National Library of Energy BETA

Sample records for drive technology hybrid

  1. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Office of Environmental Management (EM)

    Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost...

  2. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01

    Policy Brief No. 4 September 2010 Does Doctrine DriveTechnology or Does Technology Drive Doctrine? Dennis Blaskoone way. However, technology does not determine strat- egy.

  3. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  4. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The...

  5. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  6. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce...

  7. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  8. Quantum technologies with hybrid systems

    E-Print Network [OSTI]

    G. Kurizki; P. Bertet; Y. Kubo; K. Mølmer; D. Petrosyan; P. Rabl; J. Schmiedmayer

    2015-04-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for information processing, secure communication and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multi-tasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and the challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  9. Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments Report Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments Report The U.S. DRIVE 2014...

  10. Initial Low Recycling Improving Confinement and Current Drive in Advanced Tokamak (AT) and Hybrid Scenarios

    E-Print Network [OSTI]

    Initial Low Recycling Improving Confinement and Current Drive in Advanced Tokamak (AT) and Hybrid Scenarios

  11. Defining Real World Drive Cycles to Support APRF Technology Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real World Drive Cycles to Support APRF Technology Evaluations Defining Real World Drive Cycles to Support APRF Technology Evaluations 2012 DOE Hydrogen and Fuel Cells Program and...

  12. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  13. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  14. Scaling of lower hybrid current drive with temperature

    SciTech Connect (OSTI)

    Harvey, R.W. ); McCoy, M.G. ); Ram, A.K.; Bers, A. ); Fuchs, V. )

    1992-06-01

    The 3-D Fokker-Planck/quasilinear code (CQL3D) is used to study the temperature scaling of lower hybrid current drive (LHCD) in the JET and JT-60 experiments. An offset-linear increase of current drive efficiency is obtained as a function of volume average temperature {l angle}T{sub e}{r angle} up to {approximately} 2.5, and reduced rate of efficiency increase is found at higher temperatures. The LHCD results indicate some fast wave/LH current drive synergy in the JET LH/FW experiments; however, code results discussed here show that synergy is not due to TTMP damping of the fast wave.

  15. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  16. Driving Pattern Recognition for Control of Hybrid Electric Trucks

    E-Print Network [OSTI]

    Peng, Huei

    strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified is selected adaptively. This "multi-mode" control scheme was tested on several driving cycles and was found was initiated, aiming to duplicate the success of the hybrid powertrain on passenger cars to light and heavy

  17. Physical model of a hybrid electric drive train

    E-Print Network [OSTI]

    Young, Brady W. (Brady William)

    2006-01-01

    A motor and flywheel system was designed to simulate the dynamics of the electric drive train and inertial mass of a hybrid electric vehicle. The model will serve as a test bed for students in 2.672 to study the energy ...

  18. Technology Strategy Board Driving Innovation

    E-Print Network [OSTI]

    Anderson, Jim

    Transfer Partnerships is a UK-wide programme, funded by the Technology Strategy Board along with 12 other and innovation that will provide the inspiration and energy for UK businesses to emerge from these uncertain and profits from innovative ideas and in the longer term provides UK business with leadership and energy

  19. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Braking System for Non-Drive Axles Hybrid Braking System for Non-Drive Axles A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using...

  20. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

  1. Evaluation of the 2007 Toyota Camry Hybrid Synergy Drive System

    SciTech Connect (OSTI)

    Burress, T A; Coomer, C L; Campbell, S L; Seiber, L E; Marlino, L D; Staunton, R H; Cunningham, J P

    2008-04-15

    The U.S. Department of Energy (DOE) and American automotive manufacturers General Motors, Ford, and DaimlerChrysler began a five-year, cost-shared partnership in 1993. Currently, hybrid electric vehicle (HEV) research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. Under the FCVT program, support is provided through a three-phase approach [1] which is intended to: • Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry’s recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; • Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and • Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed in this area will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles.

  2. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2EM'sReportOctober 2015Drive a Hybrid

  3. Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System

    SciTech Connect (OSTI)

    Burress, Timothy A; Campbell, Steven L; Coomer, Chester; Ayers, Curtis William; Wereszczak, Andrew A; Cunningham, Joseph Philip; Marlino, Laura D; Seiber, Larry Eugene; Lin, Hua-Tay

    2011-03-01

    Subsystems of the 2010 Toyota Prius hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies Program (VTP) not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

  4. HAVE you ever noticed a friend or neighbour driving a new hybrid

    E-Print Network [OSTI]

    Rand, David G.

    HAVE you ever noticed a friend or neighbour driving a new hybrid car and felt pressure to trade? The power of reputation is already being harnessed to protect the environment. Hybrid cars

  5. Penetration of lower hybrid current drive waves in tokamaks

    SciTech Connect (OSTI)

    Horton, W. [The University of Texas at Austin, Austin, Texas 78712 (United States) [The University of Texas at Austin, Austin, Texas 78712 (United States); Aix-Marseille University, 58, Bd Charles Livon, 13284 Marseille (France); Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X. [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)] [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)

    2013-11-15

    Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at m = 0 azimuthal mode numbers.

  6. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  7. Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive

    E-Print Network [OSTI]

    Van de Ven, James D.

    Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive Train with Independent Wheel of a passenger car. The developed hydro-mechanical drive train enables independent control of the torque at each for the Center for Compact and Efficient Fluid Power at the University of Minnesota. The hydro-mechanical hybrid

  8. Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments...

    Office of Environmental Management (EM)

    Energy Storage R&D Annual Progress Report US DRIVE Electrochemical Energy Storage Technical Team Roadmap Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report...

  9. Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...

    Broader source: Energy.gov (indexed) [DOE]

    Report summarizes key technical accomplishments in the development of advanced automotive and related energy infrastructure technologies achieved in 2013 by the U.S. DRIVE...

  10. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  11. Theoretical study of ion toroidal rotation in the presence of lower hybrid current drive in a tokamak

    E-Print Network [OSTI]

    Lee, Jungpyo

    2013-01-01

    In this thesis, the effect of the lower hybrid current drive on ion toroidal rotation in a tokamak is investigated theoretically. Lower hybrid frequency waves are utilized to drive non-inductive current for steady state ...

  12. Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle Data

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle's highly accurate proprietary vehicle model over large numbers of real- world drive cycles, and compared of Michigan Transportation Research Institute (UMTRI) for providing drive cycle data. of this work focuses

  13. Socially Optimal Electric Driving Range of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria [ORNL; Yin, Yafeng [University of Florida; Lin, Zhenhong [ORNL

    2015-01-01

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of $3.19 per day when exclusively charging at home, compared to $3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  14. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electricmore »driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  15. Hybrid-drive implosion system for ICF targets

    DOE Patents [OSTI]

    Mark, James W. (Danville, CA)

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  16. Hybrid-drive implosion system for ICF targets

    DOE Patents [OSTI]

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  17. Lower hybrid current drive at high density in Alcator C-Mod

    E-Print Network [OSTI]

    Harvey, R.W.

    Experimental observations of lower hybrid current drive (LHCD) at high density on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops ...

  18. Coupling of ?-channeling to |k?| upshift in lower hybrid current drive

    SciTech Connect (OSTI)

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2014-08-26

    Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic ? particles born from fusion reactions in eventual tokamak reactors.

  19. Driving Sensing Technology in Oil & Gas | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newest APS Fellow Driving Groundbreaking Sensing Technology in Oil & Gas Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to...

  20. A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion

    E-Print Network [OSTI]

    Fan, Zhengfeng; Dai, Zhensheng; Cai, Hong-bo; Zhu, Shao-ping; Zhang, W Y; He, X T

    2013-01-01

    A new hybrid indirect-direct-drive ignition scheme is proposed for inertial confinement fusion: a cryogenic capsule encased in a hohlraum is first compressed symmetrically by indirect-drive x-rays, and then accelerated and ignited by both direct-drive lasers and x-rays. A steady high-density plateau newly formed between the radiation and electron ablation fronts suppresses the rarefaction at the radiation ablation front and greatly enhances the drive pressure. Meanwhile, multiple shock reflections at the fuel/hot-spot interface are prevented during capsule deceleration. Thus rapid ignition and burn are realized. In comparison with the conventional indirect drive, the hybrid drive implodes the capsule with a higher velocity ($\\sim4.3\\times10^7$ cm/s) and a much lower convergence ratio ($\\sim$25), and the growth of hydrodynamic instabilities is significantly reduced, especially at the fuel/hot-spot interface.

  1. FY2014 Electric Drive Technologies Annual Progress Report

    SciTech Connect (OSTI)

    2014-12-01

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  2. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  3. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  4. Anti-cancer Technology Summary 121 Research Drive, Suite 501

    E-Print Network [OSTI]

    Peak, Derek

    Anti-cancer Technology Summary 121 Research Drive, Suite 501 Saskatoon, SK, S7N 1K2 Tel: (306) 966 cancers are ranked 2ed , 3ed and 11th of the most diagnosed cancers (National Cancer Institute, USA cancer cells but also healthy ones. A great opportunity exists for targeted therapies for the use solely

  5. GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, Energy, and

    E-Print Network [OSTI]

    Zadok, Erez

    GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, Energy by the Graduate School Charles Taber Interim Dean of the Graduate School i #12;Abstract of the Dissertation GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, Energy, and Endurance by Zhichao

  6. On the Trade-Offs among Performance, Energy, and Endurance in a Versatile Hybrid Drive

    E-Print Network [OSTI]

    Zadok, Erez

    On the Trade-Offs among Performance, Energy, and Endurance in a Versatile Hybrid Drive ZHICHAO LI ZADOK, Stony Brook University There are trade-offs among performance, energy, and device endurance, efficient energy consumption, or im- proving endurance--leaving quantitative study on the trade-offs being

  7. Hybrid & electric vehicle technology and its market feasibility

    E-Print Network [OSTI]

    Jeon, Sang Yeob

    2010-01-01

    In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

  8. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  9. Hybrid Silicon Photonic Integrated Circuit Technology

    E-Print Network [OSTI]

    2013-01-01

    and J. E. Bowers, “Hybrid silicon evanescent devices,”and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescentColdren, and J. E. Bowers, “Hybrid III/V sili- con photonic

  10. Indirect-direct hybrid-drive work-dominated hotspot ignition for inertial confinement fusion

    E-Print Network [OSTI]

    He, X T; Li, J W; Liu, J; Lan, K; Wu, J F; Wang, L F; Ye, W H

    2015-01-01

    An indirect-direct hybrid-drive work-dominated hotspot ignition scheme for inertial confinement fusion is proposed: a layered fuel capsule inside a spherical hohlraum with an octahedral symmetry is compressed first by indirect-drive soft-x rays (radiation) and then by direct-drive lasers in last pulse duration. In this scheme, an enhanced shock and a follow-up compression wave for ignition with pressure far greater than the radiation ablation pressure are driven by the direct-drive lasers, and provide large pdV work to the hotspot to perform the work-dominated ignition. The numerical simulations show that the enhanced shock stops the reflections of indirect-drive shock at the main fuel-hotspot interface, and therefore significantly suppresses the hydrodynamic instabilities and asymmetry. Based on the indirect-drive implosion dynamics the hotspot is further compressed and heated by the enhanced shock and follow-up compression wave, resulting in the work-dominated hotspot ignition and burn with a maximal implos...

  11. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  12. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  13. Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption for Current Drive Without Cyclotron Resonances

    E-Print Network [OSTI]

    Physics New Orleans, LA October 27-31, 2014 R.I. Pinsker/APS-DPP 2014/October 2014 100 50 0 -50 -100 Z1 Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption for Current Drive The generic tokamak R.I. Pinsker/APS-DPP 2014/October 2014 #12;3 Motivation ­ wave current drive

  14. Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)

    SciTech Connect (OSTI)

    Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

    2007-05-01

    Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

  15. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  16. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  17. Washington, D.C. and Indiana: Allison Hybrid Technology Achieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology has prospered in the neighboring areas of Philadelphia (449 city buses), Baltimore (308), and Boston (25) as part of the 5,600 hybrid systems delivered worldwide. The...

  18. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation vss063bazzi2011o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  19. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  20. Evaluation of the 2008 Lexus LS 600H Hybrid Synergy Drive System

    SciTech Connect (OSTI)

    Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Wereszczak, A.A.; Cunningham, J.P.; Marlino, L.D.; Seiber, L.E.; Lin, H.T.

