Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

2

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

3

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

4

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

SciTech Connect

This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

Pesaran, A. A.

2011-05-01T23:59:59.000Z

5

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

6

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles  

E-Print Network (OSTI)

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries to the safety and performance of electric-drive batteries. The innovative Isothermal Battery Calorimeters (IBCs

7

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger concerning the electrical machine control. This paper deals with the control of this drive [1], focusing

Paris-Sud XI, Université de

8

Vehicle Technologies Office: Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

9

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

10

Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

SciTech Connect

This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

2013-06-01T23:59:59.000Z

11

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

complete Timeline Budget Barriers Partners Overview * Barriers addressed: - A. Battery cost - C. Performance: Energy Density - E. Lifetime * Targets - prototype cells...

12

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

13

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

14

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

15

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network (OSTI)

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The… (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

16

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

17

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

18

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

19

Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

20

Electric Drive Vehicle Level Control Development Under Various...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 The objective is to develop the entire vehicle thermal management system for two electric drive vehicles (HEVs, PHEVs). Limited battery power and low engine efficiency at...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

22

Predicting Battery Pack Thermal and Electrical Performance in a Vehicle Using Realistic Drive Cycle Power Profiles  

Science Journals Connector (OSTI)

The heat generated during battery charge and discharge cycles is a major ... issue, particularly since the performance of a battery depends on its operating temperature. As a consequence, robust thermal managemen...

Allen Curran; Scott Peck

2013-01-01T23:59:59.000Z

23

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting vss033carlson2012o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office...

24

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

25

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

26

EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan  

Energy.gov (U.S. Department of Energy (DOE))

DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

27

Electric-Drive Vehicle engineering  

E-Print Network (OSTI)

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

28

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

29

Electric vehicle drive train with contactor protection  

DOE Patents (OSTI)

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

1994-01-01T23:59:59.000Z

30

US DRIVE Driving Research and Innovation for Vehicle Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy...

31

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

32

Advanced Electric Drive Vehicle Education Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Electric Drive Vehicle Education Program Advanced Electric Drive Vehicle Education Program 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

33

NREL: Continuum Magazine - Electric Vehicle Battery Development Gains  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Battery Development Gains Momentum Electric Vehicle Battery Development Gains Momentum Issue 5 Print Version Share this resource Electric Vehicle Battery Development Gains Momentum CAEBAT collaboration targets EDV batteries with longer range and lifespan, at a lower cost. A photo of two men silhouetted in front of six back-lit display screens showing battery models, located in a dark room (22008). Enlarge image NREL's modeling, simulation, and testing activities include battery safety assessment, next-generation battery technologies, material synthesis and research, subsystem analysis, and battery second use studies. Photo by Dennis Schroeder, NREL "When people get behind the wheel of an electric car, it should be a great driving experience. Period." Dr. Taeyoung Han, GM technical fellow, said,

34

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt039schwendeman2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles Advanced Electric Drive Vehicles Energy & Manufacturing Workforce...

35

Advanced Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

36

Thermal Batteries for Electric Vehicles  

SciTech Connect

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

37

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

38

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

39

Microsoft Word - Vehicle Battery EA_Pyrotek  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20 20 Environmental Assessment for Pyrotek, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative Project, Sanborn, NY April 2010 Prepared for: Department of Energy National Energy Technology Laboratory Environmental Assessment DOE/EA-1720 Pyrotek, Incorporated, Sanborn, NY April 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with Pyrotek, Incorporated (Pyrotek), to partially fund the construction of an industrial building; installation of electrically heated furnaces and other production equipment such as conveyors, collectors, screens, and cooling towers required to accomplish the proposed expansion of Pyrotek's graphitization process. The plant expansion would enable the manufacture

40

Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size  

Energy.gov (U.S. Department of Energy (DOE))

Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vehicle Technologies Office: Exploratory Battery Materials Research  

Energy.gov (U.S. Department of Energy (DOE))

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

42

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

43

Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer  

DOE Patents (OSTI)

An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

Tamai, Goro; Zhou, Jing; Weslati, Feisel

2014-09-02T23:59:59.000Z

44

Driving Battery Production in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Production in Ohio Battery Production in Ohio Driving Battery Production in Ohio November 1, 2010 - 6:19pm Addthis Randy Turk, Elyria Site Manager; Rep. Betty Sutton (OH); Frank Bozich, President Catalysts, BASF and Patrick Davis, DOE Program Manager participate in groundbreaking ceremony for BASF battery materials plant in Elyria, Ohio | Photo Courtesy of Nat Clymer Photography, LLC | Randy Turk, Elyria Site Manager; Rep. Betty Sutton (OH); Frank Bozich, President Catalysts, BASF and Patrick Davis, DOE Program Manager participate in groundbreaking ceremony for BASF battery materials plant in Elyria, Ohio | Photo Courtesy of Nat Clymer Photography, LLC | Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager Last week, I traveled to Elyria, Ohio (not far from Cleveland and the Rock

45

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

46

Electric Drive Vehicle Infrastructure Deployment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

47

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

48

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

49

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)  

SciTech Connect

Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

Not Available

2012-06-01T23:59:59.000Z

50

Advanced batteries for electric vehicle applications  

SciTech Connect

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

51

Vehicle Technologies Office: Applied Battery Research  

Energy.gov (U.S. Department of Energy (DOE))

Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric...

52

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation vss033carlson2011o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced...

53

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...  

Energy Savers (EERE)

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

54

Vehicle Technologies Office: Electric Drive Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

55

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

56

Vehicle Technologies Office: U.S. DRIVE  

Energy.gov (U.S. Department of Energy (DOE))

U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced...

57

Learning Policies For Battery Usage Optimization in Electric Vehicles  

E-Print Network (OSTI)

algorithmic chal- lenge. 1 Introduction Electric vehicles, partially or fully powered by batteries, are oneLearning Policies For Battery Usage Optimization in Electric Vehicles Stefano Ermon, Yexiang Xue for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery

Bejerano, Gill

58

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

59

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

60

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Electric Drive Vehicle Education Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Consortium (NAFTC), together with its partners, will develop an Advanced Electric Drive Vehicle Education Program that will help accelerate mass market introduction...

62

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

63

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

64

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Energy.gov (U.S. Department of Energy (DOE))

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

65

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Energy.gov (U.S. Department of Energy (DOE))

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

66

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

67

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300 Commercial EVSE...

68

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

69

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

70

Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity  

Energy.gov (U.S. Department of Energy (DOE))

Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

71

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DRIVE U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). Specifically, the Partnership is a forum for pre-competitive technical information exchange among partners to discuss R&D needs, develop joint goals and technology roadmaps, and evaluate R&D progress for a broad range of technical areas. By providing a framework for frequent and regular interaction among technical experts in a common area of expertise, the Partnership -

72

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

73

Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries  

Science Journals Connector (OSTI)

...L (6.8 mi/gal diesel)], all scenarios...LDV class and driving cycle, and a factor...conventional Rankine cycle for net export. One...city/highway driving cycle basis—a value...criteria pollutants is in general not a substantial motivation...

Mark Laser; Lee R. Lynd

2014-01-01T23:59:59.000Z

74

Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries  

Science Journals Connector (OSTI)

...L (6.8 mi/gal diesel...criteria pollutants is in general not a substantial...Medium- and Heavy-Duty Engines and Vehicles, A Proposed...and-heavy-duty-engines#p-401. Accessed June...the internal combustion engine...

Mark Laser; Lee R. Lynd

2014-01-01T23:59:59.000Z

75

Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use...

76

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

77

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

78

Vehicle Technologies Office Merit Review 2014: Battery Safety Testing  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

79

Advanced Vehicle Testing - Beginning-of-Test Battery Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.5 V Thermal Mgmt.: Passive, Vacuum-Sealed Unit Pack Weight: 294 kg BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 6,696 mi Date of...

80

Electric Drive Vehicle Level Control Development Under Various...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Energy Management Strategies for Fast Battery Temperature Rise and...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

Assessmentof Electric-Drive Vehicles: Policies, Markets, andInternational Assessment Electric-Drive Vehicles: Policies,International Assessment Electric-Drive Vehicles Policies,

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

82

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

ECONOMIC ASSESSMENT OF ELECTRIC-DRIVE VEHICLE OPERATION INECONOMIC ASSESSMENT OF ELECTRIC-DRIVE VEHICLE OPERATION INconsumers to switch to electric-drive vehicles, including a

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

83

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities...

84

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network (OSTI)

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

85

Vehicle Technologies Office: Fact #452: January 15, 2007 Driving  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 15, 2: January 15, 2007 Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on AddThis.com... Fact #452: January 15, 2007 Driving Differences Those living in the center city drive fewer miles in a day than those in

86

Costs of lithium-ion batteries for vehicles  

SciTech Connect

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

87

Vehicle Technologies Office: Materials for Hybrid and Electric Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

for Hybrid and for Hybrid and Electric Drive Systems to someone by E-mail Share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Facebook Tweet about Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Twitter Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Google Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Delicious Rank Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Digg Find More places to share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

88

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reality Check: Cheaper Batteries are GOOD for America's Electric Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers September 16, 2011 - 11:05am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Today's New York Times includes a story about loans the Department of Energy has issued for electric vehicle manufacturing. The story says that the price of advanced batteries for electric vehicles is rapidly declining. That's true. And it's also very good news, since it makes America more competitive. The story goes on to say that this price decline could hurt the electric vehicle manufacturers that the Department has extended loans to. That is not true. In fact, it's just the opposite. Think about it - cheaper

89

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network (OSTI)

Electric Vehicle Traction Drive Shengnan Li Student Member, IEEE The University of Tennessee Department Science Knoxville, TN, 37996, USA tolbert@utk.edu Abstract ­ In hybrid electric vehicles (HEV), a battery-source inverter, dc bus capacitor, Electric vehicle, Harmonic current, Hybrid electric vehicle. I. INTRODUCTION

Tolbert, Leon M.

90

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

91

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

92

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways #  

E-Print Network (OSTI)

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways # Alain Girault a a Inria the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles of their merging lane. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor

Girault, Alain

93

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways  

E-Print Network (OSTI)

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways Alain Girault a aInria Rh of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor near Houston

Girault, Alain

94

Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

95

Comparison of various battery technologies for electric vehicles  

E-Print Network (OSTI)

four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual...

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

96

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy National...

97

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9679 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk Jeffrey Wishart July 2013 The Idaho National Laboratory is a U.S. Department...

98

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

99

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

100

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results Tyler Gray Mathew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

102

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network (OSTI)

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed more robust. This report analyzes V2G power from three types of EDVs--battery, hybrid, and fuel cell and prices are high. Fuel cell and hybrid EDVs are sources of new power generation. For economic reasons

Firestone, Jeremy

103

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network (OSTI)

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed, and fuel cell. Battery EDVs can store electricity, charging during low demand times and discharging when power is scarce and prices are high. Fuel cell and hybrid EDVs are sources of new power generation

Firestone, Jeremy

104

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

105

US-ABC Collaborates to Lower Cost of Electric Drive Batteries...  

Office of Environmental Management (EM)

US-ABC Collaborates to Lower Cost of Electric Drive Batteries US-ABC Collaborates to Lower Cost of Electric Drive Batteries April 16, 2013 - 12:00am Addthis The U.S. Advanced...

106

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

107

Electric Drive Vehicles: A Huge New Distributed Energy Resource  

E-Print Network (OSTI)

with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

Firestone, Jeremy

108

Chemical Sciences and Engineering - US China Electric Vehicle and Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations Presentations View program in brief » View the Conference Booklet with program (pdf) » Plenary Sessions 4th US - China Electric Vehicle and Battery Technology Workshop, Dave Howell, US Department of Energy (pdf) U.S. Department of Energy Vehicle Technologies Program Overview, Henry Kelly, US DOE Energy Efficiency and Renewable Energy (pdf) EcoPartnerships: A model for US-China Energy Collaboration, David Fleshler, Case Western Reserve University and QIN Xingcai, Tianjin Lishen Battery Joint-Stock Co., Ltd. (pdf) Lishen Advanced Battery Development for EV and ESS, Qin Xingcai, Tianjin Lishen Battery Joint-Stock Co., Ltd. (pdf) EV R&D in CAERI, Xiaochang Ren, China Automotive Engineering Research Institute (pdf) Roundtable 1: Joint Battery Technology Roadmapping

109

Microsoft Word - Final EA ENERG2 Vehicle Battery 4-2-10.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Environmental Assessment For EnerG2, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Albany, OR April 2010 Prepared for: Department of Energy National Energy Technology Laboratory Environmental Assessment DOE/EA-1718 EnerG2, Inc., Albany, OR April 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with EnerG2, Inc. (EnerG2) to partially fund the establishment of a commercial-size manufacturing plant that would produce nanostructured carbon powder that could be used in manufacturing ultra-capacitors and battery anodes. The plant would be setup in Albany, Oregon and would support the anticipated growth in the electric drive vehicle (EDV) industry and

110

Microsoft Word - Vehicle Battery Final EA_Toda 3-19-10.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment for Toda America, Incorporated Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Battle Creek, MI March 2010 Prepared for: Department of Energy National Energy Technology Laboratory Environmental Assessment and Finding of No Significant Impact DOE/EA-1714 Toda America, Incorporated, Battle Creek, MI March 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with Toda America, Incorporated (Toda) to partially fund the construction of a manufacturing plant to produce oxide materials for cathodes for lithium-ion batteries. The plant would be constructed within an existing industrial park in Battle Creek,

111

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

112

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle  

SciTech Connect

Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

113

Recycling Hybrid and Elecectric Vehicle Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

114

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

115

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

by adding additional batteries to the design, allowing theincreases. Advanced Batteries for Electric-Drive Vehicles (generally require larger batteries with correspondingly

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

116

A global analysis and market strategy in the electric vehicle battery industry  

E-Print Network (OSTI)

As use of electric vehicles has been expected to grow, the batteries for the electric vehicles have become critical because the batteries are a key part of the paradigm shift in the automotive industry. However, the demand ...

