Sample records for drive vehicle demonstration

  1. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    vs. Utility Meter Utilize communication strategies to alter EVSE operation - Demand Response demonstration Approach EVSE Utility HARDWARE DEPLOYMENT 7,871 Level 2...

  3. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicleEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  5. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30T23:59:59.000Z

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  6. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  7. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and...

  8. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  9. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27T23:59:59.000Z

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  10. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  11. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  12. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31T23:59:59.000Z

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  13. Drive reconfiguration mechanism for tracked robotic vehicle

    DOE Patents [OSTI]

    Willis, W. David (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

  14. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15T23:59:59.000Z

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  15. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  16. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  17. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  18. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    charge data using cellularWiFi based network Power and energy data using integral meter Event data using network synchronized clock All data merged and stored at...

  19. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Utilization Data Base Evaluate Infrastructure Effectiveness Develop Sustainable Business Models Develop Models For Future Infrastructure Deployments Relevance MILESTONES...

  20. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  1. Vehicle Technologies Office Merit Review 2015: Electric Drive...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Presentation given by Oak...

  2. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  3. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2011 DOE Hydrogen and Fuel Cells...

  4. A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways #

    E-Print Network [OSTI]

    Girault, Alain

    A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways # Alain Girault a a Inria the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles to be dealt with: a vehicle driving in a single­lane highway must never collide with its leading vehicle

  5. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  6. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29T23:59:59.000Z

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  7. Vehicle Technologies Office: US DRIVE Materials Technical Team...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle efficiency regardless of the vehicle size or propulsion system employed. This roadmap lays out the future direction for this research. U.S. DRIVE Materials Technical Team...

  8. Think City Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    Ford Motor Company

    2005-03-01T23:59:59.000Z

    The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

  9. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program...

  10. A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways

    E-Print Network [OSTI]

    Girault, Alain

    A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways Alain Girault a aInria Rh of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do not commu- nicate with each other nor with the infrastructure. Two problems have to be dealt with: a vehicle

  11. Questions, Answers and Clarifications Used MediumDuty Electric Vehicle Repower Demonstration

    E-Print Network [OSTI]

    Questions, Answers and Clarifications Used MediumDuty Electric Vehicle Repower Demonstration PON). Q5. A plug-in hybrid electric vehicle repower could provide some electric drive with an engine for extended range. Would a plug-in hybrid electric vehicle with an internal combustion engine be considered

  12. Electric Drive Vehicles: A Huge New Distributed Energy Resource

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric Drive Vehicles: A Huge New Distributed Energy Resource Alec Brooks AC Propulsion, Inc. San Dimas, California www.acpropulsion.com #12;The Old and the New.. Old way of thinking: Electric vehicles are an unnecessary burden to an over- taxed electricity grid New way of thinking: Electric drive vehicles

  13. Model Based Vehicle Tracking for Autonomous Driving in Urban Environments

    E-Print Network [OSTI]

    Model Based Vehicle Tracking for Autonomous Driving in Urban Environments Anna Petrovskaya environments. This paper describes moving vehicle tracking module that we developed for our autonomous driving in this area. DARPA has organized a series of competitions for autonomous vehicles. In 2005, autonomous

  14. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Office of Environmental Management (EM)

    Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis results based on...

  15. Workplace Plug-in Electric Vehicle Ride and Drive

    Broader source: Energy.gov [DOE]

    Workplace plug-in electric vehicle (PEV) Ride and Drive events are one of the most effective ways to drive PEV adoption. By providing staff the opportunity to experience PEVs first hand, they can...

  16. Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments...

    Energy Savers [EERE]

    Report More Documents & Publications US DRIVE Electrochemical Energy Storage Technical Team Roadmap Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report...

  17. Driving the Future Argonne's vehicle systems reseArch

    E-Print Network [OSTI]

    Kemner, Ken

    and commercialization of next- generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four, drivetrain components, control strategies and

  18. DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

  19. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  20. Vehicle drive module having improved terminal design

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25T23:59:59.000Z

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  1. Vehicle drive module having improved cooling configuration

    DOE Patents [OSTI]

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13T23:59:59.000Z

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  2. Vehicle drive module having improved EMI shielding

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28T23:59:59.000Z

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  3. US DRIVE Driving Research and Innovation for Vehicle Efficiency...

    Office of Environmental Management (EM)

    More Documents & Publications US DRIVE Fuel Pathway Integration Technical Team Roadmap Hydrogen Program Goal-Setting Methodologies Report to Congress US DRIVE Hydrogen...

  4. Vehicle Technologies Office Merit Review 2014: Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  5. Vehicle Technologies Office Merit Review 2015: E-drive Vehicle Sales Analyses

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about E-drive Vehicle...

  6. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  7. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  8. Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01T23:59:59.000Z

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  10. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Education Program Al Ebron, Executive Director National Alternative Fuels Training Consortium West Virginia University June 9, 2010 Project ID: ARRAVT031 This presentation...

  11. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-05-01T23:59:59.000Z

    This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

  12. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || Department of

  13. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || Department of|

  14. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || Department of||

  15. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    SciTech Connect (OSTI)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02T23:59:59.000Z

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  16. Vehicle Technologies Office Merit Review 2014: E-drive Vehicle Sales Analyses

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the E-drive...

  17. Electric vehicles: How much range is required for a day's driving? Nathaniel S. Pearre a,

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric vehicles: How much range is required for a day's driving? Nathaniel S. Pearre a, , Willett online xxxx Keywords: Electric vehicle Plug-in vehicle Daily driving range Range requirement Trip timing Vehicle design a b s t r a c t One full year of high-resolution driving data from 484 instrumented

  18. Heel and toe driving on fuel cell vehicle

    DOE Patents [OSTI]

    Choi, Tayoung; Chen, Dongmei

    2012-12-11T23:59:59.000Z

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  19. In Vehicle Technology to Correct Teen Driving Behavior

    E-Print Network [OSTI]

    Minnesota, University of

    Fatalities: Current Trends ! In last decade, have seen an increase in teen fatalities. ! Teen drivers have Inattention/Distraction 13% Driving left of center 11% Physical Impairment 9% Disregard of traffic control 7 teenagers. Source: Minnesota Motor Vehicle Crash Facts, 2004 Teen Fatality Contributing Factors: Seatbelt

  20. A study of alternative drive control interfaces for next-generation electric vehicles

    E-Print Network [OSTI]

    Post, C. Christopher (Charles Christopher)

    2011-01-01T23:59:59.000Z

    The drive control interface in automobiles has not significantly changed for almost a century. Recent advances in electric vehicles and drive-by-wire technology allow for new alternative interfaces that enable novel vehicle ...

  1. Would You Consider Driving a Vehicle that Can Run on Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? September 16, 2010 - 7:30am Addthis On Monday,...

  2. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect (OSTI)

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01T23:59:59.000Z

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  3. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Technical Report NRELTP-5600-54860 July 2012...

  4. ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States

    E-Print Network [OSTI]

    Kemner, Ken

    ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States: 2009 Status and Issues Energy Laboratory, or UChicago Argonne, LLC. #12;ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States .............................................................................................................. 1 2 STATE OF ELECTRIC DRIVE VEHICLE TECHNOLOGY .......................................... 4 2

  5. BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE

    E-Print Network [OSTI]

    Perez, Richard R.

    BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE Steven, however, the use of batteries from parked electric- drive vehicles (EDV) to provide buffer storage for PV requirements that will result in a number of new battery-powered electric drive vehicles being sold beginning

  6. Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates

    E-Print Network [OSTI]

    Holsinger, Kent

    Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter Driving Smart Growth: Electric Vehicle Adoption Page 2 Executive Summary Reducing our dependence to electric vehicles (EVs)1 is core to reducing reliance on fossil fuels and driving smart growth

  7. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01T23:59:59.000Z

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  8. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  9. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    SciTech Connect (OSTI)

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06T23:59:59.000Z

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  10. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01T23:59:59.000Z

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  11. Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles A. Kolli1 , Student Magnet Synchronous Machine in Electric Vehicle application. First, a short survey of existing power regarding compactness and vehicle integration. More specifically electric vehicles (EVs) require a high

  12. Urban driving cycle results of retrofitted diesel oxidation catalysts on heavy duty vehicles

    SciTech Connect (OSTI)

    Brown, K.F. [Engine Control Systems Ltd., Aurora, Ontario (Canada); Rideout, G.

    1996-09-01T23:59:59.000Z

    This paper presents the emissions testing results of various heavy duty engines and vehicles with and without retrofitted diesel oxidation catalyst technology. 1987 Cummins L10 and 1991 DDC 6V92TA DDECII engine results over the US Heavy Duty Transient Test are presented for comparison to chassis test results. The vehicles in this study include two urban buses, two school buses and three heavy duty trucks. The Central Business District, New York Bus and New York Composite urban driving cycles have been used to evaluate baseline emissions and the catalyst performance on a heavy duty chassis dynamometer. The results demonstrate that 25--45% particulate reduction is readily achievable on a wide variety of heavy duty vehicles. Significant carbon monoxide and hydrocarbon reductions were also observed.

  13. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi...

  14. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    management of small electric energy systems including V2Gand renewable energy sources,” Electric Power Systemsof electric-drive vehicles with renewable energy,” Energy,

  15. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  16. Driving confidence and in-vehicle telematics : a study of technology adoption patterns of the 50+ driving population

    E-Print Network [OSTI]

    Hutchinson, Thomas E. (Thomas Ely), 1979-

    2004-01-01T23:59:59.000Z

    In-vehicle telematics is a term that encompasses a wide range of technologies, which aid the driving function through features assisting in safety and service tasks. These technologies are designed to give the operator and ...

  17. US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    DRIVE Technical Teams in determining performance goals and validation metrics. vsattroadmapjune2013.pdf More Documents & Publications US DRIVE Driving Research and Innovation...

  18. Electric Drive Vehicle Level Control Development Under Various...

    Broader source: Energy.gov (indexed) [DOE]

    Compo. Validate Standalone validation Under different temperature conditions (hotcold) Vehicle Control Supervisory controller Vehicle Validate Under different...

