Usage Variation...

38

EA-1722: Toxco, Inc. Electric Drive Vehicle Battery and Component...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EA-1722: Toxco, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative, Lancaster, OH EA-1722: Toxco, Inc. Electric...

39

DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

Not Available

2013-04-01T23:59:59.000Z

40

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

42

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

Konrad, Charles E. (Roanoke, VA)

1994-01-01T23:59:59.000Z

43

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

Konrad, C.E.

1994-12-27T23:59:59.000Z

44

Vehicle Technologies Office: Fact #797: September 16, 2013 Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

driving ranges for electric vehicles (EVs) offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV offered, ranging from 139 miles for the 40...

45

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have...

46

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need November 26, 2013 - 12:00pm Addthis Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteer John Schelble helps unload a delivery truck at a food pantry. Volunteer John Schelble helps unload a delivery truck at a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry.

47

AVTA Electric Drive Vehicle Testing Activities & Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

considerations 2 AVTA Description * The Idaho National Laboratory (INL) and Electric Transportation Engineering Corporation (eTec) conduct the AVTA for DOE's Vehicle...

48

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

electrochemical energy storage Electric propulsion systems (e.g., power electronics, electric motors) Fuel cell power systems Lightweight materials Vehicle systems and...

49

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

50

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

D. (1995), Future Drive Electric Vehicles and Sustainable1996), "The Case for Electric Vehicles," Sclent~c American,Emissions Impacts of Electric Vehicles," Journal of the Alr

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

51

Drive cycle analysis of the performance of hybrid electric vehicles  

Science Conference Proceedings (OSTI)

This paper presents a drive cycle analysis of hybrid electric vehicle power train configurations. Based on fuel economy and emissions factors, a tradeoff between conventional, series hybrid, parallel hybrid, and a parallel-series hybrid is drawn. The ... Keywords: emissions, fuel consumption, hybrid electric vehicles, modeling and simulation

Behnam Ganji; Abbas Z. Kouzani; H. M. Trinh

2010-09-01T23:59:59.000Z

52

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

DOE Green Energy (OSTI)

This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

Pesaran, A. A.

2011-05-01T23:59:59.000Z

53

The drive toward hydrogen vehicles just got shorter  

NLE Websites -- All DOE Office Websites (Extended Search)

The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter Researchers have revealed a new single-stage method for recharging the hydrogen storage compound ammonia borane. March 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

54

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Demonstration Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

55

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network (OSTI)

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M for electric/hybrid electric vehicles where each phase of a three-phase cascaded multilevel converter can vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid

Tolbert, Leon M.

56

Heel and toe driving on fuel cell vehicle  

DOE Patents (OSTI)

A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

Choi, Tayoung; Chen, Dongmei

2012-12-11T23:59:59.000Z

57

All-Terrain Vehicle: Non-Road Electric Vehicle Demonstration  

Science Conference Proceedings (OSTI)

An all-terrain vehicle (ATV) is defined by the American National Standards Institute (ANSI) as one that travels on low-pressure tires, with a seat that is straddled by the operator or the operator and one passenger, along with handlebars for steering control. Most ATVs are gas powered, but replacement of gas-powered ATVs with an electric equivalent could reduce emissions output, fuel consumption, and other petrochemical byproducts resulting from operation of these vehicles. An electric ATV offers all of ...

2010-12-31T23:59:59.000Z

58

Demonstrating Electric Vehicles in Canada | Open Energy Information  

Open Energy Info (EERE)

Demonstrating Electric Vehicles in Canada Demonstrating Electric Vehicles in Canada Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demonstrating Electric Vehicles in Canada Agency/Company /Organization: Natural Resources Canada Focus Area: Vehicles Topics: Best Practices Website: www.emc-mec.ca/RelatedReports/DemonstratingElectricVehiclesInCanada-Pr The purpose of this demonstration study is to define the desirable characteristics of Canadian projects that demonstrate plug-in vehicles, and to determine the appropriate mechanism to collect and disseminate the monitoring data. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

59

Fuel Cell Vehicle Learning Demonstration: Spring 2007 Results (Presentation)  

DOE Green Energy (OSTI)

This presentation provides the results, as of Spring 2007, for the fuel cell vehicle learning demonstration conducted by the National Renewable Energy Laboratory.

Wipke, K.; Sprik, S.; Thomas, H.; Welch, C.; Gronich, S.; Garbak, J.

2007-03-20T23:59:59.000Z

60

National Fuel Cell Electric Vehicle Learning Demonstration Final...  

NLE Websites -- All DOE Office Websites (Extended Search)

national daily average miles traveled. An effective 40-mile electric range would allow electrification of more than two-thirds of the Learning Demonstration vehicle miles and...

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results (Presentation)  

DOE Green Energy (OSTI)

Presentation prepared for the 2008 National Hydrogen Association Conference that describes the spring 2008 results for DOE's Fuel Cell Vehicle Learning Demonstration.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-02T23:59:59.000Z

62

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

Electric-Drive Vehicles In the very early years of the automotive industry,electric-drive vehicles, especially battery-powered EVs The programs are almost aU in countries with major automotive manufacturing industries.

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

63

Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies  

Science Conference Proceedings (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

Neubauer, J.; Brooker, A.; Wood, E.

2012-07-01T23:59:59.000Z

64

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions and torque ripples. Keywords- Electric Vehicle, Plug-in Hybrid Vehicle, On-board Battery Charger, H on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger

Paris-Sud XI, Université de

65

February 23, 2007: Alternative Fuel Vehicle Demonstration at White House  

Energy.gov (U.S. Department of Energy (DOE))

February 23, 2007President Bush and Secretary Bodman participate in a demonstration of alternative fuel vehicles (AFVs) on the South Lawn of the White House. "I firmly believe that the goal I laid...

66

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have questions? Ask us here or on #LabChat. Ask Us Addthis What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet your questions to @ENERGY using #LabChat. Send questions via email to NewMedia@hq.doe.gov.

67

Conventional and fuzzy PI control of voltage-source inverter-fed induction motor drive for electric vehicle  

Science Conference Proceedings (OSTI)

Keywords: adaptive control, control algorithm, electric vehicle, fuzzy control, inverter drive system

Tadeusz Stefanski

1995-12-01T23:59:59.000Z

68

Search on Modeling and Collaborative Simulation for Electric Drive Wheeled Armored Vehicle  

Science Conference Proceedings (OSTI)

In order to evaluate the performance of electric transmission wheeled armored vehicle, models of motor driving system and dynamics of the 8 wheels drive vehicles based on ADAMS/Car were constructed, which compose the model of collaborative simulation ... Keywords: ADAMS/Car, Matlab, electric transmission, wheeled armored vehicle, collaborative simulation, dynamic performance

Zili Liao, Guibing Yang, Chunguang Liu, Yu Xiang

2012-07-01T23:59:59.000Z

69

Design of Electric Vehicles DC Traction Motor Drive System Based on Optimal Control  

Science Conference Proceedings (OSTI)

The traditional electric vehicle DC motor drive system can not automatically weaken magnetic field. This paper designs DC motor drive system which control optimally the motor to meet the requirement. The study results show that: the drive system can ... Keywords: electric vehicles, DC motor, controller, optimal control

Yan Jun

2012-12-01T23:59:59.000Z

70

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing Activities and Results Jim Francfort E.V. Road Map - Preparing Oregon for the Introduction of Electric Vehicles...

71

AUTHORIZATION TO OBTAIN DRIVING RECORDS FROM THE DEPARTMENT OF MOTOR VEHICLES  

E-Print Network (OSTI)

AUTHORIZATION TO OBTAIN DRIVING RECORDS FROM THE DEPARTMENT OF MOTOR VEHICLES (INF 254) Section necessary driver and motor vehicle record data to support this status check. X (Employee Signature) (Date

de Lijser, Peter

72

Methanol fuel vehicle demonstration: Exhaust emission testing. Final report  

DOE Green Energy (OSTI)

Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

1993-07-01T23:59:59.000Z

73

Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint  

SciTech Connect

Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

O' Keefe, M.; Vlahinos, A.

2009-08-01T23:59:59.000Z

74

Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary  

DOE Green Energy (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

NONE

1997-03-01T23:59:59.000Z

75

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

76

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

Science Conference Proceedings (OSTI)

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

77

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

1995-01-01T23:59:59.000Z

78

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

1995-04-04T23:59:59.000Z

79

Electric vehicle drive train with rollback detection and ...  

The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement.

80

#LabChat Recap: Innovations Driving More Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations Driving More Efficient Vehicles Innovations Driving More Efficient Vehicles #LabChat Recap: Innovations Driving More Efficient Vehicles December 21, 2012 - 10:47am Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #LabChat Recap: Innovations Driving More Efficient Vehicles The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy. Three researchers answered questions about advanced combustion, lightweighting and hybridization. Here is an overview of some of the conversations. Storified by Energy Department · Fri, Dec 21 2012 08:19:22 We kicked off the #LabChat with introductions from all the researchers. Each researcher focuses on a different vehicle technology that is expected to make great strides in improving vehicle

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Highway vehicle electric drive in the United States : 2009 status and issues.  

DOE Green Energy (OSTI)

The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

Santini, D. J.; Energy Systems

2011-02-16T23:59:59.000Z

82

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

DOE Green Energy (OSTI)

The U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOEs Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

83

Would You Consider Driving a Vehicle that Can Run on Biodiesel? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? September 16, 2010 - 7:30am Addthis On Monday, Shannon told you about biodiesel, a renewable fuel that can power a vehicle using less fuel and producing fewer greenhouse gas emissions. DOE has an Alternative Fuel Station Locator that can help drivers find the nearest fueling station to fill up their vehicles. Would you consider driving a vehicle that can run on biodiesel? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at

84

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whys early market for hybrid electric vehicles. TransportationDriving Plug-In Hybrid Electric Vehicles: Reports from U.S.

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

85

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Electric National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Technical Report NREL/TP-5600-54860 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Prepared under Task No. HT12.8110 Technical Report NREL/TP-5600-54860 July 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

86

U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-10-21T23:59:59.000Z

87

Interpersonal Influence within Car Buyers Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." TransportationPlug-in Hybrid Electric Vehicle (PHEV) Demonstration and

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

88

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

DOE Green Energy (OSTI)

This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-07-01T23:59:59.000Z

89

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

DOE Green Energy (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

90

Advanced Batteries for Electric-Drive Vehicles: A Technology and Cost-Effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

Availability of affordable advanced battery technology is a crucial challenge to the growth of the electric-drive vehicle (EDV) market. This study assesses the state of advanced battery technology for EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles (HEV 0s -- hybrids without electric driving range), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. The first part of this study presents assessments of current battery performance and cycle life ca...

2004-05-31T23:59:59.000Z

91

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Plan Partnership Plan March 2013 U.S. DRIVE Partnership Plan Table of Contents Foreword ....................................................................................................................................................... 2 Definition ...................................................................................................................................................... 3 Partners ......................................................................................................................................................... 3 U.S. DRIVE Vision ........................................................................................................................................... 3 U.S. DRIVE Mission ........................................................................................................................................ 4

92

Electric-Drive Vehicles: A Source of Power and Reliability to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric-Drive Vehicles: A Source of Power and Reliability to the California Electric Grid Speaker(s): Willett M. Kempton Date: April 30, 2001 - 3:00pm Location: Bldg. 90 Seminar...

93

Analysis Tool Generates Custom Vehicle Drive Cycles Based on...  

NLE Websites -- All DOE Office Websites (Extended Search)

usage, supplying information needed to perform vital development tasks, such as sizing electric motors in a hybrid vehicle configuration or optimizing battery storage in an...

94

NREL: Fleet Test and Evaluation - Fleet DNA: Vehicle Drive Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fleet DNA Project graphic depicting a trail of data emerging from trucks. Fleet DNA helps vehicle manufacturers and fleet managers understand the broad operational range for many...

95

Study on Regenerative Brake Method of Hybrid Electric Drive System of Armored Vehicle  

Science Conference Proceedings (OSTI)

Aiming at characteristics of regenerative brake of hybrid electric drive system of tracked armored vehicle, mechanism of regenerative brake by pulse width modulation is in-depth analyzed, motor speed, brake current, feedback current, feedback energy ... Keywords: hybrid electric drive, motor, regenerative brake

Li Hua; Zhong Meng-chun; Zhang Jian; Xu Da; Lin Hai

2011-10-01T23:59:59.000Z

96

Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)  

DOE Green Energy (OSTI)

Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2008-10-13T23:59:59.000Z

97

ASME Treasure Valley Section - Electric Drive Vehicles and Infrastruct...  

NLE Websites -- All DOE Office Websites (Extended Search)

- NEV 9 to 13 hours 8 Level 2 Charging Level * Expected to be most common method for residential and commercial charging * EVSE (electric vehicle supply equipment) for AC energy...

98

Treasure Valley CCC - Electric Drive Vehicles and Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

- NEV 9 to 13 hours 8 Level 2 Charging Level * Expected to be most common method for residential and commercial charging * EVSE (electric vehicle supply equipment) for AC energy...

99

Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Back to the Future": Flex-Fuel Vehicle Awareness "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, these flex fuel vehicles help to decrease our reliance on imported oil and reduce carbon pollution. The "Big Three" U.S. auto makers (Ford, General Motors, and Chrysler) recently announced that half of their entire 2012 vehicle line will be FFVs-including the

100

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electric Utility Terrain Vehicle Demonstration at a Military Base in Florida  

Science Conference Proceedings (OSTI)

Non-road electric vehicles such as lift trucks, airport ground support equipment and underground mining vehicles have proven themselves in the marketplace. However, heavy-duty utility-terrain vehicles (UTVs) powered exclusively by electricity have been introduced only recently. To test the capabilities of electric UTVs, two demonstration vehicles were instrumented for data acquisition and placed in ...

2013-07-31T23:59:59.000Z

102

Electric Utility Terrain Vehicle Demonstration in a Military Base Application  

Science Conference Proceedings (OSTI)

Utility terrain vehicles (UTVs), also called all terrain vehicles (ATVs), are used for a variety of purposes ranging from transporting people and materials to recreation. Examples of uses include transportation at military bases, for beach patrols, at ports, agricultural locations, industrial sites, and local/municipal applications such as at parks and schools. As of August 30, 2012 the Federal Highway Administration estimated that annual fuel usage of All-terrain vehicles to be approximately 173 ...