Kim, Young Hee, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

117

Procedures for safe handling of off-gases from electric vehicle lead-acid batteries during overcharge  

SciTech Connect

The potential for generation of toxic gases from lead-acid batteries has long been recognized. Prior to the current interest in electric vehicles, there were no studies specificaly oriented to toxic gas release from traction batteries, however. As the Department of Energy Demonstration Project (in the Electric and Hybrid Vehicle Program) progresses, available data from past studies and parallel health effects programs must be digested into guidance to the drivers and maintenance personnel, tailored to their contact with electric vehicles. The basic aspects of lead-acid battery operation, vehicle use, and health effects of stibine and arsine to provide electric vehicle users with the information behind the judgment that vehicle operation and testing may proceed are presented. Specifically, it is concluded that stibine generation or arsine generation at rapid enough rates to induce acute toxic response is not at all likely. Procedures to guard against low-level exposure until more definitive data on ambient concentrations of the gases are collected are presented for both charging the batteries and driving the vehicles. A research plan to collect additional quantitative data from electric traction batteries is presented.

LaBelle, S.J.; Bhattacharyya, M.H.; Loutfy, R.O.; Varma, R.

1980-01-25T23:59:59.000Z

118

Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimisation  

Science Journals Connector (OSTI)

Combining a Fuel Cell (FC), as primary power source, with a Battery Energy System (BES), as an auxiliary source, for high power demands is a promising approach for future hybrid electric vehicles (HEV). The powertrain control strategy and the component sizing significantly affect the vehicle performance, cost, vehicle efficiency and fuel economy. This paper presents a developed control strategy for optimising the power sharing between sources and components sizing by using Particle Swarm Optimisation (PSO) algorithm. This control strategy implemented on FC/Battery hybrid electric vehicle in order to achieve the best performance with minimum fuel consumption and minimum powertrain components sizing for a given driving cycle with high efficiency. The powertrain and the proposed control strategy have been simulated by Matlab/Simulink. The simulation results have demonstrated that the optimal sizing of the powertrain of FC/battery components and the minimum fuel consumption have been improved by applying the PSO control strategy.

Omar Hegazy; Joeri Van Mierlo

2012-01-01T23:59:59.000Z

119

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

2007) Impacts of Electric-drive Vehicles on California'sInteractions between electric-drive vehicles and the powerin emissions found for electric- drive vehicles is a result

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

120

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles  

SciTech Connect

Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

Malikopoulos, Andreas [ORNL

2014-01-01T23:59:59.000Z

122

Microsoft Word - Vehicle Battery Final EA Celgard 4-29-10.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Environmental Assessment for Celgard LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Concord, NC April 2010 Prepared for: Department of Energy National Energy Technology Laboratory Environmental Assessment DOE/EA-1713 Celgard LLC, Concord, NC April 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with Celgard LLC (Celgard), to partially fund the construction of a small industrial facility (approximately 135,000 square feet) on approximately 20.6 acres of land for the manufacturing of separator materials for commercial hybrid-electric vehicle (HEV) batteries. The facility would be constructed on parcels within the International Business Park,

123

EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Supplement to General Motors Corp., Electric 9: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) Overview Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 29, 2011 EA-1869: Final Environmental Assessment and Finding of No Significant

124

Electric Drive Vehicle Climate Control Load Reduction  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

125

Electric Drive Vehicle Climate Control Load Reduction  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

126

Advanced Electric Drive Vehicle Education Program  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

127

Advanced Electric Drive Vehicle Education Program  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

128

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

Konrad, Charles E. (Roanoke, VA)

1994-01-01T23:59:59.000Z

129

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

130

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

131

Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The figure below shows the Environmental Protection Agency (EPA) driving ranges for electric vehicles (EVs) offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV...

132

Phenomenological Driving Behavior Model of the Suburban Vehicle-to-Vehicle Propagation Channel at  

E-Print Network (OSTI)

Phenomenological Driving Behavior Model of the Suburban Vehicle-to-Vehicle Propagation Channel at 5 a hierarchical phenomenological model of driving behavior to describe this observation. As an example, we a phenomenological model in a hierarchical manner to describe the expected relative velocity vs. distance of two

Stancil, Daniel D.

133

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reveals Links Among Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that "preconditioning" a vehicle- achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term. One of the most significant barriers to widespread deployment of electric vehicles is range anxiety-a driver's uncertainty about the vehicle's ability to reach a destination before fully

134

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt039tischwendeman2012o.pdf More Documents &...

135

Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries  

Energy.gov (U.S. Department of Energy (DOE))

With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will...

136

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

137

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Under hood above powertrain Under hood above powertrain Nominal System Voltage: 333 V Rated Capacity (C/3): 40 Ah Cooling Method: Glycol / Water mix Powertrain Motor Type: DC Brushless Number of Motors: One Motor Cooling Type: Glycol / Water mix Drive Wheels: Rear Wheel Drive Transmission: None (gear ratio only in rear axle) Charger Location: Underhood Charger Port: Driver's side, front quarter panel Type: Conductive (J1772 connector) Input Voltage(s): 120 or 240 VAC Chassis Aluminum Body on Steel Frame Rear Suspension: Solid Axle with Leaf Springs Front Suspension: Dual A-arm with Coil Springs Weights Design Curb Weight: 3250 lbs Delivered Curb Weight: 3310 lbs 7 Distribution F/R: 55.2/44.8% GVWR: 4450 lbs Max Payload: 940 lbs + 200 lbs driver 1 Performance Goal Payload: 1000 lbs + 200 lbs driver

138

Understanding fuel savings mechanisms from hybrid vehicles to guide optimal battery sizing for India  

Science Journals Connector (OSTI)

Global transportation-related CO2 emissions are expected to substantially increase by 2050, with a majority of growth coming from rapidly developing countries like India. To understand the potential for using hybrid vehicles to limit the CO2 emissions growth, this paper compares driving conditions and the fuel savings potential of hybrids in the USA and India. It is shown that hybrids offer more fuel savings potential in India than in the USA, largely because of the limited highway driving in India. In order of relative importance, the analysis shows that fuel savings from power-split hybrids come from: 1) enabling higher efficiency engine operation; 2) energy recovered from regenerative braking; 3) engine shutdown. This understanding of the fuel savings mechanisms of hybrids and their relative importance is used in assessing how smaller battery capacities for hybrids in India can be used to reduce costs for this highly cost-sensitive market while preserving fuel savings. A parametric analysis of battery size on fuel savings mechanisms is carried out, and it is shown that hybrid vehicles for Indian driving conditions should ideally have a power capacity between 15 and 20 kW, with 10 kW as a lower limit.

Samveg Saxena; Amol Phadke; Anand Gopal; Venkat Srinivasan

2014-01-01T23:59:59.000Z

139

Power control of dual-motor electric drive for tracked vehicles  

Science Journals Connector (OSTI)

The fundamental problem of the power control for the driving of a dual-motor drive electric tracked vehicle is analyzed. The tracked vehicle and its electric drive system are mathematically modeled. Power control...

Yuan Zou; Chengning Zhang; Fengchun Sun…

2010-03-01T23:59:59.000Z

140

Simulation Evaluation of Green Driving Strategies Based on Inter-Vehicle Communications  

E-Print Network (OSTI)

green driving strategies for different market penetration rates and communicationGreen Driving Strategies Based on Inter-Vehicle CommunicationsGREEN DRIVING STRATEGIES BASED ON INTER-VEHICLE COMMUNICATIONS

Yang, Hao; Yuan, Daji; Jin, W L; Saphores, Jean-Daniel M

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vehicles on demand... Why drive your own vehicle  

E-Print Network (OSTI)

to renter. Vehicle should be returned with no less than a half tank of gas (local gas stations on next page *Daily Rate $50 *Includes gas, unlimited miles, mainte- nance and insurance. No smoking. Hands

142

On the comparison and the complementarity of batteries and fuel cells for electric driving  

Science Journals Connector (OSTI)

Abstract This paper considers different current and emerging power train technologies (ICE, BEV, HEV, FCEV and FC-RE) and provides a comparison within a techno-economic framework, especially for the architectures of range-extender power trains. The economic benefits in terms of Total Cost of Ownership (TCO) are based on forecasts for the major TCO-influencing parameters up to 2030: electric driving distances, energy (fuel, electricity, hydrogen) prices, batteries and fuel cell costs. The model takes into account functional parameters such as the battery range as well as daily trip segmentation statistics. The \\{TCOs\\} of all the vehicles become similar in 2030, given a 200 km battery range for BEVs. \\{BEVs\\} are profitable for yearly mileages of 30,000 km and over, and for higher battery ranges. The competitiveness of \\{FCEVs\\} is examined through the H2 target price at the pump. There is a very significant effect of the fuel cell cost on the TCO. A FCEV with a fuel cell cost of 40 €/kW will be competitive with a similar ICE car for a 1.75 €/l fuel cost and ca. 7 €/kg hydrogen cost. This depends too to a great extent on possible ICE cars' CO2 taxes. As regard the FC-RE electric car, the hydrogen target price at the pump is noticeably higher (ca 10 €/Kg). FC-RE cars \\{TCOs\\} are strongly affected by the FC power, the discount rate chosen and the yearly mileage. Moreover, it therefore seems reasonable to confine FC-RE battery ranges in the region of 60 km.

Alain Le Duigou; Aimen Smatti

2014-01-01T23:59:59.000Z

143

Monitoring Battery System for Electric Vehicle, Based On "One Wire" Technology  

E-Print Network (OSTI)

Santiago, Chile jdixon@ing.puc.cl Abstract-- A monitoring system for a battery powered electric vehicle (EV- powered electric vehicles, the need for fast information related to different components and equipmentMonitoring Battery System for Electric Vehicle, Based On "One Wire" Technology Javier Ibáñez Vial

Catholic University of Chile (Universidad Católica de Chile)

144

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

145

The drive toward hydrogen vehicles just got shorter  

NLE Websites -- All DOE Office Websites (Extended Search)

The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter Researchers have revealed a new single-stage method for recharging the hydrogen storage compound ammonia borane. March 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

146

Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems  

Science Journals Connector (OSTI)

A major aspect for safe and efficient operation of battery electric vehicles (BEV) is the thermal management of their battery systems. As temperature uniformity and level highly ... performance and the lifetime, ...

Ch. Huber; A. Jossen; R. Kuhn

2014-01-01T23:59:59.000Z

147

Heat transfer and thermal management of electric vehicle batteries with phase change materials  

Science Journals Connector (OSTI)

This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material ( ... process to absorb the heat generated by a battery. A new configuratio...

M. Y. Ramandi; I. Dincer; G. F. Naterer

2011-07-01T23:59:59.000Z

148

Vehicle Technologies Office Merit Review 2014: E-drive Vehicle Sales Analyses  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the E-drive...

149

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network (OSTI)

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid cascaded H-bridge multilevel converter, DC voltage balance control, multilevel motor drive, electric

Tolbert, Leon M.

150

NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)  

SciTech Connect

NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

Not Available

2014-01-01T23:59:59.000Z

151

Second law analysis of a liquid cooled battery thermal management system for hybrid and electric vehicles.  