  19. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  20. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  1. Compact vehicle drive module having improved thermal control

    DOE Patents [OSTI]

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2006-01-03T23:59:59.000Z

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  2. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01T23:59:59.000Z

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  3. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect (OSTI)

    Santini, D. J.; Energy Systems

    2011-02-16T23:59:59.000Z

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  4. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01T23:59:59.000Z

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  5. Kandler Smith, NREL EDV Battery Robust Design -1 Design of Electric Drive Vehicle

    E-Print Network [OSTI]

    Kandler Smith, NREL EDV Battery Robust Design - 1 Design of Electric Drive Vehicle Batteries for significant market penetration to be achieved · Batteries are the most expensive component of the vehicle · Consumers expect >10 years vehicle life · Periodic battery replacement (e.g., every 5 years) not warranted

  6. TTrraavveell GGuuiiddee 1. Student Affairs REQUIRES overnight lodging when driving an Avis vehicle over 500 miles.

    E-Print Network [OSTI]

    Ronquist, Fredrik

    TTrraavveell GGuuiiddee 1. Student Affairs REQUIRES overnight lodging when driving an Avis vehicle over 500 miles. 2. Avis car rental (state contract) The vehicle is automatically covered under.) This will negate the contract and insurance coverage. You must use a compact car unless a different vehicle

  7. Fig. 1. Typical topological arrangement of a hybrid fuel cell vehicle drive train [2].

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Fig. 1. Typical topological arrangement of a hybrid fuel cell vehicle drive train [2]. TABLE I designed with more robust features. I. INTRODUCTION Fuel cell vehicles (FCV) are widely considered of a hybrid fuel cell vehicle is shown in Fig. 1 [2]. Developments in hybrid automobile industry have

  8. Electric Drive Vehicle Level Control Development Under Various...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)...

  9. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01T23:59:59.000Z

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  10. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves

    E-Print Network [OSTI]

    Gu, Chaoyi

    2013-07-31T23:59:59.000Z

    Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. The original definition...

  13. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

  14. Vehicle Technologies Office Merit Review 2015: Traction Drive Systems with Integrated Wireless Charging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about traction drive...

  15. Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle Data

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle. Hybrid vehicles are characterized by multiple energy sources; the strategy to control the energy flow Data Daniel F. Opila, Xiaoyong Wang, Ryan McGee, Jeffrey A. Cook, and J.W. Grizzle Abstract-- Hybrid

  16. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  17. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt028apeboan2011...

  18. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt028apeboan2012...

  19. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. apearravt028boan2010...

  20. Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...

    Energy Savers [EERE]

    Energy Storage Technical Team Roadmap Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage...

  1. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  2. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  3. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  4. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  5. AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

  6. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  7. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  8. Driving, Aging & Dementia: On-Line Resources Division of Motor Vehicles & Driver Licensing, Missouri Department of Revenue

    E-Print Network [OSTI]

    Driving, Aging & Dementia: On-Line Resources Missouri Division of Motor Vehicles & Driver Licensing for Responsible Driving, Inc. http://www.drivingsafe.org/ Alzheimer's Association, St. Louis Chapter (Driving & Driving (The Hartford Insurance Corp.) http://www.thehartford.com/alzheimers/ Family Conversations

  9. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13T23:59:59.000Z

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  12. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01T23:59:59.000Z

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  13. Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

    2013-06-01T23:59:59.000Z

    This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

  14. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL

    2014-01-01T23:59:59.000Z

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the range-related cost as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36,664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. The bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  15. National Fuel Cell Vehicle Learning Demonstration: Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-04-22T23:59:59.000Z

    The objectives of this paper are: (1) validate H{sub 2} FC vehicles and infrastructure in parallel; (2) identify current status and evolution of the technology; (3) objectively assess progress toward technology readiness; and (4) provide feedback to H{sub 2} research and development.

  16. The Smart Grid, A Scale Demonstration Model Incorporating Electrified Vehicles

    E-Print Network [OSTI]

    Clemon, Lee; Mattson, Jon; Moore, Andrew; Necefer, Len; Heilman, Shelton

    2011-04-01T23:59:59.000Z

    energy infrastructure. Furthermore, with the advent and commercialization of electrified vehicles, energy demand has the capability to increase dramatically. A sustainable solution via renewable energy technologies can act to offset... to ensure the energy security of the United States. Supported by the EPA P3 initiative, the current small-scale stage of the EcoHawks design project involves creation of a smart energy infrastructure that integrates solar and wind renewable energy...

  17. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  18. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  19. Fuel Cell Vehicle Infrastructure Learning Demonstration: Status and Results; Preprint

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-09-01T23:59:59.000Z

    Article prepared for ECS Transactions that describes the results of DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project.

  20. Vehicle Technologies Office: Electric Drive Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy TechConnect World InnovationBatteries VehicleEnergy Electric

  1. Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I ATheJune 23, 2015 VehicleReport |

  2. Vehicle Technologies Office: US DRIVE Partnership Plan, Roadmaps, and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I ATheJune 23, 2015 VehicleReport

  3. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of EnergyReport |

  4. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data|Report |TestingProgress Report |

  5. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 2015 < prev nextDrive a

  6. Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results; Preprint

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-04-01T23:59:59.000Z

    Conference paper presented at the 2008 National Hydrogen Association Meeting that describes the spring, 2008 results of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  7. Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah Ortzar and Felipe Ros

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah converters for electric vehicles using multilevel inverters. They are being compared with inverters using vehicles. On the other hand, the PWM techniques used today to control modern static converters for electric

  8. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  9. Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

  10. A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator

    E-Print Network [OSTI]

    Luskin, Paul (Paul L.)

    2010-01-01T23:59:59.000Z

    The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

  11. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2010-11-08T23:59:59.000Z

    This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

  12. Demonstrating Electric Vehicles in Canada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b NoCounty,Delaware:DemilecDemonstrating

  13. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    SciTech Connect (OSTI)

    Center for Energy and Innovative Technologies; NEC Laboratories America Inc.; Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-10-27T23:59:59.000Z

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  14. Demonstration of the fuel economy potential associated with M85-fueled vehicles

    SciTech Connect (OSTI)

    Hodgson, J.W.; Huff, S.P. [Tennessee Univ., Knoxville, TN (United States)] [Tennessee Univ., Knoxville, TN (United States)

    1993-12-01T23:59:59.000Z

    A gasoline-fueled 1988 Chevrolet Corsica was converted to operate on M85 to demonstrate that the characteristics of methanol fuels can be exploited to emphasize vehicle fuel economy rather than vehicle performance. The results of the tests performed indicated fuel economy improvements of up to 21% at steady highway speeds, and almost 20% on the US Environmental Protection Agency`s federal test procedure city and highway cycles.

  15. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29T23:59:59.000Z

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  16. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the “Delphi Kokomo, IN Corporate Technology Center” (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE’s Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nation’s economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  17. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  18. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  19. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    of Smart Grids with Electric Vehicle Interconnection,”Economy of 2012 Electric Vehicles. ” [Online]. Available:Plug-in Hybrid Electric Vehicle Charging Infrastructure

  20. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    Battery, Hybrid and Fuel Cell Electric Vehicle SymposiumSystem. 23rd International Electric Vehicle Symposium andof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

  1. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  2. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01T23:59:59.000Z

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  3. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30T23:59:59.000Z

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

  4. Method and system for determining the torque required to launch a vehicle having a hybrid drive-train

    DOE Patents [OSTI]

    Hughes, Douglas A.

    2006-04-04T23:59:59.000Z

    A method and system are provided for determining the torque required to launch a vehicle having a hybrid drive-train that includes at least two independently operable prime movers. The method includes the steps of determining the value of at least one control parameter indicative of a vehicle operating condition, determining the torque required to launch the vehicle from the at least one determined control parameter, comparing the torque available from the prime movers to the torque required to launch the vehicle, and controlling operation of the prime movers to launch the vehicle in response to the comparing step. The system of the present invention includes a control unit configured to perform the steps of the method outlined above.

  5. Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle 

    E-Print Network [OSTI]

    Emani, Sriram S.

    2011-08-08T23:59:59.000Z

    -emf ................................................................................................. 77 6.8 Regenerative Capability of the Implemented System ....................................... 78 6.9 Fault Analysis .................................................................................................... 79 6.10 Fault Diagnostics... follow the reference drive cycle. e) To evaluate the performance of the batteries during charge and recharge cycles, especially during regeneration which is achieved through the electrical braking. 1.5 Demand for Electric Vehicles In a popular...

  6. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  7. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2012-10-01T23:59:59.000Z

    Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

  8. Towards a unified x-by-wire solution with HUMS, HM & TTP: Lessons learned in implementing it to a drive-by-wire vehicle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it to a drive-by-wire vehicle John Melentis Elias Stipidis Periklis Charchalakis Falah Ali Vetronics Research capability for vehicles. TTP is a safety-critical network, designed specifically to meet requirements for fault-tolerant systems. A TbW system replaces the me- chanical connection in a vehicle, from

  9. AVTA: 2014 Smart Electric Drive Coupe All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  10. Advanced hydrogen/methanol utilization technology demonstration. Phase II: Hydrogen cold start of a methanol vehicle

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This is the Phase 11 Final Report on NREL Subcontract No. XR-2-11175-1 {open_quotes}Advanced Hydrogen/Methane Utilization Demonstration{close_quotes} between the National Renewable Energy Laboratory (NREL), Alternative Fuels Utilization Program, Golden, Colorado and Hydrogen Consultants, Inc. (HCI), Littleton, Colorado. Mr. Chris Colucci was NREL`s Technical Monitor. Colorado State University`s (CSU) Engines and Energy Conversion Laboratory was HCI`s subcontractor. Some of the vehicle test work was carried out at the National Center for Vehicle Emissions Control and Safety (NCVECS) at CSU. The collaboration of the Colorado School of Mines is also gratefully acknowledged. Hydrogen is unique among alternative fuels in its ability to burn over a wide range of mixtures in air with no carbon-related combustion products. Hydrogen also has the ability to burn on a catalyst, starting from room temperature. Hydrogen can be made from a variety of renewable energy resources and is expected to become a widely used energy carrier in the sustainable energy system of the future. One way to make a start toward widespread use of hydrogen in the energy system is to use it sparingly with other alternative fuels. The Phase I work showed that strong affects could be achieved with dilute concentrations of hydrogen in methane (11). Reductions in emissions greater than the proportion of hydrogen in the fuel provide a form of leverage to stimulate the early introduction of hydrogen. Per energy unit or per dollar of hydrogen, a greater benefit is derived than simply displacing fossil-fueled vehicles with pure hydrogen vehicles.

  11. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable costand Fuel Cell Electric Vehicle Symposium GHG emissions rate (CO 2 -eq/kWh) Cost

  12. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  13. Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

  14. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01T23:59:59.000Z

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  15. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30T23:59:59.000Z

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  16. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  19. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11T23:59:59.000Z

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  20. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11T23:59:59.000Z

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  1. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John F [ORNL

    2014-01-01T23:59:59.000Z

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  2. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01T23:59:59.000Z

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  3. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    SciTech Connect (OSTI)

    Berglin, E.J.