2013-07-24T23:59:59.000Z

103

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Demonstration Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

104

Equivalent circuit modeling of hybrid electric vehicle drive train  

E-Print Network (OSTI)

The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool. The objective of this work is to develop and validate a modeling and design method adapted to advanced vehicles conception. The designer, as a system engineer, needs performances predictions and physical understanding of the system dynamics. In order to achieve this objective, a methodology based on electrical analogies and transducers theory is presented in this work. Using the powerful circuit theory to solve multi-disciplinary problems is not revolutionary, but applied to the design of advanced vehicles, it brings a strong insight and a visual, intuitive interpretation of the set of differential equations. The equivalent circuit obtained from this method offers an elegant alternative to traditional methods and is especially adapted to the study of the interactions between the mechanical and the electrical side of any electromechanical system.

Routex, Jean-Yves

2001-01-01T23:59:59.000Z

105

Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle  

SciTech Connect

In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

Gao, Zhiming [ORNL; Curran, Scott [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

106

Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles  

DOE Green Energy (OSTI)

In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

2012-06-01T23:59:59.000Z

107

Position and force control of a vehicle with two or more steerable drive wheels  

DOE Green Energy (OSTI)

When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach to the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.

Reister, D.B.; Unseren, M.A.

1992-10-01T23:59:59.000Z

108

Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

DOE Green Energy (OSTI)

This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

2013-06-01T23:59:59.000Z

109

Results from the Vehicle/Infrastructure Learning Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

The objectives of this report are to: (1) validate H{sub 2} FC vehicles and infrastructure in parallel; (2) identify current status of technology and its evolution; (3) re-focus H{sub 2} research and development; and (4) support technology readiness milestone by 2015.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.

2006-05-18T23:59:59.000Z

110

National Fuel Cell Vehicle Learning Demonstration: Status and Results (Presentation)  

DOE Green Energy (OSTI)

The objectives of this paper are: (1) validate H{sub 2} FC vehicles and infrastructure in parallel; (2) identify current status and evolution of the technology; (3) objectively assess progress toward technology readiness; and (4) provide feedback to H{sub 2} research and development.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2009-04-22T23:59:59.000Z

111

Effects of battery technologies, driving patterns, and climate comfort control on the performance of electric vehicles  

SciTech Connect

A computer software package, EAGLES, has been developed at Argonne National Laboratory to analyze electric vehicle (EV) performance. In this paper, we present EAGLES predictions of EV driving range, acceleration rate, and energy consumption under various driving patterns, with different battery technologies, and with assumptions concerning use of air conditioners and/or heaters for climate comfort control. The specifications of a baseline, four-passenger EV for given design performance requirements are established, assuming urban driving conditions represented by the Los Angeles 92 (LA-92) driving cycle and using battery characteristics similar to those of the United States Advanced Battery Consortium (USABC) midterm battery performance goals. To examine the impacts of driving patterns, energy consumption is simulated under three different driving cycles: the New York City Cycle, the Los Angeles 92 Cycle, and the ECE-15 Cycle. To test the impacts of battery technologies, performance attributes of an advanced lead-acid battery, the USABC midterm battery goals, and the USABC long-term battery goals are used. Finally, EV energy consumption from use of air conditioners and/or heaters under different climates is estimated and the associated driving range penalty for one European city (Paris) and two United States cities (Chicago and Los Angeles) is predicted. The results of this paper show the importance of considering various effects, such as battery technology, driving pattern, and climate comfort control, in the determination of EV performances. Electric vehicle energy consumption decreases more than 20% when a battery with characteristics similar to the USABC long-term goals is used instead of an advanced lead-acid battery.

Marr, W.W.; Wang, M.Q.; Santini, D.J.

1994-05-15T23:59:59.000Z

112

Fuel Cell Vehicle Infrastructure Learning Demonstration: Status and Results; Preprint  

Science Conference Proceedings (OSTI)

Article prepared for ECS Transactions that describes the results of DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-09-01T23:59:59.000Z

113

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results; Preprint  

DOE Green Energy (OSTI)

Conference paper presented at the 2008 National Hydrogen Association Meeting that describes the spring, 2008 results of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-01T23:59:59.000Z

114

Evaluation of half wave induction motor drive for use in passenger vehicles. Final report  

SciTech Connect

This report describes research performed to devise and design a lower cost inverter-induction motor drive for electrical propulsion of passenger vehicles. A two-phase inverter-motor system is recommended. It is predicted to provide comparable vehicle performance, improved reliability and nearly a 10% cost advantage for a high production vehicle because of the reduction in total parts count, decreased total rating of the power semiconductor switches and somewhat simpler control hardware compared to the conventional three-phase bridge inverter-motor drive system. The major disadvantages of the two-phase inverter-motor drive are that the tow-phase motor is larger and more expensive than a three-phase machine, the design of snubbers for the power switches is difficult because motor lead and bifilar winding leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency. An actuall model of the two-phase system must be constructed and evaluated. The most challenging engineering design task will be to design the inverter, motor and snubber circuits to minimize transient voltages with high system efficiency.

Hoft, R.G.; Kawamura, A.; Goodarzi, A.; Yang, G.Q.; Erickson, C.L.

1985-05-01T23:59:59.000Z

115

Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle  

E-Print Network (OSTI)

The automobile industry is moving fast towards Electric Vehicles (EV); however this paradigm shift is currently making its smooth transition through the phase of Hybrid Electric Vehicles. There is an ever-growing need for integration of hybrid energy sources especially for vehicular applications. Different energy sources such as batteries, ultra-capacitors, fuel cells etc. are available. Usage of these varied energy sources alone or together in different combinations in automobiles requires advanced power electronic circuits and control methodologies. An exhaustive literature survey has been carried out to study the power electronic converter, switching modulation strategy to be employed and the particular machine to be used in an EV. Adequate amount of effort has been put into designing the vehicle specifications. Owing to stronger demand for higher performance and torque response in an EV, the Permanent Magnet Synchronous Machine has been favored over the traditional Induction Machine. The aim of this thesis is to demonstrate the use of a multi level inverter fed Brush Less Direct Current (BLDC) motor in a field oriented control fashion in an EV and make it follow a given drive cycle. The switching operation and control of a multi level inverter for specific power level and desired performance characteristics is investigated. The EV has been designed from scratch taking into consideration the various factors such as mass, coefficients of aerodynamic drag and air friction, tire radius etc. The design parameters are meant to meet the requirements of a commercial car. The various advantages of a multi level inverter fed PMSM have been demonstrated and an exhaustive performance evaluation has been done. The investigation is done by testing the designed system on a standard drive cycle, New York urban driving cycle. This highly transient driving cycle is particularly used because it provides rapidly changing acceleration and deceleration curves. Furthermore, the evaluation of the system under fault conditions is also done. It is demonstrated that the system is stable and has a ride-through capability under different fault conditions. The simulations have been carried out in MATLAB and Simulink, while some preliminary studies involving switching losses of the converter were done in PSIM.

Emani, Sriram S.

2010-05-01T23:59:59.000Z

116

United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)  

DOE Green Energy (OSTI)

This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2009-03-06T23:59:59.000Z

117

A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator  

E-Print Network (OSTI)

The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

Luskin, Paul (Paul L.)

2010-01-01T23:59:59.000Z

118

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities  

SciTech Connect

Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

Wang, M.Q.; Marr, W.W.

1994-02-10T23:59:59.000Z

119

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

background not only to vehicle manufacturers, but also todomestic and foreign vehicle manufacturers, and millions ofmakers as well as vehicle manufacturers. For example, as

Choo, S; Mokhtarian, Patricia L

2004-01-01T23:59:59.000Z

120

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

vehicle demand. Plug-in hybrid vehicles are found to reduceto conventional hybrid vehicles is further considered inBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

122

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, Volume 1: NationwideBEVs or plug-in hybrid electric vehicles (PHEVs) requirescell vehicle; HEV = Hybrid electric vehicle; ICE = Internal

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

123

Cycle timer for testing electric vehicles. [Device to assist test driver to follow stop-and-go driving cycles  

DOE Green Energy (OSTI)

A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct-current analog signal that drives a speedometer displayed on one scale of a dual-movement meter. The second scale of the dual-movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. One second before a speed transition (such as acceleration to cruise or cruise to coast), a small buzzer sounds for /sup 1///sub 2/ s to forewarn the operator of a change. A longer signal of 1 s is used to emphasize the start of a new cycle. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-V accessory battery, through a 5-V regulator and a 12-V dc-to-dc converter.

Soltis, R.F.

1978-01-01T23:59:59.000Z

124

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various countries and US cities  

SciTech Connect

Past studies have shown that use of electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled internal-combustion-engine vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, the authors estimate greenhouse gas emission reductions for EVs, including these important aspects. They select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the US) and analyze greenhouse emission impacts of EVs in each city or country. These selected cities and countries have distinct differences in electric power-plant fuel mixes. They also select six driving cycles developed around the world. They choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Thus, the city- or country-specific vehicle energy consumption estimates reflect effects of both vehicle driving cycles and electric power-plant mixes. Finally, they estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and power-plant and vehicle operations. They estimate that relative to GVs, EVs reduce greenhouse gas emissions in all selected US cities and countries.

Wang, M.Q.; Marr, W.W. (Argonne National Lab., IL (United States). Center for Transportation Research)

1994-09-01T23:59:59.000Z

125

Demonstration of the fuel economy potential associated with M85-fueled vehicles  

DOE Green Energy (OSTI)

A gasoline-fueled 1988 Chevrolet Corsica was converted to operate on M85 to demonstrate that the characteristics of methanol fuels can be exploited to emphasize vehicle fuel economy rather than vehicle performance. The results of the tests performed indicated fuel economy improvements of up to 21% at steady highway speeds, and almost 20% on the US Environmental Protection Agency`s federal test procedure city and highway cycles.

Hodgson, J.W.; Huff, S.P. [Tennessee Univ., Knoxville, TN (United States)

1993-12-01T23:59:59.000Z

126

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

The Relationship of Vehicle Type Choice to Personality,on revealed and stated vehicle type choice and utilizationA disaggregate model of auto-type choice. Transportation

Choo, S; Mokhtarian, Patricia L

2004-01-01T23:59:59.000Z

127

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network (OSTI)

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

128

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network (OSTI)

Science Knoxville, TN, 37996, USA tolbert@utk.edu Abstract ­ In hybrid electric vehicles (HEV), a battery-source inverter, dc bus capacitor, Electric vehicle, Harmonic current, Hybrid electric vehicle. I. INTRODUCTION Electric Vehicle Traction Drive Shengnan Li Student Member, IEEE The University of Tennessee Department

Tolbert, Leon M.

129

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle SymposiumSystem. 23rd International Electric Vehicle Symposium andof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

130

Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums  

E-Print Network (OSTI)

Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums ...

Philippe, F.

131

Highway Vehicle Electric Drive in the United States: 2009 Status and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL/ESD/10-9 ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States: 2009 Status and Issues Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

132

Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of Research Engine and Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation Thomas Wallner, Henning Lohse-Busch, Henry Ng Argonne National Laboratory Robert Peters University of Alabama at Birmingham NHA Annual Hydrogen Conference 2007 San Antonio/Texas March 19 th - 22 nd 2007 DOE-Sponsors: Lee Slezak, Gurpreet Singh Government license The submitted manuscript was developed by the UChicago Argonne LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC-02-06CH11357 with DOE. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on

133

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

Science Conference Proceedings (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

134

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives  

DOE Green Energy (OSTI)

Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

Giorgio Rizzoni

2005-09-30T23:59:59.000Z

135

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrated Petroleum Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy Murphy Larry Zirker Oil Bypass Filter Technology Evaluation * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program * Performed by Idaho National Engineering and Environmental Laboratory (INEEL) Fleet Operations * Goal - Support DOE's efforts to reduce petroleum consumption & ensure the energy security of the United States Oil Bypass Filter Technology Evaluation * Objectives - Test the concept of using oil bypass filters to minimize engine oil changes & the generation of waste oils - Demonstration the economics of oil bypass filter systems - Estimate potential engine oil saving from bypass filter technologies that can be achieved by INEEL,

136

Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices  

DOE Green Energy (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

NONE

1997-06-01T23:59:59.000Z

137

Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint  

SciTech Connect

Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2012-10-01T23:59:59.000Z

138

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

from Plug-in Hybrid Electric Vehicles, Chapter Nine incompetitive plug-in hybrid electric vehicles. Eviron. Res.of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

139

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

from Plug-in Hybrid Electric Vehicles, Chapter Nine inD.B. (editor) Plug-In Electric Vehicles: What Role Forplug-in hybrid electric vehicles. Eviron. Res. Lett. 2008,

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

140

Ford/DOE sodium-sulfur battery electric vehicle development and demonstration. Phase I-1. Final report  

DOE Green Energy (OSTI)

The results of Phase I-A analyses and design studies are presented. The objective of the Phase I-A effort was to evaluate the sodium-sulfur battery, in an existing conventional production automobile, as a potential power source for an electric vehicle. The Phase I-A work was divided into five (5) major sub-tasks as follows: vehicle specification sub-task; NaS battery packaging study sub-task; vehicle packaging layout sub-task; electrical system study sub-task; and system study sub-tasks covering performance and economy projections, powertrain and vehicle safety issues and thermal studies. The major results of the sodium-sulfur battery powered electric vehicle study program are: the Fiesta was chosen to be the production vehicle which would be modified into a 2-passenger, electric test bed vehicle powered by a NaS battery; the vehicle mission was defined to be a 2-passenger urban/suburban commuter vehicle capable of at least 100 miles range over the CVS driving cycle and a wide open throttle capability of 0 to 50 mph in 14 seconds, or less; powertrain component specifications were defined; powertrain control strategy has been selected; and a suitable test bed vehicle package scheme has been developed.