E-Print Network (OSTI)

??As hybrid and electric vehicles continue to evolve there is a need for better battery thermal management systems (BTMS), which maintain uniformity of operating temperature… (more)

Ramotar, Lokendra

2010-01-01T23:59:59.000Z

152

Heel and toe driving on fuel cell vehicle  

DOE Patents (OSTI)

A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

Choi, Tayoung; Chen, Dongmei

2012-12-11T23:59:59.000Z

153

High Voltage Electrolyte for Lithium Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

154

EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

155

U.S.-China Electric Vehicle and Battery Technology Workshop | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle and Battery Technology Workshop Electric Vehicle and Battery Technology Workshop U.S.-China Electric Vehicle and Battery Technology Workshop August 31, 2010 - 2:52pm Addthis DOE's Office of Policy and International Affairs and China's Ministry of Science and Technology convened a 3-day workshop at Argonne National Laboratory that brought together more than 100 U.S. and Chinese experts from government, industry, and academia to discuss progress made in the electric vehicle industry to date and opportunities for increased collaboration. The workshop was held in support of the U.S.-China Electric Vehicles Initiative announced by President Obama and China's President Hu Jintao in 2009. Participants engaged in three concurrent roundtables on battery technology roadmapping, battery test procedures, and vehicle

156

2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2014-09-01T23:59:59.000Z

157

2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

2014-09-01T23:59:59.000Z

158

Chemical Sciences and Engineering - US China Electric Vehicle and Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program View the Conference Booklet with program (pdf) » THURSDAY, AUGUST 4 Time Title, Speaker Plenary Session 9:00 AM Welcome and Orientation Welcome to Argonne by Eric Isaacs, Laboratory Director Orientation, Logistics and Workshop Format by Larry Johnson, Transportation Center Director 9:20 - 10:40 Technology Policy: US-China Collaboration on the Electric Vehicle Initiative Henry Kelly, USDOE Principal Deputy Assistant Secretary, Energy Efficiency and Renewable Energy ZHANG Zhihong, MOST, Deputy Director General, Department of New and High Technology WU Feng, Beijing Institute of Technology, Chief Scientist of National (973) Advance Secondary Battery Project Dave Howell, USDOE Vehicle Technologies Program, Team Lead, Hybrid Electric Systems 10:40 - 11:00 Tea/Coffee Break

159

Cascaded H-bridge inverter motor drives for hybrid electric vehicle applications  

Science Journals Connector (OSTI)

This paper presents the asymmetric cascaded H-bridge multilevel inverter for electric vehicles (EV) and hybrid electric vehicles (HEV) applications. Currently available power inverter systems for HEVs use a DC-DC boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. Asymmetric cascaded H-bridge multilevel inverter design for EV and HEV applications without the use of inductors to output a boosted AC voltage is proposed in this paper. Traditionally, each H-bridge needs a DC power supply having equal values of DC power sources. The proposed design uses the asymmetric cascaded multilevel inverter using non-equal DC power sources based on specified ratios. A fundamental switching scheme is used to do modulation control and to produce a seven-level phase voltage.

P. Renuga; T. Prathiba

2012-01-01T23:59:59.000Z

160

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...  

Energy Savers (EERE)

4 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles Fact 854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A study of alternative drive control interfaces for next-generation electric vehicles  

E-Print Network (OSTI)

The drive control interface in automobiles has not significantly changed for almost a century. Recent advances in electric vehicles and drive-by-wire technology allow for new alternative interfaces that enable novel vehicle ...

Post, C. Christopher (Charles Christopher)

2011-01-01T23:59:59.000Z

162

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm  

E-Print Network (OSTI)

powered vehicles [Kirsch, 2000, Anderson and Anderson, 2010]. Electric Vehicles (EVs) are currentlyBattery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online n current demands in electric vehicles. When serving a demand, the current allocation might be split

Tamir, Tami

163

Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

164

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates  

E-Print Network (OSTI)

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter Driving Smart Growth: Electric Vehicle Adoption Page 2 Executive Summary Reducing our dependence to electric vehicles (EVs)1 is core to reducing reliance on fossil fuels and driving smart growth

Holsinger, Kent

165

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

166

VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The electric-vehicle industry received more support Thursday when President Obama delivered remarks in Holland, Michigan, at the groundbreaking ceremony for an American Recovery and Reinvestment Act-funded battery cell plant. "This is about more than just building a new factory," President Obama told

167

VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Obama Hails Electric-Vehicle Battery Plant President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The electric-vehicle industry received more support Thursday when President Obama delivered remarks in Holland, Michigan, at the groundbreaking ceremony for an American Recovery and Reinvestment Act-funded battery cell plant. "This is about more than just building a new factory," President Obama told

168

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

169

FC/Battery Power Management for Electric Vehicle Based Interleaved dc-dc Boost Converter Topology  

E-Print Network (OSTI)

FC/Battery Power Management for Electric Vehicle Based Interleaved dc- dc Boost Converter Topology power systems in electric vehicle application, in order to decrease the FC current ripple. Therefore the performance of the FC system during transient and instantaneous peak power demands in electric vehicle

Paris-Sud XI, Université de

170

Electric Drive and Advanced Battery and Components Testbed (EDAB)  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

171

Electric Drive and Advanced Battery and Components Testbed (EDAB)  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

172

Electric Drive and Advanced Battery and Components Testbed (EDAB)  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

173

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

SciTech Connect

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

174

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have questions? Ask us here or on #LabChat. Ask Us Addthis What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet your questions to @ENERGY using #LabChat. Send questions via email to NewMedia@hq.doe.gov.

175

Background-aware Pedestrian/Vehicle Detection System for Driving Environments  

E-Print Network (OSTI)

Background-aware Pedestrian/Vehicle Detection System for Driving Environments Ji Hoon Joung, M. S to enhance the reliability of detection of objects in a driving envi- ronment (e.g. pedestrian and vehicle detections. Our approach considers that if we remove a certain region from an image taken from a vehicle

Ryoo, Michael S.

176

Building a Better Battery for Vehicles and the Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building a Better Battery for Vehicles and the Grid Building a Better Battery for Vehicles and the Grid Building a Better Battery for Vehicles and the Grid November 30, 2012 - 12:28pm Addthis Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

177

A CONTROL THEORETIC FORMULATION OF GREEN DRIVING STRATEGY1 BASED ON INTER-VEHICLE COMMUNICATIONS2  

E-Print Network (OSTI)

green driving strategies based on inter-vehicle communications.25 With Newell's car-following modelA CONTROL THEORETIC FORMULATION OF GREEN DRIVING STRATEGY1 BASED ON INTER-VEHICLE COMMUNICATIONS2 fuels, various green driving strategies that smooth traffic flow and reduce23 congestion can

Detwiler, Russell

178

Batteries, vehicle and infrastructure: interlocking elements of a new engineering system concept for personal mobility  

Science Journals Connector (OSTI)

The concept proposed aims at overcoming deterrents to Electric Vehicle (EV) adoption. The system features quick en-route exchange of batteries, requiring minimal equipment at the battery exchange station, which stands in favour of this EV system's adoption. The human interface of the equipment was devised to satisfy ergonomic requirements. Added convenience and speed of battery exchange can be achieved with more sophisticated equipment installed at exchange stations where depleted vehicle batteries are swiftly swapped for fully charged ones in only a couple of minutes. The EV proposed has standard plug-in capability for regular battery charge. It is based on a notion of ownership beyond common entrenched models, since the battery system is to be owned by the organisations that are to provide the en-route exchange service. The paper concludes listing the most important engineering aspects that need to be dealt with in the engineering design of the system concept.

Denis A. Coelho; Andre S. Camboa

2010-01-01T23:59:59.000Z

179

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

180

Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department, in partnership with industry and national laboratories, is helping to improve the efficiency and affordability of plug-in electric vehicles through battery research.

182

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

183

Evaluation of the Effects of Thermal Management on Battery Life in Plug-in Hybrid Electric Vehicles Tugce Yuksel  

E-Print Network (OSTI)

Evaluation of the Effects of Thermal Management on Battery Life in Plug-in Hybrid Electric Vehicles a simulation model that aims to evaluate the effect of thermal management on battery life. The model consists of two sub- models: a thermal model and a battery degradation model. The temperature rise in the battery

Michalek, Jeremy J.

184

Design and fabrication of evaporators for thermo-adsorptive batteries  

E-Print Network (OSTI)

Current heating and cooling within electric vehicles places a significant demand on the battery, greatly reducing their potential driving range. An Advanced Thermo- Adsorptive Battery (ATB) reduces this load by storing ...

Farnham, Taylor A

2014-01-01T23:59:59.000Z

185

Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis  

E-Print Network (OSTI)

coefficients in order to build a high-level, yet accurate state of charge prediction model. Moreover, this work utilizes automotive grade lithium-based batteries for realistic outcomes in the electrified vehicle realm. The fourth chapter describes an advanced...

Hausmann, Austin Joseph

2012-08-31T23:59:59.000Z

186

Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles  

Science Journals Connector (OSTI)

A transient numerical model of a lithium ion battery (LiB) pack with air cooled thermal management system is developed and validated for electric vehicle applications. In the battery model, the open circuit volta...

G. Y. Cho; J. W. Choi; J. H. Park; S. W. Cha

2014-08-01T23:59:59.000Z

187

Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

188

Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a limited amount of all-electric driving range that is drawn from a plug and uses a gasoline engine to provide additional range when the battery is depleted. The automakers have...

189

#LabChat Recap: Innovations Driving More Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations Driving More Efficient Vehicles Innovations Driving More Efficient Vehicles #LabChat Recap: Innovations Driving More Efficient Vehicles December 21, 2012 - 10:47am Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #LabChat Recap: Innovations Driving More Efficient Vehicles The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy. Three researchers answered questions about advanced combustion, lightweighting and hybridization. Here is an overview of some of the conversations. Storified by Energy Department · Fri, Dec 21 2012 08:19:22 We kicked off the #LabChat with introductions from all the researchers. Each researcher focuses on a different vehicle technology that is expected to make great strides in improving vehicle

190

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

1995-01-01T23:59:59.000Z

191

ARPA-E Program Takes an Innovative Approach to Electric Vehicle Batteries |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E Program Takes an Innovative Approach to Electric Vehicle ARPA-E Program Takes an Innovative Approach to Electric Vehicle Batteries ARPA-E Program Takes an Innovative Approach to Electric Vehicle Batteries September 4, 2013 - 1:29pm Addthis Dr. Ping Liu of ARPA-E discusses the RANGE program and its innovative approach to energy storage for electric vehicles. | Photo courtesy of ARPA-E. Dr. Ping Liu of ARPA-E discusses the RANGE program and its innovative approach to energy storage for electric vehicles. | Photo courtesy of ARPA-E. Mark D. Mitchell Communications Support Contractor to ARPA-E What are the key facts? ARPA-E's new RANGE Program looks at electric vehicle design from a holistic level. Through RANGE, ARPA-E is working to make EVs cost and performance competitive with internal combustion engines, while also allowing them to

192

Comparison of the environmental impact of five electric vehicle battery technologies using LCA  

Science Journals Connector (OSTI)

The environmental assessment of various electric vehicle battery technologies (lead-acid, nickel-cadmium, nickel-metal hydride, sodium nickel-chloride, and lithium-ion) was performed in the context of the European end-of-life vehicles directive (2000/53/EC). An environmental single-score based on a life-cycle approach, was allocated to each of the studied battery technologies through the combined use of the Simapro® software and of the life cycle impact assessment (LCIA) method Eco-indicator 99. The allocation of a single-score enables determining which battery technology is to be used preferably in electric vehicles and to indicate how to further improve the overall environmental friendliness of electric vehicles in the future.

Julien Matheys; Jean-Marc Timmermans; Joeri Van Mierlo; Sandrine Meyer; Peter Van den Bossche

2009-01-01T23:59:59.000Z

193

Design and Simulation of Passive Thermal Management System for Lithium-ion Battery Packs on an Unmanned Ground Vehicle.  

E-Print Network (OSTI)

?? The transient thermal response of a 15-cell, 48 volt, lithium-ion battery pack for an unmanned ground vehicle was simulated with ANSYS Fluent. Heat generation… (more)

Parsons, Kevin Kenneth

2012-01-01T23:59:59.000Z

194

An assessment of research and development leadership in advanced batteries for electric vehicles  

SciTech Connect

Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

Bruch, V.L.

1994-02-01T23:59:59.000Z

195

Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles  

E-Print Network (OSTI)

Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles A. Kolli1 , Student Magnet Synchronous Machine in Electric Vehicle application. First, a short survey of existing power control methods are compared with three innovative ones using EV-drive specifications in the normal

Paris-Sud XI, Université de

196

Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam  

Science Journals Connector (OSTI)

Abstract To enhance the heat transfer of phase change material in battery thermal management system for electric vehicle, a battery thermal management system by using paraffin/copper foam was designed and experimentally investigated in this paper. The thermal performances of the system such as temperature reduction and distribution are discussed in detail. The results showed that the local temperature difference in both a single cell and battery module were increased with the increase of discharge current, and obvious fluctuations of local temperature difference can be observed when the electric vehicle is in road operating state. When the battery is discharging at constant current, the maximum temperature and local temperature difference of the battery module with paraffin/copper foam was lower than 45 °C and 5 °C, respectively. After the battery thermal management system was assembled in electric vehicle, the maximum temperature and local temperature difference in road operating state was lower than 40 °C and 3 °C, respectively. The experimental results demonstrated that paraffin/copper foam coupled battery thermal management presented an excellent cooling performance.