    2009-01-15

    Subsystems of the 2008 Lexus 600h hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies program not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

  1. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel Efficiency & Emissions » Vehicle

  2. Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised

    SciTech Connect (OSTI)

    Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

    2007-07-31

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  3. Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations

    Broader source: Energy.gov [DOE]

    Results of simulations of LDD hybrid vehicle under hybrid drive cycle conditions in PSAT show the potential impact of urea-SCR NOx controls on HEVs and PHEVs powered by lean-burn engines.

  4. Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using PSAT System Simulations Results of simulations of LDD hybrid vehicle under hybrid drive cycle conditions in PSAT show the potential impact of urea-SCR NOx controls on HEVs...

  5. Vehicle Technologies Office: US DRIVE Materials Technical Team...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle efficiency regardless of the vehicle size or propulsion system employed. This roadmap lays out the future direction for this research. U.S. DRIVE Materials Technical Team...

  6. Expected Technological Innovation to Drive Global Market for...

    Open Energy Info (EERE)

    systems in terms of various end use segments, which include industrial, commercial and residential markets for microturbines. The commercial end use segment is expected to drive...

  7. Vehicle Technologies Office- AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  8. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    McGaughey, Alan

    T S Electrified vehicle life cycle emissions and cost depend on driving conditions. GHGs can triple in NYC cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20 vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple

  9. Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan

    2004-01-01

    USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

  10. Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan C.

    2004-01-01

    USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

  11. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect (OSTI)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  12. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving

    E-Print Network [OSTI]

    Peng, Huei

    initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks demonstrated by several prototype hybrid passenger cars, produced by the PNGV program, will be an unrealistic Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

  13. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  14. Flexible Hybrid Friction Stir Joining Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology. FSW eliminates the need for expensive and labor intensive pre- and post- weld heat treatments, and reduces mate- rial use. Applications in Our Nation's Industry...

  15. Vehicle Technologies Office Merit Review 2015: E-drive Vehicle Sales Analyses

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about E-drive Vehicle...

  16. Vehicle Technologies Office Merit Review 2014: E-drive Vehicle Sales Analyses

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the E-drive...

  17. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

  18. Vehicle Technologies Office Merit Review 2015: Traction Drive Systems with Integrated Wireless Charging

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about traction drive...

  19. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  20. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  1. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  2. MHK Technologies/Direct Drive Power Generation Buoy | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoosSloughAquantisInformation Drive Power

  3. Vehicle Technologies Office Merit Review 2015: Electric Drive...

    Energy Savers [EERE]

    Inverter R&D Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  4. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    The parallel hybrid passenger car (VW Golf) combined an EDLCpassenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbon

  5. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving

    E-Print Network [OSTI]

    Peng, Huei

    initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil. The 21st Century Truck program in the US, spearheaded by two government agencies, Department of Energy

  6. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    in series hybrids using gasoline and diesel engines anddiesel powered buses and consistently better fuel economy than hybrid

  7. Vehicle Technologies Office Merit Review 2015: Integrated Boosting and Hybridization for Extreme Fuel Economy and Downsizing

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated boosting and hybridization...

  8. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  9. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-Ultracapacitors in Hybrid- electric Vehicle Applications.

  10. Survey of technology for hybrid vehicle auxiliary power units. Interim report, April 1994-June 1995

    SciTech Connect (OSTI)

    Widener, S.K.

    1995-10-01

    The state-of-the-art of heat engines for use as auxiliary power units in hybrid vehicles is surveyed. The study considers reciprocating or rotary heat engines, excluding gas turbines and fuel cells. The relative merits of various engine-generator concepts are compared. The concepts are ranked according to criteria tailored for a series-type hybrid drive. The two top APU concepts were the free-piston engine/linear generator (FPELG) and the Wankel rotary` engine. The FPELG is highly ranked primarily because of thermal efficiency cost, producibility. reliability, and transient response advantages; it is a high risk concept because of unproven technology. The Wankel engine is proven. with high power density, low cost and low noise. Four additional competitive concepts include two-stroke spark-ignition engine. two-stroke gas generator with turboalternator, free-piston engine gas generator with turboalternator, and homogeneous charge compression ignition engine. This study recommends additional work, including cycle simulation development and preliminary design to better quantify thermal efficiency and power density. Auxiliary concepts were also considered, including two which warrant further study: electrically actuated valves, and lean turndown of a normally stoichiometric engine. These concepts should be evaluated by retrofitting to existing engines.

  11. SI-BASED UNRELEASED HYBRID MEMS-CMOS RESONATORS IN 32NM TECHNOLOGY

    E-Print Network [OSTI]

    Reif, Rafael

    SI-BASED UNRELEASED HYBRID MEMS-CMOS RESONATORS IN 32NM TECHNOLOGY Radhika Marathe*, Wentao Wang*, and Dana Weinstein HybridMEMS Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *authors before the presence of parasitics. This enables RF-MEMS resonators at orders of magnitude higher

  12. Method and system for determining the torque required to launch a vehicle having a hybrid drive-train

    DOE Patents [OSTI]

    Hughes, Douglas A.

    2006-04-04

    A method and system are provided for determining the torque required to launch a vehicle having a hybrid drive-train that includes at least two independently operable prime movers. The method includes the steps of determining the value of at least one control parameter indicative of a vehicle operating condition, determining the torque required to launch the vehicle from the at least one determined control parameter, comparing the torque available from the prime movers to the torque required to launch the vehicle, and controlling operation of the prime movers to launch the vehicle in response to the comparing step. The system of the present invention includes a control unit configured to perform the steps of the method outlined above.

  13. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  14. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    ex> energy storage 2 drive cycle vehicle cycle, the vehicle had blended operation (engine and electric drive

  15. Nov 5-9, 2006 IAEA meeting, Vienna, Austria Target and Chamber Technologies for Direct-Drive

    E-Print Network [OSTI]

    Raffray, A. René

    Nov 5-9, 2006 IAEA meeting, Vienna, Austria 1 Target and Chamber Technologies for Direct-Drive cycle) Dry wall chamber (armor must accommodate ion+photon threat and provide required lifetime) · Multi-institution Activities led by NRL with the Goal of Developing a New Energy Source: IFE Based on Lasers, Direct Drive

  16. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil Hussein Khalil DirectorVehicles andHybrid

  17. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  18. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  19. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

  20. Vehicle Technologies Office Merit Review 2015: Overview of the TO Electric Drive Technologies Program

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of the TO...

  1. Vehicle Technologies Office Merit Review 2014: Hoosier Heavy Hybrid Center of Excellence at Purdue University

    Broader source: Energy.gov [DOE]

    Presentation given by Purdue University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Hoosier Heavy Hybrid Center...

  2. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  3. Technology Review: Tiny Pumps Drive Liquid Circuits http://www.technologyreview.com/articles/rnb_031204.asp 1 of 2 3/27/2004 9:07 PM

    E-Print Network [OSTI]

    Rogers, John A.

    Computing Energy Nanotech Security Software Telecom / Internet Transportation Expanded List TOPICTechnology Review: Tiny Pumps Drive Liquid Circuits http > BIOTECHNOLOGY AND HEALTH CARE > DEVICES Tiny Pumps Drive Liquid Circuits Technology Research News March 12, 2004

  4. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    AF. Comparisons of Lithium-ion Batteries and UltracapacitorsResults with Lithium-ion Batteries. EET- 2008 European Ele-Comparisons with Lithium- ion Batteries for Hybrid vehicle

  5. Vehicle Technologies Office- AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The following set of reports describes performance data collected from hybrid-electric heavy-duty tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  6. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    operation of the engine and electric drive system. In thefor a wide variety of engines, electric, and lithium-ionstrategy of the electric motor and engine when the vehicle

  7. Optimisation of a high speed rotating composite drive shaft using a genetic algorithm - Hybrid high modulus-high resistance carbon solutions

    E-Print Network [OSTI]

    Montagnier, Olivier

    2011-01-01

    This study deals with the optimisation of subcritical and supercritical laminated composite drive shafts, based on a genetic algorithm. The first part focuses on the modelling of a composite drive shaft. Flexural vibrations in a simply supported composite drive shaft mounted on viscoelastic supports, including shear effects are studied. In particular, an analytic stability criterion is developed to ensure the integrity of the system. The torsional strength is then computed with the maximum stress criterion, assuming the coupling effects to be null. Torsional buckling of thin walled composite tubes is modelled using a combination between laminate theory and Fl\\"ugge theory. In the second part, the genetic algorithm is developed. The last part presents a comparative study between various composite materials solutions on a helicopter tail rotor driveline. In particular, hybrid tubes consisting of high modulus and high resistance carbon/epoxy plies are studied. These solutions make it possible to replace the conv...

  8. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    SciTech Connect (OSTI)

    Powell, H.T.; Kilkenny, J.D. [eds.

    1995-12-01

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

  9. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  10. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect (OSTI)

    LaClair, Tim J

    2012-01-01

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  11. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  12. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  14. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  15. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  16. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  17. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014Conferenceof Energy Los2 1. Hybrid and Vehicle Systems

  18. Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Vlahinos, A.

    2009-08-01

    Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

  19. International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies

    E-Print Network [OSTI]

    Sperling, Daniel; Lipman, Timothy

    2003-01-01

    D. (1995), Future Drive Electric Vehicles and Sustainable1996), "The Case for Electric Vehicles," Sclent~c American,Emissions Impacts of Electric Vehicles," Journal of the Alr

  20. Sub-Lithographic Patterning Technology for Nanowire Model Catalysts and DNA Label-Free Hybridization Detection

    E-Print Network [OSTI]

    Bokor, Jeffrey

    Sub-Lithographic Patterning Technology for Nanowire Model Catalysts and DNA Label were used as a mold in nanoimprint lithography and lift-off patterning of sub-30nm platinum nanowires a label-free tool for DNA hybridization detection based on measuring capacitance changes in the gap

  1. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect (OSTI)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  2. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    Present technology batteries Graphite/ NiCoMnO 2 Graphite/spinel Future technology batteries Graphite/ composite MnO 2

  3. Economic evaluation of solar-only and hybrid power towers using molten salt technology

    SciTech Connect (OSTI)

    Kolb, G.J.

    1996-12-01

    Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

  4. MHK Technologies/Hybrid Float | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHK TechnologiesCatHorizontalFloat <

  5. MHK Technologies/Hybrid System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHK TechnologiesCatHorizontalFloat

  6. Vehicle Technologies Office Merit Review 2015: Hoosier Heavy Hybrid Center of Excellence (H3CoE) at Purdue University

    Broader source: Energy.gov [DOE]

    Presentation given by Purdue University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Hoosier Heavy Hybrid Center...

  7. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  8. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  9. Lower hybrid current drive at densities required for thermonuclear reactors R. Cesario 1), L. Amicucci 2), M. L. Apicella 1), G. Calabr 1), A. Cardinali 1), C. Castaldo 1),

    E-Print Network [OSTI]

    Vlad, Gregorio

    EXW/P7-02 Lower hybrid current drive at densities required for thermonuclear reactors R@frascati.enea.it Abstract. For the progress of the thermonuclear fusion energy research based on the tokamak concept in ITER (International Thermonuclear Experiment Reactor) at relatively high plasma densities also

  10. Fuel economy and emissions reduction of HD hybrid truck over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

  11. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  12. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  13. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  14. EPOXY TECHNOLOGY, INC. 14 Fortune Drive, Billerica, MA 01821-3972 Phone: 978.667.3805 Fax: 978.663.9782

    E-Print Network [OSTI]

    Bessell, Mike

    EPOXY TECHNOLOGY, INC. 14 Fortune Drive, Billerica, MA 01821-3972 Phone: 978.667.3805 Fax: 978 and tests believed to be accurate. Epoxy Technology, Inc. makes no warranties (expressed or implied applications. Adhesion to glass, quartz, metals, wood and most plastics is very good. May also be used

  15. Vehicle Technologies Office Merit Review 2015: GATE Center for Electric Drive Transportation

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  16. Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of California at Riverside at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  17. Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

  18. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01

    Early Market for Hybrid Electric Vehicles. ” TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyAssessment for Battery Electric Vehicles, Power Assist

  19. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  20. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    SciTech Connect (OSTI)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  1. EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.; Calcagno, Jimmy; Yun, Jeongran

    2014-01-01

    Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop a characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.