Not Available

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Model Year 2010 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV AHNXT03.7W19 SUV 7 16 21 18 4 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT03.7W19 SUV 6 16 21 18 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 17 22 19 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 17 22 19 4 no ACURA RL 3.7 6 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXV03.7PB9 midsize car

142

Model Year 2011 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXT03.7M19 SUV 6 16 21 18 3 no ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT03.7M19 SUV 5 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 17 22 19 3 no ACURA RL 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXV03.7PB9 midsize car

143

Model Year 2012 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT03.7R19 SUV 5 16 21 18 3 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV CHNXT03.7R19 SUV 6 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 19 24 21 4 no ACURA TL 3.5 6 SemiAuto-6 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXV03.5EB3 midsize car 5

144

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

145

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

on revealed and stated vehicle type choice and utilizationA disaggregate model of auto-type choice. Transportationforecasting automobile type-choice. Transportation Research

Choo, Sangho; Mokhtarian, Patricia L.

2004-01-01T23:59:59.000Z

146

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

DOE Green Energy (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

147

Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980  

DOE Green Energy (OSTI)

The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

Not Available

1981-03-01T23:59:59.000Z

148

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

149

Advanced hydrogen/methanol utilization technology demonstration. Phase II: Hydrogen cold start of a methanol vehicle  

SciTech Connect

This is the Phase 11 Final Report on NREL Subcontract No. XR-2-11175-1 {open_quotes}Advanced Hydrogen/Methane Utilization Demonstration{close_quotes} between the National Renewable Energy Laboratory (NREL), Alternative Fuels Utilization Program, Golden, Colorado and Hydrogen Consultants, Inc. (HCI), Littleton, Colorado. Mr. Chris Colucci was NREL`s Technical Monitor. Colorado State University`s (CSU) Engines and Energy Conversion Laboratory was HCI`s subcontractor. Some of the vehicle test work was carried out at the National Center for Vehicle Emissions Control and Safety (NCVECS) at CSU. The collaboration of the Colorado School of Mines is also gratefully acknowledged. Hydrogen is unique among alternative fuels in its ability to burn over a wide range of mixtures in air with no carbon-related combustion products. Hydrogen also has the ability to burn on a catalyst, starting from room temperature. Hydrogen can be made from a variety of renewable energy resources and is expected to become a widely used energy carrier in the sustainable energy system of the future. One way to make a start toward widespread use of hydrogen in the energy system is to use it sparingly with other alternative fuels. The Phase I work showed that strong affects could be achieved with dilute concentrations of hydrogen in methane (11). Reductions in emissions greater than the proportion of hydrogen in the fuel provide a form of leverage to stimulate the early introduction of hydrogen. Per energy unit or per dollar of hydrogen, a greater benefit is derived than simply displacing fossil-fueled vehicles with pure hydrogen vehicles.

NONE

1995-05-01T23:59:59.000Z

150

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

DOE Green Energy (OSTI)

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

151

Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1978  

DOE Green Energy (OSTI)

This is the first annual report describing progress in the 33-month cooperative program between Argonne National Laboratory and Gould Inc.'s Nickel-Zinc/Electric Vehicle Project. The purpose of the program is to demonstrate the technical and economic feasibility of the nickel-zinc battery for electric vehicle propulsion. The successful completion of the program will qualify the nickel-zinc battery for use in the Department of Energy's demonstration program under the auspices of Public Law 94-413.

Not Available

1979-10-01T23:59:59.000Z

152

Regional Economic Impacts of Electric Drive Vehicles and Technologies: Case Study of the Greater Cleveland Area  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs), which combine desirable aspects of battery electric vehicles and hybrid electric vehicles, offer owners the advantages of increased fuel efficiency and lower annual fuel bills without concern for dead batteries, long recharge time, or limited range. This study examines the potential regional economic impacts due to increasing electric transportation in the Greater Cleveland Area (GCA). By applying regional input-output (RIO) analysis, the study determines the imp...

2009-07-31T23:59:59.000Z

153

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

electricity rates in California and across the United States (STATES ABSTRACT This study examines the relative economics of electric vehicle operation in the context of current electricity rates

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

154

Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving  

E-Print Network (OSTI)

and found to work satisfactorily. Keywords / Hybrid Electric Vehicles, Powertrain Control, Heavy DutyProceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

Peng, Huei

155

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report  

Science Conference Proceedings (OSTI)

A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

156

ROYAL HOLLOWAY, UNIVERSITY OF LONDON COLLEGE DRIVING AND VEHICLE SAFETY POLICY  

E-Print Network (OSTI)

Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202 Abstract- In this preliminary paper we propose new intersection collision avoidance architecture. This system allows vehicles where vehicles start to share their current state with the roadside unit. Early link establishment

157

Integration of electric drive vehicles with the electric power grida new value stream  

E-Print Network (OSTI)

Battery-electric vehicles and grid-connected hybrid vehicles rely on the power grid for energy-- they have to plug in to charge their batteries. With power alerts and blackouts a recent reality in California, it is easy to conclude that the energy requirements of grid-connected electric vehicles will make the energy crisis worse. Actually, quite the opposite may be true. With a bi-directional grid power interface, virtually any vehicle that can plug into the grid can potentially provide beneficial support to the grid. Battery electric vehicles can support the grid exceptionally well by providing any of a number of functions known collectively as ancillary services. These services are vital to the smooth and efficient operation of the power grid. A hybrid vehicle can provide ancillary services, and can also generate power. Fuel cells are already being commercialized for small stationary power sources, so a vehiclemounted fuel cell could also serve as a vehicle-to-grid power source. Sharing power assets between transportation and power generation functions can create a compelling new economics for electrically-propelled vehicles.

Alec Brooks; Tom Gage; Ac Propulsion

2001-01-01T23:59:59.000Z

158

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles  

Science Conference Proceedings (OSTI)

In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

2012-10-01T23:59:59.000Z

159

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructu...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some...

160

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

DOE Green Energy (OSTI)

The National Fuel Cell Electric Vehicle Learning Demonstration is a U.S. Department of Energy (DOE) project that started in 2004. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. The DOE's National Renewable Energy Laboratory (NREL) has now analyzed data from over five years of the seven-year project. During this time, over 144 fuel cell electric vehicles have been deployed, and 23 project refueling stations were placed in use.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Demonstration and Optimization of a Drive Laser for an X-Band Photoinjector  

SciTech Connect

Recently, a drive laser for an S-band (2.86 GHz) rf photoinjector, designed to provide a pulse that has a flat temporal and spatial profile, has been built, commissioned, and put into service as part of the LLNL Compton-scattering monoenergetic {gamma}-ray source program. This laser is based on an all-fiber oscillator and front-end amplification system, and provides both the laser light to generate the electrons as well as the rf signal that is amplified to accelerate them. Now, a new 11.424 GHz photoinjector is being developed, which has required a revised design for the laser system. The higher frequency has placed more stringent requirements on the synchronization stability, delivered pulse length, and pulse rise times to maintain the desired emittance. Presented here are the overall design and measured performance of the current system and a discussion of what changes are being made to address observed shortcomings and more demanding requirements to make the system ready for the next-generation Compton-scattering monoenergetic {gamma}-ray source.

Gibson, D J; Anderson, S G; Betts, S M; Messerly, M J; Phan, H H; Shverdin, M Y; Hartemann, F V; Siders, C W; Barty, C J

2009-04-17T23:59:59.000Z

162

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

163

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

164

Influence of alcohol on reliability and safety driver during driving on vehicle simulators  

Science Conference Proceedings (OSTI)

Alcohol, drugs and consequent serious attention decrease and aggression of human operators is one of the most common causes of accidents in traffic. Measure this situations are very dangerous and in real traffic. The paper describes objective methods ... Keywords: alcohol, measure, vehicle simulator, virtual reality

Roman Pieknik

2009-11-01T23:59:59.000Z

165

Interpersonal Influence within Car Buyers Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

in relation to the electric vehicle." Science Technology &Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." Transportation

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

166

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

167

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

168

Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint  

DOE Green Energy (OSTI)

Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

2010-12-01T23:59:59.000Z

169

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

Science Conference Proceedings (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

170

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

in and Batttery Electric Vehicles, The 5 th IEEE VehiclePlug-in and Battery Electric Vehicles, The 1 st IEEE EnergyE. Plug-in Hybrid-Electric Vehicle Powertrain Design and

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

171

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

172

Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration  

DOE Green Energy (OSTI)

Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

NONE

1995-03-01T23:59:59.000Z

173

Plug-in Hybrid Electric Vehicle Yard Tractor: Field Demonstration Results  

Science Conference Proceedings (OSTI)

The fuel economy results for US Hybrid's plug-in hybrid electric vehicle (PHEV) yard tractor, like all PHEVs, is sensitive to the manner in which the operator uses the vehicle and also to different duty cycles, terrain, temperature, and the frequency of charging. At three of the ports, the PHEV operated with a fuel consumption of 1.0 to 1.2 gallons per hour (gph) and 2.3 to 5.7 miles per gallon (mpg) in various duty modes. At the Port of Savannah, where it was solidly operated for only a week, it obtaine...

2011-12-29T23:59:59.000Z

174

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

DOE Green Energy (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

175

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

176

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

177

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

Gelder E. Plug-in Hybrid-Electric Vehicle Powertrain DesignIntegration for Hybrid Electric Vehicles, IEEE Transactionsmodels [1-3] of hybrid-electric vehicles using Advisor have

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

178

Interpersonal Influence within Car Buyers Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

promoted electric and hybrid vehicles to reduce urban airthe vehicle, and from hybrid vehicles, i.e. , adding batteryHaving researched hybrid vehicle and other pro-environmental

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

179

Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR Drive in New York, New York  

SciTech Connect

This a report about a field study of light-emitting diodes street lights by four different manufacturers installed on the FDR Drive in New York City, NY.

Myer, Michael; Hazra, Oindrila; Kinzey, Bruce R.

2011-12-01T23:59:59.000Z

180

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas, 2009­04­11). Plug-in vehicles, including plug-in hybrid electric vehicles (PHEVs) and battery electric

Michalek, Jeremy J.

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles  

E-Print Network (OSTI)

Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

Berry, Irene Michelle

2010-01-01T23:59:59.000Z

182

FCV Learning Demonstration: First-Generation Vehicle Results and Factors Affecting Fuel Cell Degradation (Presentation)  

DOE Green Energy (OSTI)

Presentaion on the FCV Learning Demonstration and factors affecting fuel cell degradation given at the Fuel Cell Seminar on October 17, 2007 in San Antonio, TX.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.; Garbak, J.

2007-10-17T23:59:59.000Z

183

Fuel Cell Vehicle Learning Demonstration: Study of Factors Affecting Fuel Cell Degradation  

DOE Green Energy (OSTI)

Conference paper prepared for the FuelCell2008 conference describing the results of the DOE Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Kurtz, J.; Wipke, K.; Sprik, S.

2008-11-01T23:59:59.000Z

184

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

185

FCV Learning Demonstration: Project Midpoint Status and First-Generation Vehicle Results; Preprint  

DOE Green Energy (OSTI)

This paper covers the progress accomplished by the U.S. DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project since inception, including results from analysis of six months of new data.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.; Garbak, J.

2007-12-01T23:59:59.000Z

186

Demonstration of oxygen-enriched combustion system on a light-duty vehicle to reduce cold-start emissions  

DOE Green Energy (OSTI)

The oxygen content in the ambient air drawn by combustion engines can be increased by polymer membranes. The authors have previously demonstrated that 23 to 25% (concentration by volume) oxygen-enriched intake air can reduce hydrocarbons (HC), carbon monoxide (CO), air toxics, and ozone-forming potential (OFP) from flexible-fueled vehicles (FFVs) that use gasoline or M85. When oxygen-enriched air was used only during the initial start-up and warm-up periods, the emission levels of all three regulated pollutants [CO, nonmethane hydrocarbons (NMHC), and NO{sub x}] were lower than the U.S. EPA Tier II (year 2004) standards (without adjusting for catalyst deterioration factors). In the present work, an air separation membrane module was installed on the intake of a 2.5-L FFV and tested at idle and free acceleration to demonstrate the oxygen-enrichment concept for initial start-up and warm-up periods. A bench-scale, test set-up was developed to evaluate the air separation membrane characteristics for engine applications. On the basis of prototype bench tests and from vehicle tests, the additional power requirements and module size for operation of the membrane during the initial period of the cold-phase, FTP-75 cycle were evaluated. A prototype membrane module (27 in. long, 3 in. in diameter) supplying about 23% oxygen-enriched air in the engine intake only during the initial start-up and warm-up periods of a 2.5-L FFV requires additional power (blower) of less than one horsepower. With advances in air separation membranes to develop compact modules, oxygen enrichment of combustion air has the potential of becoming a more practical technique for controlling exhaust emissions from light-duty vehicles.

Sekar, R.; Poola, R.B.

1997-08-01T23:59:59.000Z

187

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

188

Prospects for electric vehicles  

Science Conference Proceedings (OSTI)

This paper discusses the current state-of- the-art of electric vehicles (EVs) with examples of recently developed prototype vehicles - Electric G-Van, Chrysler TEVan, Eaton DSEP and Ford/GE ETX-II. The acceleration, top speed and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress being made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles and their potential for reduction of air pollution and utility load management are postulated.

Patil, P.G. (Research and Development, Electric and Hybrid Propulsion Div., U.S. Dept. of Energy, Washington, DC (US))

1990-12-01T23:59:59.000Z

189

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

DOE Green Energy (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

190

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DEPARTMENT OF ENERGY HYBRID DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors

191

Safety Criteria for Isolated Direct Current Systems in Electric Vehicles: Traction Motor and Control Circuitry Under Charging and Driving Conditions  

Science Conference Proceedings (OSTI)

This report explains some of the background of the requirements for isolated DC systems covered by the standard for personnel protection devices for electric vehicle charging circuits (UL2231). The report provides insight that is intended to help achieve better designs of electric vehicles and chargers.

1999-12-01T23:59:59.000Z

192

CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control  

E-Print Network (OSTI)

In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

193

PON-10-603 Advanced Medium-and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations Questions and Answers  

E-Print Network (OSTI)

for emissions if a carbon tax policy is implemented. What combination of policy and vehicle pricing with alternate vehicle technologies such as electric hybrids. The various scenarios show the effects of natural percent less than the operating cost of a gasoline vehicle, but unless there are government incentives

194

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Early Market for Hybrid Electric Vehicles. TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyPower Assist Hybrid Electric Vehicles, and Plug-in Hybrid

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

195

PHEV and Other Electric Drive Testing Results and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity PHEV and Other Electric Drive Testing Results and Resources Jim Francfort Electric Drive Session Alternative Fuels & Vehicles Las Vegas, Nevada -...