    1997-07-31T23:59:59.000Z

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.

  4. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01T23:59:59.000Z

    on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

  5. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect (OSTI)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31T23:59:59.000Z

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  6. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    electricity marginal generation mix in California’s Low Carbon Fueland Fuel Cell Electric Vehicle Symposium Table 1: Summary of California electricity supply (2005) Capacity, Generation,and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable cost Demand/Generation (MW) Figure 1: Representative California-wide electricity

  7. PON-10-603 Advanced Medium-and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations Questions and Answers

    E-Print Network [OSTI]

    -for-profit technology entities might include, but are not limited to: CalETC CALSTART California Biodiesel AlliancePON-10-603 Advanced Medium- and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations-for-profit technology entity who will be responsible for administering the block grant and coordinating projects

  8. Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis

    E-Print Network [OSTI]

    Hausmann, Austin Joseph

    2012-08-31T23:59:59.000Z

    A combination of stricter emissions regulatory standards and rising oil prices is leading many automotive manufacturers to explore alternative energy vehicles. In an effort to achieve zero tail pipe emissions, many of these ...

  9. Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Broader source: Energy.gov [DOE]

    Presentation given by University of California at Riverside at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  10. Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air

    E-Print Network [OSTI]

    Denver, University of

    , Denver, Colorado 80208 L E N O R A B O H R E N The National Center for Vehicle Emissions Control & Safety system. The Smart Sign used a combination of words, colors, and graphics to connect with its audience

  11. Vehicle Technologies Office Merit Review 2015: GATE Center for Electric Drive Transportation

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  12. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  13. Vehicle Technologies Office Merit Review 2015: Overview of the TO Electric Drive Technologies Program

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of the TO...

  14. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.

    2011-10-20T23:59:59.000Z

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  15. Demonstrating Dynamic Wireless Charging of an Electric Vehicle - The benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller (JNJ), John M. [JNJ-Miller PLC] [JNJ-Miller PLC; Onar, Omer C [ORNL] [ORNL; White, Cliff P [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Coomer, Chester [ORNL] [ORNL; Seiber, Larry Eugene [ORNL] [ORNL; Sepe, Raymond B [ORNL] [ORNL; Steyerl, Anton [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The wireless charging of an electric vehicle (EV) while it is in motion presents challenges in terms of low-latency communications for roadway coil excitation sequencing and maintenance of lateral alignment, plus the need for power-flow smoothing. This article summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at the Oak Ridge National Laboratory (ORNL) using various combinations of electrochemical capacitors at the grid side and in the vehicle. Electrochemical capacitors of the symmetric carbon carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories (ESL) fabricated the passive and active parallel lithium-capacitor (LiC) unit used to smooth the grid-side power. The power pulsation reduction was 81% on the grid by the LiC, and 84% on the vehicle for both the LiC and the carbon ultracapacitors (UCs).

  16. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  17. Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  18. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01T23:59:59.000Z

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  19. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

  20. NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles

    E-Print Network [OSTI]

    With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards that can deliver the range, performance, reliability, price, and safety that drivers have come to expect from gasoline-powered vehicles. In addition, a well-designed thermal manage- ment system is critical

  1. DATA FOR THE EVALUATION OF HYDROGEN RISKS ONBOARD VEHICLES: OUTCOMES FROM THE FRENCH PROJECT DRIVE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 DATA FOR THE EVALUATION OF HYDROGEN RISKS ONBOARD VEHICLES: OUTCOMES FROM THE FRENCH PROJECT. Its objective was to provide data on the whole reaction chain leading to a hydrogen hazard onboard and accidental), the chronic leakage taking place within the engine was judged to be more problematic since

  2. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  3. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents’

  4. 2013MIT SOLAR ELECTRIC VEHICLE TEAM The MIT Solar Electric Vehicle Team (SEVT)

    E-Print Network [OSTI]

    Williams, Brian C.

    Challenge in Australia, and the North American Solar Challenge. The vehicles drive during the day and stop2013MIT SOLAR ELECTRIC VEHICLE TEAM #12;The MIT Solar Electric Vehicle Team (SEVT) is a student organization dedicated to demonstrating the viability of alternative energy-based transportation. The team

  5. Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.

    2009-01-01T23:59:59.000Z

    promoted electric and hybrid vehicles to reduce urban airthe vehicle, and from hybrid vehicles, i.e. , adding batteryHaving researched hybrid vehicle and other pro-environmental

  6. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01T23:59:59.000Z

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  7. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31T23:59:59.000Z

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  8. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01T23:59:59.000Z

    combustion engine transit bus demonstration and hydrogenHydrogen FCVs have some important differences from gasoline internal combustion engine (

  9. Fuel Cell Vehicle Learning Demonstration: Study of Factors Affecting Fuel Cell Degradation

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.

    2008-11-01T23:59:59.000Z

    Conference paper prepared for the FuelCell2008 conference describing the results of the DOE Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  10. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  11. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  12. Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR Drive in New York, New York

    SciTech Connect (OSTI)

    Myer, Michael; Hazra, Oindrila; Kinzey, Bruce R.

    2011-12-01T23:59:59.000Z

    This a report about a field study of light-emitting diodes street lights by four different manufacturers installed on the FDR Drive in New York City, NY.

  13. The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles

    E-Print Network [OSTI]

    Berry, Irene Michelle

    2010-01-01T23:59:59.000Z

    Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

  14. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  15. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  16. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The program has progressed to the stage of evaluating full-sized (220 Ah) cells, multicell modules, and 22 kWh batteries. Nickel electrodes that display stable capacities of up to 24 Ah/plate (at C/3 drain rate) at design thickness (2.5 mm) in tests at 200/sup +/ test cycles. Iron electrodes of the composite-type are also delivering 24 Ah/plate (at C/3) at target thickness (1.0 mm). Iron plates are displaying capacity stability for 300/sup +/ test cycles in continuing 3 plate cell tests. Best finished cells are delivering 57 to 63 Wh/kg at C/3, based on cell weights of the finished cells, and in the actual designed cell volume. 6-cell module (6-1) performance has demonstrated 239 Ah, 1735 Wh, 53 WH/kg at the C/3 drain rate. This module is now being evaluated at the National Battery Test Laboratory. The 2 x 4 battery has been constructed, tested, and delivered for engineering test and evaluation. The battery delivered 22.5 kWh, as required (199 Ah discharge at 113 V-bar) at the C/3 drain rate. The battery has performed satisfactorily under dynamometer and constant current drain tests. Some cell problems, related to construction, necessitated changing 3 modules, but the battery is now ready for further testing. Reduction in nickel plate swelling (and concurrent stack electrolyte starvation), to improve cycling, is one area of major effort to reach the final battery objectives. Pasted nickel electrodes are showing promise in initial full-size cell tests and will continue to be evaluated in finished cells, along with other technology advancements. 30 figures, 14 tables.

  17. Vehicle Technologies Office Merit Review 2014: Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  18. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET

  19. Vehicle Technologies Office Merit Review 2015: Multi-Speed Transmission for Commercial Delivery Medium Duty Plug-In Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed transmission for commercial...

  20. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  1. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    of Ultracapacitor-Battery Energy Storage Systems GainingFerdowsi, A New Battery/Ultracapacitor Energy Storage Systemthe vehicle. The energy storage and battery weight for AER

  2. Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)

    SciTech Connect (OSTI)

    Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

    2007-05-01T23:59:59.000Z

    Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

  3. Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Development of Radically...

  4. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck – development and...

  5. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  6. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  7. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

  8. Vehicle Technologies Office: Power Electronics and Electrical...

    Broader source: Energy.gov (indexed) [DOE]

    overview of electric drive vehicles, see the Alternative Fuels Data Center's pages on Hybrid and Plug-in Electric Vehicles. The Vehicle Technologies Office (VTO) supports...

  9. CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control

    E-Print Network [OSTI]

    Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

  10. Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization Farid Khoucha1 a sensorless DSVM-DTC of an induction motor that propels an electrical vehicle or a hybrid one. The drive uses, as demonstrated in experimental results. Keywords: Electric vehicle (EV), induction motor, Discrete Space Vector

  11. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  12. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving

    E-Print Network [OSTI]

    Peng, Huei

    initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks demonstrated by several prototype hybrid passenger cars, produced by the PNGV program, will be an unrealistic Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

  13. Vehicle Technologies Office Merit Review 2014: GATE Center for Electric Drive Transportation at the University of Michigan- Dearborn

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  14. Dynamic Wireless Charging of Electric Vehicle Demonstrated at Oak Ridge National Laboratory: Benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller, John M [ORNL] [ORNL; Onar, Omer C [ORNL] [ORNL; White, Cliff P [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Coomer, Chester [ORNL] [ORNL; Seiber, Larry Eugene [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Abstract Wireless charging of an electric vehicle while in motion presents challenges in terms of low latency communications for roadway coil excitation sequencing, and maintenance of lateral alignment, plus the need for power flow smoothing. This paper summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at Oak Ridge National Laboratory using various combinations of electrochemical capacitors at the grid-side and in-vehicle. Electrochemical capacitors of the symmetric carbon-carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories fabricated the passive and active parallel lithium-capacitor unit used to smooth grid-side power. Power pulsation reduction was 81% on grid by LiC, and 84% on vehicle for both lithium-capacitor and the carbon ultracapacitors.

  15. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  16. Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  17. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond [BIZTEK Consulting, Inc.

    2011-03-01T23:59:59.000Z

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  18. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    Energy Storage System Technology Facing Strong Hybrids,Energy Storage System Design and Its Motor Drive Integration for HybridSystems Gaining Traction, Proceedings of the 19 th International Seminar on Double-layer Capacitors and Hybrid Energy

  19. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  20. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

  1. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  2. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Energy Savers [EERE]

    Materials for Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to...

  3. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  4. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect (OSTI)

    Wang, Q. (California Univ., Davis, CA (United States)); Santini, D.L. (Argonne National Lab., IL (United States))

    1992-01-01T23:59:59.000Z

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO[sub x,] SO[sub x] - are estimated. CO[sub 2] emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO[sub 2] emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO[sub x]. NO[sub x] emissions are reduced in all four cities. An avoided cost'' value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA's draft Mobile5 model for GV emissions, high values by using California's EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  5. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect (OSTI)

    Wang, Q. [California Univ., Davis, CA (United States); Santini, D.L. [Argonne National Lab., IL (United States)

    1992-12-31T23:59:59.000Z

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO{sub x,} SO{sub x} - are estimated. CO{sub 2} emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO{sub 2} emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO{sub x}. NO{sub x} emissions are reduced in all four cities. An ``avoided cost`` value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA`s draft Mobile5 model for GV emissions, high values by using California`s EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  6. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    A.A. (2007) “Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric UtilitiesWould You Buy a Hybrid Vehicle? Study #715238, conducted for

  7. Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle

    E-Print Network [OSTI]

    Emani, Sriram S.