  2. HYBRID LAMINAR FLOW TECHNOLOGY Partner: EADS Airbus (D) (Coordinator), Apparatebau Gauting (D), EADS Airbus (F), Aerospace Systems and

    E-Print Network [OSTI]

    Berlin,Technische Universität

    HYBRID LAMINAR FLOW TECHNOLOGY (HYLTEC) Partner: EADS Airbus (D) (Coordinator), Apparatebau Gauting Task1 Operational flight tests, lab tests, manufacturing issues Task2 Laminar flow retrofit studies high drag HLFC via suction causes laminar flow therefore lower drag HYLTEC topics: Consequences

  3. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  4. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    Citroën Unveils 69mpg Diesel Hybrid Prototypes. 31 January.Citröen, have developed diesel-hybrid prototypes thatalso apply hybrid technologies to diesel vehicles, further

  5. Fuel and emission impacts of heavy hybrid vehicles.

    SciTech Connect (OSTI)

    An, F.; Eberhardt, J. J.; Stodolsky, F.

    1999-03-02

    Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

  6. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01

    depend on the assumed drive cycle, that is, how aggressivelyelectric vs. blended), drive cycle, vehicle mass, batteryelectric vs. blended), drive cycle, vehicle mass, battery

  7. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  8. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  9. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the trucking industry. By providing unbiased, third-party assessment of this “hybrid without batteries” technology, this report offers relevant, timely and valuable information to the industry.

  10. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  11. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  12. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  13. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ames Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Development of Radically...

  15. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  16. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Performance and testing data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  17. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  18. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01

    rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

  19. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  1. Vehicle Technologies Office Merit Review 2014: GATE Center for Electric Drive Transportation at the University of Michigan- Dearborn

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  2. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  3. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  4. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014

    Broader source: Energy.gov [DOE]

    Hybrid electric vehicles (HEVs) are conventional hybrid vehicles that use a gasoline engine with a hybrid electric drive for superior efficiency; they do not plug-in. This type of hybrid vehicle...

  5. Strategies and Technologies for Improving Air Quality Around Ports

    E-Print Network [OSTI]

    Khan, Mohammad Yusuf

    2013-01-01

    on fossil fuels. Diesel electrical hybrid systems have also7-1: Diesel Electric Drive Train on the Hybrid Campbell FossThe diesel electric drive train on the hybrid tug that

  6. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  7. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  8. Vehicle Technologies Office Merit Review 2014: Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  9. Vehicle Technologies Office Merit Review 2015: Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  10. Development of Integrated Motor Assist Hybrid System: Development of the 'Insight', a Personal Hybrid Coupe

    SciTech Connect (OSTI)

    Kaoru Aoki; Shigetaka Kuroda; Shigemasa Kajiwara; Hiromitsu Sato; Yoshio Yamamoto

    2000-06-19

    This paper presents the technical approach used to design and develop the powerplant for the Honda Insight, a new motor assist hybrid vehicle with an overall development objective of just half the fuel consumption of the current Civic over a wide range of driving conditions. Fuel consumption of 35km/L (Japanese 10-15 mode), and 3.4L/100km (98/69/EC) was realized. To achieve this, a new Integrated Motor Assist (IMA) hybrid power plant system was developed, incorporating many new technologies for packaging and integrating the motor assist system and for improving engine thermal efficiency. This was developed in combination with a new lightweight aluminum body with low aerodynamic resistance. Environmental performance goals also included the simultaneous achievement of low emissions (half the Japanese year 2000 standards, and half the EU2000 standards), high efficiency, and recyclability. Full consideration was also given to key consumer attributes, including crash safety performance, handling, and driving performance.

  11. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  12. Abstract--Electrical energy storage is a central element to any electric-drivetrain technology whether hybrid-electric, fuel-cell,

    E-Print Network [OSTI]

    Brennan, Sean

    -drivetrain technology ­ whether hybrid-electric, fuel-cell, or all-electric. A particularly cost-sensitive issue burden on batteries and fuel cells is to use ultra-capacitors as load-leveling devices. The high power that additional focus on this energy management controller is required in order to achieve optimization of both

  13. Chemical and biological extraction of metals present in E waste: A hybrid technology

    SciTech Connect (OSTI)

    Pant, Deepak; Joshi, Deepika; Upreti, Manoj K.; Kotnala, Ravindra K.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Hybrid methodology for E waste management. Black-Right-Pointing-Pointer Efficient extraction of metals. Black-Right-Pointing-Pointer Trace metal extraction is possible. - Abstract: Management of metal pollution associated with E-waste is widespread across the globe. Currently used techniques for the extraction of metals from E-waste by using either chemical or biological leaching have their own limitations. Chemical leaching is much rapid and efficient but has its own environmental consequences, even the future prospects of associated nanoremediation are also uncertain. Biological leaching on the other hand is comparatively a cost effective technique but at the same moment it is time consuming and the complete recovery of the metal, alone by biological leaching is not possible in most of the cases. The current review addresses the individual issues related to chemical and biological extraction techniques and proposes a hybrid-methodology which incorporates both, along with safer chemicals and compatible microbes for better and efficient extraction of metals from the E-waste.

  14. Vehicle Technologies Office Merit Review 2014: SAE J2907 Hybrid Motor Ratings Support

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SAE J2907...

  15. Vehicle Technologies Office Merit Review 2014: Cummins MD & HD Accessory Hybridization CRADA

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins MD &...

  16. Vehicle Technologies Office Merit Review 2015: Cummins MD & HD Accessory Hybridization CRADA

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins MD &...

  17. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  18. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  19. 2100 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 12, JUNE 15, 2009 Simultaneous Interrogation of a Hybrid FBG/LPG

    E-Print Network [OSTI]

    Yao, Jianping

    of a Hybrid FBG/LPG Sensor Pair Using a Monolithically Integrated Echelle Diffractive Grating Honglei Guo--A simultaneous interrogation technique of a hybrid fiber Bragg grating (FBG) and long-period grating (LPG) sensor to interrogate hybrid FBG/LPG-based sensor pairs for the discrimination of refractive index (RI)/tem- perature

  20. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  1. U.S. DRIVE

    SciTech Connect (OSTI)

    2012-03-16

    U.S. DRIVE, which stands for United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability, is an expanded government-industry partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company and General Motors; Tesla Motors; five energy companies – BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US; two utilities – Southern California Edison and Michigan-based DTE Energy; and the Electric Power Research Institute (EPRI). The U.S. DRIVE mission is to accelerate the development of pre-competitive and innovative technologies to enable a full range of affordable and clean advanced light-duty vehicles, as well as related energy infrastructure.

  2. Hybrid Silicon Photonics for Optical Interconnects

    E-Print Network [OSTI]

    2011-01-01

    Promising Technology for the hybrid silicon laser in 2007.Electrically pumped hybrid AlGaInAs-silicon evanescentA. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP

  3. Close Look at Hybrid Vehicle Loyalty and Ownership

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Chin, Shih-Miao; Wilson, Daniel W; Oliveira Neto, Francisco Moraes; Taylor, Rob D

    2013-01-01

    In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk initially released their findings. In this brief review, the team has looked at factors that might contribute to a consumer choosing to not purchase a hybrid; including the increase in manufacture s overall vehicle mpg and the percentage of the vehicle market owned by hybrids.

  4. Diesel hybridization and emissions.

    SciTech Connect (OSTI)

    Pasquier, M.; Monnet, G.

    2004-04-21

    The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

  5. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

  6. DRIVING DIRECTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSiteo n n eDPFJ.D.DRIVING DIRECTIONS

  7. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01

    modern clean diesel engines and hybrid-electric powertrainsare advanced, clean diesel engines and hybrid-electricmarkets for diesel powered and hybrid-electric vehicles in

  8. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    diesel engine truck, diesel hybrid-electric, conventionalfor conventional diesel and diesel hybrid trucks; dual 150The economics of the hybrid-electric diesel and LNG Class 8

  9. Indigenous Knowledges Driving Technological Innovation

    E-Print Network [OSTI]

    Johnson, Jay T.; Hi‘ iaka Working Group

    2011-09-01

    stewardship of the dominant culture often do not mesh well with the indigenous [sic] knowledge and values of a native community. —Eric Riggs, “Field-based Education and Indigenous Knowledge” In February 2011 a National Science Foundation–funded workshop... The Hi‘iaka Working Group, the workshop attendees, and co-authors are Lilian Alessa, Carlos Andrade, Phil Cash Cash, Christian P. Giardina, Matt Hamabata, Craig Hammer, Kai Henifin, Lee Joachim, Jay T. Johnson, Kekuhi Kealiikanakaoleohaililani, Deanna...

  10. 21st Century Locomotive Technology: Quarterly Technical Status Report 29

    SciTech Connect (OSTI)

    Lembit Salasoo, Ramu Chandra

    2010-05-24

    Hybrid trip optimizer analysis tool has been implemented, to determine the optimal driving and hybrid charge-discharge control for a train.

  11. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  12. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  13. Hybrid Identities

    E-Print Network [OSTI]

    Montclair, Sani

    2012-01-01

    Hybrid Identity; Family, Photography and History in Colonialintersectional politics of hybrid identity is the primarycreated a distinctively hybrid culture, one where language,

  14. Winter Driving Tips Driving in Ice & Snow

    E-Print Network [OSTI]

    Capogna, Luca

    Winter Driving Tips Driving in Ice & Snow: When you must drive, clear the ice and snow from your in ice and snow, other drivers will be traveling cautiously. Don't disrupt the flow of traffic by driving handle better in ice and snow, but they do not have flawless traction, and skids can occur unexpectedly

  15. A Development of Design and Control Methodology for Next Generation Parallel Hybrid Electric Vehicle 

    E-Print Network [OSTI]

    Lai, Lin

    2013-01-28

    as the conventional vehicle, and hybridizes with an electrical drive in parallel to improve the fuel economy and performance beyond the conventional cars. By analyzing the HEV fuel economy versus the increasing of the electrical drive power on typical driving...

  16. Bioscience Technology Bioscience Technology

    E-Print Network [OSTI]

    Vertes, Akos

    Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when

  17. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system 

    E-Print Network [OSTI]

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration – nanofiltration / reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating ...

  18. Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs

    E-Print Network [OSTI]

    Burke, Andrew F

    1995-01-01

    Pulse Power Devices in Electric Vehicle Propulsion Systems,the Tenth International Electric Vehicle Symposium (EVS-10),4. Burke, A.F. , Hybrid/Electric Vehicle Design Options and

  19. Control system design for a parallel hybrid electric vehicle 

    E-Print Network [OSTI]

    Buntin, David Leighton

    1994-01-01

    This thesis addresses the design of control systems for a parallel hybrid electric drive train which is an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine...

  20. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  1. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  2. Engineering AnteaterDrive

    E-Print Network [OSTI]

    Markopoulou, Athina

    Rockw ell & M DEA Engineering Tower AnteaterDrive AnteaterDrive East Peltason Drive EastPeltasonDrive East Peltason Drive Anteater Parking Structure EngineeringServiceRoad Engineering Laboratory Facility Engineering Gateway Engineering Hall AIRB Calit2 Engineering Lecture Hall Campus Building Engineering Building

  3. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  4. New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter to ScienceBecause

  5. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results The Vehicle Technologies...

  6. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

  7. Economical Aspects of Adjustable Speed Drives in Pumping Systems 

    E-Print Network [OSTI]

    Hovstadius, G.

    1999-01-01

    Speed variations of pumps have become increasingly popular as the technology to produce variable frequency drives has progressed. Variable speed drives have many advantages compared to throttle valves when it comes to regulation of flow. They offer...

  8. Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report

    SciTech Connect (OSTI)

    None

    2007-09-30

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  9. Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report

    SciTech Connect (OSTI)

    Marlino, Laura D [ORNL

    2007-09-01

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  10. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  11. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  12. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    by 24-39% over the day drive cycle and 12-29% over thehaul and the long haul drive cycles. The breakeven fueldrive, and the long haul drive cycles. The fuel economies (

  13. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  14. Reuse of hybrid car power systems

    E-Print Network [OSTI]

    Kirkby, Nicholas (Nicholas J.)

    2015-01-01

    Used hybrid car power systems are inexpensive and capable of tens of kilowatts of power throughput. This paper documents a process for using the second generation Toyota Prius inverter module to drive a three phase permanent ...

  15. MHK Technologies/Oregon State University Columbia Power Technologies...

    Open Energy Info (EERE)

    OSU Project(s) where this technology is utilized *MHK ProjectsOSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point...