196

Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)  

DOE Green Energy (OSTI)

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01T23:59:59.000Z

197

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

production of further hybrid cars. Similarly, Larry Rhodesbuying Priuses as commute carshybrids were fairly popularhybrid vehicles are being made available to (predominately new-car

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

198

Hybrid and Plug-In Electric Vehicles (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-05-01T23:59:59.000Z

199

Hybrid and Plug-In Electric Vehicles (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-10-01T23:59:59.000Z

200

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

weight, volume, and the cost of the battery unit. It is alsoweight, volume, and the cost of the battery unit. It is alsoCost-Effective Combinations of Ultracapacitors and Batteries for Vehicle Applications, Proceedings of the Second International Advanced Battery

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to (more)

Serrano Guilln, Isabel

2013-01-01T23:59:59.000Z

202

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

203

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

204

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

205

Interpersonal Influence within Car Buyers Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

The PHEV is a Toyota Prius converted to allow the rechargingconversion and a regular Toyota Prius, and none had a strongattractive than the Prius. 4.3 Electric-drive enthusiasts

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

206

S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings  

DOE Green Energy (OSTI)

These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

Not Available

1991-12-31T23:59:59.000Z

207

Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems  

DOE Green Energy (OSTI)

The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO{sub x,} SO{sub x} - are estimated. CO{sub 2} emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO{sub 2} emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO{sub x}. NO{sub x} emissions are reduced in all four cities. An ``avoided cost`` value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA`s draft Mobile5 model for GV emissions, high values by using California`s EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

Wang, Q. [California Univ., Davis, CA (United States); Santini, D.L. [Argonne National Lab., IL (United States)

1992-12-31T23:59:59.000Z

208

Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems  

DOE Green Energy (OSTI)

The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO[sub x,] SO[sub x] - are estimated. CO[sub 2] emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO[sub 2] emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO[sub x]. NO[sub x] emissions are reduced in all four cities. An avoided cost'' value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA's draft Mobile5 model for GV emissions, high values by using California's EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

Wang, Q. (California Univ., Davis, CA (United States)); Santini, D.L. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

209

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

210

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

experiences with plug-in hybrid vehicles (PHEVs). At theA.A. (2007) Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric Utilities

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

211

Design, Control and Evaluation of a Prototype Three Phase Inverter in a BLDC Drive System for an Ultra-Light Electric Vehicle.  

E-Print Network (OSTI)

??With an evolving vehicle industry there has been an increase in the demand for light electric vehicles. This thesis was conducted in order to gain (more)

Larsson, Philip

2013-01-01T23:59:59.000Z

212

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

for Flex-Fuel Vehicles Including E85, Plug-in Hybrids Peakfor-flex-fuel-vehicles-including-e85-plug-in- hybrids-peak-

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

213

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

214

Vehicle Technologies Office: Ultracapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

converter, which would increase the cost of the vehicle. The use of ultracapacitors for regenerative braking can greatly improve fuel efficiency under stop-and-go urban driving...

215

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

216

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

217

How Would You Use a Neighborhood Electric Vehicle? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle? October 8, 2009 - 4:22pm Addthis This week, John discussed hybrid electric vehicles and neighborhood electric vehicles. We know many of you are driving...

218

Household Markets for Neighborhood Electric Vehicles in California  

E-Print Network (OSTI)

A Statewide ELECTRIC ELECTRIC and VEHICLES: Survey Sandrafor Neighborhood Electric Vehicles. Report prepared for theD. (1994). Future Drive: Electric Vehicles and Sustainable

Kurani, Kenneth S.; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

2001-01-01T23:59:59.000Z

219

Household Markets for Neighborhood Electric Vehicles in California  

E-Print Network (OSTI)

for Neighborhood Electric Vehicles. Report prepared for theD. (1994). Future Drive: Electric Vehicles and Sustainablefor Neighborhood Electric Vehicles. Report prepared for the

Kurani, Kenneth S; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

1995-01-01T23:59:59.000Z

220

Demonstration of zinc/air fuel battery to enhance the range and mission of fleet electric vehicles: Preliminary results in the refueling of a multicell module  

DOE Green Energy (OSTI)

We report progress in an effort to develop and demonstrate a refuelable zinc/air battery for fleet electric vehicle applications. A refuelable module consisting of twelve bipolar cells with internal flow system has been refueled at rates of nearly 4 cells per minute refueling time of 10 minutes for a 15 kW, 55 kWh battery. The module is refueled by entrainment of 0.5-mm particles in rapidly flowing electrolyte, which delivers the particles into hoppers above each cell in a parallel-flow hydraulic circuit. The concept of user-recovery is presented as an alternative to centralized service infrastructure during market entry.

Cooper, J.F.; Fleming, D.; Keene, L.; Maimoni, A.; Peterman, K.; Koopman, R.

1994-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

222

Microsoft Word - Vehicle Battery EA_BASF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lithium-ion battery industry and, more specifically, the electric drive vehicle (EDV) and hybrid-electric vehicle industry (HEV). If approved, DOE would provide approximately 50...

223

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

224

Vehicle Technologies Office: EV Everywhere Grand Challenge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

train college students and those in the workforce on development, maintenance, and emergency response for electric drive vehicles and electric vehicle charging stations....

225

Electric Vehicles: Compare Side-by-Side  

NLE Websites -- All DOE Office Websites (Extended Search)

Cars Station Wagons SUVs & Vans Fuel Economy Specs Personalize 2013 Smart fortwo Electric Drive Convertible 2013 Smart fortwo Electric Drive Coupe Electric Vehicle 2013 Smart...

226

Impact of Lithium Availability on Vehicle Electrification (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the relationship between electric drive vehicles and the availability of lithium.

Neubauer, J.

2011-07-01T23:59:59.000Z

227

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Vision Motor Corp. - Tyrano Eaton - Hybrid Drive System Fuel Type: Hybrid - Diesel Electric...

228

Vehicle Technologies Office: Fact #798: September 23, 2013 Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 23, 2013 Plug-in Hybrid Vehicle Driving Range to someone by E-mail Share Vehicle Technologies Office: Fact 798: September 23, 2013 Plug-in Hybrid Vehicle Driving...

229

Federal loan guaranty programs management report, Task III, Item 005. Tab I. Electric and hybrid vehicle research, development, and demonstration project. Tab II. Geothermal loan guaranty program  

DOE Green Energy (OSTI)

The guaranty program on electric and hybrid vehicle research, development, and demonstration considers two aspects of loan guaranties: (1) how is the loan guaranty, as an incentive device, best integrated into an overall project strategy, and (2) to what extent can cost-effectiveness measurements be introduced to the loan guaranty review and approval process. The report on the geothermal loan guaranty program is an overview of a large number of existing program elements which, in the opinion of the financial community or the historical record of predecessor loan guaranty programs, can be seen to be (or have potential to become) troublesome. Included are relevant administrative, regulatory, and managerial guidelines, commentary, and ideas. (MCW)

Not Available

1977-04-01T23:59:59.000Z

230

Drive5 | Open Energy Information  

Open Energy Info (EERE)

Drive5 Drive5 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drive5 Agency/Company /Organization: Drive5 Sector: Energy Focus Area: Vehicles Resource Type: Software/modeling tools User Interface: Website, Mobile Device Website: www.drive5.us Web Application Link: www.drive5.us Cost: Free OpenEI Keyword(s): Challenge Generated Drive5 Screenshot References: Drive5[1] Challenge.gov[2] Challenge.gov Submission Page[3] Measure your fuel economy real time with five metrics to save on fuel costs. Overview Drive1: Fuel Economy Drive5 gives you real time fuel economy feedback for any car 1984 and newer by simply utilizing the sensors embedded in your phone or tablet. It uses a statistical algorithm which leverages the fueleconomy.gov's open dataset along with data from thousands of automobile trips. No connections to the

231

PHEV Energy Storage and Drive Cycle Impacts (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts, presented at the 7th Advanced Automotive Battery Conference.

Markel, T.; Pesaran, A.

2007-05-17T23:59:59.000Z

232

Electrical Motor Drive Apparatus and Method - Energy Innovation Portal  

Vehicles and Fuels Industrial Technologies Electrical ... Auto manufacturers ; Industrial motor drive manufacturers; Patents and Patent Applications. ID Number.

233

TO: ALL PASSENGER CAR MANUFACTURERS ALL LIGHT-DUTY TRUCK MANUFACTURERS ALL MEDIUM-DUTY VEHICLE MANUFACTURERS ALL DIRECT IMPORTERS ALL OTHER INTERESTED PARTIES SUBJECT: Submission of Certification Data Demonstrating  

E-Print Network (OSTI)

This letter transmits the attached Manufacturers Advisory Correspondence (MAC) which informs vehicle manufacturers of the need to submit demonstrations of compliance with the Inspection and Maintenance (I/M) idle mode and Acceleration Simulation Mode (ASM) loaded mode emission standards, for all 2000 and subsequent model-year emission-data vehicles (EDVs) at the time of certification. If you have any questions or comments, please contact

John D. Dunlap; Pete Wilson; R. B. Summerfield

1998-01-01T23:59:59.000Z

234

advanced vehicle technologies awards table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

format cells with extremely high energy density, that meet performance, life, and safety requirements of electric drive vehicles. Applied Materials Inc. Santa Clara, CA...

235

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

236

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

42] Hakim, D. (2005) Hybrid-Car Tinkerers Scoff at No-Plug-J. (1969) and a Commuter Car with Hybrid Drive. PopularCars Initiative (2007) Photo: Technical Photos of Plug-In Hybrids and

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

237

Traction Drive Systems Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Drive Systems Breakout Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov EV Everywhere Traction Drive System * DOE goals for Electric Traction Drive System (TDS) innovations must be disruptive innovation focused to meet the CY2022 price target ($20,000 $25,000) for a mid-sized 5 passenger sedan having 5 year simple payback. Enhanced Efficiency Reduced Cost Traction Drive System EETT Roadmap: "Therefore, research is needed to develop technologies that are less expensive and, at the same time, smaller, lighter, more efficient, and equally reliable as conventional automotive technologies. "

238

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

239

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, vol. 1. Nationwidecompetitive plug-in hybrid electric vehicles. EnvironmentalDriving plug-in hybrid electric vehicles: reports from US

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

240

Safety of high speed ground transportation systems: X2000 US demonstration vehicle dynamics trials, preliminary test report. Report for October 1992-January 1993  

SciTech Connect

The report documents the procedures, events, and results of vehicle dynamic tests carried out on the ASEA-Brown Boveri (ABB) X2000 tilt body trainset in the US between October 1992 and January 1993. These tests, sponsored by Amtrak and supported by the FRA, were conducted to assess the suitability of the X2000 trainset for safe operation at elevated cant deficiencies and speeds in Amtrak's Northeast Corridor under existing track conditions in a revenue service demonstration. The report describes the safety criteria against which the performance of the X2000 test train was examined, the instrumentation used, the test locations, and the track conditions. Preliminary results are presented from tests conducted on Amtrak lines between Philadelphia and Harrisburg, PA, and between Washington DC and New York NY, in which cant deficiencies of 12.5 inches and speeds of 154 mph were reached in a safe and controlled manner. The significance of the results is discussed, and preliminary conclusions and recommendations are presented.

Whitten, B.T.; Kesler, J.K.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

242

Microsoft PowerPoint - Progress in Battery Swapping Technology and Demonstration in China  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgressinBatterySwapping ProgressinBatterySwapping TechnologyandDemonstrationinChina Jianfeng Hua Email: huajf@tsinghua.edu.cn Tel: 010-62789570 2 Outline Background Battery Swapping Demonstration in China Conclusion 3 HowtorefuelforElectricalVehicle? AC Charging DC Charging Battery Swapping  Duetothelimiteddrivingrangeofelectricalvehicle, therefuelforalongdistancedrivingisanessential

243

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

244

NGVs: Driving to the 21st Century. 17th National Natural Gas Vehicle Conference and Exhibition, October 3-5, 1999 [conference organizational literature and agenda  

Science Conference Proceedings (OSTI)

By attending the conference, participants learn about new and planned OEM vehicle and engine technologies; studies comparing Diesel and gasoline emissions to natural gas; new state and federal legislation; and innovative marketing programs they can use to help sell their products and services.

None

1999-10-05T23:59:59.000Z

245

Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies  

Science Conference Proceedings (OSTI)

Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch magnet on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {approx}85 eV for a duration of {approx}10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approx}122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approx}150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T{approx}(P/A){sup 1/4}. P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.

BOWERS,RICHARD; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSLKA,WALTER; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,CRAIG L.; PETERSON,BOB; PETERSON,DARRELL; RUGGLES,LAURENCE E.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; VESEY,ROGER A.

1999-11-01T23:59:59.000Z

246

Advanced Vehicle Testing Activity: American Recovery and Reinvestment...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing to someone by E-mail Share Advanced Vehicle Testing Activity:...

247

Study of Advantages of PM Drive Motor with Selectable Windings for HEVs  

DOE Green Energy (OSTI)

The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

Otaduy, Pedro J [ORNL; Hsu, John S [ORNL; Adams, Donald J [ORNL

2007-11-01T23:59:59.000Z

248

New EPA Fuel Economy and Environment Label - Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

you compare to gasoline vehicles Kilowatt-hours per 100 miles to help you estimate fuel costs Driving Range Driving range is an estimate of the distance the vehicle can travel on...

249

Hybrid energy storage system integration for vehicles  

Science Conference Proceedings (OSTI)

Energy consumption and the associated environmental impact are a pressing challenge faced by the transportation sector. Emerging electric-drive vehicles have shown promises for substantial reductions in petroleum use and vehicle emissions. Their success, ... Keywords: analysis, electric-drive vehicles, energy storage systems

Jia Wang; Kun Li; Qin Lv; Hai Zhou; Li Shang

2010-08-01T23:59:59.000Z

250

TransForum v8n2 - Drive Cycle Impact on PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

studied the impact of drive cycles on the component requirements of plug-in hybrid electric vehicles (PHEVs). Results showed that vehicles designed to satisy the urban...