Zhonghao Rao; Yutao Huo; Xinjian Liu; Guoqing Zhang

2014-01-01T23:59:59.000Z

197

Would You Consider Driving a Vehicle that Can Run on Biodiesel? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? September 16, 2010 - 7:30am Addthis On Monday, Shannon told you about biodiesel, a renewable fuel that can power a vehicle using less fuel and producing fewer greenhouse gas emissions. DOE has an Alternative Fuel Station Locator that can help drivers find the nearest fueling station to fill up their vehicles. Would you consider driving a vehicle that can run on biodiesel? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at

198

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

199

E-Print Network 3.0 - annual battery conference Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pennsylvania State University Collection: Engineering 30 BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE Summary: -powered EDVs...

200

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

202

New Probabilistic Approach to Estimate Vehicle Failure Trajectories in Curve Driving  

E-Print Network (OSTI)

on vehicle dynamic system. These works are undertaken on the topic of the detection and/or control vehicle and its environment. These interactions can generate discontinu- ities in the system parametersNew Probabilistic Approach to Estimate Vehicle Failure Trajectories in Curve Driving Abdourahmane

Paris-Sud XI, Université de

203

Development of High Energy Lithium Batteries for Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

204

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

205

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

206

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

chemistries. In summary, electric-drive interest groups,the present and future of electric-drive vehicles, including24 -vii- 1.0 Introduction Electric-drive continues to pique

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

207

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

208

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

209

Equivalent circuit modeling of hybrid electric vehicle drive train  

E-Print Network (OSTI)

The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool...

Routex, Jean-Yves

2012-06-07T23:59:59.000Z

210

Advanced Electric Drive Vehicle Education Program: CSU Ventures  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

211

Electric Drive Vehicle Level Control Development Under Various Thermal Conditions  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

212

Advanced Electric Drive Vehicle Education Program: CSU Ventures  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

213

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

214

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

215

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

216

Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

217

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Plan Partnership Plan March 2013 U.S. DRIVE Partnership Plan Table of Contents Foreword ....................................................................................................................................................... 2 Definition ...................................................................................................................................................... 3 Partners ......................................................................................................................................................... 3 U.S. DRIVE Vision ........................................................................................................................................... 3 U.S. DRIVE Mission ........................................................................................................................................ 4

218

Vehicle Technologies Office Merit Review 2014: Overview and Progress of Applied Battery Research (ABR) Activities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that addresses near term (less than 5 years) opportunities and barriers as battery materials move from R&D to cell construction and validation.

219

Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles  

Science Journals Connector (OSTI)

Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles ... The production of concentrated lithium brine includes inspissations of lithium containing brine by solar energy in the desert of Atacama. ... Concerning EI99 H/A, the production of the anode generates the highest impact, while CED, GWP, and ADP show the highest impact for the production of the cathode. ...

Dominic A. Notter; Marcel Gauch; Rolf Widmer; Patrick Wäger; Anna Stamp; Rainer Zah; Hans-Jörg Althaus

2010-08-09T23:59:59.000Z

220

Switching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b  

E-Print Network (OSTI)

reserved. 1. Introduction Electric Vehicles (EVs) are the next generation of cars in the world-determined threshold [3]. The energy extracted from the battery during full discharge is the integration of voltage-hours). However, an alternative definition, which we use throughout this paper, can be the total accumulated

Kraus, Sarit

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ESS 2012 Peer Review - Secondary Use of Vehicle Batteries in Power Systems - Omer Onar, ORNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

/2012 1 /2012 1 National Academy of Engineering - BMED December 2008 www.oe.energy.gov U.S. Department of Energy - 1000 Independence Ave., SW Washington, DC 20585 Secondary Use of Vehicle Batteries in Power Systems December 2008 Secondary Use of Vehicle Batteries in Power Systems Objective Life-cycle Funding Summary FY12 FY13 300k ?k Technical Scope The objective is this project is to carry out a collaborative effort among ORNL, original equipment manufacturers (OEM)s, and other partners to develop a cogent and informed view of the economic and technological value of secondary use of EV batteries in grid support. CES is one of the highlighted synergistic applications with a high value to cost relationship. Specific grid services related to CES (community energy storage) is

222

Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves  

E-Print Network (OSTI)

Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. The original definition...

Gu, Chaoyi

2013-07-31T23:59:59.000Z

223

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

224

Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power fundamentals: Calculating capacity  

E-Print Network (OSTI)

; Vehicle-to-grid power; Ancillary services; V2G 1. Introduction The electric power grid and light vehicle-drive vehicles (EDVs), that is, vehicles with an electric-drive motor powered by batteries, a fuel cellJournal of Power Sources xxx (2005) xxx­xxx Vehicle-to-grid power fundamentals: Calculating

Firestone, Jeremy

225

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles.  

E-Print Network (OSTI)

??This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated… (more)

Moshirvaziri, Mazhar

2012-01-01T23:59:59.000Z

226

PS3060: Perception and Action (L.3) Driving a vehicle: control of heading,  

E-Print Network (OSTI)

1 PS3060: Perception and Action (L.3) Driving a vehicle: control of heading, collision avoidance 11, 12 of Bruce, Green & Georgeson 2003) · the ecological approach to vision: from insects to humans · collision: judging time to impact, braking a vehicle · heading: how you know in which direction you

Zanker, Johannes M.

227

Advanced Electric Drive Vehicle Education Program: CSU Ventures  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

228

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

229

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tweeting from @Argonne. A co-author of several patents related to hybrid powertrain architecture and vehicle operation, Rask explores new technological developments in electric and...

230

Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...  

Energy Savers (EERE)

VEAccomplishmentsReport.pdf More Documents & Publications US DRIVE Electrochemical Energy Storage Technical Team Roadmap Progress of DOE Materials, Manufacturing Process R&D, and...

231

Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Back to the Future": Flex-Fuel Vehicle Awareness "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, these flex fuel vehicles help to decrease our reliance on imported oil and reduce carbon pollution. The "Big Three" U.S. auto makers (Ford, General Motors, and Chrysler) recently announced that half of their entire 2012 vehicle line will be FFVs-including the

232

Driving an electric vehicle. A sociological analysis on pioneer users  

Science Journals Connector (OSTI)

In most of the western countries, car is the prevalent means of transport for ... favourable to a reduction of carbon emissions), energy-efficient vehicles will probably develop in the future—car manufacturers ac...

Magali Pierre; Christophe Jemelin; Nicolas Louvet

2011-11-01T23:59:59.000Z

233

Role of Recycling in the Life Cycle of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

234

Comparison of AC drives for electric vehicles -- A report on experts` opinion survey  

SciTech Connect

It is recognized that wide applications of electric vehicles (EVs) will bring tremendous social, economical and ecological benefits. With the growing interests in electric vehicles, much effort is demanded for the development of efficient, reliable and economical AC drives` for EV propulsion purpose. Both induction motor (IM) drives and permanent magnet brushless DC motor (BDCM) drives have been applied to EVs. Switched reluctance motor (SRM) drives have been proposed as an alternative for EV propulsion. In order to assess the suitability of IM, BDCM and SRM drives for EV applications and to provide a technical support for the development and selection of future EV propulsion systems, the existing EV AC propulsion drives were compared, and a survey of experts` opinions was conducted. Comparison of the three AC drives was made on a relative and a quantitative basis using the survey questionnaires. According to the majority of the experts, induction motor drives are best suited for EV propulsion purpose, due to their low cost, high reliability, high speed, established converter and manufacturing technology, low torque ripple/noise and absence of position sensors. BDCM drives feature compactness, low weight and high efficiency and therefore provide an alternative for EV propulsion. The experts regard insulated gate bipolar transistors (IGBTs) as the most suited power semiconductor devices for AC drive converters at the present stage. 7 refs.

Chang, L. [New Brunswick Univ., Fredericton, New Brunswick (Canada). Dept. of Electrical Engineering] [New Brunswick Univ., Fredericton, New Brunswick (Canada). Dept. of Electrical Engineering

1994-08-01T23:59:59.000Z

235

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

VSATT provides the analytic support and subsystem characterizations that guide technology and system selections and assist U.S. DRIVE Technical Teams in determining performance goals and validation metrics.

236

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

237

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues  

E-Print Network (OSTI)

The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

Shidore, Neeraj Shripad

2012-07-16T23:59:59.000Z

238

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification  

E-Print Network (OSTI)

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle 15213, USA h i g h l i g h t s We analyze EV Li-ion NMC-G battery & pack designs and optimize thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

McGaughey, Alan

239

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that is examining new battery materials and addressing fundamental chemical and mechanical instability issues in batteries.

240

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah Ortzar and Felipe Ros  

E-Print Network (OSTI)

Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah converters for electric vehicles using multilevel inverters. They are being compared with inverters using. Introduction Power Electronics technologies contribute with important part in the development of electric

Catholic University of Chile (Universidad Católica de Chile)

242

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

Energy.gov (U.S. Department of Energy (DOE))

This document describes the vision, mission, scope, and governing policies of the U.S. DRIVE Partnership (“Partnership”). Dated December 2014.

243

Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

244

Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

245

Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

246

Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

247

Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program  

SciTech Connect

The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

Caille, Gary

2013-12-13T23:59:59.000Z

248

Making Li-air batteries rechargeable: material challenges  

SciTech Connect

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

249

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

250

Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)  

SciTech Connect

This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

2014-06-01T23:59:59.000Z

251

Vehicle Technologies Office Merit Review 2014: The Voltage Fade Project, A New Paradigm for Applied Battery Research  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new approach to the challenge of voltage fade in batteries for plug-in electric vehicles.

252

Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

253

Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

254

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results obtained with an 8/6 switched reluctance motor drive are presented and exploited in the optimization process. The performance of the optimized controller is evaluated and validated by simulation.

David Cajander; Hoang Le-Huy

2006-01-01T23:59:59.000Z

255

A procedure for derating a substation transformer in the presence of widespread electric vehicle battery charging  

SciTech Connect

This paper studies the effect of electric vehicle (EV) battery charging on a substation transformer that supplies commercial, residential, industrial, and EV load on a peak summer day. The analysis begins on modeling non-EV load with typical utility load shapes. EV load is modeled using the results from an analytical solution technique that predicts the net power and harmonic currents generated by a group of EV battery chargers. The authors evaluate the amount of transformer derating by maintaining constant daily transformer loss-of-life, with and without EV charging. This analysis shows that the time of day and the length of time during which the EVs begin charging are critical in determining the amount of transformer derating required. The results show that with proper control, EV charging may have very little effect on power system components at the substation level.

Staats, P.T.; Grady, W.M.; Arapostathis, A. [Univ. of Texas, Austin, TX (United States)] [Univ. of Texas, Austin, TX (United States); Thallam, R.S. [Salt River Project, Phoenix, AZ (United States)] [Salt River Project, Phoenix, AZ (United States)

1997-10-01T23:59:59.000Z

256

Reduction of Electric Vehicle Life-Cycle Impacts through Battery Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of Electric Vehicle Life-Cycle Impacts through Battery Recycling 29 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March 15, 2012 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Why think about recycling?  Material scarcity alleviated

257

Data Acquisition System for Electric Vehicle's Driving Motor Test Bench Based on VC++  

Science Journals Connector (OSTI)

In order to solve such problems as great labor intensity, high cost, low efficiency and accuracy during the performance experiment for driving motor system of electric vehicles, and realize data acquisition automatically and synchronously, a data acquisition system for driving motor test bench based on visual instruments is designed. This data acquisition system can be used to obtain the driving motor's parameters of currents and voltages at the same time. This system's hardware is based on electric vehicle's motor test bench in Beijing Institute of Technology, and combined with PXI2010 data acquisition card from ADLINK Company. Visual c++ software is adopted as development tool. In this paper, the design and realization of the hardware and software are presented. Experiment results show that this system improves the efficiency and quality of testing task with high utility. And experiment data can be obtained accurately.

Song Qiang; Lv Chenguang

2012-01-01T23:59:59.000Z

258

Advanced Battery Manufacturing Making Strides in Oregon | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What are the key facts? Through the Recovery Act, the Department has invested $2.4 billion dollars to help the U.S. compete in the electric drive vehicle and component manufacturing industry. The company EnerG2 is expected to produce enough material to support 60,000 electric drive vehicles per year for American families across the

259

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

260

Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

262

Advancing Next-Generation Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

263

Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

Yong Seok Choi; Dal Mo Kang

2014-01-01T23:59:59.000Z

264

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

SciTech Connect

The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

Center for Energy and Innovative Technologies; NEC Laboratories America Inc.; Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

2013-10-27T23:59:59.000Z

265

US-ABC Collaborates to Lower Cost of Electric Drive Batteries  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and development.