  16. CONDUCTIVE POLYCARBONATE NANOCOMPOSITES with HYBRID NANOFILLERS

    E-Print Network [OSTI]

    Collins, Gary S.

    CONDUCTIVE POLYCARBONATE NANOCOMPOSITES with HYBRID NANOFILLERS Catherine Smith, Brooks Lively, Wei of polymers. Emerging technologies have demonstrated the crucial need for highly conductive polymer combination between polycarbonate (PC) and hybrid concentrations of CNT and GNP nanofillers was investigated

  17. Vehicle Technologies Office Merit Review 2014: Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of...

  18. NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles

    E-Print Network [OSTI]

    battery safety and life issues long before cars are delivered to dealers' lots, making hybrid and electric taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries

  19. Energy Department Announces $53 Million to Drive Innovation,...

    Broader source: Energy.gov (indexed) [DOE]

    projects that aim to drive down the cost of solar energy, tackling key aspects of technology development in order to bring innovative ideas to the market more quickly....

  20. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vss033carlson2012o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric...

  1. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  2. SW CAMPUS DRIVE SW CAMPUS DRIVE

    E-Print Network [OSTI]

    Chapman, Michael S.

    SW CAMPUS DRIVE SW VETERANS HOSPITAL ROAD SW GAINES ROAD SW 6THAVENUE SW CAMPUS DRIVE SW SAM JACKSON ROAD SW SAM JACKSON ROAD SW SAM J ACKSONROAD SW TERWILLIGER BOULEVARD SW6THAVE SW 11TH AVE SW VETERAN S H O SPITAL ROAD SW TERWILLIGERBLVD SW T ERWILLIGER B LVD SW V ETERANS HOSPITAL ROAD P V V E V V

  3. Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

    2005-03-01

    This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

  4. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  5. Vehicle Technologies Office Merit Review 2015: Multi-Speed Transmission for Commercial Delivery Medium Duty Plug-In Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed transmission for commercial...

  6. G R A D U A T E P R O G R A M S A Focus on Technology.The Drive to Innovate.

    E-Print Network [OSTI]

    the power to create lasting change in our world like technology. It is the gateway to innovation, makes large wind tunnels and is a U.S. Air Force Office of Scientific Research National Center of Excellence

  7. Cinematic of Hybrid Electrical Vehicle (V.H.E. CINEMATICS)

    E-Print Network [OSTI]

    Baudoin, Geneviève

    Cinematic of Hybrid Electrical Vehicle (V.H.E. CINEMATICS) Participants: Pr. Abdel Réama Pr. Arben Hybrid electrical vehicle is becoming a necessity to counter the rising price of the traditional for energy efficient hybrid electrical vehicle drive Problématique et objectifs The flux producing current

  8. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

  9. A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field

    E-Print Network [OSTI]

    Benson, Christopher L.

    This paper presents a relatively simple, objective and repeatable method for selecting sets of patents that are representative of a specific technological domain. The methodology consists of using search terms to locate ...

  10. Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  11. Hybrid solar collector using nonimaging optics and photovoltaic components

    E-Print Network [OSTI]

    2015-01-01

    thermal hybrid solar technology," Applied Energy, 87(2),thermal hybrid solar technology," Applied Energy, 87(2),thermal system, solar PVT collector, nonimaging optics, GaAs, solar energy,

  12. Heating and current drive systems for TPX

    SciTech Connect (OSTI)

    Swain, D.; Goranson, P.; Halle, A. von; Bernabei, S.; Greenough, N.

    1994-05-24

    The heating and current drive (H and CD) system proposed for the TPX tokamak will consist of ion cyclotron, neutral beam, and lower hybrid systems. It will have 17.5 MW of installed H and CD power initially, and can be upgraded to 45 MW. It will be used to explore advanced confinement and fully current-driven plasma regimes with pulse lengths of up to 1,000 s.

  13. Thermal Issues in Emerging Technologies, ThETA 1, Cairo, Egypt, Jan 3-6 Graceful Operation of Disk Drives under Thermal Emergencies

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    Thermal Issues in Emerging Technologies, ThETA 1, Cairo, Egypt, Jan 3-6 ¢¡ 2007 Graceful Operation. This is increasingly important due to the growing power density at all the granularity of the system architecture in a rack/room, cause a large amount of power to be dissipated in a much smaller footprint. Since

  14. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  15. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    SciTech Connect (OSTI)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  16. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-02-13

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  17. Hybrid Air-Cooled Condenser - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Air-Cooled Condenser National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Geothermal energy has been a viable energy source...

  18. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicle’s fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energy’s Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  19. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  20. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

  1. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  2. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    Protection Agency Electric Vehicle Greenhouse Gas Gas toHybrid and Fuel Cell Electric Vehicle Symposium Reference: [aspects of battery electric vehicles, fuel cell vehicles,

  3. Hybrid powertrain controller

    DOE Patents [OSTI]

    Jankovic, Miroslava (Birmingham, MI); Powell, Barry Kay (Belleville, MI)

    2000-12-26

    A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

  4. Hybrid powertrain system

    DOE Patents [OSTI]

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  5. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, Jr., Charles A. (Raymore, MO)

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  6. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  7. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  8. Wankel engine for hybrid powertrain

    SciTech Connect (OSTI)

    Butti, A.; Site, V.D.

    1995-12-31

    The Wankel engine is suited to be used to drive hybrid propulsion systems. The main disadvantage of hybrid propulsion systems is the complexity that causes a high weight and large dimensions. For these reason hybrid systems are more suitable for large size vehicle (buses, vans) rather than for small passenger cars. A considerable reduction of hybrid systems weight and dimensions can be obtained using a Wankel rotary engine instead of a conventional engine. The Wankel engine is light, compact, simple, and produces low noise and low vibrations. Therefore a Wankel engine powered hybrid system is suited to be used on small cars. In this paper a 1,000 kg parallel hybrid car with continuously variable transmission and a 6,000 kg series hybrid minibus both equipped with Wankel engines are considered. The Wankel engine works at steady state to minimize fuel consumption and exhaust emissions. The simulation of the behavior of these two vehicles during a ECE + EUDC test cycle is presented in order to evaluate the performances of the systems.

  9. Analysis of Consumer Response to Automobile Regulation and Technological Change in Support of California Climate Change Rulemaking

    E-Print Network [OSTI]

    Kurani, Kenneth S; Turrentine, Tom

    2004-01-01

    for recent hybrid vehicles and some diesel-powered models,diesel vehicles25 The Case of Hybrids.hybrid electric drive system, a battery electric vehicle, a CNG vehicle, or clean diesel.

  10. 6.43.28 Hybrid Control Systems1 Karl Henrik Johansson, Dept. of Signals, Sensors & Systems, Royal Institute of Technology, 100 44

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    6.43.28 Hybrid Control Systems1 Karl Henrik Johansson, Dept. of Signals, Sensors & Systems, Royal-time system; Dynamical system; Control theory; Embedded soft- ware; Hierarchical control; Computer-controlled system; Discrete-event systems; Hybrid automata; Discontinuous control; Switched system; Supervisory

  11. Hyundai Avante LPi hybrid level 1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.

    2012-02-07

    In collaboration with the Korea Automotive Technology Institute (KATECH), the Korean market only Hyundai Avante LPi Hybrid was purchased and imported to ANL's Advanced Powertrain Research Facility for vehicle-level testing. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. To assess the impacts of more aggressive driving, the LA92 cycle and a UDDS scaled by a factor 1.2x cycles were also included in the testing plan. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed. The following sections will seek to explain some of the basic operating characteristics of the Avante LPi Hybrid and provide insight into unique features of its operation and design. Figure 1 shows the test vehicle in Argonne's soak room.

  12. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  13. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, Stephen E. (Manteca, CA)

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  14. Beyond ITER: RF Heating and Current Drive Issues for DEMO

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Current devices Need flexible RF systems for heating, CD, start-up, instability suppression, and profileBeyond ITER: RF Heating and Current Drive Issues for DEMO C. K. Phillips, J. C. Hosea, G. Taylor under development ­ May need Lower Hybrid for r/a > 0.6 (not currently on ITER) ­ Need feedback control

  15. US DRIVE Driving Research and Innovation for Vehicle Efficiency...

    Office of Environmental Management (EM)

    Documents & Publications US DRIVE Fuel Pathway Integration Technical Team Roadmap Hydrogen Program Goal-Setting Methodologies Report to Congress US DRIVE Hydrogen Production...

  16. Status and Plans for C-Mod Lower Hybrid and Advanced Tokamak Program

    E-Print Network [OSTI]

    Control: Lower Hybrid Current Drive system · Designed for well controlled spectrum. · Each antennaAlcator C-Mod Status and Plans for C-Mod Lower Hybrid and Advanced Tokamak Program ITPA topical fuelling or momentum drive. ­ All RF heating and CD. C-Mod (5 s) JT60-U (10 s) JET (50 s) ITER (1000s) DIII

  17. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  18. Ride and Drive Webinar

    Broader source: Energy.gov [DOE]

    Listen to this webinar and follow along using the slides below to learn how on-site plug-in electric vehicle (PEV) Ride and Drives can create value for your organization, your employees, and your...

  19. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Office of Environmental Management (EM)

    drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles, including plug-in electric vehicles....

  20. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  1. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  2. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  4. Integrated Inverter For Driving Multiple Electric Machines

    DOE Patents [OSTI]

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  5. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect (OSTI)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  6. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    be propelled by the engine, the electric machine, or both atwith SI and CI engines, battery electric trucks, and fuelCI combustion engines, hybrid-electric vehicles with diesel

  7. WAYNE STATE UNIVERSITY ELECTRIC-DRIVE VEHICLE ENGINEERING

    E-Print Network [OSTI]

    Berdichevsky, Victor

    5120 Fundamentals of Alternative Energy Technology 4 PROGRAM (4 Courses) EVE 5___ 4 EVE 5___ 4 EVE 5WAYNE STATE UNIVERSITY ELECTRIC-DRIVE VEHICLE ENGINEERING PLAN OF WORK FOR MASTERS DEGREE Student with the Electric-Drive Vehicle Engineering Office (1100 Engineering) prior to the beginning of the second semester

  8. Adjustable speed drives: Applications and R&D needs

    SciTech Connect (OSTI)

    Stefanovic, V.R.

    1995-09-01

    The largest opportunity for the growth of adjustable speed drives (ASDs) during the next 5-6 years is in pump, fan and compressor (PFC) applications where a constant, fixed speed operation is converted to adjustable speed in order to realize energy savings. Inverter supplied induction motors are and will continue to be predominately used in these applications. Over the long term (10-15 years), the greatest ASD growth is expected in large volume consumer applications: first in hybrid electric vehicles (EVs) and in residential heating, ventilation and air-conditioning (HVAC). Both induction and a variety of AC Permanent Magnet motors are expected to be the dominant technology in this new field. The traditional ASD applications in industries which require adjustable speed (such as machine tools, robotics, steel rolling, extruders, paper mill finishing lines, etc.) offer a relatively limited potential for above average ASD growth since most of these applications have already converted to electronic speed control. As a result, ASD growth in this sector will essentially track the growth of the corresponding industries. If realized, both short and long term ASD growth opportunities will result in significant advancements of ASD technology, which will then substantially affect all other, more fragmented, ASD applications. In fact, any single large volume ASD application will serve as a catalyst for improving ASD characteristics in all other ASD applications with the same voltage rating. ASD cost and reliability (defined in the context of application compatibility) are the two most important factors which will determine whether the ASD growth opportunities are realized. Conversely, any technological improvement which carries a cost increase will be restricted to niche applications, at best. Consequently, future R & D efforts should be directed to secure reduction in ASD cost and improvement in ASD reliability. A specific action plan is outlined in this report.