251

Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to  

NLE Websites -- All DOE Office Websites (Extended Search)

1: August 5, 1: August 5, 2013 Comparative Costs to Drive an Electric Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Facebook Tweet about Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Twitter Bookmark Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Google Bookmark Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Delicious Rank Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Digg Find More places to share Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on

252

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

253

Near-term electric test vehicle ETV-2. Phase II. Final report  

DOE Green Energy (OSTI)

A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

Not Available

1981-04-01T23:59:59.000Z

254

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)  

E-Print Network (OSTI)

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

255

NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Helps Cool the Power Helps Cool the Power Electronics in Electric Vehicles Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles. Widespread use of advanced electric-drive vehicles-including electric vehicles (EVs) and hybrid electric vehicles (HEVs)-could revolutionize transportation and dramatically reduce U.S. oil consumption. Improving the cost and performance of these vehicles' electric-drive systems

256

How Would You Use a Neighborhood Electric Vehicle? | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle? October 8, 2009 - 4:22pm Addthis This week, John discussed hybrid electric vehicles and neighborhood electric vehicles. We know many of you are driving hybrid...

257

Vehicle Technologies Office: Advanced Power Electronics and Electrical...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles by as much as 50%, while plug-in electric vehicles (PEVs) extend these savings even further. For a general overview of electric drive vehicles, see the DOE's...

258

Model Year 2014 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

4 SmartWay Vehicles Updated November 6, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 12 Model Displ Cyl Trans Drive Fuel Sales...

259

Model Year 2013 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Updated August 14, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 13 Model Displ Cyl Trans Drive Fuel Sales...

260

Advancing Next-Generation Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

262

NREL: News Feature - NREL Drives Toward the Future with Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drives Toward the Future with Fuel Cell EVs June 21, 2013 A hydrogen fuel cell powered Toyota sport utility vehicle emblazoned with an NREL logo drives past a building on the NREL...

263

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Hybrid Electric Vehicle Options for Compact Sedan and Sport Utility Vehicles, Report Electric Power Research Institute (2004) Advanced Batteries for Electric-Drive Vehicles,

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

264

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

265

Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemption from Driving Restrictions to someone by E-mail Exemption from Driving Restrictions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Exemption from Driving Restrictions on AddThis.com... More in this section...

266

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Electric Vehicles Energy 101: Electric Vehicles Addthis Below is the text version for the Energy 101: Electric Vehicles video. The video opens with "Energy 101: Electric Vehicles." This is followed by various shots of different electric vehicles on the road. Wouldn't it be pretty cool to do all of your daily driving without ever having to fill up at a gas station? Well, that's quickly becoming a reality for people who drive electric vehicles-sometimes called EVs. EVs are gaining popularity. And with good reason-they're convenient; they're sleek and quiet; they keep our air clean. And for most of the short-distance driving we do, they're the perfect way to get from point A to point B safely, reliably, and comfortably. Text appears onscreen: "80% of Americans drive less than 40 miles round

267

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

DOE Green Energy (OSTI)

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

268

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

DOE Green Energy (OSTI)

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

269

LCLS Injector Drive Laser  

SciTech Connect

Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

2007-11-02T23:59:59.000Z

270

EIAs AEO2012 includes analysis of breakthroughs in vehicle ...  

U.S. Energy Information Administration (EIA)

Plug-in hybrid electric (PHEV): Vehicles with larger batteries to provide power to drive the vehicle for some distance in charge-depleting mode ...

271

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

272

Controlled Hydrogen Fleet and Infrastructure Demonstration Project  

DOE Green Energy (OSTI)

This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

Dr. Scott Staley

2010-03-31T23:59:59.000Z

273

Controlled Hydrogen Fleet and Infrastructure Demonstration Project  

SciTech Connect

This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

Dr. Scott Staley

2010-03-31T23:59:59.000Z

274

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

275

Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

DOE Green Energy (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1995-09-01T23:59:59.000Z

276

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

277

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

278

NIST Transient Flow Standard for Vehicle Refueling  

Science Conference Proceedings (OSTI)

... Today, hydrogen-fueled demonstration vehicles are refueled from ... However, hydrogen dispenser manufacturers have found ... gas as a vehicle fuel of ...

2012-11-02T23:59:59.000Z

279

Traction drive automatic transmission for gas turbine engine driveline  

SciTech Connect

A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

Carriere, Donald L. (Livonia, MI)

1984-01-01T23:59:59.000Z

280

Motor generator electric automotive vehicle  

SciTech Connect

A motor generator electric automotive vehicle is described comprising in combination, a traction drive motor coupled by a first drive shaft to a differential of an axle of the vehicle, a main battery bank electrically connected by wires to a small electric motor driving a large D.C. generator having a second drive shaft therebetween, an on-off switch in series with one of the wires to the small motor, a speed control unit attached to an accelerator pedal of the vehicle being coupled with a double pole-double throw reverse switch to the traction drive motor, a charger regulator electrically connected to the generator, a bank of solar cells coupled to the charge regulator, an electric extension cord from the charge regulator having a plug on its end for selective connection to an exterior electric power source, a plurality of pulleys on the second drive shaft, a belt unit driven by the pulley, one the belt unit being connected to a present alternator of the vehicle which is coupled to a present battery and present regulator of the vehicle, and other of the units being connected to power brakes and equipment including power steering and an air conditioner.

Weldin, W.

1986-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

282

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

283

Kansas State University Electric Vehicle Site Operator Program  

SciTech Connect

During the past fifteen years Kansas State's faculty has been involved in research of alternative fuel vehicles. From formulation of fuels and automotive fuel storage to development of electronic controls, K-State's faculty research has been ongoing. With the increased awareness of what is occurring to the world's environment, the catalyst -- to ensure applied results from faculty research will occur -- has been activated. The Department of Energy's Electric Vehicle Site Operator Program is the platform being used to demonstrate international efforts to bring a more acceptable daily mode of transportation to our highways. The first new electrical vehicle procured at K-State in the last ten years, a G-Van, is a technological dinosaur. It does not incorporate leading edge control or drive systems nor does it provide the type of vehicle frame and body to meet a majority of the daily commuter needs required by the American market. Yet, this vehicle represents initial efforts to bring a federally crash certified vehicle to the commercial automotive market. As such, it is an evolutionary step in the mass production of electric vehicle products.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-01-01T23:59:59.000Z

284

Kansas State University Electric Vehicle Site Operator Program  

DOE Green Energy (OSTI)

During the past fifteen years Kansas State's faculty has been involved in research of alternative fuel vehicles. From formulation of fuels and automotive fuel storage to development of electronic controls, K-State's faculty research has been ongoing. With the increased awareness of what is occurring to the world's environment, the catalyst -- to ensure applied results from faculty research will occur -- has been activated. The Department of Energy's Electric Vehicle Site Operator Program is the platform being used to demonstrate international efforts to bring a more acceptable daily mode of transportation to our highways. The first new electrical vehicle procured at K-State in the last ten years, a G-Van, is a technological dinosaur. It does not incorporate leading edge control or drive systems nor does it provide the type of vehicle frame and body to meet a majority of the daily commuter needs required by the American market. Yet, this vehicle represents initial efforts to bring a federally crash certified vehicle to the commercial automotive market. As such, it is an evolutionary step in the mass production of electric vehicle products.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-01-01T23:59:59.000Z

285

Vehicle Technologies Office: 2012 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Archive to someone 2 Archive to someone by E-mail Share Vehicle Technologies Office: 2012 Archive on Facebook Tweet about Vehicle Technologies Office: 2012 Archive on Twitter Bookmark Vehicle Technologies Office: 2012 Archive on Google Bookmark Vehicle Technologies Office: 2012 Archive on Delicious Rank Vehicle Technologies Office: 2012 Archive on Digg Find More places to share Vehicle Technologies Office: 2012 Archive on AddThis.com... 2012 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012

286

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

287

Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range.  

E-Print Network (OSTI)

??Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in (more)

Lo, Joshua

2013-01-01T23:59:59.000Z

288

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

one product or industry (electric vehicles) to the exclusionelectric vehicle (electric utilities, battery developers, and electric-drive components industry).industry had a vested interest in the debate, as a success of electric vehicles

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

289

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

290

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy FreedomCAR & Vehicle Technologies Program Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy...

291

Vehicle Technologies Office: Fact #798: September 23, 2013Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Driving Range For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric...

292

Vehicle Technologies Office: Fact #365: March 28, 2005 The Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: March 28, 2005 The Cost of Driving a Car to someone by E-mail Share Vehicle Technologies Office: Fact 365: March 28, 2005 The Cost of Driving a Car on Facebook Tweet about...

293

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

294

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

295

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

296

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

297

Driving for $1.14 Per Gallon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving for $1.14 Per Gallon Driving for $1.14 Per Gallon Driving for $1.14 Per Gallon June 11, 2013 - 7:30am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today launched the eGallon - a quick and simple way for consumers to compare the costs of fueling electric vehicles vs. driving on gasoline. Today's national average eGallon price is about $1.14, meaning that a typical electric vehicle could travel as far on $1.14 worth of electricity as a similar vehicle could travel on a gallon of gasoline. "Consumers can see gasoline prices posted at the corner gas station, but are left in the dark on the cost of fueling an electric vehicle. The eGallon will bring greater transparency to vehicle operating costs, and help drivers figure out how much they might save on fuel by choosing an

298

National Hydrogen Learning Demonstration Status (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses U.S. DOE Learning Demonstration Project goals, fuel cell vehicle and H2 station deployment status, and technical highlights of vehicle and infrastructure analysis results and progress.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-02-01T23:59:59.000Z

299

A study of electric vehicle charging patterns and range anxiety.  

E-Print Network (OSTI)

?? Range anxiety is a relatively new concept which is defined as the fear of running out of power when driving an electric vehicle. To (more)

Knutsen, Daniel

2013-01-01T23:59:59.000Z

300

ALTERNATIVE ENERGY TESTBED ELECTRIC VEHICLE AND THERMAL MANAGEMENT SYSTEM INVESTIGATION.  

E-Print Network (OSTI)

??Methodology of and details on designing, constructing, and testing an efficient low power electric vehicle for alternative energy testing purposes. Experimental analysis of the drive (more)

Gregg, Christopher B

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network (OSTI)

Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

302

Materials Development for Vehicle Weight Reduction and the ...  

Science Conference Proceedings (OSTI)

For example, weight reduction can also enable wider use of electric and hybrid drive vehicles by improving range or reducing battery size. Heavy-duty trucks can ...

303

Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)  

SciTech Connect

This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

Rugh, J. P.; Pesaran, A.; Smith, K.

2013-07-01T23:59:59.000Z

304

Electric vehicle system for charging and supplying electrical ...  

A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft.

305

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

306

Apps for Vehicles: What are some examples of vehicle data applications? |  

Open Energy Info (EERE)

Apps for Vehicles: What are some examples of vehicle data applications? Apps for Vehicles: What are some examples of vehicle data applications? Home > Groups > Developer Submitted by JessicaLyman on 7 December, 2012 - 09:08 1 answer Points: 1 * Insurance companies offering cheaper products by directly measuring driving behavior * Smart phone navigation systems are optimizing routes based on how commute-schedules compares to actual traffic and weather changes * Helping consumers understand the cost and overall potential of electric drive vehicles * Enhanced security with real-time notification of a vehicle security breach. * Informing parents of teen-driving behavior * Greater visibility around vehicle maintenance needs - new tires, oil changes, transmission flushes, windshield wiper fluid refills. JessicaLyman on 7 December, 2012 - 09:09

307

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network (OSTI)

by compressed natural gas (CNG) in spark-ignition engines,buses are powered by a CNG spark-ignition engine, providedno matter whether it is a CNG or a diesel engine [4, 5].

2006-01-01T23:59:59.000Z

308

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network (OSTI)

standard width of 12 ft. (3.6 m), providing opportunities for considerable savings in construction and right-of-way

2006-01-01T23:59:59.000Z

309

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network (OSTI)

torque passed onto wheel T rtd ? transmission retarderas: r d r g T net ? ( r d T rtd + T b + F a h r + F total htr ? tr tr tr ? T + ? ? V rtd ( t ? ? tr ) , ? dr ? ? , t <

2006-01-01T23:59:59.000Z

310

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network (OSTI)

this wireless communication are strict; real- time operationthis wireless communication are strict; real-time operationwireless communication system are strict, requiring real-time operation

2006-01-01T23:59:59.000Z

311

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

312

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)  

SciTech Connect

This presentation discusses the effects of temperature on large format lithium-ion batteries in electric drive vehicles.

Pesaran, A.; Santhanagopalan, S.; Kim, G. H.

2013-05-01T23:59:59.000Z

313

Chapter 3. Vehicle-Miles Traveled  

U.S. Energy Information Administration (EIA) Indexed Site

3. Vehicle-Miles Traveled 3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important information collected by the Residential Transportation Energy Consumption Survey. Using the data on vehicle-miles traveled allows analysts to answer such questions as: "Are minivans driven more than passenger cars?" "Do people in the West drive more than people elsewhere?" "Do people conserve their new cars by driving them less?" "Who drives more--people in households with children, or other people?" "At what ages do people drive the most?" "How does growing income affect the amount of driving?" In addition to answering those kinds of questions, analysts also use the number of vehicle-miles traveled to compute estimated, on-road vehicle fuel consumption, economy, and expenditures, all of which have important implications for U.S. energy policy and national security (see Chapter 4).

314

Vehicle Technologies Office: 2012 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Archive 2 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012 #755 Chargepoint, Blink and Nissan Take the Lead in Public Electric Vehicle Chargers November 26, 2012 #754 Vehicle Sales in the U.S. and China, 2002-2011 November 19, 2012 #753 Sources of Electricity by State November 12, 2012 #752 Western Europe Plug-in Car Sales, 2012 November 5, 2012 #751 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China October 29, 2012 #750 Electric Vehicle Energy Requirements for Combined City/Highway Driving October 22, 2012

315

Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen  

DOE Green Energy (OSTI)

The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

Doyle, T.A.