    2011-08-08T23:59:59.000Z

    . The design parameters are meant to meet the requirements of a commercial car. The various advantages of a multi level inverter fed PMSM have been demonstrated and an exhaustive performance evaluation has been done. The investigation is done by testing...

  8. U.S. First Responder Safety Training for Advanced Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation 2010 DOE...

  9. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    Electric Vehicles. EPRI: Palo Alto, CA. Report1009299. [9]Popular Science. July. [4] EPRI (2001) Comparing theHybrid Electric Vehicle Options. EPRI: Palo Alto, CA. Report

  10. Ride and Drive Webinar

    Broader source: Energy.gov [DOE]

    Listen to this webinar and follow along using the slides below to learn how on-site plug-in electric vehicle (PEV) Ride and Drives can create value for your organization, your employees, and your...

  11. Impact of Lithium Availability on Vehicle Electrification (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.

    2011-07-01T23:59:59.000Z

    This presentation discusses the relationship between electric drive vehicles and the availability of lithium.

  12. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The FY 1980 program continued to involve full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas. Improved Electroprecipitation Process (EPP) nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities of 23 to 25 Ah for the C/3 drain rate at 200+ test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes are displaying capacity stability for > 1000 test cycles in continuing 3 plate cell tests. Finished cells have delivered 57 to 61 Wh/kg at C/3, and have demonstrated cyclic stability to 500+ cycles at 80% depth of discharge profiles at Westinghouse. A 6-cell module that demonstrated 239 Ah, 1735 Wh, 48 Wh/kg at the C/3 drain rate has also been evaluated at the National Battery Test Laboratory, ANL. It operated for 327 test cycles, to a level of 161 Ah at the C/3 rate, before being removed from test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives. Pasted nickel electrodes continue to show promise for meeting the life objectives while, simultaneously, providing a low manufacturing cost. Refinements have occurred in the areas of cell hardware, module manifolding and cell interconnections. These improvements have been incorporated into the construction and testing of the cells and modules for this program. Temperature tests at 0/sup 0/C were performed on a 6-cell module and showed a decrease in capacity of only 25% in Ah and .29% in Wh as compared to 25/sup 0/C performance. Additional tests are planned to demonstrate performance at -15/sup 0/C and 40/sup 0/C.

  13. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01T23:59:59.000Z

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  14. addressing teen driving: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 In Vehicle Technology to Correct Teen Driving Behavior Energy Storage, Conversion and Utilization Websites Summary: In Vehicle Technology to Correct...

  15. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs...

  16. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    capacity. Furthermore they were interested to see the effect of driving intensity on energy consumption differs for vehicle EV capability. Overall they feel this task is...

  18. Electric Drive Vehicle Infrastructure Deployment

    Broader source: Energy.gov (indexed) [DOE]

    pricing encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid *...

  19. Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private,

    E-Print Network [OSTI]

    de Lijser, Peter

    :30 AM - 3:00 PM. · Disciplinary action may be imposed on anyone violating the regulations. · Private on campus, both State and private, have created an increased risk to pedestrians and has damaged walkways Director or the designee. · Private and vendor vehicles are restricted at all times. Vehicles requiring

  20. US DRIVE Highlights of Technical Accomplishments 2013

    Broader source: Energy.gov (indexed) [DOE]

    for longer-lasting and more cost-effective electric drive vehicle batteries. National Renewable Energy Laboratory Advanced energy storage devices, such as lithium- based...

  1. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  2. 2011 Hyundai Sonata Hybrid - vin 4932 Advanced Vehicle Testing...

    Broader source: Energy.gov (indexed) [DOE]

    Powertrain Type: Full Parallel Peak Electric Drive Power: 30 kW 2011 Hyundai Sonata Hybrid - VIN 4932 Advanced Vehicle Testing - Baseline Testing Results VEHICLE TECHNOLOGIES...

  3. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

  4. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Strategy Phase 2 Demonstrator Vehicle (GDCI) 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: Stop start EMS Control Algorithms Calibration GDi pump...

  5. Grid Connectivity Research, Development & Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  6. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01T23:59:59.000Z

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  7. Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power fundamentals: Calculating capacity

    E-Print Network [OSTI]

    Firestone, Jeremy

    As the light vehicle fleet moves to electric drive (hybrid, battery, and fuel cell vehicles), an opportunity electricity. © 2005 Elsevier B.V. All rights reserved. Keywords: Electric vehicle; Fuel cell; Plug-in hybrid-drive vehicles (EDVs), that is, vehicles with an electric-drive motor powered by batteries, a fuel cell

  8. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar International Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck –...

  9. Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins SuperTruck program technology...

  10. Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Peterbilt at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the technology and system level...

  11. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  12. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  13. Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...

    Broader source: Energy.gov (indexed) [DOE]

    1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

  14. Your Role as a Jefferson Lab Fleet Vehicle Driver | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your Role as a Jefferson Lab Fleet Vehicle Driver Responsibility Number One - Safe Driving As a vehicle operator, it is up to you to drive safely and sensibly to avoid crashes. The...

  15. Study of Advantages of PM Drive Motor with Selectable Windings for HEVs

    SciTech Connect (OSTI)

    Otaduy, Pedro J [ORNL; Hsu, John S [ORNL; Adams, Donald J [ORNL

    2007-11-01T23:59:59.000Z

    The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

  16. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  17. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

  18. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

  19. Near-term electric test vehicle ETV-2. Phase II. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

  20. NGVs: Driving to the 21st Century. 17th National Natural Gas Vehicle Conference and Exhibition, October 3-5, 1999 [conference organizational literature and agenda

    SciTech Connect (OSTI)

    None

    1999-10-05T23:59:59.000Z

    By attending the conference, participants learn about new and planned OEM vehicle and engine technologies; studies comparing Diesel and gasoline emissions to natural gas; new state and federal legislation; and innovative marketing programs they can use to help sell their products and services.

  1. Efficient Techniques for Dynamic Vehicle Anna Petrovskaya and Sebastian Thrun

    E-Print Network [OSTI]

    .stanford.edu Summary. Fast detection of moving vehicles is crucial for safe autonomous ur- ban driving. We present the vehicle detection algorithm developed for our entry in the Urban Grand Challenge, an autonomous driving.S. Government has organized a series of competitions for autonomous vehicles in order to encourage research

  2. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    SciTech Connect (OSTI)

    BOWERS,RICHARD; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSLKA,WALTER; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,CRAIG L.; PETERSON,BOB; PETERSON,DARRELL; RUGGLES,LAURENCE E.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; VESEY,ROGER A.

    1999-11-01T23:59:59.000Z

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch magnet on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {approx}85 eV for a duration of {approx}10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approx}122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approx}150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T{approx}(P/A){sup 1/4}. P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.

  3. Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive

    E-Print Network [OSTI]

    Tolbert, Leon M.

    system, additional heat, audible noise, mechanical stress, and vibration [1]. DC bus harmonic current- powered three-phase inverter is used to drive the traction motor. Due to the switching behavior combustion engine, electric motor, and energy storage device (for example, batteries and ultracapacitors

  4. alcohol-impaired driving behavior: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance Huey, Raymond B. 6 In Vehicle Technology to Correct Teen Driving Behavior Energy Storage, Conversion and Utilization Websites Summary: In Vehicle Technology to Correct...

  5. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

  6. Master Thesis Proposal: Simulation of Vehicle

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Master Thesis Proposal: Simulation of Vehicle Driving Behavior Based on External Excitations Background For vehicle manufacturers it is important to know how their vehicles are used during the components and also for designing the controls of the vehicle. For example, the load characteristics

  7. Drive System for Traction Applications Using 81-Level Converter

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    of frequency converter. Keywords: vehicle power electronics, vehicle motor drives. I. INTRODUCTION Power Electronics technologies contribute with important part in the development of electric vehicles. On the otherDrive System for Traction Applications Using 81-Level Converter Juan W. Dixon, Micah E. Ortúzar

  8. Vehicle Technologies Office | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which include plug-in electric vehicles (also known as EVs or electric cars), batteries, electric drive technologies, advanced combustion engines, lightweight materials, and...

  9. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Energy Savers [EERE]

    EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles January 31, 2014 -...

  10. Vehicle Technologies Office Issues Notice of Intent for Medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Office Issues Notice of Intent for Medium and Heavy-Duty Vehicle Demonstration Funding Opportunity Vehicle Technologies Office Issues Notice of Intent for...

  11. CRADIT FARM DRIVE CREEK DRIVE

    E-Print Network [OSTI]

    Davis, H. Floyd

    CRADIT FARM DRIVE THURSTON CREEK DRIVE CENTRALAVENUE ENUE UNIVERSITY AVENUE EASTAVENUE FOREST HOME CREEK DRIVE CENTRALAVENUE ENUE UNIVERSITY AVENUE EASTAVENUE FOREST HOME DRIVE HIGHLAND ROBERTS PLACE GARDEN DEANS ARTS QUAD RAWLINGS GREEN R. URIS GARDEN AG QUAD BIOLOGY BEEBE LAK FALL CREEK Clark Hall Olin

  12. Author manuscript, published in "International Conference on Information Fusion (2013)" An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for Co-Driving

    E-Print Network [OSTI]

    Evangeline Pollard; Fawzi Nashashibi

    2013-01-01T23:59:59.000Z

    Abstract—Full autonomy of ground vehicles is a major goal of the ITS (Intelligent Transportation Systems) community. However, reaching such highest autonomy level in all situations (weather, traffic,...) may seem difficult in practice, despite recent results regarding driverless cars (e.g., Google Cars). In addition, an automated vehicle should also self-assess its own perception abilities, and not only perceive its environment. In this paper, we propose an intermediate approach towards full automation, by defining a spectrum of automation layers, from fully manual (the car is driven by a driver) to fully automated (the car is driven by a computer), based on an ontological model for representing knowledge. We also propose a second ontology for situation assessment (what does the automated car perceive?), including the sensors/actuators state, environmental conditions and driver’s state. Finally, we also define inference rules to link the situation assessment ontology to the automation level one. Both ontological models have been built and first results are presented. I.