266

Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

François Martel; Sousso Kelouwani; Yves Dubé; Kodjo Agbossou

2015-01-01T23:59:59.000Z

267

Development of traction control for front-wheel drive in-wheel motor electric vehicles  

Science Journals Connector (OSTI)

This paper proposes a novel traction control for a front-wheel drive in-wheel motor electric vehicle. The presented vehicle has advantages on high fuel efficiency and cost effectiveness. In order to achieve specific control performance, this study employed a high speed microcontroller as the vehicle's electronic control unit. The anti-skid function based on a reliable traction control kernel is embedded in the system, which can guarantee the steering safety in a slippery and dangerous situation. This study verifies that the traction control based on maximum torque regulation cannot only constrain the slip to improve the longitudinal friction force and lateral friction force, but also provide some information on tyre-road conditions, which can ensure the performance and the effectiveness of two-dimensional motion control. The numerical simulation and demonstration video reveal its effectiveness and feasibility.

Jia-Sheng Hu; Ying-Ruei Huang; Feng-Rung Hu

2012-01-01T23:59:59.000Z

268

Google+ virtual field trip: "Vehicle Electrification" (11/18/13) | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Google+ virtual field trip: "Vehicle Electrification" (11/18/13) Google+ virtual field trip: "Vehicle Electrification" (11/18/13) Share Topic Energy Energy efficiency Vehicles Electric drive technology Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ---Reactors -Energy usage --Energy storage ---Batteries ----Lithium-ion batteries ----Lithium-air batteries --Electricity transmission --Smart Grid Environment -Biology --Computational biology --Environmental biology

269

High-frequency equivalent model of AC motor for electric vehicle drive system  

Science Journals Connector (OSTI)

The application of the motor drive system in electric and hybrid-electric vehicles can lead to a significant increase in electromagnetic compatibility. The AC motor as an important part of motor drive system must be considered. In this paper, a high frequency modelling method of the AC motor is presented. The modelling method consists of deriving the motor model parameters from mathematical resolution of the electrical circuit equations and observation of the variations of the motor impedance with the frequency. All parameters of the proposed models are obtained by differential mode (DM) and common mode (CM) impedance measurement in the frequency domain. The model is verified by impedance measurement of a synchronous motor. The method proposed can be used to obtain a high-frequency equivalent circuit of an AC motor and predict conducted electromagnetic interference in a motor drive system.

Yongming Yang; Hemeng Peng; Quandi Wang

2013-01-01T23:59:59.000Z

270

Lithium/iron sulfide batteries for electric-vehicle propulsion and other applications. Progress report, October 1979-March 1980  

SciTech Connect

The research and development activities of the program at Argonne National Laboratory (ANL) on lithium/iron sulfide batteries during the period October 1979-March 1980 is described. Although the major emphasis is currently on batteries for electric-vehicle propulsion, stationary energy-storage applications are also under investigation. The individual battery cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with two or more positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KCl electrolyte. The ANL program consists of cell chemistry studies, materials engineering, and component and auxiliary systems development. Important elements of this program are studies of the effects of design modifications on cell performance and post-test examinations of cells. During the reporting period, cell and battery development work has been aimed primarily at the first phase of the Mark II electric-vehicle battery program, which consists of an effort to develop high-reliability cells having boron nitride felt separators. Later in the Mark II program, the cells will be tested in 10-cell modules. Work on stationary energy-storage batteries during this period has consisted mainly of conceptual design studies. 23 figures, 9 tables.

None

1980-08-01T23:59:59.000Z

271

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

SciTech Connect

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

272

Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles  

Energy.gov (U.S. Department of Energy (DOE))

In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many cold/warm starts.

273

Hierarchically Structured Materials for Lithium Batteries. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

274

Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint  

SciTech Connect

The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

2014-11-01T23:59:59.000Z

275

Life Cycle Environmental Impact of High-Capacity Lithium Ion Battery with Silicon Nanowires Anode for Electric Vehicles  

Science Journals Connector (OSTI)

The grid electricity used in this analysis is average U.S. electricity mix with 89.56% of nonrenewable energies. ... The results demonstrate that the major opportunity for reducing the life cycle impacts of the battery pack is to use clean energy supply for battery operation, such as solar and wind electricity, which could reduce these environmental impacts significantly. ... All the above analyses including the life cycle inventory analysis, impact analysis, uncertainty, and sensitivity analysis together confirm that the LIB pack using SiNW anode from metal-assisted chemical etching could have environmental impacts comparable with those of conventional battery pack, while significantly increasing the battery energy storage and extending the driving range of EVs in the future. ...

Bingbing Li; Xianfeng Gao; Jianyang Li; Chris Yuan

2014-01-31T23:59:59.000Z

276

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results ... Keywords: optimization, switched reluctance motor, torque control

David Cajander; Hoang Le-Huy

2006-06-01T23:59:59.000Z

277

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results ... Keywords: Optimization, Switched reluctance motor, Torque control

David Cajander; Hoang Le-Huy

2006-06-01T23:59:59.000Z

278

Ferrite permanent magnet electrical machine and the application thereof within vehicle traction drives  

SciTech Connect

This patent describes, in combination, a land vehicle having axially aligned ground engaging tractive wheels, and a drivetrain carried by the vehicle for the propulsion thereof. The drivetrain comprises: (a) a substantially fixed DC power source including at least one chemical battery, (b) transmission means including selectable multiple gear ratios, an input shaft and a mechanical differential operative to transfer torque to the wheels, (c) a single-phase self-synchronous permanent magnet motor including, (i) an elongated central shaft, (ii) a generally u-shaped frame assembly adapted for mechanical grounding the shaft to a relatively stationary portion of the vehicle, the shaft being secured to the frame proximate each end thereof, (iii) a stator assembly secured to the shaft and characterized by a plurality of outwardly directed integrally formed salient poles and associated bifilar-wound induction coils, and (iv) a rotor assembly rotatably disposed on the shaft and substantially enclosing the stator assembly, the rotor assembly comprising a cylindrical shell defining an inner surface.

Gritter, D.J.; O'Neil, W.K.; Turner, D.

1987-03-17T23:59:59.000Z

279

2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV  

E-Print Network (OSTI)

defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables. This affects the material and manufacturing costs of the battery, electric motor, and controller. *Prepared performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV

Tolbert, Leon M.

280

Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh  

SciTech Connect

Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet)  

SciTech Connect

Repurposing Li-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications.

Not Available

2014-01-01T23:59:59.000Z

282

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle  

E-Print Network (OSTI)

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing and hybrid driving mode. During the pure electric driving mode, the vehicle is only powered by the battery

Mi, Chunting "Chris"

283

Microsoft PowerPoint - Progress in Battery Swapping Technology and Demonstration in China  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgressinBatterySwapping ProgressinBatterySwapping TechnologyandDemonstrationinChina Jianfeng Hua Email: huajf@tsinghua.edu.cn Tel: 010-62789570 2 Outline Background Battery Swapping Demonstration in China Conclusion 3 HowtorefuelforElectricalVehicle? AC Charging DC Charging Battery Swapping  Duetothelimiteddrivingrangeofelectricalvehicle, therefuelforalongdistancedrivingisanessential

284

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

285

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

286

Towards a unified x-by-wire solution with HUMS, HM & TTP: Lessons learned in implementing it to a drive-by-wire vehicle  

E-Print Network (OSTI)

for alternatively powered vehicles such as hybrids and electric vehicles require additional real-time control due it to a drive-by-wire vehicle John Melentis Elias Stipidis Periklis Charchalakis Falah Ali Vetronics Research capability for vehicles. TTP is a safety-critical network, designed specifically to meet requirements

Paris-Sud XI, Université de

287

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

288

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.  

E-Print Network (OSTI)

in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries

289

Modeling of passive thermal management for electric vehicle battery packs with PCM between cells  

Science Journals Connector (OSTI)

Abstract A passive thermal management system is examined for an electric vehicle battery pack. Phase change material (PCM) is infused in foam layers separating the lithium-ion (Li-ion) cells. Known operating conditions lead to selecting a suitable PCM for the application, n-octadecane wax. Suitable porous foam for infusion is decided on through experimentation. Finite volume based simulations are conducted to study the thermal behavior of a 4 cell sub-module. The effect of different discharge rates are compared for this sub-module, with and without the PCM's presence. The results show that the maximum temperature in the system is decreased up to 7.3 K by replacing dry foam with PCM-soaked “wet foam”. The addition of PCM also makes the temperature distribution more uniform across the cells. The modeling results give indication of the quantity of PCM required, show the influence of the transient melt behavior under dynamic operating conditions, and examine design constraints associated with this approach.

N. Javani; I. Dincer; G.F. Naterer; G.L. Rohrauer

2014-01-01T23:59:59.000Z

290

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles  

Science Journals Connector (OSTI)

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles ... We do not consider other life cycle stages of the vehicles (e.g., manufacturing and end-of-life) or energy supply infrastructure (e.g., facility construction, maintenance, decommissioning, and labor). ... Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids. ...

Leon Raykin; Heather L. MacLean; Matthew J. Roorda

2012-05-08T23:59:59.000Z

291

Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation  

Science Journals Connector (OSTI)

Abstract The future market diffusion of electric vehicles (EVs) is of great importance for transport related green house gas emissions and energy demand. But most studies on the market diffusion of \\{EVs\\} focus on average driving patters and neglect the great variations in daily driving of individuals present in real-world driving data. Yet these variations are important for \\{EVs\\} since range limitations and the electric driving share of plug-in hybrids strongly impact the economic evaluation and consumer acceptance of EVs. Additionally, studies often focus on private cars only and neglect that commercial buyers account for relevant market shares in vehicle sales. Here, we propose a detailed, user specific model for the market diffusion of \\{EVs\\} and evaluation of EV market diffusion policies based on real-world driving data. The data and model proposed include both private and commercial users in Germany and allow the calculation of realistic electric driving shares for all usage patterns. The proposed model explicitly includes user heterogeneity in driving behaviour, different user groups, psychological aspects and the effect of charge-at-home options. Our results show that the proposed model reproduces group specific market shares, gives confidence bands of market shares and simulates individual electric driving shares.

Patrick Plötz; Till Gnann; Martin Wietschel

2014-01-01T23:59:59.000Z

292

Simplified Heat Generation Model for Lithium ion battery used in Electric Vehicle  

Science Journals Connector (OSTI)

It is known that temperature variations inside a battery may greatly affect its performance, life, and reliability. In an effort to gain a better understanding of the heat generation in Lithium ion batteries, a simple heat generation models were constructed in order to predict the thermal behaviour of a battery pack. The Lithium ion battery presents in this paper is Lithium Iron Phosphate (LiFePO4). The results show that the model can be viewed as an acceptable approximation for the variation of the battery pack temperature at a continuous discharge current from data provided by the manufacturer and literature.

Nur Hazima Faezaa Ismail; Siti Fauziah Toha; Nor Aziah Mohd Azubir; Nizam Hanis Md Ishak; Mohd Khair Hassan; Babul Salam Ksm Ibrahim

2013-01-01T23:59:59.000Z

293

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network (OSTI)

vehicles powered by clean fuel technology. Participants werewith respect to clean vehicle technology. The post-clinic

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

294

Highway Vehicle Electric Drive in the United States: 2009 Status and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL/ESD/10-9 ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States: 2009 Status and Issues Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

295

Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of Research Engine and Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation Thomas Wallner, Henning Lohse-Busch, Henry Ng Argonne National Laboratory Robert Peters University of Alabama at Birmingham NHA Annual Hydrogen Conference 2007 San Antonio/Texas March 19 th - 22 nd 2007 DOE-Sponsors: Lee Slezak, Gurpreet Singh Government license The submitted manuscript was developed by the UChicago Argonne LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC-02-06CH11357 with DOE. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on

296

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

SciTech Connect

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

297

Analysis on cogging torque of driving in-wheel motor for electric vehicle  

Science Journals Connector (OSTI)

In order to reduce the torque fluctuation, vibration and acoustic noise of driving in-wheel motor for electric vehicle, this paper researches the generation mechanism and influence factors of cogging torque. Based on energy method and Fourier expansion, an analytical method is proposed to establish the expression of cogging torque, which can express its relation with design parameters. Based on the expression, the match of pole and slot, pole arc coefficient and permanent magnet eccentric distance are analysed and studied. Ansoft software is used to establish a time-varying movement electromagnetic field finite element model, which can compute the cogging torque about the different match of the pole and slot, different pole arc coefficient and different permanent magnet eccentric distance, in order to obtain the change regularity of the corresponding cogging torque. The conformity of the final simulation computation results with the theoretical analysis indicates this method can be used to provide a theoretical basis to make further optimal design of the new driving in-wheel motor and its control system, so as to reduce torque ripple of in-wheel motor.