1998-01-31T23:59:59.000Z

316

Microsoft PowerPoint - Smart INL - EV Project Nissan Leaf Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America 1...

317

Learn More About the Fuel Economy Label for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

318

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a...

319

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I thought I'd talk about a few hiding in the Alternative Fuels and Advanced Vehicles Data Center (hereafter referred to as the AFDC.) July 9, 2009 Do You Drive a Hybrid Electric...

320

Model Year 2003 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 2 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Model Year 2010 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 20 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score...

322

Model Year 2009 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 16 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

323

Model Year 2001 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score SmartWay HONDA Accord...

324

Model Year 2012 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

325

Model Year 2007 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 18 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

326

Model Year 2000 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score...

327

Model Year 2011 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 10 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

328

Model Year 2008 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 20 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

329

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

330

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

331

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

332

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

333

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

334

NREL: Hydrogen and Fuel Cells Research - Automakers Drive toward...  

NLE Websites -- All DOE Office Websites (Extended Search)

Automakers Drive toward Fuel Cell Electric Vehicles February 4, 2013 A recent Science Friday segment on National Public Radio (NPR) featured Jen Kurtz of the U.S. Department of...

335

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

336

President Obama Announces $2.4 Billion in Grants to Accelerate the Manufacturing and Deployment of the Next Generation of U.S. Batteries and Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Recovery Act will fund 48 new advanced battery and electric drive components manufacturing and electric drive vehicle deployment projects in over 20 states

337

Idle Reduction Technology Demonstrations: Status Report  

Science Conference Proceedings (OSTI)

DOE's Advanced Vehicle Testing Activity is sponsoring 3 idle reduction demonstration projects for heavy-duty trucks. This report provides the status of the projects.

Proc, K.

2004-11-01T23:59:59.000Z

338

Modeling and Validation of a Fuel Cell Hybrid Vehicle  

E-Print Network (OSTI)

This paper describes the design and construction of a fuel cell hybrid electric vehicle based on the conversion of a five passenger production sedan. The vehicle uses a relatively small fuel cell stack to provide average power demands, and a battery pack to provide peak power demands for varied driving conditions. A model of this vehicle was developed using ADVISOR, an A__dvanced Vehicle Simulator that tracks energy flow and fuel usage within the vehicle drivetrain and energy conversion components.

Michael J. Ogburn; Douglas J. Nelson; Keith Wipke; Tony Markel

2000-01-01T23:59:59.000Z

339

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

340

Electrifying Your Drive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrifying Your Drive Electrifying Your Drive Electrifying Your Drive April 27, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For anyone who grew up watching The Jetsons (or Back to the Future, depending on your generation), the "Car of the Future!" flew through the skies with the greatest of ease. Although most of us have given up on our hopes of a flying car, anything beyond the internal combustion engine has seemed hopelessly out of reach until recently. However, with several manufacturers planning on producing plug-in and all-electric vehicles, the Car of the Future will be available soon! But before you put down a deposit, it's helpful to understand the different types of electric drive technologies. The most basic form of electric drive

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electrifying Your Drive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrifying Your Drive Electrifying Your Drive Electrifying Your Drive April 27, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For anyone who grew up watching The Jetsons (or Back to the Future, depending on your generation), the "Car of the Future!" flew through the skies with the greatest of ease. Although most of us have given up on our hopes of a flying car, anything beyond the internal combustion engine has seemed hopelessly out of reach until recently. However, with several manufacturers planning on producing plug-in and all-electric vehicles, the Car of the Future will be available soon! But before you put down a deposit, it's helpful to understand the different types of electric drive technologies. The most basic form of electric drive

342

36 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 35, NO. 1, JANUARY/FEBRUARY 1999 Multilevel Converters for Large Electric Drives  

E-Print Network (OSTI)

voltage is available, such as in a hybrid electric vehicle. Simulation and experimental results show vehicles (EV's) that have large electric drives will require advanced power electronic inverters to meet--Cascade inverter, common-mode voltage, diode- clamped inverter, electric vehicle, motor drive, multilevel con

Tolbert, Leon M.

343

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

Slicker, J.M.; Sereshteh, A.

1988-08-30T23:59:59.000Z

344

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

1988-01-01T23:59:59.000Z

345

Passive pavement-mounted acoustical linguistic drive alert system and method  

DOE Patents (OSTI)

Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

Kisner, Roger A. (Knoxville, TN); Anderson, Richard L. (Oak Ridge, TN); Carnal, Charles L. (Cookeville, TN); Hylton, James O. (Clinton, TN); Stevens, Samuel S. (Harriman, TN)

2001-01-01T23:59:59.000Z

346

Powertrain system for a hybrid electric vehicle  

DOE Patents (OSTI)

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

1999-08-31T23:59:59.000Z

347

Powertrain system for a hybrid electric vehicle  

DOE Patents (OSTI)

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

1999-08-31T23:59:59.000Z

348

Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban  

NLE Websites -- All DOE Office Websites (Extended Search)

9: December 24, 9: December 24, 2012 Rural vs. Urban Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on AddThis.com...

349

NREL: Vehicles and Fuels Research - Fleet Test and Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory works in partnership with commercial and government fleets and industry groups to evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles. The team's project areas include: Fleet DNA: Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric and Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification Alternative Fuels Truck Efficiency Key aspects of this work involve meeting with industry stakeholders to understand market factors and customer requirements, evaluating the performance of advanced technology vehicles versus their conventional

350

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

351

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

352

Power management strategy based on adaptive neuro-fuzzy inference system for fuel cell-battery hybrid vehicle  

Science Conference Proceedings (OSTI)

A power management strategy based on an adaptive neuro-fuzzy inference system is proposed to enhance the fuel economy of fuel cell-battery hybrid vehicle and increase the mileage of continuation of journey. The model of hybrid vehicle for fuel cell-battery structure is developed by electric vehicle simulation software advisor. The simulation results demonstrate that the proposed strategy can satisfy the power requirement of four standard drive cycles and achieve the power distribution between fuel cell system and battery. The comprehensive comparisons with a power tracking control strategy which is widely adopted in advisor verify that the proposed strategy has better validity in terms of fuel economy in four standard drive cycles. Hence

Qi Li; Weirong Chen; Shukui Liu; Zhiyu You; Shiyong Tao; Yankun Li

2012-01-01T23:59:59.000Z

353

Argonne's GREET Model - Driving Transportation Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Driving Transportation Solutions Model Argonne's GREET D r i v i n g Tr a n s p o r t a t i o n S o l u t i o n s ARGONNE'S GREET Argonne's GREET model is widely recognized as the "gold standard" for evaluating and comparing the energy and environmental impacts of transportation fuels and advanced vehicles. The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model is a one-of-a-kind analytical tool that simulates the energy use and emissions output of various vehicle and fuel combinations. Sponsored by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, the free software program gives researchers the unique ability to analyze technologies over an entire life cycle - from well to wheels and from raw material mining to vehicle disposal.

354

Drive Less, Save More | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive Less, Save More Drive Less, Save More Drive Less, Save More May 24, 2011 - 12:31pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For someone who works in the Vehicle Technologies Program, I actually don't spend that much time in my automobile. I usually get around using a combination of public transit, my bike, and my own two feet. But I'm an exception. In the U.S., the vehicle miles travelled per person is actually twice as high as it is in Western Europe and three times higher than in Japan. However, alternatives to using your car have a wealth of benefits. In addition to reducing petroleum consumption, they can lower greenhouse gas emissions, improve air quality, decrease stress, and bring communities together. Fortunately, there are a variety of ways to minimize the distance

355

Drive Less, Save More | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive Less, Save More Drive Less, Save More Drive Less, Save More May 24, 2011 - 12:31pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For someone who works in the Vehicle Technologies Program, I actually don't spend that much time in my automobile. I usually get around using a combination of public transit, my bike, and my own two feet. But I'm an exception. In the U.S., the vehicle miles travelled per person is actually twice as high as it is in Western Europe and three times higher than in Japan. However, alternatives to using your car have a wealth of benefits. In addition to reducing petroleum consumption, they can lower greenhouse gas emissions, improve air quality, decrease stress, and bring communities together. Fortunately, there are a variety of ways to minimize the distance

356

FCV Learning Demonstration: Project Midpoint Status and Fall 2007 Results  

DOE Green Energy (OSTI)

Status reoprt on NREL's fuel cell vehicle learning demonstration presented at the 2007 EVS-23 meeting in Anaheim, CA.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.; Garbak, J.

2007-12-01T23:59:59.000Z

357

FCV Learning Demonstration: Factors Affecting Fuel Cell Degradation (Presentation)  

DOE Green Energy (OSTI)

Presentation on the NREL Fuel Cell Vehicle learning demonstration prepared for the 2008 ASME Fuel Cell Conference.

Kurtz, J.; Wipke, K.; Sprik, S.

2008-06-18T23:59:59.000Z

358

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-02-10T23:59:59.000Z

359

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

360

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

VEHICLE SPECIFICATIONS Vehicle Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 Mazda 3 VIN: JMZBLA4G601111865 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD Weights Design Curb Weight: 2,954 lb Delivered Curb Weight: 2,850 lb Distribution F/R (%): 63/37 GVWR: 4,050 lb GAWR F/R: 2,057/1,896 lb Payload 1 : 1,096 lb Performance Goal: 400 lb Dimensions Wheelbase: 103.9 in Track F/R: 60.4/59.8 in Length: 175.6 in Width: 69.1 in Height: 57.9 in Ground Clearance: 6.1 in Performance Goal: 5.0 in Tires Manufacturer: Yokohama Model: YK520 Size: P205/55R17 Pressure F/R: 35/33 psi

362

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL; Aguilar, Juan P. [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

363

Plug-In Electric Vehicle Handbook for Consumers  

E-Print Network (OSTI)

are additional safety practices to follow when driving a UTV: Keep legs and arms inside the vehicle at all times.Becauseoftheirhaulingcapabilities,they are helpful vehicles in residential, agricultural, construc- tion and known as recreational off-highway vehicle (ROVs). Both UTVs and ROVs have also been referred to as "Side

364

Plug-In Electric Vehicle Handbook for Electrical  

E-Print Network (OSTI)

-based fuel while driving and produce no tailpipe emissions . EVSE (electric vehicle supply equipment) deliv a PEV requires plugging in to elec- tric vehicle supply equipment (EVSE, Figure 1). There are various communicates with the vehicle to ensure that an appropriate and safe flow of electricity is supplied. EVSE

365

Plug-In Electric Vehicle Handbook for Fleet Managers  

E-Print Network (OSTI)

in to electric vehicle supply equipment (EVSE). EVs must be charged regu- larly, and charging PHEVs regularly&E's Electric Vehicle Supply Equipment Installation Manual (http:// evtransportal.org/evmanual.pdf) and e. They consume no petroleum-based fuel while driving and produce no tailpipe emissions. EVSE (electric vehicle

366

Demonstration and Evaluation of U.S. Postal Service Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Charge Meter Evaluation While driving the vehicles on the USPS delivery route, the miles driven per division of the SOC meter were recorded as shown in Figure 3-11. The...

367

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

368

Learning Demonstration Progress Report -- September 2007  

DOE Green Energy (OSTI)

This report documents the key results from the DOE Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration project. This project is also referred to as the fuel cell vehicle and infrastructure learning demonstration.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.

2007-11-01T23:59:59.000Z

369

Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles  

SciTech Connect

This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

370

1997 hybrid electric vehicle specifications  

DOE Green Energy (OSTI)

The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

Sluder, S.; Larsen, R.; Duoba, M.

1996-10-01T23:59:59.000Z

371

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

372

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

373

Keeping plug-in electric vehicles connected to the grid - Patterns of vehicle use  

Science Conference Proceedings (OSTI)

In 2005 Kempton and Tomic laid out a vision for V2G which presumed that use of V2G technology could provide a high revenue stream to early plug-in electric vehicles, enabling market penetration of relatively high cost early-to-market electric drive vehicles. ...

Y. Zhou; A. Vyas

2012-01-01T23:59:59.000Z

374

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

375

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

376

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

377

Vehicle Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Adsorption: The adhesion of the molecules of gases, dissolved substances, or liquids in more or less concentrated form to the surface of solids or liquids with which they are in contact. Commercial adsorbent materials have enormous internal surfaces. AEMD (Automotive Electric Drive Motor): A U.S. Department of Energy program to develop low-cost traction drive motors for automotive applications. Aerosol: A cloud consisting of particles dispersed in a gas or gases. AIPM (Automotive Integrated Power Module) A U.S. Department of Energy program to integrate the power devices, control electronics, and thermal management of a vehicle into a single low-cost package that will meet all requirements for automotive motor control applications.

378

Holiday Food Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Food Drive Food Drive Holiday Food Drive During the recent holiday food drive, employees donated enough food to provide about 23,604 holiday meals for Northern New Mexico families. More than 432 frozen turkeys were donated this year by employees and other donors during 'Bring a Turkey to Work Day,' an annual Lab event that takes places Thanksgiving week. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Giving Drives Ed Vigil Community Programs Office (505) 665-9205 Email Giving Drives Enrique Trujillo Community Programs Office (505) 665-6384 Email Helping feed Northern New Mexico families Community partners The Food Depot (Santa Fe) Del Norte Credit Union Smith's Food and Drug Giving Holiday Food Drive Holiday Gift Drive LANL Laces Los Alamos Employees' Scholarship Fund

379

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

DOE Green Energy (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

380

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

382

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

383

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

384

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

385

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

386

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies  

E-Print Network (OSTI)

A hybdd electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamicprogramming power management algorithm is applied.