  13. Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Bcker

    E-Print Network [OSTI]

    Hellebrand, Sybille

    Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker Research Topics Mechatronic Systems, Electrical Drives and Electric Vehicles Control, modeling and optimization of electrical drives vehiclesElectric vehicles RailCab Power Electronics Switched-mode power supplies High efficiency

  14. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31T23:59:59.000Z

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  15. Transport Research Arena Europe 2010, Brussels Towards Highly Automated Driving

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of HAVEit is to develop and investigate vehicle automation beyond ADAS systems, especially highly automated automated vehicles In 2010, two lines of research and development exist in the domain of ground vehicle automation: Either the automation is driving the vehicle fully automated without a human driver

  16. Sandia National Laboratories proof-of-concept robotic security vehicle

    SciTech Connect (OSTI)

    Harrington, J.J.; Jones, D.P.; Klarer, P.R.; Morrow, J.D.; Workhoven, R.M.; Wunderlin, F.

    1989-01-01T23:59:59.000Z

    Several years ago Sandia National Laboratories developed a prototype interior robot that could navigate autonomously inside a large complex building to air and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities. 2 refs., 3 figs.

  17. Strategies for Marketing and Driving Demand for Commercial Financing...

    Energy Savers [EERE]

    Slides and Discussion Summary More Documents & Publications Using Partnerships to Drive Demand and Provide Services in Communities Financial Vehicles within an Integrated Energy...

  18. Watch Energy Secretary Moniz Test Drive the Toyota Mirai

    Broader source: Energy.gov [DOE]

    The Energy Department posted a video of ?Secretary Ernest Moniz driving the Toyota Mirai, the first fuel cell electric vehicle (FCEV) for sale in the United States.

  19. Supertruck - Development and Demonstration of a Fuel-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    Pressure Evaluation at Fully Loaded Drive Cycle (65,000 lb vehicle weight) * VVA * Turbo optimization * Low Friction components * Variable Oil Pump * Variable Speed Water Pump...

  20. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  1. Vehicle Technologies Office: AVTA- All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  2. National FCEV Learning Demonstration: All Composite Data Products...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle (FCEV) Learning Demonstration. 54021.pdf More Documents & Publications Controlled Hydrogen Fleet & Infrastructure Analysis National Hydrogen Learning Demonstration Status...

  3. MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS

    E-Print Network [OSTI]

    MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS Observe Speed Limits and Traffic Laws ­ Allow - Employees who drive Institute or privately owned vehicles on Institute business must possess and carry person. Insurance - Employees who operate their privately owned vehicles on Institute business shall

  4. Emissions from US waste collection vehicles

    SciTech Connect (OSTI)

    Maimoun, Mousa A., E-mail: mousamaimoun@gmail.com [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Reinhart, Debra R. [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Gammoh, Fatina T. [Quality Department, Airport International Group, Amman (Jordan); McCauley Bush, Pamela [Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL (United States)

    2013-05-15T23:59:59.000Z

    Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  5. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  6. Risk Management 1851 N. Research Drive

    E-Print Network [OSTI]

    Moore, Paul A.

    -372-3135 Bowling Green State University Motor Vehicle Record Statement University policy requires that all driversRisk Management 1851 N. Research Drive Bowling Green, OH 43403 419-372-2127 Fax 419 acknowledge that the university endorses all applicable state motor vehicle regulations relating to driver

  7. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-31T23:59:59.000Z

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: ? Performance, ? Fleet deployment, ? Maintenance, ? Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the trucking industry. By providing unbiased, third-party assessment of this “hybrid without batteries” technology, this report offers relevant, timely and valuable information to the industry.

  8. National Hydrogen Learning Demonstration Status (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-02-01T23:59:59.000Z

    This presentation discusses U.S. DOE Learning Demonstration Project goals, fuel cell vehicle and H2 station deployment status, and technical highlights of vehicle and infrastructure analysis results and progress.

  9. Autonomous Intersection Management for Semi-Autonomous Vehicles Tsz-Chiu Au

    E-Print Network [OSTI]

    Stone, Peter

    autonomous vehicles represent just the top level in five levels of vehicle automation [4]. Indeed, they define a level below this top level with vehicles that have limited self-driving automation. The main with limited self-driving automation. There is a high likelihood that human-driven vehicles, semi

  10. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  11. Traction drive automatic transmission for gas turbine engine driveline

    DOE Patents [OSTI]

    Carriere, Donald L. (Livonia, MI)

    1984-01-01T23:59:59.000Z

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  12. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

  13. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy...

  14. Optimal Power Train Design of a Hybrid Refuse Collector Vehicle

    E-Print Network [OSTI]

    Paderborn, Universität

    Optimal Power Train Design of a Hybrid Refuse Collector Vehicle Tobias Knoke, Joachim Böcker 5251 60 2212 Abstract-- Due to the stop-and-go drive cycle of refuse collector vehicles, hybrid power), optimization, refuse collector vehicle I. INTRODUCTION Today, hybrid electric vehicles are accepted as a step

  15. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOE Patents [OSTI]

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12T23:59:59.000Z

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  16. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain and Vehicle Development - A Look Toward 2020 Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine...

  17. Vehicle Level Model and Control Development and Validation Under...

    Broader source: Energy.gov (indexed) [DOE]

    Division * NREL Relevance Temperature Has a Significant Impact on Electric Drive Energy Consumption 3 Vehicle Dynamometer Testing Source: ANL APRF - 2013 Ford Cmax Energi Fleet...

  18. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01T23:59:59.000Z

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  19. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    Abdelkader Merakeb

    2011-04-20T23:59:59.000Z

    Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

  20. A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles

    E-Print Network [OSTI]

    Wu, Changxu (Sean)

    A fuel economy optimization system with applications in vehicles with human drivers and autonomous University of New York, Buffalo, USA a r t i c l e i n f o Keywords: Vehicle fuel economy Eco-driving Human developed and validated a new fuel-economy optimization system (FEOS), which receives input from vehicle

  1. Product Demonstrations

    Broader source: Energy.gov [DOE]

    The Consortium will pursue a number of demonstrations following the general procedure used by DOE's GATEWAY demonstration program. Specific products to be featured in a demonstration may be...

  2. Vehicle Technologies Office: Electric Drive Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Electronics and Electric Motor R&D North American Power Electronics Supply Chain Analysis Benchmarking EV and HEV Technology View all presentations from the 2014 Merit Review....

  3. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    project completion with potential reach of over 100,000 individuals * Project Job Statistics: - Project Year 1 Creation of 17.5 Full Time Employment (FTE) Jobs Retention...

  4. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    AutoExposure * Subcontractor * Outside Industry * Partnered to develop training videos - Eaton Corporation * Subcontractor * Outside Industry * Partnered to develop Infrastructure...

  5. Advanced Electric Drive Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of Energy

  6. Advanced Electric Drive Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of Energy1

  7. Advanced Electric Drive Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of Energy10

  8. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  9. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    SciTech Connect (OSTI)

    Doyle, T.A.

    1998-01-31T23:59:59.000Z

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  10. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    such as data buses and electronic engine controls) to use asengine for the Freightliner Century Truck has internal electronic

  11. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    power modeling for control, Journal of Dynamic Systems,power train modeling for control, Transaction of ASME, J. Dynamic Systems,power train modeling for control, Transaction of ASME, J. Dynamic Systems,

  12. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    role, while the automatic control system takes care of thefor the automatic steering control system of the Advancedto the automatic steering control system. A typical bus

  13. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    speed (using the Doppler effect) while relative distance ispractice, due to the Doppler effect, which causes much rangecases with loss of Doppler effect when the speed difference

  14. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    power train modeling for control, Transaction of ASME, J.power train modeling for control, Transaction of ASME, J.

  15. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    * General Motors Informal interactions on engine controls. * Woodward Governor Turbo-compounding. * Barber Nichols Development of integrated turbinegenerator expander....

  16. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    milestones * Regular status reports to DOE and ACEC Tech Team. * VanDyne SuperTurbos on turbo- compounding. * Barber-Nichols on bottoming cycle development. * One-on-one...

  17. Hydrogen Vehicle and Infrastructure Demonstration and Validation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |Panel HydrogenMDepartment

  18. Vehicles on demand... Why drive your own vehicle

    E-Print Network [OSTI]

    r i v e O r a n g e , C T 0 6 4 7 7 Yale Car Share Program Y a l e U n i v e r s i t y W e s t C.management@yale.edu For additional information on Yale's policies and procedures refer to Policy 1706, Yale Car Sharing. Reservation Fees: Yale Car Share Program Caption describ- Additional Information: #12;

  19. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Santhanagopalan, S.; Kim, G. H.

    2013-05-01T23:59:59.000Z

    This presentation discusses the effects of temperature on large format lithium-ion batteries in electric drive vehicles.

  20. An optimized international vehicle monitor

    SciTech Connect (OSTI)

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1997-03-01T23:59:59.000Z

    The security plans for many DOE facilities require the monitoring of pedestrians and vehicles to control the movement of special nuclear material (SNM). Vehicle monitors often provide the outer-most barrier against the theft of SNM. Automatic monitors determine the presence of SNM by comparing the gamma-ray and neutron intensity while occupied, to the continuously updated background radiation level which is measured while the unit is unoccupied. The most important factors in choosing automatic vehicle monitors are sensitivity, cost and in high traffic applications total monitoring time. The two types of automatic vehicle monitors presently in use are the vehicle monitoring station and the drive-through vehicle monitor. These two types have dramatically different cost and sensitivities. The vehicle monitoring station has a worst-case detection sensitivity of 40 g of highly enriched uranium, HEU, and a cost approximately $180k. This type of monitor is very difficult to install and can only be used in low traffic flow locations. The drive-through vehicle portal has a worst-case detection sensitivity of 1 kg of HEU and a cost approximately $20k. The world`s political situation has created a pressing need to prevent the diversion of SNM from FSU nuclear facilities and across international borders. Drive-through vehicle monitors would be an effective and practical nuclear material proliferation deterrent if their sensitivity can be improved to a sufficient level. The goal of this project is to evaluate different detector configurations as a means of improving the sensitivity of these instruments to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of SNM.

  1. National Hydrogen Learning Demonstration Status Webinar (Text...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Association. Today, Mr. Wipke is here to talk to us about work on hydrogen fuel cell vehicles and the Controlled Hydrogen Fleet and Infrastructure Demonstration and...

  2. Demonstration/Development of Reactivity Controlled Compression...

    Broader source: Energy.gov (indexed) [DOE]

    DemonstrationDevelopment of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications Dr. Rolf Reitz Wisconsin Engine...

  3. Planning an itinerary for an electric vehicle

    E-Print Network [OSTI]

    Chale-Gongora, Hugo G.

    The steady increase in oil prices and awareness regarding environmental risks due to carbon dioxide emissions are promoting the current interest in electric vehicles. However, the current relatively low driving range ...