Qiping Chen; Hongyu Shu; Limin Chen; Bo Chen; Jianhui Du

2012-01-01T23:59:59.000Z

298

Test and evaluation of the Philips Model PE 1701 and Lester Model 9865 electric vehicle battery chargers  

SciTech Connect

The Philips Model PE 1701 and the Lester Model 9865 electric vehicle battery chargers have been tested by the Tennessee Valley Authority. Charger input/output voltage, current, power characteristics, and input waveform distortion were measured and induced electromagnetic interference was evaluated while the chargers recharged a fully discharged lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital storage oscilloscope, and a spectrum analyzer. The Philips charger required 12.2 hours to recharge a 144-V battery; it had an energy efficiency of 86.0 percent and a specific power of 87.4 W/kg (39.7 W/lb). Input current distortion was between 6.9 and 23.0 percent, and electromagnetic interference was observed on AM radio. The Lester charger required 8.2 hours to recharge a 106-V battery; it had an energy efficiency of 83.0 percent and a specific power of 117.3 W/kg (53.3 W/lb). Current distortion was between 52.7 and 97.4 percent, and electromagnetic interference was observed on AM radio.

Reese, R.W.; Driggans, R.L.; Keller, A.S.

1984-04-01T23:59:59.000Z

299

Test and evaluation of the Chloride Spegel S1P108/30 electric vehicle battery charger  

SciTech Connect

The Chloride Spegel Model S1P108/30 electric vehicle battery charger was tested by the Tennessee Valley Authority (TVA) as an account of work sponsored by the Electric Power Research Institute (EPRI). Charger input/output voltage, current, and power characteristics and input waveform distortion were measured; and induced electromagnetic interference was evaluated as the charger recharged a lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital-storage oscilloscope, and a spectrum analyzer. THe Chloride charger required 8.5 hours to recharge a 216V tubular plate lead-acid battery from 100 percent depth of discharge (DOD). Energy efficiency was 83 percent, specific power was 37.4 W/kg (17.0 W/lb), input current distortion varied from 22.4 to 34.1 percent, and electromagnetic interference was observed on AM radio. Tests were conducted with the battery at initial DOD of 100, 75, 50, and 25 percent. Charge factor was 1.14 from 100-percent DOD, increasing to 1.39 from 25-percent DOD.

Driggans, R.L.; Keller, A.S.

1985-09-01T23:59:59.000Z

300

Design of battery pack and internal combustion engine thermal models for hybrid electric vehicles.  

E-Print Network (OSTI)

?? This thesis focuses on the design of computational models, capable of simulating the thermal behaviour of a battery pack and internal combustion engine equipping… (more)

Catacchio, Gabriele

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

SciTech Connect

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

302

AVTA: 2014 Smart Electric Drive Coupe All-Electric Vehicle Testing Reports  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

303

Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private,  

E-Print Network (OSTI)

Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private, have created an increased risk to pedestrians and has damaged walkways Director or the designee. · Private and vendor vehicles are restricted at all times. Vehicles requiring

de Lijser, Peter

304

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network (OSTI)

R. Firestone, “Optimal Technology Selection and Operation ofDOE - Energy Vehicle Technologies Program. Plug-in HybridUsing vehicle-to-grid technology for frequency regulation

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

305

Model Year 2010 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV AHNXT03.7W19 SUV 7 16 21 18 4 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT03.7W19 SUV 6 16 21 18 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 17 22 19 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 17 22 19 4 no ACURA RL 3.7 6 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXV03.7PB9 midsize car

306

Model Year 2011 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXT03.7M19 SUV 6 16 21 18 3 no ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT03.7M19 SUV 5 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 17 22 19 3 no ACURA RL 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXV03.7PB9 midsize car

307

Model Year 2012 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT03.7R19 SUV 5 16 21 18 3 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV CHNXT03.7R19 SUV 6 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 19 24 21 4 no ACURA TL 3.5 6 SemiAuto-6 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXV03.5EB3 midsize car 5

308

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

309

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

310

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network (OSTI)

hydrogen vehicles in public transportation, including taxis. This study exploring fuel cell powered passenger cars

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

311

A method for the prediction of future driving conditions and for the energy management optimisation of a hybrid electric vehicle  

Science Journals Connector (OSTI)

Vehicular communications are expected to enable the development of Intelligent Cooperative Systems for solving crucial problems related to mobility: road safety, traffic management etc. Information and Communication Technologies could also play an important role in order to optimise the energy management of conventional, hybrid and electrical vehicles and, thus, to reduce their environment impact. In particular, vehicular communications could be used to predict driving conditions with the objective to determine future load power demand. An adaptive energy management strategy for series Hybrid Electric Vehicles (HEVs) based on genetic algorithm optimised maps and the Simulation of Urban Mobility (SUMO) predictor is presented here.

Teresa Donateo; Damiano Pacella; Domenico Laforgia

2012-01-01T23:59:59.000Z

312

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

power required by the electric motor. The characteristics ofthe battery size and the electric motor and engine powers,electric range and electric motor power (mid-size passenger

Burke, Andrew

2009-01-01T23:59:59.000Z

313

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

314

Modelling and simulation of the electronic differential system for an electric vehicle with two-motor-wheel drive  

Science Journals Connector (OSTI)

In-wheel-motor drive electric vehicle (EV) is an innovative configuration, in which each wheel is driven individually by an electric motor. It is possible to use an electronic differential (ED) instead of the heavy mechanical differential because of the fast response time of the motor. A new control approach for ED of a two in-wheel-motor drive EV is proposed based on the fuzzy logic control. The fuzzy logic method employs to estimate the slip rate of each wheel considering the complex and non-linear of the system. Consequently, the ED system distributes torque and power to each motor according to requirements. The effectiveness of the control method is validated in the Matlab/Simulink environment. By simulation results, it is demonstrated that the present ED control system is effective on keeping the slip rate within the optimal range and ensuring the stability of the vehicle either on a straight or curvilinear line.

Yan-e Zhao; Jianwu Zhang

2009-01-01T23:59:59.000Z

315

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

316

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

SciTech Connect

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

317

Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving  

Energy.gov (U.S. Department of Energy (DOE))

The efficiencies of electric vehicles can vary significantly; however, compared with conventional vehicles, they are very efficient—converting about 60% of the energy from the grid to power at the...

318

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

319

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

320

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

322

Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

323

Advanced Electric Drive Vehicles ? A Comprehensive Education, Training, and Outreach Program  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

324

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

325

Advanced Electric Drive Vehicles ? A Comprehensive Education, Training, and Outreach Program  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

326

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

327

Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic Techniques for Battery Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Brookhaven National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

328

High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

329

KAir Battery  

Energy.gov (U.S. Department of Energy (DOE))

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

330

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

331

Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: A qualitative analysis of responses and evaluations  

Science Journals Connector (OSTI)

Plug-in electric vehicles can potentially emit substantially lower CO2 emissions than internal combustion engine vehicles, and so have the potential to reduce transport emissions without curtailing personal car use. Assessing the potential uptake of these new categories of vehicles requires an understanding of likely consumer responses. Previous in-depth explorations of appraisals and evaluations of electric vehicles have tended to focus on ‘early adopters’, who may not represent mainstream consumers. This paper reports a qualitative analysis of responses to electric cars, based on semi-structured interviews conducted with 40 UK non-commercial drivers (20 males, 20 females; age 24–70 years) at the end of a seven-day period of using a battery electric car (20 participants) or a plug-in hybrid car (20 participants). Six core categories of response were identified: (1) cost minimisation; (2) vehicle confidence; (3) vehicle adaptation demands; (4) environmental beliefs; (5) impression management; and, underpinning all other categories, (6) the perception of electric cars generally as ‘work in progress’ products. Results highlight potential barriers to the uptake of current-generation (2010) plug-in electric cars by mainstream consumers. These include the prioritization of personal mobility needs over environmental benefits, concerns over the social desirability of electric vehicle use, and the expectation that rapid technological and infrastructural developments will make current models obsolete. Implications for the potential uptake of future electric vehicles are discussed.

Ella Graham-Rowe; Benjamin Gardner; Charles Abraham; Stephen Skippon; Helga Dittmar; Rebecca Hutchins; Jenny Stannard

2012-01-01T23:59:59.000Z

332

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network (OSTI)

Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 129.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine electric drive Plug in Hybrid Electric Vehicle (P-HEVs), long range electric vehi cle (EV) and sm art grid

Levi, Anthony F. J.

333

Electromechanical battery research and development at the Lawrence Livermore National Laboratory  

SciTech Connect

The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

1993-06-01T23:59:59.000Z

334

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

Science Journals Connector (OSTI)

Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and \\{SUVs\\} in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives.

Scott B. Peterson; Jeremy J. Michalek

2013-01-01T23:59:59.000Z

335

Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the major accomplishments of the U.S. DRIVE Partnership over the course of 2013.

336

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles  

Energy.gov (U.S. Department of Energy (DOE))

Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi i-MiEV has the...

337

Qualitative thermal characterization and cooling of lithium batteries for electric vehicles  

Science Journals Connector (OSTI)

The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.

A Mariani; F D'Annibale; G Boccardi; G P Celata; C Menale; R Bubbico; F Vellucci

2014-01-01T23:59:59.000Z

338

Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results  

SciTech Connect

Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

Thomas, John F [ORNL

2014-01-01T23:59:59.000Z

339

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

340

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network (OSTI)

on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

342

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

343

Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by CD-Adapco at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

344

Vehicle Technologies Office Merit Review 2014: Stand-Alone Battery Thermal Management System  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by DENSO International America, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about stand-alone...

345

Vehicle Technologies Office Merit Review 2014: Development of Electrolytes for Lithium-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by University of Rhode Island at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development of...

346

Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Battery R&D Program  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of...

347

Vehicle Technologies Office Merit Review 2014: Electrode Architecture-Assembly of Battery Materials and Electrodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Hydro-Québec at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrode architecture-assembly...

348

Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

349

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

350

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

safety and cost. Third, Li-Ion battery designs are betterattributes of one type of Li-Ion battery cannot necessarilycapabilities. In any case, Li-Ion battery technologies hold

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

351

Can innovative business models overcome resistance to electric vehicles? Better Place and battery electric cars in Denmark  

Science Journals Connector (OSTI)

This paper explores the geographical and policy context for an emergent business model from Better Place to deliver battery electric car mobility in Denmark. It argues that the combination of radically different technologies and a highly complex multi-agency operating environment theoretically provide the conditions and requirements for such an emergent business model. While focused on battery electric cars, renewable energy generation and smart grids, the paper has wider applicability to an understanding of the interplay between place, innovation and sustainability which suggests that diverse solutions are likely to be the characteristic solution rather than ubiquity and standardization. The paper argues, however, that the innovative business model, the deployment of electric vehicles, and the use of renewable energy systems, in this case largely based on wind power, while mutually supportive and contributing to wider policy aims with respect to the reduction of carbon emissions, may still fail in the face of entrenched practices. At the theoretical level it is concluded that theorization of business models needs a broader perspective beyond the typical ‘value creation, value capture’ rubric to better understand the wider role such models have in meeting societal goals, and to understand the structural impediments to organizational and technical innovation.

Thomas Budde Christensen; Peter Wells; Liana Cipcigan

2012-01-01T23:59:59.000Z

352

US DRIVE Electrochemical Energy Storage Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

353

Switched reluctance motor drive circuit evaluation criteria for vehicle efficiency responsiveness.  

E-Print Network (OSTI)

??This thesis intends to examine the principles of operation for switched reluctance machines (SRM) and examine the power electronic drive circuits that control them, in… (more)

Cunningham, John David

2011-01-01T23:59:59.000Z

354

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

355

Reality Check: Cheaper Batteries are GOOD for America's Electric...  

Energy Savers (EERE)

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

356

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

357

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

358

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

359

Capturing the Usage of the German Car Fleet for a One Year Period to Evaluate the Suitability of Battery Electric Vehicles – A Model based Approach  

Science Journals Connector (OSTI)

Abstract The low driving range of battery electric vehicles (BEV) is often considered as relevant reason for the low BEV sales. In order to verify this assumption, the usage of conventional cars in Germany needs to be analyzed. These analyses may help to make more reliable and realistic statements to what extent German cars could be replaced by \\{BEVs\\} without restrictions for their users. Most travel surveys do only consider a single day or a short period of time in the analysis. Longer time periods should be taken into consideration when analyzing the travel data since the daily car usage is not identical every day. Since there are no representative and detailed car usage surveys over longer periods available a hybrid car usage model was developed to close that gap. This model is mainly based on three mobility surveys: the German Mobility Panel (MOP), the car mileage and fuel consumption survey, and the long distance travel survey INVERMO. We show that 13% of the modeled German private car fleet never exceeds 100 km per day during a full year and could be replaced by \\{BEVs\\} without any usage restrictions for their car owners. Another 16% of the modeled private car fleet is driven more than 100 km on 1-4 days during a full year and can be substituted with slight adjustments. These cars are often second cars of a household and used less intensively (6,600 km/year resp. 7600 km/year) than cars not suited for BEV substitution (14,800 km/year). Households that could replace their cars tend to have a lower disposable income. The crux of the matter, however, is that substitution of conventional cars is often not feasible since the mobility budget of BEV suited households tends to be too low or does not make economic sense due to the low annual mileage.