  9. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  10. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  11. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01

    in relation to the electric vehicle. Science Technology &Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whymarket for hybrid electric vehicles. Transportation Research

  12. TAKU SHUTTLE YUKON DRIVE

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Signers' Bunnell Duckering St. Mark's Chapman Patty Center Lathrop Switchgear Energy Technology Facility Signers' Bunnell Duckering St. Mark's Chapman Patty Center Lathrop Switchgear Energy Technology Facility

  13. Analysis of Auto Industry and Consumer Response to Regulations and Technological Change, and Customization of Consumer Response Models in Support of AB 1493 Rulemaking

    E-Print Network [OSTI]

    2004-01-01

    of the Emerging Hybrid- Electric and Diesel Technologies toair bags, and hybrid electric vehicles in the US; and diesel

  14. Aalborg Universitet Product Sound: Acoustically pleasant motor drives

    E-Print Network [OSTI]

    Mathe, Laszlo

    pleasant motor drives. Department of Energy Technology, Aalborg University. General rights Copyright Institute of Energy Technology June, 2010 #12;Aalborg University Department of Energy Technology Pontoppidanstraede 101 DK-9220 Aalborg East Denmark Web address: http://www.et.aau.dk Copyright © László Máthé, 2010

  15. Aircraft AC Generators: Hybrid System Modeling and Simulation

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    generator, phase-domain model, synchronous AC generator. I. INTRODUCTION The Integrated Drive Generator (IDG1 Aircraft AC Generators: Hybrid System Modeling and Simulation Ashraf Tantawy, Student Member--Integrated Drive Generators (IDGs) are the main source of electrical power for a number of critical systems

  16. L Prize Drives Technology Innovation, Energy Savings

    SciTech Connect (OSTI)

    2014-04-30

    Fact sheet that provides an overview of DOE's L Prize competition, which challenges industry to develop high-quality, high-efficiency SSL products to replace 60W incandescent and PAR38 halogen light bulbs, and highlights the competition's first 60W winner from Philips Lighting North America.

  17. Navistar-Driving efficiency with integrated technology

    Broader source: Energy.gov [DOE]

    Navistar global approach to deliver better fuel economy is centered around some of the main themes of the greenhouse gas (GHG) regulations

  18. Adjustable Speed AC Motor Drives-Applications Problems 

    E-Print Network [OSTI]

    Enjeti, P.

    1997-01-01

    Adjustable speed AC drives have become the preferred choice in many industrial applications where controlled speed is required. At the same time, the maturing of the technology and the availability of fast and efficient ...

  19. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicle engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  20. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits in hybrid vehicles include electric motor drive circuits and DC/DC converter circuits. Conventional circuit

  1. Ceramic vane drive joint

    DOE Patents [OSTI]

    Smale, Charles H. (Indianapolis, IN)

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  2. TAKU SHUTTLE YUKON DRIVE

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Duckering St. Mark's Chapman Patty Center Lathrop Switchgear Energy Technology Test Modules Nerland Mc

  3. Yukon Drive Colville St

    E-Print Network [OSTI]

    Wagner, Diane

    . Mark's Chapman Patty Center Lathrop Switchgear Energy Technology Test Modules Nerland McIntosh Stevens

  4. Hybrid Mesons

    E-Print Network [OSTI]

    C. A. Meyer; E. S. Swanson

    2015-03-04

    A review of the theoretical and experimental status of hybrid hadrons is presented. The states $\\pi_1(1400)$, $\\pi_1(1600)$, and $\\pi_1(2015)$ are thoroughly reviewed, along with experimental results from GAMS, VES, Obelix, COMPASS, KEK, CLEO, Crystal Barrel, CLAS, and BNL. Theoretical lattice results on the gluelump spectrum, adiabatic potentials, heavy and light hybrids, and transition matrix elements are discussed. These are compared with bag, string, flux tube, and constituent gluon models. Strong and electromagnetic decay models are described and compared to lattice gauge theory results. We conclude that while good evidence for the existence of a light isovector exotic meson exists, its confirmation as a hybrid meson awaits discovery of its iso-partners. We also conclude that lattice gauge theory rules out a number of hybrid models and provides a reference to judge the success of others.

  5. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive Holiday Food Drive Laboratory employees

  6. Holiday Gift Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive Holiday Food Drive Laboratory

  7. Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles Part 1: Model, Methods, and

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    and sinks. Optimal solutions are easy to specify if the drive cycle is known a priori. It is very challenging to compute controllers that yield good fuel economy for a class of drive cycles representative simulation on large numbers of real-world drive cycles. I. INTRODUCTION Hybrid vehicles have become

  8. Finding Ultimate Limits of Performance for Hybrid Electric Edward D. Tate

    E-Print Network [OSTI]

    in a pure series hybrid vehicle over a fixed drive cycle subject to a number of practical constraints the given drive cycle. This optimal solution is the lower limit of fuel consumption that any control law can achieve for the given drive cycle and vehicle. In fact, this result provides a means to evaluate

  9. BOOKSHELF Hard Disk Drive

    E-Print Network [OSTI]

    Benmei, Chen

    » BOOKSHELF Hard Disk Drive Servo Systems, 2nd edition by B.M. CHEN, T.H. LEE, K. PENG, and V at Seagate Research working on spinstand microactuator integration, and I continued to work at Sea- gate part 15% of track pitch 3 , leads to fundamental challenges in position detection, while pushing band

  10. Heritage Drive EastCampusDrive

    E-Print Network [OSTI]

    Hart, Gus

    ) . . . . . . . . . . . . . . . . . . . .c/14 axmb Auxiliary Maintenance Building . . . . i/5,6 b-34, b-38, b-41, b-51 (Service Halls and Cannon Center (canc) . . . . . . . . . .d­f/8,9 hlra Helaman Recreation Area Intramural Recreation Area . . . . .a,b/4­6 itb Information Technology Building . . .c/8,9 swkt

  11. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  12. Engineering Collectives: Technology From the Coop

    E-Print Network [OSTI]

    Csikszentmihályi, Chris

    2012-01-01

    away from this history:  First, the technologies developedtechnology was a semiautonomous agent, able to drive history andor history.   Any negative quality of a technology—what

  13. Traction Drive System Modeling

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. 2011 Annual Merit Review Results Report - Hybrid and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    01.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Introduction 2012...

  15. The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

  16. NETL's Hybrid Performance, or Hyper, facility

    SciTech Connect (OSTI)

    2013-06-12

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  17. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  18. Remote hybrid power systems

    SciTech Connect (OSTI)

    Barley, C.D.; Winn, C.B. [Colorado State Univ., Fort Collins, CO (United States)

    1997-12-31

    This paper provides an overview of the emerging technology of remote, stand-alone electrical power systems featuring a renewable source (wind or photovoltaics [PV]) as well as a diesel generator, with or without an energy storage device. Other stand-alone power systems are discussed briefly, mainly to emphasize the domain of hybrid systems. The history of hybrid systems is reviewed, beginning with the first wind/diesel system in the late 1970s. Other topics include issues arising from the characteristics of diesel engine/generator sets; simple vs. complex systems; the various energy storage technologies that have been used or proposed; control strategies; modeling; optimization; and some {open_quotes}nuts & bolts{close_quotes} details. The bibliography includes over 130 references which are cited throughout the topical discussions. It is concluded that the technical feasibility of hybrid systems has been demonstrated through many prototype installations, and that areas for further improvements include higher reliability and more economical energy storage devices. 139 refs., 7 figs., 1 tab.

  19. Hybrid dark energy

    E-Print Network [OSTI]

    J. S. Alcaniz; R. Silva; F. C. Carvalho; Zong-Hong Zhu

    2008-07-16

    Extending previous results [Phys. Rev. Lett. 97, 081301 (2006)], we explore the cosmological implications of a new quintessence scenario driven by a slow rolling homogeneous scalar field whose equation of state behaved as freezing over the entire cosmic evolution, is approaching -1 today, but will become thawing in the near future, thereby driving the Universe to an eternal deceleration. We argue that such a mixed behavior, named \\emph{hybrid}, may reconcile the slight preference of current observational data for freezing potentials with the impossibility of defining observables in the String/M-theory context due to the existence of a cosmological event horizon in asymptotically de Sitter universes as, e.g., pure freezing scenarios.

  20. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

  1. Variable Frequency Pump Drives 

    E-Print Network [OSTI]

    Karassik, I. J.; Petraccaro, L. L.; McGuire, J. T.

    1986-01-01

    variable flow operation, Fig. 2 variable system head, the objective of the latter being to maintain pump flow within an optimum range while accommodating a wide variation in system head. VARYING OPERATING CAPACITY OPERATING CAPACITY? N, RANGE HEAD...-rotor motors and variable speed devices have slip losses that significantly reduce the savings that accrue by operating pumps at variable speed. Steam turbine drives may not always be the most practical or economic solution. The variable frequency...

  2. Hybrid Membranes for Light Gas Separations 

    E-Print Network [OSTI]

    Liu, Ting

    2012-07-16

    Membrane separations provide a potentially attractive technology over conventional processes due to their advantages, such as low capital cost and energy consumption. The goal of this thesis is to design hybrid membranes that facilitate specific gas...

  3. Renew Workshop on Fusion-Fission Hybrids

    E-Print Network [OSTI]

    for sustainability Fast burners ­ waste management Fast breeders ­ fuel supply #12;8 High Level Findings Potential and burners) Not a fair comparison! Hybrids assume advances in technology: materials and new fuel forms

  4. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in...

  5. Driving Pattern Recognition for Control of Hybrid Electric Trucks

    E-Print Network [OSTI]

    Peng, Huei

    strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified element could be exhausted quickly for demanding truck operations. The recently announced emission rule for the US 2007 model year trucks makes it very clear that exhaust emission is also an important performance

  6. Equivalent circuit modeling of hybrid electric vehicle drive train 

    E-Print Network [OSTI]

    Routex, Jean-Yves

    2001-01-01

    The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool...

  7. M. Porkolab, FESAC Greenwald Sub-panel Meeting, PPPLAug7, 2007 RF Heating and Current Drive Systems

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    M. Porkolab, FESAC Greenwald Sub-panel Meeting, PPPLAug7, 2007 RF Heating and Current Drive Systems;M. Porkolab, FESAC Greenwald Sub-panel Meeting, PPPLAug7, 2007 Lower Hybrid Heating and Current Greenwald Sub-panel Meeting, PPPLAug7, 2007 Aspects of ICRF Heating and Current Drive · ICRF power

  8. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  9. Driving Innovation through Federal

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits at Eight-<DominionAVOLUMEULP PEISSavingsDriving

  10. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergyResearch,

  11. Vehicle Technologies Office: Electric Drive Technologies Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopment | Department of

  12. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  13. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    She is working on Natural Gas vehicle powertrain modellingSandeep Munshi, Natural Gas Vehicle Technology forum,and alternative fuelled vehicles (natural gas, electricity,

  14. Hybrid Locomotive | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHoursaUSHumanHunting forHybridTier

  15. Optimal design of hybrid and non-hybrid fuel cell vehicles

    E-Print Network [OSTI]

    Papalambros, Panos

    Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

  16. Hybrid Mesons

    E-Print Network [OSTI]

    Bernhard Ketzer

    2012-08-25

    The SU(3)_flavor constituent quark model has been quite successful to explain the properties as well as the observed spectrum of mesons with pseudoscalar and vector quantum numbers. Many radial and orbital excitations of quark-antiquark systems predicted by the model, however, have not yet been observed experimentally or assigned unambiguously. In addition, a much richer spectrum of mesons is expected from QCD, in which quarks interact which each other through the exchange of colored self-interacting gluons. Owing to this particular structure of QCD, configurations are allowed in which an excited gluonic field contributes to the quantum numbers J^{PC} of the meson. States with a valence color-octet qqbar' pair neutralized in color by an excited gluon field are termed hybrids. The observation of such states, however, is difficult because they will mix with ordinary qqbar' states with the same quantum numbers, merely augmenting the observed spectrum for a given J^{PC}. Since the gluonic field may carry quantum numbers other than 0^{++}, however, this can give rise to states with "exotic" quantum numbers J^{PC}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-},... The lowest-lying hybrid multiplet is expected to contain a state with exotic quantum numbers J^{PC}=1^{-+}. The identification of such a state is considered a "smoking gun" for the observation of non-qqbar mesons. The search for hybrid states has been a central goal of hadron spectroscopy in the last 20 years. Ongoing and upcoming high-statistics experiments are expected to shed new light on the existence of such states in nature. In this paper, theoretical predictions for masses and decay modes as well as recent experimental evidence for hybrid meson states and future experimental directions are discussed.

  17. Marketing & Driving Demand Collaborative - Social Media Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Driving Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the Better...

  18. Next Generation Environmentally Friendly Driving Feedback Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and Development 2012 DOE...

  19. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHoursaUSHumanHuntingHybridHybrid

  20. Rotary drive mechanism

    SciTech Connect (OSTI)

    Kenderdine, E.W.