  4. Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power implementation: From stabilizing the

    E-Print Network [OSTI]

    Firestone, Jeremy

    2005-01-01T23:59:59.000Z

    Journal of Power Sources xxx (2005) xxx­xxx Vehicle-to-grid power implementation: From stabilizing December 2004 Abstract Vehicle-to-grid power (V2G) uses electric-drive vehicles (battery, fuel cell needed to tap energy in vehicles and implement V2G. It quantitatively compares today's light vehicle

  5. innovati nNREL Helps Cool the Power Electronics in Electric Vehicles

    E-Print Network [OSTI]

    innovati nNREL Helps Cool the Power Electronics in Electric Vehicles Researchers at the National for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine vehicles. Widespread use of advanced electric-drive vehicles--including electric vehicles (EVs) and hybrid

  6. EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell...

    Office of Environmental Management (EM)

    EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles April 18, 2013 - 12:00am Addthis The...

  7. The robust vehicle routing problem with time windows

    E-Print Network [OSTI]

    2012-09-25T23:59:59.000Z

    Sep 25, 2012 ... This paper demonstrates how to efficiently solve the vehicle routing ... Much research has been performed on vehicle routing problems, not the ...

  8. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  9. FCV Learning Demonstration: Factors Affecting Fuel Cell Degradation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.

    2008-06-18T23:59:59.000Z

    Presentation on the NREL Fuel Cell Vehicle learning demonstration prepared for the 2008 ASME Fuel Cell Conference.

  10. Armored Vehicle 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  11. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  12. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  13. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10T23:59:59.000Z

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  14. DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains

    E-Print Network [OSTI]

    Brest, Université de

    DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains Bekheïra Tabbache, Mohamed-tolerant control for a high performance induction motor drive that propels an electrical vehicle. The proposed and simulations on an electric vehicle are carried-out using a European urban and extra urban driving cycle

  15. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

  16. Status and Progress in Research, Development and Demonstration...

    Energy Savers [EERE]

    and Progress in Research, Development and Demonstration of Hydrogen-Compressed Natural Gas Vehicles in China Status and Progress in Research, Development and Demonstration of...

  17. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

  18. Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

  19. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01T23:59:59.000Z

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  20. A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles Farid Khoucha, Khoudir an Electric Vehicle (EV). The proposed scheme uses an adaptive flux and speed observer that is based on a full is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive

  1. Maneuvers automation for agricultural vehicle in headland , R. Lenain1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Maneuvers automation for agricultural vehicle in headland C. Cariou1 , R. Lenain1 , B. Thuilot2 agricultural vehicles), the automation of headland driving has to be studied with meticulous care. Fig 1 for the autonomous maneuvers of agricultural vehicle in headland. A reverse turn planner is firstly presented, based

  2. Scheduling of Connected Autonomous Vehicles on Highway Lanes

    E-Print Network [OSTI]

    Scheduling of Connected Autonomous Vehicles on Highway Lanes Jiajun Hu, Linghe Kong, Wei Shu}@sjtu.edu.cn + University of New Mexico, USA, shu@ece.unm.edu Abstract--With recent progress in vehicle autonomous driving autonomous sys- tems. This paper studies lane assignment strategies for connected autonomous vehicles

  3. A cloud-assisted design for autonomous driving

    E-Print Network [OSTI]

    Suresh Kumar, Swarun

    This paper presents Carcel, a cloud-assisted system for autonomous driving. Carcel enables the cloud to have access to sensor data from autonomous vehicles as well as the roadside infrastructure. The cloud assists autonomous ...

  4. NREL's DRIVE tool delivers precise and easy-to-interpret assessments in a fraction of the time.

    E-Print Network [OSTI]

    NREL's DRIVE tool delivers precise and easy-to-interpret assessments in a fraction of the time and Evaluation (DRIVE) tool produces representative testable drive cycles at record speed from vehicle data of medium- and heavy-duty vehicle fleets, use of the tool has expanded to encompass the full range

  5. Passive pavement-mounted acoustical linguistic drive alert system and method

    DOE Patents [OSTI]

    Kisner, Roger A. (Knoxville, TN); Anderson, Richard L. (Oak Ridge, TN); Carnal, Charles L. (Cookeville, TN); Hylton, James O. (Clinton, TN); Stevens, Samuel S. (Harriman, TN)

    2001-01-01T23:59:59.000Z

    Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

  6. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  7. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01T23:59:59.000Z

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  8. 59136 Federal Register / Vol. 75, No. 186 / Monday, September 27, 2010 / Rules and Regulations (c) Certain farm vehicle drivers. The

    E-Print Network [OSTI]

    ) Certain farm vehicle drivers. The rules in this part except for § 391.15(e) do not apply to a farm vehicle driver except a farm vehicle driver who drives an articulated (combination) commercial motor vehicle, as defined in § 390.5. For limited exemptions for farm vehicle drivers of articulated commercial motor

  9. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, J.M.; Sereshteh, A.

    1988-08-30T23:59:59.000Z

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  10. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

    1988-01-01T23:59:59.000Z

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  11. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Office of Environmental Management (EM)

    and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  12. GATEWAY Demonstrations

    Broader source: Energy.gov [DOE]

    DOE GATEWAY demonstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results provide real-world experience and data on state-of-the-art solid-state lighting (SSL) product performance and cost effectiveness. These results connect DOE technology procurement efforts with large-volume purchasers and provide buyers with reliable data on product performance.

  13. Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles

    SciTech Connect (OSTI)

    Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

    2010-01-01T23:59:59.000Z

    As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

  14. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  15. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  16. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  17. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  18. Just build it! : a fully functional concept vehicle using robotic wheels

    E-Print Network [OSTI]

    Schmitt, Peter, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Interest in electric vehicle drive units is resurging with the proliferation of hybrid and electric vehicles. Currently emerging key-technologies are: in-wheel motors, electric braking, integrated steering activators and ...

  19. Jefferson Lab Vehicle Fleet Do's and Don'ts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Vehicle Fleet Do's and Don'ts In addition to safe driving, Jefferson Lab Fleet vehicle drivers are responsible for the proper use, maintenance and protection of their...

  20. When is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon?

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    research field for the vehicle industry. By establishing a platoon of heavy duty vehicles, the fuelWhen is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon? Kuo-Yun Liang Jonas study the problem of when it is beneficial for a heavy duty vehicle to drive faster in order to catch up

  1. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor for fuel cells and advanced heavy-duty hybrid electric vehicles. He also has experience with alternative

  2. Engineering AnteaterDrive

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Rockw ell & M DEA Engineering Tower AnteaterDrive AnteaterDrive East Peltason Drive EastPeltasonDrive East Peltason Drive Anteater Parking Structure EngineeringServiceRoad Engineering Laboratory Facility Engineering Gateway Engineering Hall AIRB Calit2 Engineering Lecture Hall Campus Building Engineering Building

  3. Apps for Vehicles: Why should I care what data is in my car and...

    Open Energy Info (EERE)

    on data that reveals how driving patterns affect GHG emissions. Someone interested in vehicle performance may use it to compare engine operations given different oil weights or...

  4. Optimization of Driving Styles for Fuel Economy Improvement

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Aguilar, Juan P. [Georgia Institute of Technology] [Georgia Institute of Technology

    2012-01-01T23:59:59.000Z

    Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

  5. Second-Generation Fuel Cell Stack Durability and Freeze Capability from National FCV Learning Demonstration (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-11-18T23:59:59.000Z

    This presentation provides information about the objectives and partners of the National Fuel Cell Vehicle Learning Demonstration, the status of vehicle and station deployment, and results of vehicle and infrastructure analysis.

  6. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  7. An Optimized International Vehicle Monitor

    SciTech Connect (OSTI)

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1999-07-16T23:59:59.000Z

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to evaluate detector configurations to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of special nuclear materials. We designed a new detector configuration that improves the sensitivity of available drive-through vehicle monitors by more than a factor of 5 while not changing the nuisance alarm rate.

  8. Executive Summary Automation of driving functions is central to proposals for the design of an Auto-

    E-Print Network [OSTI]

    Varaiya, Pravin

    for an Automated Vehicle/Highway System (AVHS) is safe? In particular, can we prove that there can be no high is equivalent to solving an optimal control problem. Keywords: Automated Vehicle/Highway System 1 Introduction Automation of driving functions is central to proposals for the design of an Automated Vehicle

  9. 30/07/14 Coopera've Driving for Road Goods Transporta'on

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    for European heavy-duty vehicle SchiAler, 2003; Scania, 2012 Fuel Total fuel cost 80, 2010 Vehicle platooning and semi-autonomous driving Sensor and commununica k/year/vehicle Technology Push Real-'me traffic informa'on Koutsopoulos et al

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  14. Eco-Driving: Drive Green, Save Green Part of the Clean Fuel Advanced Technology Project

    E-Print Network [OSTI]

    for · Equipment: Vehicle choice makes a difference #12;Eco-Driving Practices 1. Watch your speed Every 5 mph you for XMT Construction of Surrey) #12;Resources For Economical Choices · Auto Alliance www scheduling the complete training: NC State University / North Carolina Solar Center Clean Transportation

  15. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect (OSTI)

    LaClair, Tim J [ORNL

    2012-01-01T23:59:59.000Z

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  16. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  17. Multiple-degree-of-freedom vehicle

    DOE Patents [OSTI]

    Borenstein, Johann (Ann Arbor, MI)

    1995-01-01T23:59:59.000Z

    A multi-degree-of-freedom vehicle employs a compliant linkage to accommodate the need for a variation in the distance between drive wheels or drive systems which are independently steerable and drivable. The subject vehicle is provided with rotary encodes to provide signals representative of the orientation of the steering pivot associated with each such drive wheel or system, and a linear encoder which issues a signal representative of the fluctuations in the distance between the drive elements. The wheels of the vehicle are steered and driven in response to the linear encoder signal, there being provided a controller system for minimizing the fluctuations in the distance. The controller system is a software implementation of a plurality of controllers, operating at the chassis level and at the vehicle level. A trajectory interpolator receives x-displacement, y-displacement, and .theta.-displacement signals and produces to the vehicle level controller trajectory signals corresponding to interpolated control signals. The x-displacement, y-displacement, and .theta.-displacement signals are received from a human operator, via a manipulable joy stick.