Christine Weiss; Bastian Chlond; Michael Heilig; Peter Vortisch

2014-01-01T23:59:59.000Z

360

Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)  

SciTech Connect

This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

Narumanchi, S.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

362

A Proposed Software Framework Aimed at Energy-Efficient Autonomous Driving of Electric Vehicles  

Science Journals Connector (OSTI)

This paper describes the development of an electric car prototype, aimed at autonomous, energy-efficient driving. Starting with an urban electric car, we describe the mechanical and mechatronics add...

José-Luis Torres Moreno…

2014-01-01T23:59:59.000Z

363

Batteries Breakout Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

364

NREL: Vehicles and Fuels Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles and Fuels Research News Vehicles and Fuels Research News The following news stories highlight vehicles and fuels research at NREL. December 23, 2013 NREL and Thought Leaders Gather at Electric Vehicle Battery Management Summit NREL researchers will gather with U.S. Department of Energy program directors and technology managers, and other thought leaders to exchange strategies for maximizing the performance, safety, and lifespan of electric-drive vehicle batteries. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile

365

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

366

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

367

Analysis of Battery Wear and V2G Benefits Using Real-world Drive Cycles and Ambient Data  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

368

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

370

Carbon Emission Targets for Driving Sustainable Mobility with US Light-Duty Vehicles  

Science Journals Connector (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) and many independent scientists warn that if global mean temperatures rise 1?5 °C from 1990 levels due to anthropogenic greenhouse gas emissions, risks of extreme climate events and widespread regional ecological and economic impacts will significantly increase (11, 12). ... PHEVs can displace on-road gasoline-powered vehicles and help to meet the defined targets if the average carbon intensity of the remaining conventional and PHEV vehicle mix is less than the LDV g/mile target. ... Keoleian, G. A.; Kar, K.; Manion, M.; Bulkley, J. W. Industrial Ecology of the Automobile: A Life Cycle Assessment; Society of Automotive Engineers: Warrendale, PA, 1997. ...

Hilary G. Grimes-Casey; Gregory A. Keoleian; Blair Willcox

2008-12-31T23:59:59.000Z

371

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

372

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

373

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

374

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2010 July 20, 2010 Eco-Driving: An Everyday Way to Reduce Our Oil Dependence Global warming and oil dependence are on the front burner for good, and for good reason. Thankfully, there is something we can all do today. July 15, 2010 VP 100: President Obama Hails Electric-Vehicle Battery Plant President Obama visits Compact Power in Holland, Michigan -- one of nine new battery plants under construction as a result of the $2.4 billion in Recovery Act advanced battery and electric vehicle awards the President announced last August. July 15, 2010 UQM will manufacture electric vehicle propulsion systems like this at its new facility in Longmont, Colo. | Photo courtesy of UQ VP 100: UQM revving up electric motor production How UQM Technologies, a Colorado-based manufacturer and developer of

375

Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services  

SciTech Connect

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

Neubauer, J. S.; Pesaran, A.

2013-01-01T23:59:59.000Z

376

Stop/Start: Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

when the vehicle is at rest. When pulling out, the electric startergenerator uses electricity from the battery to instantly start the gasoline engine---the sole source of...

377

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 10 ± 2% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 30 ± 12% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 23 ± 5% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

378

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

379

Electric Automobile Ni-MH Battery Investigation in Diverse Situations  

Science Journals Connector (OSTI)

Abstract The electronic differential system ensures the robust control of the vehicle comportment on the road. This paper focuses Ni-MH Battery controlled by Buck Boost DC-DC converter power supply for EV. Sliding mode control based on space vector modulation (SVM-SMC) is proposed to achieve the tow rear driving wheel control. The performances of the proposed strategy controller give a satisfactory simulation results. The proposed control law increases the utility EV autonomous under several speed variations. Moreover, the future industrial's vehicle must take into considerations the battery material choice into design steps. The battery material model choice is a crucial item, and thanks to an increasing emphasis on vehicle range and performance, the Ni-MH battery could become a viable candidate that's our proposal battery model in the present work, in this way the present paper show a novel strategy of electric automobile (EA) power electronics studies when the current battery take into account the impact of the sliding mode control based onspace vector machine technique in the several speed variations using the primitive battery SOC of 60% state.

Brahim Mebarki; Belkacem Draoui; Lakhdar Rahmani; Boumediène Allaoua

2013-01-01T23:59:59.000Z

380

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Technologies Office: National Laboratories | Department...  

Office of Environmental Management (EM)

Technology R&D Center at Argonne National Laboratory Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions...

382

An Update on Advanced Battery Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29 companies to build or retool 45 manufacturing facilities spread across 20 states to build advanced batteries, engines, drive trains and other key components for electric vehicles. More than 30 of these plants are already in operation, employing thousands of American workers, and our grants were matched dollar for

383

New Energy 101 Video: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles January 17, 2012 - 5:15am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Electric vehicles, sometimes called EVs, can give drivers like you a convenient way to get around, while saving you money on fuel, reducing emissions, and supporting the nation's energy security. Learn about the advantages of electric vehicles, see EVs in action, and find out how they work by checking out DOE's new Electric Vehicle 101 video. The basics principles behind this technology are this: the EV's battery transfers energy to an electric motor, the motor turns a drive train, which then turns the wheels. Up to 80% of the energy in the battery is

384

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

385

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

386

NREL: Vehicles and Fuels Research - NREL and Thought Leaders Gather at  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL and Thought Leaders Gather at Electric Vehicle Battery Management NREL and Thought Leaders Gather at Electric Vehicle Battery Management Summit Battery cyclers in NREL's Thermal Test Facility. The January 10 tour will feature NREL's Thermal Test Facility, which houses equipment including these battery cyclers used in AMPED research. Photo by Dennis Schroeder, NREL December 23, 2013 From January 8 to 10, 2014, National Renewable Energy Laboratory (NREL) researchers, U.S. Department of Energy (DOE) program directors and technology managers, and other thought leaders will gather in Denver, Colorado, to exchange strategies for maximizing the performance, safety, and lifespan of the next generation of electric-drive vehicle (EDV) batteries. This annual review of DOE Advanced Research Projects Agency-Energy's (ARPA-E's) Advanced Management and Protection of Energy

387

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network (OSTI)

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

388

PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application  

SciTech Connect

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

Staunton, R.H.

2004-10-11T23:59:59.000Z

389

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

SciTech Connect

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

390

Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles  

Science Journals Connector (OSTI)

Infrastructure and transport requirements, though often generic, were always included. ... vehicles (PHEV), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector; however, meaningful GHG emissions redns. ... storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and elec. ...

Guillaume Majeau-Bettez; Troy R. Hawkins; Anders Hammer Strømman

2011-04-20T23:59:59.000Z

391

Evaluation of Zr(Ni, Mn){sub 2} Laves phase alloys as negative active material for Ni-MH electric vehicle batteries  

SciTech Connect

Laves phase alloys of compositions (Zr, Ti)(Ni, Mn, M){sub x} where M = Cr, V, Co, Al, and 1.9 < x < 2.1 with hexagonal C14 or cubic C15 structure have been studied in order to select the most suitable AB{sub 2} alloys as an active material for nickel-metal hydride (Ni-MH) batteries. With the selected alloy, feasibility of MH negative electrodes using industrial technology and containing more than 97% of the alloy powder has been demonstrated. 22 Ah Ni-MH batteries for electric vehicle application have been assembled, and 600 cycles have been achieved at steady C/3 charge and discharge rates and 80% depth of discharge.

Knosp, B. [Alcatel Alsthom Recherche, Marcoussis (France); Jordy, C.; Blanchard, P. [SAFT Research Dept., Marcoussis (France); Berlureau, T. [SAFT Advanced and Industrial Battery Div., Bordeaux (France)

1998-05-01T23:59:59.000Z

392

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repurposing lithium-ion batteries at the end of useful life Repurposing lithium-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications. Increasing the number of plug-in electric drive vehicles (PEVs) is one major strategy for reduc- ing the nation's oil imports and greenhouse gas emissions. However, the high up-front cost and end-of-service disposal concerns of their lithium-ion (Li-ion) batteries could impede the proliferation of such vehicles. Re-using Li-ion batteries after their useful automotive life has been proposed as a way to remedy both matters. In response, the National Renewable Energy Laboratory (NREL) and its partners are conducting research to identify, assess, and verify profitable

393

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

394

Electric Vehicles  

SciTech Connect

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

395

ESS 2012 Peer Review - Next Generation Processes for Carbonate Electrolytes for Battery Applications - Kris Rangan, Materials Modification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Processes for Carbonate Electrolytes for Battery Applications Next Generation Processes for Carbonate Electrolytes for Battery Applications Dr. Kausik Mukhopadhyay & Dr. Krishnaswamy K. Rangan Materials Modification, Inc. 2809-K Merrilee Drive, Fairfax. VA 22031 ABSTRACT  Dimethyl Carbonate (DMC) is a promising electrolyte solvent for lithium battery applications due to its inherent safety and robustness. Despite the enormous promise of its industrial use, this chemical is currently entirely imported from China. The global battery market is about US$ 50 billion, of which approximately $ 5.5 billion is captured by the rechargeable batteries for use in electric vehicles, laptops, consumer electronics, rechargeable batteries etc.  Indigenous manufacture of DMC will enormously benefit not only the American lithium battery industry

396

Advanced Vehicles Group: Center for Transportation Technologies and Systems  

SciTech Connect

Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

Not Available

2008-08-01T23:59:59.000Z

397

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

398

Optimal energy management strategy for hybrid electric tracked vehicles  

Science Journals Connector (OSTI)

A Dynamic Programming (DP) technique is used to design an optimal power distribution energy management strategy between the diesel engine-generator and traction battery for a hybrid electric tracked vehicle. A mathematical model incorporating the vehicle's dynamics, driving schedule data from the field tests and powertrain is developed. A control strategy based on the passive power covering concept is initially designed. An optimal one is then designed through the DP approach and DP-based battery sizing is properly adopted. The performance of the new control strategy is tested through simulations. Significant fuel economy improvement is observed.

Yuan Zou; Feng-Chun Sun; Cheng-Ning Zhang; Jun-Qiu Li

2012-01-01T23:59:59.000Z

399

On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions  

Science Journals Connector (OSTI)

An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM10–2.5, PM2.5–0.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM10–2.5 while emission factors for \\{PAHs\\} and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of \\{PAHs\\} resulted in higher levels of \\{PAHs\\} in the particulate phase for LDV tunnel studies (Phuleria et al., 2006) and lower levels of \\{PAHs\\} in the particulate phase for freeway studies (Ning et al., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19–C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 1–2, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

Winnie Kam; James W. Liacos; James J. Schauer; Ralph J. Delfino; Constantinos Sioutas

2012-01-01T23:59:59.000Z

400

Study of Advantages of PM Drive Motor with Selectable Windings for HEVs  

SciTech Connect

The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

Otaduy, Pedro J [ORNL; Hsu, John S [ORNL; Adams, Donald J [ORNL

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

402

AVTA: Testing Results on the USPS Long-life Vehicle Conversions to All-Electric  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing conversions to all-electric vehicles of the U.S. Postal Service's standard Long-Life Vehicle used for postal deliveries. The conversions were done by different companies and can be compared to understand the benefits of various electric drive and battery technologies.

403

Vehicles Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is a group that funds electrochemical storage research and development. April 15, 2013 Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

404

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Energy.gov (U.S. Department of Energy (DOE))

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

405

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

406

Polymers For Advanced Lithium Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

407

Polymers For Advanced Lithium Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

408

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

409

Overview of the Batteries for Advanced Transportation Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

410

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

411

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

412

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

413

Abuse Testing of High Power Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

414

Overview and Progress of the Battery Testing, Analysis, and Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

415

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

416

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

417

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

418

Vehicles | Department of Energy  

Energy Savers (EERE)

Calculator is an interactive tool that helps you plan a route, pick a car and estimate a fuel costs. Subtopics Alternative Fuel Vehicles Batteries Hydrogen & Fuel Cells Bioenergy...

419

Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overcoming...

420

Vehicle Technologies Office Merit Review 2014: Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant enhancement of computational...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

422

Vehicle Technologies Office Merit Review 2014: Wiring Up Silicon Nanostructures for High Energy Lithium-Ion Battery Anodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Stanford University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wiring up silicon...