    1991-10-08

    This patent describes a rotary drive mechanism which includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de- energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti- overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  1. Rotary drive mechanism

    DOE Patents [OSTI]

    Kenderdine, Eugene W. (Albuquerque, NM)

    1991-01-01

    A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  2. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

  3. Behavior of lower hybrid waves in the scrape off layer of a diverted tokamak

    E-Print Network [OSTI]

    Wallace, Gregory M

    2010-01-01

    The goal of the Lower Hybrid Current Drive (LHCD) system on the Alcator C-Mod tokamak is to investigate current profile control under plasma conditions relevant to future devices such as ITER and DEMO. This thesis addresses ...

  4. Detection of lower hybrid waves at the plasma edge of a diverted tokamak

    E-Print Network [OSTI]

    Baek, Seung Gyou

    2014-01-01

    In this thesis, two experimental investigations are presented in an attempt to understand the loss of lower hybrid current drive (LHCD) efficiency in reactor-relevant, high-density plasmas on the diverted Alcator C-Mod ...

  5. Design of a fuzzy controller for energy management of a parallel hybrid electric vehicle 

    E-Print Network [OSTI]

    Estrada Gutierrez, Pedro Cuauhtemoc

    1997-01-01

    devices apply torque directly to the drive shaft for propelling the vehicle. Each component of the hybrid vehicle is modeled, and throttle angle, motor current and brake torque command are chosen as the control inputs. Another input considered...

  6. Test Driving the Toyota Mirai

    Broader source: Energy.gov [DOE]

    Watch a video of Energy Secretary Ernest Moniz test driving the Toyota Mirai, the first fuel cell electric vehicle available for sale.

  7. Hybrid type checking

    E-Print Network [OSTI]

    Flanagan, C

    2006-01-01

    O’Callahan and J. -D. Choi. Hybrid dynamic data race detec-subtyping is sound, the hybrid compilation algorithmHybrid Type Checking Cormac Flanagan Department of Computer

  8. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOE Patents [OSTI]

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  9. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  10. Application of system safety framework in hybrid socio-technical environment of Eurasia

    E-Print Network [OSTI]

    Abdymomunov, Azamat

    2011-01-01

    The political transformation and transition of post-Soviet societies have led to hybrid structures in political, economic and technological domains. In such hybrid structures the roles of government, state enterprise, ...

  11. Optomechanical Entanglement under Pulse Drive

    E-Print Network [OSTI]

    Qing Lin; Bing He

    2015-08-12

    We report a study of optomechanical entanglement under the drive of one or a series of laser pulses with arbitrary detuning and different pulse shapes. Because of the non-existence of system steady state under pulsed driving field, we adopt a different approach from the standard treatment to optomechanical entanglement. The situation of the entanglement evolution in high temperature is also discussed.

  12. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect (OSTI)

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  13. High-Power Warm-White Hybrid LED Package for Illumination

    SciTech Connect (OSTI)

    Soer, Wouter

    2013-09-19

    In this project, an integrated warm-white hybrid light engine was developed. The hybrid approach involves combining phosphor-converted off-white InGaN LEDs and direct-emitting red AlInGaP LEDs in a single light engine to achieve high efficacy together with high color rendering index. We developed and integrated technology improvements in InGaN and AlInGaP die technology, phosphor technology, package architecture and encapsulation, to realize a hybrid warm-white LED package with an efficacy of 140 lm/W at a correlated color temperature of 3000K and a color rendering index of 90, measured under representative operating conditions. This efficacy is 26% higher than the best warm-white LEDs of similar specification that are commercially available at the end of the project. Since the InGaN- and AlInGaP-based LEDs used in the hybrid engine show different behavior as a function of current and temperature, a control system needs to be in place to ensure a stable color point over all operating conditions. In this project, we developed an electronic control circuit that is fully integrated into the light engine in such a way that the module can simply be driven by a conventional single-channel driver. The integrated control circuit uses a switch-mode boost converter topology to control the LED drive currents based on the temperature and the input current of the light engine. A color control performance of 5 SDCM was demonstrated, and improvement to 3 SDCM is considered well within reach. The combination of high efficacy and ease of integration with existing single-channel drivers is expected to facilitate the adoption of the hybrid technology and accelerate the energy savings associated with solid-state lighting. In the product commercialization plan, downlights and indirect-lit troffers have been selected as the first target applications for this product concept. Fully functional integrated prototypes have been developed for both applications, and the business case evaluation is ongoing as of the end of the project.

  14. Measurements and modeling of Lower Hybrid Driven fast electrons on Alcator C-Mod

    E-Print Network [OSTI]

    Schmidt, Andréa E. W. (Andréa Elizabeth Wilhelm)

    2011-01-01

    A Lower Hybrid Current Drive (LHCD) system has been implemented on Alcator C-Mod with successful coupling to the plasma of up to 1 MW of power. Nearly fully non-inductive current drive has been achieved for several current ...

  15. ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE

    E-Print Network [OSTI]

    Li, Perry Y.

    ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim@me.umn.edu ABSTRACT This paper gives the dynamic analysis of a hydro- mechanical transmission (HMT) drive train passenger vehicle with a hydro-mechanical transmission (HMT) drive train with regeneration and indepen- dent

  16. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  17. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  18. Fuel Economy: What Drives Consumer Choice?

    E-Print Network [OSTI]

    Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

    2008-01-01

    decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So it’s unsurprising that even hybrid

  19. Fuel Economy: What Drives Consumer Choice?

    E-Print Network [OSTI]

    Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

    2007-01-01

    decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So it’s unsurprising that even hybrid

  20. AVTA: Battery Testing- Electric Drive and Advanced Battery and Components Testbed

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The AVTA runs the Electric Drive and Advanced Battery and Components Testbed to capture batteries’ real-world performance. The Testbed simulates battery charging as well as on-road driving. Researchers run the Testbed on a daily basis on cycles that represent typical driving and charging patterns. This research was conducted by Idaho National Laboratory.

  1. Gas Powered Air Conditioning Absorption vs. Engine-Drive 

    E-Print Network [OSTI]

    Phillips, J. N.

    1996-01-01

    not a new technology at the time, neither was the gas engine. But now in the 19901s, gas engine-drive (GED) chillers have "hit" the air conditioning market with a "bang". In the Lone Star Gas Company area in 1995, GED chillers are now being considered...

  2. Driving Safely In Smart Cars

    E-Print Network [OSTI]

    Puri, Anuj; Varaiya, Pravin

    1995-01-01

    Control of the Lead Car of a Platoon. IEEE Transactions on1993. Var93 P.Varaiya. Smart Cars on Smart Roads: ProblemsDriving Safely in Smart Cars Anuj Puri, Pravin Varaiya

  3. Upgrading coal plant damper drives

    SciTech Connect (OSTI)

    Hood, N.R.; Simmons, K. [Alamaba Power (United States)

    2009-11-15

    The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

  4. Adjustable Speed Drive Industrial Applications 

    E-Print Network [OSTI]

    Poole, J. N.

    1989-01-01

    Electric motors are significant users of electricity in the United States. Approximately 66 percent of the total electricity in the U.S. is used by electric motors. Electronic adjustable speed drives (ASDs) can save energy, lower maintenance cost...

  5. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  6. Direct drive field actuator motors

    DOE Patents [OSTI]

    Grahn, Allen R. (Salt Lake City, UT)

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  7. Direct drive field actuator motors

    DOE Patents [OSTI]

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  8. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  9. QER - Comment of Electric Drive Transportation Association |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive Transportation Association QER - Comment of Electric Drive Transportation Association From: Genevieve Cullen gcullen@electricdrive.org Sent: Friday, October 10, 2014 11:58...

  10. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January...

  11. Design, modeling and control of a hybrid machine system

    E-Print Network [OSTI]

    Zhang, WJ "Chris"

    .J. Zhang). Mechatronics 14 (2004) 1197­1217 #12;Keywords: Hybrid machine; Five-bar mechanism; Design.S. Guo c a Advanced Engineering Design Laboratory, Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada b School of Mechanical and Production Engineering

  12. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  13. Vehicle Technologies Program Government Performance and Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stock were attributed to individual VTO technology areas, which included batteries and electric drives, advanced combustion engines, fuels and lubricants, materials (i.e.,...

  14. NOT EVERY HYBRID BECOMES ANOT EVERY HYBRID BECOMES A PRIUS: THE CASE AGAINST THEPRIUS: THE CASE AGAINST THE

    E-Print Network [OSTI]

    for the expansion of nuclear energyof nuclear energy ·· Waste ManagementWaste Management ·· Fuel Resource Management solutions to the waste management and fuel resource issues. #12;1111 Status Of Fusion as an Energy ITS HYBRID CAR CALLED THE NUCLEON WITH NUCLEAR DRIVECALLED THE NUCLEON WITH NUCLEAR DRIVE #12;Past

  15. Digital Architecture for Driving Large LED Arrays with Dynamic Bus Voltage Regulation and Phase Shifted PWM

    E-Print Network [OSTI]

    - This paper introduces a digital architecture suitable for driving a large number of High Brightness LightDigital Architecture for Driving Large LED Arrays with Dynamic Bus Voltage Regulation and Phase distinct performance advantage over conventional lighting technology. Higher optical efficiency, long

  16. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  17. Fishbone-like internal kink instability driven by supra-thermal electrons on FTU generated by lower hybrid radiofrequency power

    E-Print Network [OSTI]

    Zonca, Fulvio

    hybrid current drive (LHCD) is of strong interest for the burning plasma research, as the trapped heating (ECRH) is of strong interest for the burning plasma research. The charged fusion product effects

  18. Polarimetry measurements of current density profile and fluctuation changes during lower hybrid experiments on Alcator C-Mod

    E-Print Network [OSTI]

    Xu, Peng, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    As a possible method to achieve steady-state plasma operation in a tokamak fusion reactor, Lower Hybrid Current Drive (LHCD) has been extensively studied on Alcator C-Mod. The measurement of current density profiles (or ...

  19. Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)

    SciTech Connect (OSTI)

    Simpson, A.

    2006-08-24

    Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

  20. Can Future Emissions Limits be Met with a Hybrid EGR System Alone...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of hybrid EGR system in terms of deliverable EGR-rate, airfuel ratio, pumping losses and fuel use, taking into account interaction between EGR and boosting technology. Control...

  1. SIMULATING MARKET TRANSFORMATION DYNAMICS USING A HYBRID ENERGY ECONOMY MODEL

    E-Print Network [OSTI]

    ii SIMULATING MARKET TRANSFORMATION DYNAMICS USING A HYBRID ENERGY ECONOMY MODEL: A LOOK the likely effects of alternative policies, potential adoption rates of clean technologies, and costs to society in the long run. My goal was to use a "hybrid" energy economy model (CIMS), which combines

  2. Consider Steam Turbine Drives for Rotating Equipment - Steam Tip Sheet #21

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  3. Electric machine and current source inverter drive system

    DOE Patents [OSTI]

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  4. Hybrid and multifield inflation

    E-Print Network [OSTI]

    Sfakianakis, Evangelos I

    2014-01-01

    In this thesis I study the generation of density perturbations in two classes of inflationary models: hybrid inflation and multifield inflation with non-minimal coupling to gravity. In the case of hybrid inflation, we ...

  5. Hybrid Power Test Bed

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    This document describes efforts by the National Renewable Energy Laboratory to simulate hybrid power systems. Hybrid power systems combine multiple power sources such as wind turbines, photovoltaic (PV) arrays, diesel generators, and battery storage systems. They typically are used in remote areas, away from major electric grids. The Hybrid Power Test Bed is designed to assist the U.S. wind industry in developing and testing hybrid power generation systems. Test bed capabilities, features, and equipment are described.