  18. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13T23:59:59.000Z

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  19. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W. Thor (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH)

    1998-01-01T23:59:59.000Z

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  20. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    device, such as a high-power battery. AVCEM has over 1000source, such as a peak-power battery, drives the vehicle Thedevice (say, a high-power battery) or traction battery must

  1. Lane estimation for autonomous vehicles using vision and LIDAR

    E-Print Network [OSTI]

    Huang, Albert Shuyu

    2010-01-01T23:59:59.000Z

    Autonomous ground vehicles, or self-driving cars, require a high level of situational awareness in order to operate safely and eciently in real-world conditions. A system able to quickly and reliably estimate the location ...

  2. Intelligent energy management agent for a parallel hybrid vehicle 

    E-Print Network [OSTI]

    Won, Jong-Seob

    2004-09-30T23:59:59.000Z

    This dissertation proposes an Intelligent Energy Management Agent (IEMA) for parallel hybrid vehicles. A key concept adopted in the development of an IEMA is based on the premise that driving environment would affect fuel ...

  3. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  4. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  5. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  6. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  7. Demonstration of a 50% Thermal Efficient Diesel Engine - Including...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission...

  8. Development and Demonstration of Fischer-Tropsch Fueled Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty...

  9. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and...

  10. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect (OSTI)

    LaClair, Tim J [ORNL

    2011-05-01T23:59:59.000Z

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  11. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect (OSTI)

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27T23:59:59.000Z

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  12. Traction Drive System Modeling

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01T23:59:59.000Z

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  14. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  15. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  16. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  17. Assessment of the status of fuel cell/battery vehicle power systems

    SciTech Connect (OSTI)

    Escher, W.J.D.; Foster, R.W.

    1980-02-01T23:59:59.000Z

    An assessment of the status of the integrated fuel cell/battery power system concept for electric vehicle propulsion is reported. The fuel cell, operating on hydrogen or methanol (indirectly), acts as a very high capacity energy battery for vehicle sustaining operation, while a special power battery provides over-capacity transient power on demand, being recharged by the fuel cell, e.g., during cruising. A focused literature search and a set of industrial and Government contacts were carried out to establish views, outlooks, and general status concerning the concept. It is evident that, although vehicle battery R and D is being actively pursued, little of today's fuel cell work is directed to transportation usage. Only very limited attention has been, and is being, given to the fuel cell/battery power system concept itself. However, judging largely from computer-simulated driving cycle results, the concept can provide needed range capabilities and general operating flexibility to electric vehicles. New transportation applications, conventionally viewed as beyond the capability of electric vehicles, may thereby be practical, e.g., rail, trucks. In view of these potential and important benefits, and the absence of any comprehensive research, development, and demonstration activities which are supportive of the fuel cell/battery system concept, the initiation of an appropriate effort is recommended by the Assessment Team. This general recommendation is supported by applicable findings, observations, and conclusions.

  18. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.

    2013-01-01T23:59:59.000Z

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

  19. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles: Preprint

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.

    2013-03-01T23:59:59.000Z

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

  20. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  1. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  2. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  3. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  4. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  5. Authorization and Driving History Form The following information will be retained on file by all agencies on their drivers authorized to operate a

    E-Print Network [OSTI]

    Harms, Kyle E.

    agencies on their drivers authorized to operate a State vehicle, or a private vehicle for state purposes ___________________________________________ Position: Staff_____ Faculty_____ Student_____ Is employee's primary purpose to drive vehicles? Yes_____ No/her private vehicle in the course and scope of employment? Yes_____ No_____ Date of last Driver Training

  6. Roberts Union DRIVING DIRECTIONS

    E-Print Network [OSTI]

    Wilson, Herb

    the pond onto Bixler Drive, across from the Millwright Steam Plant and just before the outdoor track (Washington Street). Take your first left onto Bixler Drive, after you pass the outdoor track and football

  7. Nissan Hypermini Urban Electric Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort; Robert Brayer

    2006-01-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

  8. Thanksgiving Goodwill: West Valley Demonstration Project Food Drive

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology Performance April 7, 2014 Dr.CommerceSamProvides 640

  9. A fuzzy logic controller for autonomous vehicle control

    E-Print Network [OSTI]

    Vinson, Yale Patrick

    1995-01-01T23:59:59.000Z

    This thesis presents a feasibility study for the use of fuzzy logic control to solve the autonomous vehicle following problem. After developing the original vehicle following system, the applicability of fuzzy logic to the problem is demonstrated...

  10. A fuzzy logic controller for autonomous vehicle control 

    E-Print Network [OSTI]

    Vinson, Yale Patrick

    1995-01-01T23:59:59.000Z

    This thesis presents a feasibility study for the use of fuzzy logic control to solve the autonomous vehicle following problem. After developing the original vehicle following system, the applicability of fuzzy logic to the problem is demonstrated...

  11. An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Brest, Université de

    An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles F. Khoucha1 presents a fuzzy logic controller for a Parallel Hybrid Electric Vehicle (PHEV). The PHEV required driving economy, and emissions. Index Terms--Parallel Hybrid Electric Vehicle (PHEV), Internal Combustion Engine

  12. A Real-Time Navigation Architecture for Automated Vehicles in Urban Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Real-Time Navigation Architecture for Automated Vehicles in Urban Environments Gang Chen presents a novel navigation architec- ture for automated car-like vehicles in urban environments. Motion with fully automated driving capabilities. A fleet of such vehicles would form a managed transportation

  13. THE TRAVEL AND ENVIRONMENTAL IMPLICATIONS OF SHARED AUTONOMOUS VEHICLES, USING AGENT-BASED MODEL SCENARIOS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 THE TRAVEL AND ENVIRONMENTAL IMPLICATIONS OF SHARED AUTONOMOUS VEHICLES, USING AGENT-BASED MODEL an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles describes the design of an agent-based model for Shared Autonomous Vehicle (SAV) operations, the results

  14. Vehicle Speed Estimation using Acoustic Wave Patterns Volkan Cevher, Member, IEEE, Rama Chellappa, Fellow, IEEE

    E-Print Network [OSTI]

    Cevher, Volkan

    1 Vehicle Speed Estimation using Acoustic Wave Patterns Volkan Cevher, Member, IEEE, Rama Chellappa, Fellow, IEEE James H. McClellan, Fellow, IEEE Abstract-- We estimate a vehicle's speed, its wheelbase acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using

  15. ITS Technologies in Military Wheeled Tactical Vehicles: Status Quo and the Future

    SciTech Connect (OSTI)

    Knee, H.E.

    2001-07-02T23:59:59.000Z

    The U.S. Army operates and maintains the largest trucking fleet in the United States. Its fleet consists of over 246,000 trucks, and it is responsible for buying and developing trucks for all branches of the armed forces. The Army's tactical wheeled vehicle fleet is the logistical backbone of the Army, and annually, the fleet logs about 823 million miles. The fleet consists of a number of types of vehicles. They include eight different families of trucks from the High Mobility Multi-Purpose Wheeled Vehicles to M900 series line haul tractors and special bodies. The average age of all the trucks within the Army fleet is 15 years, and very few have more than traditional driving instrumentation on-board. Over the past decade, the Department of Transportation's (DOT's) Intelligent Transportation Systems (ITS) Program has conducted research and deployment activities in a number of areas including in-vehicle systems, communication and telematics technologies. Many current model passenger vehicles have demonstrated the assimilation of these technologies to enhance safety and trip quality. Commercial vehicles are also demonstrating many new electronic devices that are assisting in making them safer and more efficient. Moreover, a plethora of new technologies are about to be introduced to drivers that promise greater safety, enhanced efficiency, congestion avoidance, fuel usage reduction, and enhanced trip quality. The U.S. Army has special needs with regard to fleet management, logistics, sustainability, reliability, survivability, and fuel consumption that goes beyond similar requirements within the private industry. In order to effectively apply emerging ITS technologies to the special needs of the U.S. Army, planning for the conduct of the Army's Vehicle Intelligence Program (AVIP) has now commenced. The AVIP will be focused on the conduct of research that: (1) will apply ITS technologies to the special needs of the Army, and (2) will conduct research for special needs wi th regard to vehicle control, driver assistance, integration of vehicle intelligence and robotic technologies, managing effectively the information flow to drivers, enhanced logistics capabilities and sustainability of the Army's fleet during battlefield conditions. This paper will highlight the special needs of the Army, briefly describe two programs, which are embracing ITS technologies to a limited extent, will outline the AVIP, and will provide some insight into future Army vehicle intelligence efforts.

  16. ABV-A Low Speed Automation Project to Study the Technical Feasibility of Fully Automated Driving

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on vehicle automation since many years. From 1987 to 1995 the European Commission funded the 800 million concepts of vehicles designed as fully automated vehicles [1]. Beyond its fully automation ability Automated Highway System Consortium (NAHSC) that demonstrated about 20 automated vehicles in Demo'97 on I-15

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  18. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  19. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  20. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  1. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing...

  2. Driving and passengering: notes on the ordinary organisation of car travel 

    E-Print Network [OSTI]

    Laurier, Eric; Lorimer, Hayden; Brown, Barry; Jones, Owain; Juhlin, Oskar; Noble, Allyson; Perry, Mark; Pica, Daniele; Sormani, Philippe; Strebel, Ignaz; Swan, Laurel; Taylor, Alex S; Watts, Laura; Weilenmann, Alexandra

    2008-01-01T23:59:59.000Z

    We spend ever increasing periods of our lives travelling in cars, yet quite what it is we do while travelling, aside from driving the vehicle itself, is largely overlooked. Drawing on analyses of video records of a series ...

  3. Parker Hybrid Hydraulic Drivetrain Demonstration

    SciTech Connect (OSTI)

    Collett, Raymond [Parker-Hannifin Corporation, Cleveland, OH (United States); Howland, James [Parker-Hannifin Corporation, Cleveland, OH (United States); Venkiteswaran, Prasad [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2014-03-31T23:59:59.000Z

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  4. Base drive circuit for a four-terminal power Darlington

    DOE Patents [OSTI]

    Lee, Fred C. (Blacksburg, VA); Carter, Roy A. (Salem, VA)

    1983-01-01T23:59:59.000Z

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  5. NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

  6. Analysis of national pay-as-you-drive insurance systems and other variable driving charges

    SciTech Connect (OSTI)

    Wenzel, T.