423

Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

424

EcoCar Drives Students to Innovate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate October 26, 2010 - 5:21pm Addthis EcoCar Drives Students to Innovate Shannon Brescher Shea Communications Manager, Clean Cities Program Last year, Americans used about 138 billion gallons of gasoline - mostly imported - for transportation, costing Americans about $300 billion. The Department of Energy, through the Recovery Act, is investing in more fuel-efficient battery and electric vehicles to reduce these costs and training a strong, talented workforce to develop these cleaner, more sustainable technologies. Recognizing the importance of engaging students in this endeavor, the Department of Energy and General Motors (GM) established the EcoCar Challenge - a three-year Advanced Vehicle

425

Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle  

E-Print Network (OSTI)

energy sources especially for vehicular applications. Different energy sources such as batteries, ultra-capacitors, fuel cells etc. are available. Usage of these varied energy sources alone or together in different combinations in automobiles requires...

Emani, Sriram S.

2011-08-08T23:59:59.000Z

426

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

427

EcoCAR 3 Pushes the Vehicle Efficiency Envelope | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

III Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

428

NREL: Vehicles and Fuels Research - Systems Analysis and Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

evaluates the impact of emerging technologies on efficiency, performance, cost, and battery life for a full range of vehicles-conventional vehicles, hybrid electric vehicles,...

429

Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...  

Energy Savers (EERE)

2008-2009 Fuels Technologies R&D Progress Report Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels...

430

Vehicle Technologies Office Merit Review 2014: Emissions Modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstocks Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results...

431

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award  

Energy.gov (U.S. Department of Energy (DOE))

EERE-supported graphene nanostructures increases capacity of batteries, improves performance and convenience of electric vehicles.

432

Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) Influence of Electric Vehicles Connected to the Grid  

E-Print Network (OSTI)

vehicles and its meaning of research An electric vehicle refers to the vehicle powered from batteries that are only powered from internal batteries, called Battery Electric Vehicle (BEV); those that can be powered the fuel cell as its power, called Fuel Cell Electric Vehicle (FCEV). BEV achieves the "zero-release" goal

Lavaei, Javad

433

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DEPARTMENT OF ENERGY HYBRID DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors

434

NREL: Energy Storage - NREL Battery Calorimeters Win R&D 100 Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Calorimeters Win R&D 100 Award Battery Calorimeters Win R&D 100 Award The NREL Energy Storage team Dirk Long, John Ireland, Matthew Keyser, Ahmad Pesaran, and Mark Mihalic of NREL's Energy Storage Team. Photo by Amy Glickson, NREL 27242 August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy Laboratory (NREL) and NETZSCH North America are among the winners of the 2013 R&D 100 Awards, known in the research and development community as "the Oscars of Innovation." The IBCs are the only calorimeters in the world capable of performing the precise thermal measurements needed to make safer, longer-lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is necessary for the successful operation of battery packs in electric-drive vehicles (EDVs). The IBCs are

435

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

436

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

437

Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about roll-to-roll...

438

Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

439

Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

440

Vehicle Technologies Office Merit Review 2014: Real-time Metrology for Li-ion Battery R&D and Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Applied Spectra, Inc at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

a PHEV has both an electric motor and a heat engine—usuallythe vehicle only by an electric motor using electricity fromand forth with the electric motor to maximize efficiency.

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

442

CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control  

E-Print Network (OSTI)

In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

443

Vehicle Technologies Office: Upcoming Events | Department of...  

Energy Savers (EERE)

Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education & Workforce Development Financial Opportunities News Events...

444

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

445

Rechargeable lithium battery energy storage systems for vehicular applications.  

E-Print Network (OSTI)

??Batteries are used on-board vehicles for broadly two applications – starting-lighting-ignition (SLI) and vehicle traction. This thesis examines the suitability of the rechargeable lithium battery… (more)

HURIA, TARUN

2012-01-01T23:59:59.000Z

446

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

447

New Energy Tax Credit for Electric Vehicles Purchased in 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Electric Vehicles Federal Tax Credits for Electric Vehicles Photo of cash and keys Federal Tax Credit Up To $7,500! Electric vehicles (EVs) purchased in 2009 may be eligible for a federal income tax credit of up to $7,500. The amount will vary based on the capacity of the battery used to power the vehicle. This credit was replaced with a similar credit for EVs purchased after 2009. The maximum amount of this credit is the same, but the the requirements and credit phase-out criteria are slightly different. For more information on the credit for EVs purchased after 2009, click here. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Tesla Motors Jan. 1, 2010, to Present TBD TBD TBD Tesla Roadster 2008-10 Tesla Roadster $7,500 -- -- -- Qualified Plug-In Electric Drive Motor Vehicles (IRC 30D)

448

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

449

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

SciTech Connect

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

450

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of...

451

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

452

Vehicle Technologies Office Merit Review 2014: GATE Center for Electric Drive Transportation at the University of Michigan- Dearborn  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Regents University of Michigan at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

453

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2011 31, 2011 This Month on Energy Savers: May 2011 A recap of May news on Energy Savers. May 27, 2011 Making Memorial Day Plans? Be Sure They're Efficient Useful tips from Energy Savers - from cooking, to entertaining, to driving - how to stay energy efficient this Memorial Day weekend. May 27, 2011 Clean Cities Reaches Across the Sea Clean Cities International collaborates with leaders from Kazakhstan and Sweden share best practices and accomplish mutual goals. May 26, 2011 NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Electric Vehicle Battery Testing: It's Hot Stuff! A look at the Large Volume Battery Calorimeter, a tool developed by

454

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

battery chemistry for future HEVs (including PHEVs) is currently Li-ion.its battery pack, but it used lead-acid rather than Li-ion

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

455

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

456

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

457

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

458

Vehicle Technologies Office Merit Review 2014: Development of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Electrolytes for Lithium-ion Batteries Vehicle Technologies Office Merit Review 2014: Development of Electrolytes for Lithium-ion Batteries Presentation given by...

459

2011 Nissan Leaf - VIN 0356 - Advanced Vehicle Testing - Baseline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

460

2013 Chevrolet Malibu ECO Advanced Vehicle Testing - Baseline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2013 Chevrolte Volt - VIN 3929 - Advanced Vehicle Testing - Baseline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

462

2011 Chevrolte Volt - VIN 0815 - Advanced Vehicle Testing - Baseline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

463

2011 Hyundai Sonata Hybrid - vin 4932 Advanced Vehicle Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

464

CSE - 6th US-China Battery Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Workshop 2011 Workshop 2010 Workshop U Mass 6th U.S.-China Electric Vehicle and Battery Technology Workshop August 22 - 24, 2012 Sponsored by the U.S. Department of Energy and the China Ministry of Science and Technology Hosted by University of Massachusetts Boston View the conference booklet with program (pdf) » Photo Gallery » Presentations Session 1: Plenary Update on US DOE Electric Drive Vehicle R&D and Deployment Activities (pdf), Dave Howell, US Department of Energy China-US Cooperation and Exchanges in Basic Research on Secondary Batteries and Energy Materials (pdf), WU Feng, Beijing Institute of Technology An Update on the US-China Bi-lateral EVI Agreement (pdf), Larry Johnson, Argonne National Lab The EV Everywhere Challenge: Setting the Technical Targets (pdf),

465

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

analyses of the manufacturing cost of the key unique components of electric vehicles: batteries, fuel cells,

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

466

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

467

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

468

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

469

Ford Escape Advanced Research Vehicle Report Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Vehicle Advanced Research Vehicle Report Notes 1 "Overall AC electrical energy consumption (AC Wh/mi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven during all trips in the reporting period. 2 "Overall DC electrical energy consumption (DC Wh/mi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance driven during all trips in the reporting period. DC Wh/mi may not be comparable to AC Wh/mi if AC electricity charged prior to the reporting period was discharged during driving within the reporting period, or if AC electricity charged during the reporting period was not discharged during driving within the reporting period.

470

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January...

471

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Allison Transmission (2) Azure Dynamics (1) BAE Systems (1) DesignLine Allison Transmission (2) Azure Dynamics (1) BAE Systems (1) DesignLine Corp. (1) Eaton (3) Hino (1) Parker Hannifin Corp. (1) Proterra (1) Smith Electric Vehicles (1) Fuel Type All Hybrid - Diesel Electric (8) Hybrid - Gasoline Electric (1) Application All Bus - School (4) Bus - Shuttle (2) Bus - Transit (6) Refuse hauler (2) Tractor (2) Trolley (2) Vocational truck (2) Go Compare Allison Transmission - Allison H 40 EP Allison Transmission - Allison H 50 EP Azure Dynamics - Balance Parallel Hybrid Drive BAE Systems - HybriDrive DesignLine Corp. - ECOSaver IV Eaton - Diesel Electric Hybrid Eaton - Hybrid Drive System Eaton - Hybrid Hydraulic Launch Assist (HLA) Hino - Hino Hybrid Drive Parker Hannifin Corp. - RunWise Proterra - ProDrive System Smith Electric Vehicles - 120 kw induction motor with Lithium-ion batteries

472

Electric Vehicle Smart Charging Infrastructure  

E-Print Network (OSTI)

Vehicles on the US Power Grid." The 25th World Battery,infrastructure assignment and power grid impacts assessmentfrom the vehicle to the power grid and overcome its current

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

473

Remedial neural network inverse control of a multi-phase fault-tolerant permanent-magnet motor drive for electric vehicles  

Science Journals Connector (OSTI)

A five-phase in-wheel fault-tolerant interior permanent-magnet (FT-IPM) motor incorporates the merits of high efficiency, high power density and high reliability, suitable for Electric Vehicles (EVs). A new remedial Neural Networks Inverse (NNI) control strategy is proposed to attain the post-fault operation. In this scheme, the NN is used to approximate the inverse model of the FT-IPM motor. With this NNI system and the original motor drive combined, a pseudo-linear compound system can be obtained. The simulation demonstrates that the proposed control strategy leads to excellent control performance at the faulty mode and offers good robustness against load disturbance.

Duo Zhang; Guohai Liu; Wenxiang Zhao

2013-01-01T23:59:59.000Z

474

Commercial viability of hybrid vehicles : best household use and cross national considerations.  

SciTech Connect

Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

Santini, D. J.; Vyas, A. D.

1999-07-16T23:59:59.000Z

475

Power Conditioning for Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

Farhangi, Babak

2014-07-25T23:59:59.000Z

476

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

477

NREL: Continuum Magazine - Fuel Cell Electric Vehicles: Paving the Way to  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Issue 5 Print Version Share this resource Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Research focuses on boosting reliability, reducing costs, and designing infrastructure of the future. A photo of a white Toyota fuel cell hybrid vehicle driving on a road. The side of the vehicle includes a blue NREL logo and a decal that reads, "Powered by 100% Renewable Sources". Enlarge image Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a nickel-metal-hydride battery, and a power-control unit, the Toyota fuel cell electric vehicle has zero tailpipe emissions. Photo by Dennis Schroeder, NREL As nations around the world pursue sustainable transportation solutions,

478

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

479

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

480

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive vehicle battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

482

Driving Green com | Open Energy Information  

Open Energy Info (EERE)

Driving Green com Jump to: navigation, search Name: Driving Green.com Place: Melbourne, Florida Zip: 32904 Sector: Vehicles Product: Driving green.com is a website that allows...

483

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

484

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

485

High Voltage Electrolytes for Li-ion Batteries | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

486

Abuse Testing of High Power Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abuse Testing of High Power Batteries Abuse Testing of High Power Batteries Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25,...

487

Overview of Battery R&D Activities | Department of Energy  

Energy Savers (EERE)

of Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

488

Overview of Battery R&D Activities | Department of Energy  

Energy Savers (EERE)

of Battery R&D Activities Overview of Battery R&D Activities 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

489

Vehicle Technologies Office: Partnerships | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnerships Vehicle Technologies Office: Partnerships Partnerships are at the heart of the Vehicle Technologies Office's (VTO) work, driving innovation, technology development,...

490

EV Project Chevrolet Volt Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 1 A trip is defined as all the driving done between consecutive...

491

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vs. Utility Meter Utilize communication strategies to alter EVSE operation - Demand Response demonstration Approach EVSE Utility HARDWARE DEPLOYMENT 7,871 Level 2...

492

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

493

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure and Battery Tax Exemptions to someone by E-mail Infrastructure and Battery Tax Exemptions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on AddThis.com...

494

EV Everywhere Battery Workshop: Preliminary Target-Setting Framework  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled Analysis Assumptions:...

495

> 070131-073Vehicle  

E-Print Network (OSTI)

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

496

Vehicles Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the next generation of hybrid and electric vehicles. February 10, 2014 Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award EERE-supported...

497

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen, Natural Gas * Ethanol, Butanol * Diesel (Bio, Fisher-Tropsch) APRF Test Process:...

498

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Hybrid Electric (HEV) * Plug-in HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen * Ethanol, Butanol * Diesel (Bio,...

499

Vehicle Technologies Office Merit Review 2014: Manufacturability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Batteries Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

500

Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

Shahabeddin K. Mohammadian; Yuwen Zhang

2015-01-01T23:59:59.000Z