Chan-Chiao Lin; Zoran Fillipi; Yongsheng Wang; Loucas Louca; Huel Peng; Dennis Assanis; Jeffrey Stein

2001-01-01T23:59:59.000Z

387

SIMULATED LIFECYCLE COSTS OF ULTRACAPACITORS IN BATTERY ELECTRIC VEHICLES A.G. Simpson*, P.C. Sernia and G.R. Walker  

E-Print Network (OSTI)

SIMULATED LIFECYCLE COSTS OF ULTRACAPACITORS IN BATTERY ELECTRIC VEHICLES A.G. Simpson*, P, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost costs of ultracapacitors in battery electric vehicle applications. The lifecycle operation

Walker, Geoff

388

Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles  

DOE Green Energy (OSTI)

As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

2010-01-01T23:59:59.000Z

389

Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles  

SciTech Connect

As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

2010-01-01T23:59:59.000Z

390

Driving for $1.14 Per Gallon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for $1.14 Per Gallon for $1.14 Per Gallon Driving for $1.14 Per Gallon June 11, 2013 - 7:30am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today launched the eGallon - a quick and simple way for consumers to compare the costs of fueling electric vehicles vs. driving on gasoline. Today's national average eGallon price is about $1.14, meaning that a typical electric vehicle could travel as far on $1.14 worth of electricity as a similar vehicle could travel on a gallon of gasoline. "Consumers can see gasoline prices posted at the corner gas station, but are left in the dark on the cost of fueling an electric vehicle. The eGallon will bring greater transparency to vehicle operating costs, and help drivers figure out how much they might save on fuel by choosing an

391

Plug-in Electric Vehicle Real-World Data from DOE's AVTA (SAE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience 32 illi il l d 5 500 l i d i * 32 million test miles accumulated on 5,500 electric drive vehicles representing 111 models * Plug-in hybrid electric vehicles: 14 models,...

392

Plug-in Electric Vehicle Real-World Data from DOE's AVTA (Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience 24 illi il l d 5 500 l i d i * 24 million test miles accumulated on 5,500 electric drive vehicles representing 111 models * Plug-in hybrid electric vehicles: 14 models,...

393

Just build it! : a fully functional concept vehicle using robotic wheels  

E-Print Network (OSTI)

Interest in electric vehicle drive units is resurging with the proliferation of hybrid and electric vehicles. Currently emerging key-technologies are: in-wheel motors, electric braking, integrated steering activators and ...

Schmitt, Peter, S.M. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

394

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

395

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

396

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

397

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

398

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

399

Deploying power grid-integrated electric vehicles as a multi-agent system  

Science Conference Proceedings (OSTI)

Grid-Integrated Vehicles (GIVs) are plug-in Electric Drive Vehicles (EDVs) with power-management and other controls that allow them to respond to external commands sent by power-grid operators, or their affiliates, when parked and plugged-in to the grid. ... Keywords: coalition formation, grid-integrated-vehicle, power regulation, vehicle-to-grid

Sachin Kamboj; Willett Kempton; Keith S. Decker

2011-05-01T23:59:59.000Z

400

Konceptuell design och utveckling av hybridfordon; Conceptual design and development of a hybrid vehicle.  

E-Print Network (OSTI)

?? This report covers the conceptual design of a new one person hybrid vehicle that is to be fast and convenient to drive on the (more)

Magnli, Rickard; Seving, Staffan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Real-time power management of parallel full hybrid electric vehicles.  

E-Print Network (OSTI)

??Lastly, the fuel saving capability of the HEV through intelligent driving was investigated. The intelligent vehicle velocity modification algorithm proposed by Manzie et al. is (more)

Adhikari, Sunil

2010-01-01T23:59:59.000Z

402

Testing of TEC-Based TMS for Patrol EV and Bus Fleet Vehicles  

Science Conference Proceedings (OSTI)

This project was a continuation of a study to help improve the driving range and reliability of electric vehicles (EVs) and to encourage their commercial growth

1999-12-14T23:59:59.000Z

403

Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Maintenance to Vehicle Maintenance to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Vehicle Maintenance to Conserve Fuel A comprehensive vehicle maintenance strategy can help fleet managers and

404

Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

DOE Green Energy (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1996-06-01T23:59:59.000Z

405

Vehicle systems design optimization study  

DOE Green Energy (OSTI)

The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

Gilmour, J. L.

1980-04-01T23:59:59.000Z

406

Fuel Cell Vehicle World Survey 2003-Specialty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Specialty Vehicles Specialty Vehicles History The first fuel cell vehicles were specialty vehicles. Allis Chalmers built and demonstrated a tractor in 1959 utilizing an alkaline fuel cell that produced 20 horsepower. During the 1960s, Pratt & Whitney delivered the first of an estimated 200 fuel cell auxiliary power units for space applications. Union Carbide delivered a fuel cell scooter to the U.S. Army in 1967. PEM fuel cells were invented in the 1960s for Allis Chalmers fuel cell tractor, 1959 military applications and have been used since the 1970s in submarines. Engelhard developed a fuel-cell-powered forklift about 1969. Since fuel cells are modular, scalable, and fuel-flexible, they remain excellent candidates for a wide range of specialty vehicle applications. Fuel cells are currently being demonstrated on land,

407

Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles  

DOE Green Energy (OSTI)

We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Chakravarthy, Veerathu K [ORNL

2012-01-01T23:59:59.000Z

408

AOCS USB Flash Drive  

Science Conference Proceedings (OSTI)

1 GB flash drive. AOCS logo printed on aluminum cover. AOCS USB Flash Drive Membership Merchandise Membership Merchandise 7F95621DF44FEA960BA8EE1D1E39CED4 1 GB USB flash drive. AOCS logo printed on aluminum cover. M-USB 17770

409

How Would You Use a Neighborhood Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Would You Use a Neighborhood Electric Vehicle? How Would You Use a Neighborhood Electric Vehicle? How Would You Use a Neighborhood Electric Vehicle? October 8, 2009 - 4:22pm Addthis This week, John discussed hybrid electric vehicles and neighborhood electric vehicles. We know many of you are driving hybrid electric vehicles, but what do you think about neighborhood electric vehicles? How would you use a neighborhood electric vehicle? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles Do You Drive a Hybrid Electric Vehicle? Will You Be Trading in Your Clunker for Cash--and a More Efficient Vehicle? How Will You Shop for Your Next Vehicle?

410

Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles  

E-Print Network (OSTI)

incentives. The federal Qualified Plug-In Electric Drive Motor Vehicle Tax Credit is available for PEV. Advances in electric-drive technologies enabled commercializa- tion of hybrid electric vehicles (HEVs That Affect All-Electric and Hybrid Electric Vehicle Efficiency and Range section). The time required to fully

Michalek, Jeremy J.

411

WPET '98, Dearborn, Michigan, October 22-23, 1998, pp. 79-84. Multilevel Inverters for Electric Vehicle Applications  

E-Print Network (OSTI)

) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1 and many military combat vehicles that have large electric drives will require advanced power electronic@ornl.gov Abstract This paper presents multilevel inverters as an application for all-electric vehicle (EV

Tolbert, Leon M.

412

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data  

SciTech Connect

Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

LaClair, Tim J [ORNL

2012-01-01T23:59:59.000Z

413

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

414

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

415

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

416

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

417

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

418

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

419

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

420

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

422

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

423

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

424

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

425

EM Reports Success in Drive to Meet DOE Fleet Reduction Goals | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Success in Drive to Meet DOE Fleet Reduction Goals Reports Success in Drive to Meet DOE Fleet Reduction Goals EM Reports Success in Drive to Meet DOE Fleet Reduction Goals July 18, 2012 - 12:00pm Addthis Secretary Chu, right, discusses electric vehicles with Brian Wynne, president of the Electric Drive Transportation Association, at an event in 2011. Secretary Chu, right, discusses electric vehicles with Brian Wynne, president of the Electric Drive Transportation Association, at an event in 2011. WASHINGTON, D.C. - EM is on pace to meet the first of a series of goals to reduce its vehicle fleet and help DOE accomplish a broader initiative to cut greenhouse gas emissions and decrease petroleum consumption across the complex. In January 2011, Secretary Chu challenged DOE to reduce its vehicle fleet by 35 percent over three years, and EM committed to a 15 percent drop in

426

EM Reports Success in Drive to Meet DOE Fleet Reduction Goals | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Reports Success in Drive to Meet DOE Fleet Reduction Goals EM Reports Success in Drive to Meet DOE Fleet Reduction Goals EM Reports Success in Drive to Meet DOE Fleet Reduction Goals July 18, 2012 - 12:00pm Addthis Secretary Chu, right, discusses electric vehicles with Brian Wynne, president of the Electric Drive Transportation Association, at an event in 2011. Secretary Chu, right, discusses electric vehicles with Brian Wynne, president of the Electric Drive Transportation Association, at an event in 2011. WASHINGTON, D.C. - EM is on pace to meet the first of a series of goals to reduce its vehicle fleet and help DOE accomplish a broader initiative to cut greenhouse gas emissions and decrease petroleum consumption across the complex. In January 2011, Secretary Chu challenged DOE to reduce its vehicle fleet by 35 percent over three years, and EM committed to a 15 percent drop in

427

A hybrid vehicle evaluation code and its application to vehicle design  

DOE Green Energy (OSTI)

This report describes a hybrid vehicle simulation model, which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates interactively, with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This report also documents the application of the code to a hybrid vehicle that operates with a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine-generator efficiency, flywheel efficiency, and flywheel energy and power capacities.

Aceves, S.M.; Smith, J.R.

1994-07-15T23:59:59.000Z

428

Drill drive mechanism  

DOE Patents (OSTI)

A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

Dressel, Michael O. (Englewood, CO)

1979-01-01T23:59:59.000Z

429

Second-Generation Fuel Cell Stack Durability and Freeze Capability from National FCV Learning Demonstration (Presentation)  

Science Conference Proceedings (OSTI)

This presentation provides information about the objectives and partners of the National Fuel Cell Vehicle Learning Demonstration, the status of vehicle and station deployment, and results of vehicle and infrastructure analysis.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2009-11-18T23:59:59.000Z

430

Paris Valley Combination Thermal Drive Pilot Demonstration Test. Final report  

SciTech Connect

A wet combustion pilot within the Paris Valley Field, Monterey County, California was initiated in January, 1975 in order to determine the technical and economic feasibility of this enhanced recovery process within a sandstone reservoir having a very viscous crude. Cyclic steaming was also performed and evaluated. Due to the low oil production rates, which were not capable of offsetting the high operating costs, the pilot was terminated during March, 1979. Eighteen producing wells, five air injectors, and one water disposal well were drilled. Primary oil production averaged less than 3 BOPD per well and initial water production ranged from 30 to 100 BWPD per well. Cumulative oil produced during the pilot was 120,623 STBO. Over 90% of the oil produced was due to response from cyclic steaming.

Shipley, R.G. Jr.; Meldau, R.F.; White, P.D.

1980-09-01T23:59:59.000Z

431

Multilevel Inverters for Electric Vehicle Applications  

DOE Green Energy (OSTI)

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

432

Multilevel Inverters for Electric Vehicle Applications  

SciTech Connect

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

433

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

434

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

435

Multiple-degree-of-freedom vehicle  

DOE Patents (OSTI)

A multi-degree-of-freedom vehicle employs a compliant linkage to accommodate the need for a variation in the distance between drive wheels or drive systems which are independently steerable and drivable. The subject vehicle is provided with rotary encodes to provide signals representative of the orientation of the steering pivot associated with each such drive wheel or system, and a linear encoder which issues a signal representative of the fluctuations in the distance between the drive elements. The wheels of the vehicle are steered and driven in response to the linear encoder signal, there being provided a controller system for minimizing the fluctuations in the distance. The controller system is a software implementation of a plurality of controllers, operating at the chassis level and at the vehicle level. A trajectory interpolator receives x-displacement, y-displacement, and .theta.-displacement signals and produces to the vehicle level controller trajectory signals corresponding to interpolated control signals. The x-displacement, y-displacement, and .theta.-displacement signals are received from a human operator, via a manipulable joy stick.

Borenstein, Johann (Ann Arbor, MI)

1995-01-01T23:59:59.000Z

436

Driving the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future the Future A r g o n n e ' s v e h i c l e s ys t e m s r e s e A r c h 3 2 v e h i c l e s y s t e m s r e s e a r c h At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help reduce our nation's petroleum consumption and greenhouse gas emissions. Our Vehicle Systems research focuses on maximizing vehicle performance and efficiency through in-depth studies of the interactions and integration of components and controls in a large, complex vehicle system. Working with the U.S. Department of Energy (DOE) and the automotive industry, we investigate the potential of vehicle technologies ranging from alternative fuels to advanced powertrains, such as plug-in hybrids and electric vehicles. Funding

437

Vehicle for carrying an object of interest  

SciTech Connect

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

Zollinger, W. Thor (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH)

1998-01-01T23:59:59.000Z

438

Vehicle for carrying an object of interest  

DOE Patents (OSTI)

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

Zollinger, W.T.; Ferrante, T.A.

1998-10-13T23:59:59.000Z

439

Route-Based Control of Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

Gonder, J. D.

2008-01-01T23:59:59.000Z

440

Lane estimation for autonomous vehicles using vision and LIDAR  

E-Print Network (OSTI)

Autonomous ground vehicles, or self-driving cars, require a high level of situational awareness in order to operate safely and eciently in real-world conditions. A system able to quickly and reliably estimate the location ...

Huang, Albert Shuyu

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations  

DOE Green Energy (OSTI)

This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

LaClair, Tim J [ORNL

2011-05-01T23:59:59.000Z

442

Kansas State University Electric Vehicle Site Operator Program. Year 1: First quarter report, July 2, 1991--September 30, 1991  

SciTech Connect

During the past fifteen years Kansas State`s faculty has been involved in research of alternative fuel vehicles. From formulation of fuels and automotive fuel storage to development of electronic controls, K-State`s faculty research has been ongoing. With the increased awareness of what is occurring to the world`s environment, the catalyst -- to ensure applied results from faculty research will occur -- has been activated. The Department of Energy`s Electric Vehicle Site Operator Program is the platform being used to demonstrate international efforts to bring a more acceptable daily mode of transportation to our highways. The first new electrical vehicle procured at K-State in the last ten years, a G-Van, is a technological dinosaur. It does not incorporate leading edge control or drive systems nor does it provide the type of vehicle frame and body to meet a majority of the daily commuter needs required by the American market. Yet, this vehicle represents initial efforts to bring a federally crash certified vehicle to the commercial automotive market. As such, it is an evolutionary step in the mass production of electric vehicle products.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-12-31T23:59:59.000Z

443

Procedures for safe handling of off-gases from electric vehicle lead-acid batteries during overcharge  

DOE Green Energy (OSTI)

The potential for generation of toxic gases from lead-acid batteries has long been recognized. Prior to the current interest in electric vehicles, there were no studies specificaly oriented to toxic gas release from traction batteries, however. As the Department of Energy Demonstration Project (in the Electric and Hybrid Vehicle Program) progresses, available data from past studies and parallel health effects programs must be digested into guidance to the drivers and maintenance personnel, tailored to their contact with electric vehicles. The basic aspects of lead-acid battery operation, vehicle use, and health effects of stibine and arsine to provide electric vehicle users with the information behind the judgment that vehicle operation and testing may proceed are presented. Specifically, it is concluded that stibine generation or arsine generation at rapid enough rates to induce acute toxic response is not at all likely. Procedures to guard against low-level exposure until more definitive data on ambient concentrations of the gases are collected are presented for both charging the batteries and driving the vehicles. A research plan to collect additional quantitative data from electric traction batteries is presented.