    1995-07-01T23:59:59.000Z

    Under Pay as You Drive insurance (PAYD), drivers would pay part of their automobile insurance premium as a per-gallon surcharge every time they filled their gas tank. By transfering a portion of the cost of owning a vehicle from a fixed cost to a variable cost, PAYD would discourage driving. PAYD has been proposed recently in California as a means of reforming how auto insurance is provided. PAYD proponents claim that, by forcing drivers to purchase at least part of their insurance every time they refuel their car, PAYD would reduce or eliminate the need for uninsured motorist coverage. Some versions of PAYD proposed in California have been combined with a no-fault insurance system, with the intention of further reducing premiums for the average driver. Other states have proposed PAYD systems that would base insurance premiums on annual miles driven. In this report we discuss some of the qualitative issues surrounding adoption of PAYD and other policies that would convert other fixed costs of driving (vehicle registration, safety/emission control system inspection, and driver license renewal) to variable costs. We examine the effects of these policies on two sets of objectives: objectives related to auto insurance reform, and those related to reducing fuel consumption, CO{sub 2} emissions, and vehicle miles traveled. We pay particular attention to the first objective, insurance reform, since this has generated the most interest in PAYD to date, at least at the state level.

  7. Hybrid Human Powered Vehicle (Phase 3) The Zero EMission (ZEM) Vehicle Project

    E-Print Network [OSTI]

    Su, Xiao

    Continuous charging batteries by solar PV while driving the vehicle in sunny days, and parking in open lot and testing P-2 Sponsors: SJSU-COE, SunPower Corp. San Jose, and Clean Battery Technologies Inc. Santa Clara Base: 4' wide x 8'-6" long Power Sources: Human pedaling/ Electricity/Solar PV Freight Weight: 1200 lbs

  8. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  9. Physical model of a hybrid electric drive train

    E-Print Network [OSTI]

    Young, Brady W. (Brady William)

    2006-01-01T23:59:59.000Z

    A motor and flywheel system was designed to simulate the dynamics of the electric drive train and inertial mass of a hybrid electric vehicle. The model will serve as a test bed for students in 2.672 to study the energy ...

  10. High reduction transaxle for electric vehicle

    DOE Patents [OSTI]

    Kalns, Ilmars (Plymouth, MI)

    1987-01-01T23:59:59.000Z

    A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

  11. Vehicle Technologies Office: Long-Term Lightweight Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sheet) Developing new and better alloys Demonstrated an important type of joint (friction stir-welded Mg-steel joints) needed to integrate Mg components into vehicles more...

  12. Wireless Plug-in Electric Vehicle (PEV) Charging

    Broader source: Energy.gov (indexed) [DOE]

    efficiency in a test and demonstration vehicle - Loosely coupled magnetic resonant transformers having air core cannot meet health and safety targets, therefore, novel soft...

  13. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, C.A. Jr.

    1999-08-31T23:59:59.000Z

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  14. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, Jr., Charles A. (Raymore, MO)

    1999-08-31T23:59:59.000Z

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  15. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  16. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  17. Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

    1999-08-01T23:59:59.000Z

    Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

  18. Drive-by-Wireless Teleoperation with Network QoS Adaptation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    tele- operation of drive-by-wireless applications, which utilize energy concepts and impose an adaptation scheme for drive- by-wireless teleoperation of an electric vehicle. The performance variation due to the varying time delay and packet losses is investigated and catered for by using an adaptive gain scheduling

  19. ELECTRIC DRIVE BY `25: How California Can Catalyze Mass Adoption of

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , introducing a range of cars and trucks that can "plug in" to the grid for electricity to power the engineELECTRIC DRIVE BY `25: How California Can Catalyze Mass Adoption of Electric Vehicles by 2025@law.berkeley.edu. #12;1UCLA Law \\ Berkeley Law ELECTRIC DRIVE BY `25: How California Can Catalyze Mass Adoption

  20. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    SciTech Connect (OSTI)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01T23:59:59.000Z

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  1. Smith Newton Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  2. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08T23:59:59.000Z

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  3. Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.; Henriksen, G. L.; Amine, K.

    2000-12-04T23:59:59.000Z

    In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

  4. DOE Hybrid Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31T23:59:59.000Z

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  5. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  6. Integrated Inverter For Driving Multiple Electric Machines

    SciTech Connect (OSTI)

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04T23:59:59.000Z

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  7. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01T23:59:59.000Z

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  8. Gain-scheduled LPV/H controller based on direct yaw moment and active steering for vehicle handling improvements

    E-Print Network [OSTI]

    Boyer, Edmond

    in vehicle handling and stability. I. INTRODUCTION A close examination of accident data reveals that losing the vehicle control is responsible for a huge proportion of car accidents. Under critical driving, and dangerous accidents could happen. To ensure vehicle stability and handling, many advanced active chassis

  9. On-Road Vehicle Detection: A Review Zehang Sun, Member, IEEE, George Bebis, Member, IEEE, and Ronald Miller

    E-Print Network [OSTI]

    Bebis, George

    On-Road Vehicle Detection: A Review Zehang Sun, Member, IEEE, George Bebis, Member, IEEE about driving environments, and possible collision with other vehicles has attracted a lot of attention lately. In these systems, robust and reliable vehicle detection is a critical step. This paper presents

  10. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  11. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  12. > 070131-073Vehicle

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    on collaborative control ofAutonomous Underwater Vehicles (AUV), Unmanned Aerial Vehicles (UAV) and Autonomous. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus Terms-Autonomous Surface Vehicles, ocean robotics, marine science operations, unmanned survey vessels. I

  13. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  14. Vehicle Technologies Office: US DRIVE Partnership Plan, Roadmaps...

    Office of Environmental Management (EM)

    and Emissions Control: Advanced Combustion and Emission Control Technical Team Roadmap Electrical and Electronics: Electrical and Electronics Technical Team Roadmap...

  15. Equivalent circuit modeling of hybrid electric vehicle drive train

    E-Print Network [OSTI]

    Routex, Jean-Yves

    2001-01-01T23:59:59.000Z

    . . . . Figure 3. 4. 6: The motor shaft at no load. Figure 3. 4. 7: Bond graph for the motor shaft. . . Figure 3. 4. 8: Equivalent circuit of the motor shaft. Figure 3. 5. 1: Concrete example: the elevator Figure 3. 5. 2: Electro-mechanical model... model of the elevator. Figure 3. 5. 8: Final equivalent circuit of the elevator. Figure 4. 1. 1: Mechanical model of a shaft. Figure 4. 1. 2: Equivalent circuit of the shaft. Figure 4. 1. 3: Mechanical model of a gearbox. Figure 4. 1. 4: Equivalent...

  16. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Contractor share: 2.1M * Funding received in FY13: 2.1M * Funding for FY14: 1.3M * Hydro-Qubec (IREQ): - Li anode development - For baseline, interim & final deliverable...

  17. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Contractor share: 2.1M * Funding received in FY11: 0K * Funding for FY12: 1.3M * Hydro-Qubec (IREQ): - Li anode development - For baseline, interim & final deliverable...

  18. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Contractor share: 2.1M * Funding received in FY12: 1.2M * Funding for FY13: 2.0M * Hydro-Qubec (IREQ): - Li anode development - For baseline, interim & final deliverable...

  19. Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE) | DepartmentDepartmentDepartment

  20. Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE) |

  1. Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE) |Department of Energy The

  2. Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar Solar HowDuctsDepartment

  3. Vehicle Technologies Office: U.S. DRIVE | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks | Department ofValueDepartment

  4. Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoices

  5. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|EnergyCanada PowerD=22954Department of

  6. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|EnergyCanada PowerD=22954Department

  7. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|EnergyCanada

  8. US DRIVE Vehicle Systems and Analysis Technical Team Roadmap | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E Ambassadors and U.S.MANAGEMENTNoticeEnergy Theof Energy

  9. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I A

  10. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3,Bringing you aEngines

  11. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnology | Department of Energy 2

  12. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnology | Department of Energy

  13. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnology | Department of

  14. Electric Drive Vehicle Climate Control Load Reduction | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. |

  15. Electric Drive Vehicle Infrastructure Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || Department

  16. Electric Drive Vehicle Level Control Development Under Various Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. || DepartmentConditions

  17. Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAir Ducts Tips: AirDepartment

  18. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a rDepartment

  19. Advanced Electric Drive Vehicle Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy TechnologyDrop-In2 DOE

  20. Advanced Electric Drive Vehicle Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy TechnologyDrop-In2 DOE1

  1. Advanced Electric Drive Vehicle Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy TechnologyDrop-In2 DOE10

  2. Advanced Electric Drive Vehicle Education Program: CSU Ventures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy TechnologyDrop-In2

  3. Advanced Electric Drive Vehicle Education Program: CSU Ventures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy

  4. Advanced Electric Drive Vehicle Education Program: CSU Ventures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of Energy 0

  5. Advanced Electric Drive Vehicles Â… A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment of

  6. Advanced Electric Drive Vehicles Â… A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment ofand Outreach

  7. Advanced Electric Drive Vehicles Â… A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergyDepartment ofand

  8. The drive toward hydrogen vehicles just got shorter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2DandEnergy The Year on Energy.gov:The

  9. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011 U.S. DEPARTMENTAssociate Deputy SecretaryIn Tuesday's

  10. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31T23:59:59.000Z

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  11. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.

    2013-05-01T23:59:59.000Z

    This presentation discusses a method of accounting for realistic levels of driver aggression to higher-level vehicle studies, including the impact of variation in real-world driving characteristics (acceleration and speed) on vehicle energy consumption and different powertrains (e.g., conventionally powered vehicles versus electrified drive vehicles [xEVs]). Aggression variation between drivers can increase fuel consumption by more than 50% or decrease it by more than 20% from average. The normalized fuel consumption deviation from average as a function of population percentile was found to be largely insensitive to powertrain. However, the traits of ideal driving behavior are a function of powertrain. In conventional vehicles, kinetic losses dominate rolling resistance and aerodynamic losses. In xEVs with regenerative braking, rolling resistance and aerodynamic losses dominate. The relation of fuel consumption predicted from real-world drive data to that predicted by the industry-standard HWFET, UDDS, LA92, and US06 drive cycles was not consistent across powertrains, and varied broadly from the mean, median, and mode of real-world driving. A drive cycle synthesized by NREL's DRIVE tool accurately and consistently reproduces average real-world for multiple powertrains within 1%, and can be used to calculate the fuel consumption effects of varying levels of driver aggression.

  12. The Accident Externality from Driving

    E-Print Network [OSTI]

    Edlin, Aaron S.; Karaca-Mandic, Pinar

    2007-01-01T23:59:59.000Z

    Sex-Divided Mile- age, Accident, and Insurance Cost DataMandic. 2003. “The Accident Externality from Driving. ”Insurance Res. Council. accident externality from driving

  13. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  14. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  15. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  16. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  17. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy’s (DOE’s) Controlled Hydrogen Fleet and Infrastructure Validation and

  18. EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah RiverSustainabilityEnergyDownload

  19. February 23, 2007: Alternative Fuel Vehicle Demonstration at White House |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY FactWindFault Current20,

  20. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluation |Activity | Department