  6. Mesoscale hybrid calibration artifact

    SciTech Connect (OSTI)

    Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  7. Drive reconfiguration mechanism for tracked robotic vehicle

    DOE Patents [OSTI]

    Willis, W. David (Idaho Falls, ID)

    2000-01-01

    Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

  8. Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis, Technology and Policy Program #12;#12;3 Prospects for Plug-in Hybrid Electric Vehicles in the United States Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions

  9. ORNL/TM-2004/181 Future Potential of Hybrid and Diesel

    E-Print Network [OSTI]

    ORNL/TM-2004/181 Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle. #12;FUTURE POTENTIAL OF HYBRID AND DIESEL POWERTRAINS IN THE U.S. LIGHT-DUTY VEHICLE MARKET David L .....................................................................................................................1 2. HYBRID AND DIESEL TECHNOLOGY STATUS AND PROSPECTS...............................3 2.1 DIESELS

  10. Hybrid Process Algebra P.J.L. Cuijpers # M.A. Reniers

    E-Print Network [OSTI]

    Cuijpers, Pieter

    Hybrid Process Algebra P.J.L. Cuijpers # M.A. Reniers Eindhoven University of Technology (TU/e) Den Dolech 2 5600 MB Eindhoven, The Netherlands Abstract We develop an algebraic theory, called hybrid process algebra (HyPA), for the de­ scription and analysis of hybrid systems. HyPA is an extension

  11. Hybrid Process Algebra P.J.L. Cuijpers M.A. Reniers

    E-Print Network [OSTI]

    Cuijpers, Pieter

    Hybrid Process Algebra P.J.L. Cuijpers M.A. Reniers Eindhoven University of Technology (TU/e) Den Dolech 2 5600 MB Eindhoven, The Netherlands Abstract We develop an algebraic theory, called hybrid process algebra (HyPA), for the de- scription and analysis of hybrid systems. HyPA is an extension

  12. Identifying Optimal Inorganic Nanomaterials for Hybrid Solar Cells Hongjun Xiang* and Su-Huai Wei

    E-Print Network [OSTI]

    Gong, Xingao

    developed photovoltaic technology, organic-inorganic hybrid solar cells have attracted great interest 3.5% so far. As an alternative polymer-based photovoltaic cell, the organic-inorganic hybrid solarIdentifying Optimal Inorganic Nanomaterials for Hybrid Solar Cells Hongjun Xiang* and Su-Huai Wei

  13. Hybrid Systems Frits Vaandrager

    E-Print Network [OSTI]

    Vaandrager, Frits

    on these data, the computer may decide to turn on a heating system, switch off a pump, etc. When a dangerous1 Hybrid Systems Frits Vaandrager 1 Introduction Hybrid systems are systems that intermix discrete. The specification, design and analysis of hybrid systems require a synthesis of ideas, concepts, mathe­ matical

  14. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  15. Corn Hybrid Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Hybrid and Management Trials 2007 Virginia Corn & Small Grain Management #12;VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS IN 2007 Coordinators of Virginia Corn Hybrid Trials in 2007 Wade Thomason, Extension Specialist, Department of Crop and Soil Environmental Sciences, Virginia Tech Harry

  16. Corn Hybrid Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Hybrid Management and Trials 2006 Virginia Corn & Small Grain Management #12;#12;Virginia Corn Hybrid and Management Trials 2006 Coordinators of Virginia Corn Hybrid Trials in 2006 Wade Thomason, Extension Specialist, Department of Crop and Soil Environmental Sciences, Virginia Tech Harry

  17. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  18. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    SciTech Connect (OSTI)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

  19. Anomalous-viscosity current drive

    DOE Patents [OSTI]

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  20. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  1. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    SciTech Connect (OSTI)

    Barnitt, R. A.

    2008-06-01

    The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

  2. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  3. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Steven Schamel

    1997-07-29

    This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  4. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

    1997-10-21

    This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  5. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

  6. Electric Drive Component Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. US Electric Drive Manufacturing Center

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  9. Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

  10. PLASTIC-PDMS HYBRID DEVICES FOR HIGH PRESSURE HYDROLYTICALLY STABLE ACTIVE

    E-Print Network [OSTI]

    Ram, Rajeev J.

    for microfluidic chip fabrication [1]. Plastics can be manufactured using mass fabrication technologies the functionality of PDMS with established plastic fabrication technologies. BACKGROUND Irreversible bonding betweenPLASTIC-PDMS HYBRID DEVICES FOR HIGH PRESSURE HYDROLYTICALLY STABLE ACTIVE MICROFLUIDICS Kevin S

  11. Hybrid electric vehicle power management system

    DOE Patents [OSTI]

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  12. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHoursaUSHumanHuntingHybrid

  13. Redundant Arrays of IDE Drives

    E-Print Network [OSTI]

    D. A. Sanders; L. M. Cremaldi; V. Eschenburg; C. N. Lawrence; C. Riley; D. J. Summers; D. L. Petravick

    2002-12-05

    The next generation of high-energy physics experiments is expected to gather prodigious amounts of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that use recent developments in commodity hardware. We test redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high-energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now equal the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordable to institutions without robots and used when fast random access at low cost is important. We also explore three methods of moving data between sites; internet transfers, hot pluggable IDE disks in FireWire cases, and writable digital video disks (DVD-R).

  14. Optimization of condensing gas drive 

    E-Print Network [OSTI]

    Lofton, Larry Keith

    1977-01-01

    - cal, undersaturated reservoir with gas being injected into the crest and oil being produced from the base of the structure. Fractional oil re- covery at gas breakthrough proved to be less sensitive to changes in oil withdrawal rates as the gas... injection pressure was increased. The validity of the model was established by accurately simulating several low pressure gas drives conducted in the laboratory. Oil recoveries at gas breakthrough using the model compared closely with those recoveries...

  15. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Schamel, S.

    1996-11-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

  16. What If Cars Could Drive Themselves?

    E-Print Network [OSTI]

    Shladover, Steven E.

    2000-01-01

    What If Cars Could Drive Themselves? BY STEVEN E.SHLADOVER E V E N W H E N cars were still young, futuristssome of the implications of cars that could drive t h e m s

  17. Recent Analysis of UCAPs in Mild Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.

    2006-05-01

    This report presents the analysis of ultracapacitors for mild/moderate hybrid electric vehicle (HEV) performance. The objectives of this report are to: (1) review the fuel economy improvement trends of today's HEVs with respect to degree of hybridization; (2) perform analysis to see the extent of fuel economy improvement possible with various strategies in mild/moderate HEVs, with no engine downsizing, using either batteries or ultracapacitors; (3) identify energy requirements of various driving events/functions--what matches a limited ucap's energy; and (4) discuss potential roles for high-voltage ultracapacitors in HEVs, if any.

  18. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  19. A Miniature Hybrid Robot Propelled by Legs Matthew C. Birch, Roger D. Quinn, Geon Hahm, Stephen M. Phillips, Barry Drennan, Randall D. Beer, Xinyu Yu, Steven

    E-Print Network [OSTI]

    . The hybrid robot uses its legs as the drive mechanism and its passive wheels have a large diameter to help behavior of the house cricket, Acheta domesticus. The cricket has large and powerful rear legs that enable

  20. Consider Steam Turbine Drives for Rotating Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment...

  1. US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    DRIVE Technical Teams in determining performance goals and validation metrics. vsattroadmapjune2013.pdf More Documents & Publications US DRIVE Driving Research and Innovation...

  2. Vehicle Technologies Office: 2012 Propulsion Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics...

  3. Technology Transfer Webinar on November 12: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on November 12:...

  4. Center for the Commercialization of Electric Technologies Smart...

    Open Energy Info (EERE)

    move through the system, and the use of integrated Smart Grid technologies, including household and community battery storage, smart meters and appliances, plug-in hybrid electric...

  5. FY 2008 DOE Vehicle Technologies Office Annual Merit Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology (Stephen Goguen) Thursday, February 28, 2008 Hybrid Electric SystemsAdvanced Power Electronics and Electric Motors R&D (Susan Rogers and Mike Olszewski) Vehicles and...

  6. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Energy Savers [EERE]

    Application Technology Manufacturer Fleet Years Collected Delivery Trucks All Electric Smith Newton Various 2012-2014 Class 8 Diesel Tractors Hybrid Electric Kenworth and...

  7. Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and variable valve timing have become commonplace while other technologies like gasoline direct injection, cylinder deactivation, hybrid drivetrains and continuously variable...

  8. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  9. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  10. Traction Drive Systems Breakout Group

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGEDepartment ofpresentationTRACTION DRIVE SYSTEM

  11. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtended Facility SGP RelatedRural Driving

  12. Formula Hybrid International Competition

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    , and computerized control systems. But the greatest obstacle of all was that hybrid cars could not meet newlyFormula Hybrid International Competition May 4, 5, 6, 2009 #12;09 annual third We are thrilled to have 30 cars competing this year. The competition is the result of the hard work of many people

  13. Hybrid Quantum Cloning Machine

    E-Print Network [OSTI]

    Satyabrata Adhikari; A. K. Pati; Indranil Chakrabarty; B. S. Choudhury

    2007-06-14

    In this work, we introduce a special kind of quantum cloning machine called Hybrid quantum cloning machine. The introduced Hybrid quantum cloning machine or transformation is nothing but a combination of pre-existing quantum cloning transformations. In this sense it creates its own identity in the field of quantum cloners. Hybrid quantum cloning machine can be of two types: (i) State dependent and (ii) State independent or Universal. We study here the above two types of Hybrid quantum cloning machines. Later we will show that the state dependent hybrid quantum-cloning machine can be applied on only four input states. We will also find in this paper another asymmetric universal quantum cloning machine constructed from the combination of optimal universal B-H quantum cloning machine and universal anti-cloning machine. The fidelities of the two outputs are different and their values lie in the neighborhood of ${5/6} $

  14. Diesel Engine Strategy & North American Market Challenges, Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies (OFCVT). deer07freese.pdf More Documents & Publications A View from the Bridge The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels...

  15. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  16. Hybrid Automata-based CEGAR for Rectangular Hybrid Systems

    E-Print Network [OSTI]

    Liberzon, Daniel

    Hybrid Automata-based CEGAR for Rectangular Hybrid Systems Pavithra Prabhakar, Sridhar Duggirala- example guided abstraction-refinement (CEGAR) for systems modelled as rectangular hybrid automata. The main difference, between our ap- proach and previous proposals for CEGAR for hybrid automata

  17. HYBRID LIMIT CYCLES AND HYBRID POINCARE-BENDIXSON

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    HYBRID LIMIT CYCLES AND HYBRID POINCAR´E-BENDIXSON Slobodan N. Simi´c Department of Electrical regular hybrid systems with no branching (Simi´c et al., 2000a). The first one provides a condition for asymptotic stability of hybrid closed orbits in terms of contraction-expansion rates of resets and flows

  18. Hybrid 2012 Innovative Hybrid Approaches to the Processing of

    E-Print Network [OSTI]

    EACL 2012 Hybrid 2012 Innovative Hybrid Approaches to the Processing of Textual Data Proceedings@aclweb.org ii #12;Introduction The hybrid approach term covers a large set of situations in which different of the dedicated task. Hybrid approaches are commonly used in various NLP applications (i.e., automatic creation

  19. Hybrid Systems State estimation for hybrid systems: applications

    E-Print Network [OSTI]

    Tomlin, Claire

    Hybrid Systems State estimation for hybrid systems: applications to aircraft tracking I. Hwang, H of a stochastic linear hybrid system, given only the continuous system output data, is studied. Well established techniques for hybrid estimation, known as the multiple model adaptive estimation algorithm

  20. EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition

    E-Print Network [OSTI]

    © EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid Michael significant amounts of the daily driving energy for the US light duty vehicle (cars, pickups, SUVs, and vans

  1. Technologies for Mobile ITS Applications and Safer Driving

    E-Print Network [OSTI]

    Manasseh, Christian Georges

    2010-01-01

    Graph depicting a hypothetical 2-dimensional hyper-planea hypothetical 2-dimensional hyper-plane separation Where L

  2. Vehicle Technologies Office: US DRIVE Partnership Plan, Roadmaps...

    Office of Environmental Management (EM)

    Energy Storage: Electrochemical Energy Storage Technical Team Roadmap Fuel Cells: Fuel Cell Technical Team Roadmap Grid Interaction: Grid Interaction Technical Team Roadmap...

  3. Technologies for Mobile ITS Applications and Safer Driving

    E-Print Network [OSTI]

    Manasseh, Christian Georges

    2010-01-01

    Wiley, [6] Shaikh, A. , Tewari, R. and Agarwal, M. : 'On theAlaska, 2002 Shaikh, A. , Tewari, R. and Agarwal, M. : 'On

  4. Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVPV-SiteTestingOffice of Energy EfficiencyReport |

  5. Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVPV-SiteTestingOffice of Energy EfficiencyReport

  6. MHK Technologies/Anaconda bulge tube drives turbine | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoosSlough BendVidalWoodlandInformation

  7. Defining Real World Drive Cycles to Support APRF Technology Evaluations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel BoffDepartment of Energy Defense,Department

  8. FY 2014 Annual Progress Report - Electric Drive Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FY 2007 FeeFederal Realin Target Capsules andFY

  9. Vehicle Technologies Office: U.S. DRIVE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department of Energy OfficeResourcesmap|Department of

  10. Vehicle Technologies Office: U.S. DRIVE 2014 Technical Accomplishments

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel Efficiency &Report | Department of Energy U.S.