LaBelle, S.J.; Bhattacharyya, M.H.; Loutfy, R.O.; Varma, R.

1980-01-25T23:59:59.000Z

444

Driving on "Green" Electrons | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving on "Green" Electrons Driving on "Green" Electrons Driving on "Green" Electrons September 6, 2011 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program So you've decided you want to drive on electricity. You've considered your commute, how often you could plug in your car, and whether you want a plug-in hybrid electric (PHEV) or all-electric vehicle (EV) . But you have one more decision to make - your electricity source. Although electricity is cleaner than petroleum once it gets to your car, not all electricity is created equal. Greenhouse gases that contribute to climate change and smog-forming emissions can come from two different sources in cars - the vehicle's tailpipe and the production of the fuel. The total of these sources is the

445

Driving Home to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Working here at the Department of Energy, I hear a lot about the latest efforts to design and build vehicles for a more energy-efficient future. The clean energy innovations in vehicle technologies that DOE and its partners are advancing will help American families save money at the pump-or even allow them to quit the gas pump altogether. Today, I want to highlight a few of the recent developments that will encourage drivers to be smarter consumers, help industry leaders make the cars and trucks we drive more energy efficient, and allow us to spend less of our hard-earned

446

EcoCar Drives Students to Innovate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate October 26, 2010 - 5:21pm Addthis EcoCar Drives Students to Innovate Shannon Brescher Shea Communications Manager, Clean Cities Program Last year, Americans used about 138 billion gallons of gasoline - mostly imported - for transportation, costing Americans about $300 billion. The Department of Energy, through the Recovery Act, is investing in more fuel-efficient battery and electric vehicles to reduce these costs and training a strong, talented workforce to develop these cleaner, more sustainable technologies. Recognizing the importance of engaging students in this endeavor, the Department of Energy and General Motors (GM) established the EcoCar Challenge - a three-year Advanced Vehicle

447

OpenXC sample driving data | OpenEI Community  

Open Energy Info (EERE)

OpenXC sample driving data OpenXC sample driving data Home > Groups > Developer Rmckeel's picture Submitted by Rmckeel(297) Contributor 24 September, 2012 - 10:29 OpenXC This file represents raw data from OpenXC, in the form of single-vehicle trace files. This may be accessed from any programming language or existing system you want, but a Python wrapper will soon be made available and linked to OpenEI's energy hackathon resources. A description of the format for each individual measurement: http://openxcplatform.com/vehicle-interface/output-format.html A description of the trace files (including the driving.txt file), which is simple a list of individual measurements with timestamps: http://openxcplatform.com/android/testing.html Note: when this sample data forms a more complete dataset of real driving

448

Holiday Gift Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Holiday Gift Drive Holiday Gift Drive Holiday Gift Drive Every year, Laboratory employees help fulfill the holiday wishes of children and seniors in our communities. In 2012, our employees helped more than 1,030 Northern New Mexico children, senior citizens and families have a brighter holiday season. September 16, 2013 Every holiday season, employees of Los Alamos National Laboratory donate and distribute gifts to families in need throughout Northern New Mexico. Contacts Giving Drives Ed Vigil Community Programs Office (505) 665-9205 Email Giving Drives Enrique Trujillo Community Programs Office (505) 665-6384 Email Helping New Mexico families feel the holiday spirit The 2013 campaign runs from November 21-December 18. 2012 Holiday Gift Drive partners Boys and Girls Club Del Norte (Abiquiu Site)

449

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

450

Intelligent energy management agent for a parallel hybrid vehicle  

E-Print Network (OSTI)

This dissertation proposes an Intelligent Energy Management Agent (IEMA) for parallel hybrid vehicles. A key concept adopted in the development of an IEMA is based on the premise that driving environment would affect fuel consumption and pollutant emissions, as well as the operating modes of the vehicle and the driver behavior do. IEMA incorporates a driving situation identification component whose role is to assess the driving environment, the driving style of the driver, and the operating mode (and trend) of the vehicle using long and short term statistical features of the drive cycle. This information is subsequently used by the torque distribution and charge sustenance components of IEMA to determine the power split strategy, which is shown to lead to improved fuel economy and reduced emissions.

Won, Jong-Seob

2005-05-01T23:59:59.000Z

451

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

452

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

453

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

454

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

455

Hydrogen fueling station development and demonstration  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

456

Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen  

SciTech Connect

The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

Doyle, T.A.

1998-01-31T23:59:59.000Z

457

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

458

Yosemite Waters Vehicle Evaluation Report: Final Results (Brochure)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Results Results Prepared for South Coast Air Quality Management District by the National Renewable Energy Laboratory CRD-01-098 Fischer-Tropsch Synthetic Fuel Demonstration in a Southern California Vehicle Fleet Yosemite Waters Vehicle Evaluation Report Yosemite Waters Vehicle Evaluation Report i Alternative Fuel Trucks YOSEMITE WATERS VEHICLE EVALUATION REPORT Authors Leslie Eudy, National Renewable Energy Laboratory (NREL)

459

Vehicles Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Blog Vehicles Blog Vehicles Blog RSS November 22, 2013 As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency The 21st Century Truck Partnership aims to improve the fuel efficiency of heavy duty-freight vehicles in existing and future fleets throughout the country. The partnership includes 15 heavy-duty engine, truck, and bus manufacturers, four federal agencies and 12 national laboratories. September 19, 2013 A Clean Energy Revolution -- Now Critics often say America's clean energy future will "always be five years away." For four key clean energy technologies, that clean energy

460

Demand Dispatch Based on Smart Charging of Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

Uncontrolled charging of Plug-in Electric Vehicles (PEVs) has a negative impact on the peak load and brings potential challenges to electric utility. In this paper, we apply a statistical load model of PEVs charging demand to simulate the driving habits ... Keywords: Plug-in Electric Vehicles, Demand dispatch, Smart charging, Driving habits, Load model

Ting Wu, Gang Wu, Zhejing Bao, Wenjun Yan, Yiyan Zhang

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

462

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

463

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

464

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

465

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

Treu, Jr., Charles A. (Raymore, MO)

1999-08-31T23:59:59.000Z

466

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

Treu, C.A. Jr.

1999-08-31T23:59:59.000Z

467

ANALYSIS OF CONTROL SYSTEMS FOR VEHICLE HYBRID POWERTRAINS  

E-Print Network (OSTI)

Abstract. Ecological and socioeconomic factors determine high interest in the development of pollution-free vehicles. At present use of electro-vehicles is suppressed by a number of technological factors. Vehicles with alternative powertrains are transitional stage between development of pollution-free vehicles and vehicles with conventional internal combustion engine. According to these aspects the investigation on conventional hybrid drives and their control systems is carried out in the article. The equations that allow evaluating effectiveness of regenerative braking for different variants of hybrid drive are given. The AMESim software is used as the modeling environment, in which models of hybrid vehicles are developed and the results of virtual simulation are analyzed. Also a number of recommendations for increasing of regenerative braking effectiveness are given.

Siarhei Kliauzovich

2007-01-01T23:59:59.000Z

468

Application of the GSFUDS to advanced batteries and vehicles  

DOE Green Energy (OSTI)

The GSFUDS approach to determining appropriate battery test power profiles is applied to various combinations of advanced batteries and electric vehicles. Computer simulations are used to show that the SFUDS velocity driving profile developed for the IDSEP electric vehicle also yielded energy consumption (Wh/km) and peak power values for other vehicles of greatly different characteristics that are in good agreement with the corresponding values for the same vehicles on the FUDS driving cycle. The computer results also showed that the GSFUDS power steps expressed as multiples of the average power, Pav are applicable to electric vehicles in general for the SFUDS driving profile if the peak power step is altered to reflect the changes in the vehicle design. A general procedure is given for presenting battery test data in terms of the constant power and GSFUDS Ragone curves from which the vehicle range can be determined for the FUDS and other driving cycles for different vehicle designs. 5 refs., 6 figs., 6 tabs.

Burke, A.F.; Cole, G.H.

1990-01-01T23:59:59.000Z

469

Energy efficient navigation management for hybrid electric vehicles on highways  

Science Conference Proceedings (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) are gaining popularity due to their economical efficiency as well as their contribution to environmental preservation. PHEVs allow the driver to use exclusively electric power for 30-50 miles of driving, and switch ... Keywords: formal model, navigation plan, plug-in hybrid vehicle

Mohammad Ashiqur Rahman, Qi Duan, Ehab Al-Shaer

2013-04-01T23:59:59.000Z

470

NREL: Vehicles and Fuels Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles and Fuels Research News Vehicles and Fuels Research News The following news stories highlight vehicles and fuels research at NREL. December 23, 2013 NREL and Thought Leaders Gather at Electric Vehicle Battery Management Summit NREL researchers will gather with U.S. Department of Energy program directors and technology managers, and other thought leaders to exchange strategies for maximizing the performance, safety, and lifespan of electric-drive vehicle batteries. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile

471

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 18, 2011 March 18, 2011 Kansas City Buses Provide a Clean Ride for Kids On Wednesday March 16, the Kansas City, Kansas School District welcomed some newcomers to their community - 47 natural gas school buses deployed as part of the Clean Cities Alternative Fuel Vehicle Pilot Program. March 18, 2011 Driving "Back to the Future": Flex-Fuel Vehicle Awareness How Flexible Fuel Vehicles are empowering consumers and reducing our reliance on foreign oil. March 17, 2011 Manhattan Beer Distributors' first diesel-electric hybrid delivery vehicle | Photo Courtesy of Manhattan Beer Distributors Green Beer: Not Just for St. Patrick's Day How the Clean Cities program has helped small business fleets like Manhattan Beer Distributors adopt fuel efficient vehicle technology --

472

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

473

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

474

Hybrid options for light-duty vehicles.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

475

Electric and Hybrid Vehicle Technology: TOPTEC  

DOE Green Energy (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

476

Electric and Hybrid Vehicle Technology: TOPTEC  

DOE Green Energy (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

477

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles: Preprint  

DOE Green Energy (OSTI)

Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

Neubauer, J.; Wood, E.

2013-03-01T23:59:59.000Z

478

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles  

DOE Green Energy (OSTI)

Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

Neubauer, J.; Wood, E.

2013-01-01T23:59:59.000Z

479

Transistorized power switch and base drive circuit therefore  

DOE Green Energy (OSTI)

A high power switching circuit is disclosed which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn-off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

Lee, F.C.; Carter, R.A.

1981-03-24T23:59:59.000Z

480

Base drive circuit for a four-terminal power Darlington  

DOE Patents (OSTI)

A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

Lee, Fred C. (Blacksburg, VA); Carter, Roy A. (Salem, VA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Can't Wait: Driving Forward with New Fuel Economy Standards Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. Heather Zichal Deputy Assistant to the President for Energy and Climate Change What does this project do? Saves you money by increasing the fuel efficiency equivalent of light-duty trucks and cars to 54.5 miles per gallon by 2025. Drives innovation in the manufacturing sector and helps create

482

Nissan Hypermini Urban Electric Vehicle Testing  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA), which is part of DOEs FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hyperminis lithiumion battery pack required up to 4 hours, with about 810 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

James Francfort; Robert Brayer

2006-01-01T23:59:59.000Z

483

LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization  

Science Conference Proceedings (OSTI)

A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

powers,Charles A.; Derbidge, T. Craig

2001-03-27T23:59:59.000Z

484

Evaluation of near-term electric vehicle battery systems through in-vehicle testing: Interim report  

SciTech Connect

EVTF personnel tested 10 batteries, including lead-acid (flat plate and tubular design), Gel Cell III, advanced lead-acid, nickel iron, nickel zinc, nickel cadmium, and zinc chloride systems. The assessment encompassed the following tasks: initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static discharge tests under computer control. Performance data were based on specific energy versus accumulated vehicle mileage and vehicle driving range over a fixed operating cycle at 35-mph constant speed and the SAE J227a C cycle. A battery's life cycle was terminated when its measured capacity dropped below 60% of the rating, at a 2-h rate, after 25% of the battery modules had been replaced. The EVs used for the tests were 10 Volkswagen vans and 2 General Motors Griffin vans.

Blickwedel, T.W.

1986-12-01T23:59:59.000Z

485

Analysis of national pay-as-you-drive insurance systems and other variable driving charges  

SciTech Connect

Under Pay as You Drive insurance (PAYD), drivers would pay part of their automobile insurance premium as a per-gallon surcharge every time they filled their gas tank. By transfering a portion of the cost of owning a vehicle from a fixed cost to a variable cost, PAYD would discourage driving. PAYD has been proposed recently in California as a means of reforming how auto insurance is provided. PAYD proponents claim that, by forcing drivers to purchase at least part of their insurance every time they refuel their car, PAYD would reduce or eliminate the need for uninsured motorist coverage. Some versions of PAYD proposed in California have been combined with a no-fault insurance system, with the intention of further reducing premiums for the average driver. Other states have proposed PAYD systems that would base insurance premiums on annual miles driven. In this report we discuss some of the qualitative issues surrounding adoption of PAYD and other policies that would convert other fixed costs of driving (vehicle registration, safety/emission control system inspection, and driver license renewal) to variable costs. We examine the effects of these policies on