  11. Vehicle Technologies Office: US DRIVE Partnership Plan, Roadmaps, and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel Efficiency &Report | Department of Energy

  12. Driving Sensing Technology in Oil & Gas | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector

  13. Solar air-conditioning-active, hybrid and passive

    SciTech Connect (OSTI)

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  14. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  15. EVOLUTION OF L HYBRID WAVES

    E-Print Network [OSTI]

    Karney, Charles

    . INTRODUCTIO In typical lower hybrid heating schemes, lower hybrid waves are launched at the wall sf tokamak. In this paper we study the C numerically, and determine the consequences of our results for lower hybrid heating hybrid heating of a tokamak. 11. THE CMKDV EQUAT The two-dimensional steady-state propagation of a single

  16. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  17. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  18. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  19. Centerless-drive solar collector system

    SciTech Connect (OSTI)

    Butler, B. L.

    1985-12-24

    A parabolic-trough solar collector system is disclosed, with each collector driven to track the sun using a ring driven in centerless fashion. The parabolic troughs are made of laminated plywood or molded or formed of plastics or metals. The drive motor moves a flexible belt, i.e., chain or cable, which is routed about the drive ring on each collector. The motion of the cable moves all drive rings together to track the sun. A photodetector senses the position of the sun and provides the signal needed to drive the collectors in the correct direction.

  20. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Broader source: Energy.gov (indexed) [DOE]

    January 16, 2011 Conference Call transcript: "Marketing & Driving Demand: Social Media Tools & Strategies," from the U.S. Department of Energy. Conference call transcript More...

  1. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  2. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  3. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  4. High Efficiency Driving Electronics for General Illumination...

    Office of Scientific and Technical Information (OSTI)

    Driving Electronics for General Illumination LED Luminaires Upadhyay, Anand 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION New generation of standalone LED driver platforms...

  5. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 grandchallengesportfoliopg8.pdf More Documents & Publications Grand...

  6. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 9 grandchallengesportfoliopg9.pdf More Documents & Publications Grand...

  7. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 6 grandchallengesportfoliopg6.pdf More Documents & Publications Grand...

  8. Fuel Economy: What Drives Consumer Choice?

    E-Print Network [OSTI]

    Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

    2008-01-01

    Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

  9. Fuel Economy: What Drives Consumer Choice?

    E-Print Network [OSTI]

    Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

    2007-01-01

    Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

  10. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  11. Introduction Hybrid ICNs

    E-Print Network [OSTI]

    Schenato, Luca

    analysis Experimental results Conclusion Real-Time Networks and Protocols for Industrial Automation Lucia-Time Networks & Protocols for Industrial Automation Hybrid ICNs Modeling of real wireless components IEEE 802 Simulative analysis Experimental results Conclusion Industrial Communication Networks Nowadays Industrial

  12. Assimilating hybridized architecture

    E-Print Network [OSTI]

    Wu, Jane C., 1977-

    2005-01-01

    The thesis searches for means of operation to deal with hybridized architecture. As a conceptual framework, sociology theory appears to be an insightful precedent, for it analyzes and classifies how multiple constituents ...

  13. Heavy Hybrid mesons Masses

    E-Print Network [OSTI]

    F. Iddir; L. Semlala

    2006-11-25

    We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

  14. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Hybrid models of transport in crowded environments

    E-Print Network [OSTI]

    Battiato, Ilenia

    2010-01-01

    6.2.5 Hybrid algorithm . . . . . . . . . . . . . . .88 Chapter 5 Hybrid Model for Reactive Flow in a5.3.1 Hybrid validation . . . . . . . . . . . . . . . vii

  16. Hybrid silicon evanescent approach to optical interconnects

    E-Print Network [OSTI]

    2009-01-01

    Big Island, HI, USA, 2006 Hybrid silicon evanescent approach10.1007/s00339-009-5118-1 Hybrid silicon evanescent approachthe recently developed hybrid silicon evanescent platform (

  17. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  18. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01

    and technologies for fusion energy with lasers and direct-direct drive inertial fusion energy targets. Report 06-02,Improved Inertial Fusion Energy Chamber Inter-Shot

  19. DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01

    This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

  20. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin [Advanced Vehicle Research Center, Danville, VA (United States)

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  1. METHODS OF RADIO-FREQUENCY CURRENT DRIVE

    E-Print Network [OSTI]

    -670 Radio-frequency waves can penetrate thermonuclear plasmas, depositing momentum and energy with great. INTRODUCTION Using radio-frequency (rf) waves to drive the toroidal current in tokamak reactors is attractiveMETHODS OF RADIO-FREQUENCY CURRENT DRIVE N. J. FISCH* Princeton Plasma Physics Laboratory

  2. The MITRE Corporation 7515 Colshire Drive

    E-Print Network [OSTI]

    Tritium JASON The MITRE Corporation 7515 Colshire Drive McLean, Virginia 22102-7508 (703) 983 ORGANIZATION REPORT NUMBER The MITRE Corporation JASON Program Office 7515 Colshire Drive McLean, Virginia of tritium per year of operation which must be bred as part of the overall reactor cycle. Traditionally

  3. DESIGN OF POWER-SPLIT HYBRID VEHICLES WITH A SINGLE PLANETARY GEAR Chiao-Ting Li

    E-Print Network [OSTI]

    Peng, Huei

    DESIGN OF POWER-SPLIT HYBRID VEHICLES WITH A SINGLE PLANETARY GEAR Chiao-Ting Li Department between gears on the planetary gearset K Final drive gear ratio on output shaft R Gear radius of the ring gear S Gear radius of the sun gear e (subscript) Engine MG (subscript) Electric machine out (subscript

  4. DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    regenerative braking, or with scarce power capacity for fast acceleration. The ratings of the ultracapacitor, regenerative braking is disconnected from the main computer of the traction drive system, and the battery", "Regenerative Braking". 1. Introduction Throughout the years hybrid vehicles have proofed themselves the shorter

  5. Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based on

    E-Print Network [OSTI]

    Noé, Reinhold

    Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based are used as energy storage. The size of the battery depends not only on the driving range, but also Deterministic Dynamic Programming. To determine an energy management to control the power flows to the storage

  6. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  7. Transient Lift-off Test Results for an Experimental Hybrid Bearing in Air 

    E-Print Network [OSTI]

    Klooster, David

    2011-02-22

    Inconel rotor attached via a high-speed coupling. The drive end is supported by ceramic ball bearings, while the hybrid bearing supports the opposite end. A magnetic bearing delivers the applied loading along the mid-span of the rotor. Many parameters...

  8. Interaction of ICRF waves with lower-hybrid driven suprathermal electrons

    SciTech Connect (OSTI)

    Ram, A.K.; Bers, A. ); Fuchs, V. ); Harvey, R.W. )

    1994-10-15

    We determine the conditions for which the interaction of mode converted ion-Bernstein waves (IBW) with the energetic electron tails created by lower hybrid waves (LHW) can lead to an enhancement in the current drive efficiency. This may help explain the synergy'' results obtained on JET.

  9. Control rod drive hydraulic system

    DOE Patents [OSTI]

    Ose, Richard A. (San Jose, CA)

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  10. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    SciTech Connect (OSTI)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.

  11. Hybrid opto-electric manipulation in microfluidics - opportunities and challenges

    SciTech Connect (OSTI)

    Kumar, Aloke [ORNL; Williams, Stuart J. [University of Louisville, Louisville; Chuang, Han-sheng [University of Pennsylvania; Green, Nicolas [University of Southampton, England; Wereley, Steven G. [Purdue University

    2011-01-01

    Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of technologies that employ both optical and electrical forces to achieve particle or fluid manipulation at the micro and nano scale. These technologies, which have emerged primarily over the last decade, have provided a revolutionary and fresh perspective at fundamental electrokinetic processes, as well as have engendered a novel applications and devices. Hybrid opto-electric techniques have been utilized to manipulate objects ranging in diversity from millimeter-sized droplets to nano-particles. This review article discusses the underlying principles, applications and future perspectives of various techniques that have emerged over the last decade under a unified umbrella.

  12. A Drive Laser for Multi-Bunch Photoinjector Operation

    SciTech Connect (OSTI)

    Gibson, D J; Cormier, E; Messerly, M J; Prantil, M A; Barty, C J

    2012-05-11

    Numerous electron beam applications would benefit from increased average current without sacrificing beam brightness. Work is underway at LLNL to investigate the performance of X-band photoinjectors that would generate electron bunches at a rate matching the RF drive frequency, i.e. one bunch per RF cycle. A critical part of this effort involves development of photo-cathode drive laser technology. Here we present a new laser architecture that can generate pulse trains at repetition rates up to several GHz. This compact, fiber-based system is driven directly by the accelerator RF and so is inherently synchronized with the accelerating fields, and scales readily over a wide range of drive frequencies (L-band through X-band). The system will be required to produce 0.5 {mu}J, {approx}200 fs rise time, spatially and temporally shaped UV pulses designed to optimize the electron beam brightness. Presented is the current status of this system, producing 2 ps pulses from a continuous-wave source.

  13. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  14. TMV Technology Capabilities Brake Stroke Monitor

    E-Print Network [OSTI]

    TMV Technology Capabilities Brake Stroke Monitor Brake monitoring systems are proactive maintenance This technology allows for CMV operators to have knowledge of their steer, drive, and tandem axle group weights setup is required. Current Safety/Enforcement Technologies EOBR (electronic on-board recorder) On

  15. Nutrient Management Module No. 14 Technological

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Nutrient Management Module No. 14 Technological Advances in Nutrient Management by Susan Mc CCA 1 NM CEU #12;Module 14 · Technological Advances in Nutrient Management2 Background Innovations of nutrient management tools. Driving these technological advances is the growing awareness of soil nutrient

  16. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01

    and Ostergaard, J. (2009). Battery energy storage technology2001). Vehicle-to-grid power: battery, hybrid and fuel cell468. United States Advanced Battery Consortium (2010). USABC

  17. Hybrid baryons in QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible withmore »a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  18. Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

  19. Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double

    E-Print Network [OSTI]

    Noé, Reinhold

    Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer storage for operation. High demands concerning power and energy density, small volume and weight is to combine storage technologies with complementary characteristics as a hybrid energy storage system. Thus

  20. Hybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009

    E-Print Network [OSTI]

    Lee, Dongwon

    . Larson PA Transportation Institute Automotive challenge features advanced vehicles, solar home Imagine you live in a solar home with a high-power energy capturing capacity. Now imagine you can choose any vehicle technology you need to match your lifestyle ­ electric, solar electric, hybrid, pluggable hybrid

  1. STATE ESTIMATION OF SOFC/GT HYBRID SYSTEM USING UKF Rambabu Kandepu*, 1

    E-Print Network [OSTI]

    Foss, Bjarne A.

    STATE ESTIMATION OF SOFC/GT HYBRID SYSTEM USING UKF Rambabu Kandepu*, 1 , Biao Huang** , Bjarne.Imsland@sintef.no Abstract: A description of a Solid Oxide Fuel Cell (SOFC) combined Gas Turbine (GT) hybrid system is given reliability. One of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC), due to its

  2. Entropy Generation Analysis of Desalination Technologies

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an ...

  3. Application of Innovative Technologies During Continuous Commissioning 

    E-Print Network [OSTI]

    Joo, I. S.; Liu, M.; Wang, J.; Hansen, K.

    2003-01-01

    ,436 square feet was used as a case study building. The new technologies are a variable speed drive volumetric tracking method for building pressure control, a recently developed fan airflow measurement method for duct static pressure reset, and a new...

  4. Creation and sustainment of manufacturing technology roadmaps

    E-Print Network [OSTI]

    Grillon, Louis S

    2012-01-01

    Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

  5. Low-Frequency Sonic Mixing Technology

    Broader source: Energy.gov [DOE]

    Typical mixing technology uses a drive mechanism—usually an electric, hydraulic, or pneumatic motor—to rotate a shaft with one or more impellers. While many other mixer designs are available,...

  6. Risks of using AP locations discovered through war driving

    E-Print Network [OSTI]

    Kotz, David

    Risks of using AP locations discovered through war driving Minkyong Kim, Jeffrey J. Fielding the actual locations are often unavailable, they use estimated locations from war driving estimated through war driving. War driving is the process of collecting Wi-Fi beacons by driving or walking

  7. Chapter 18: Variable Frequency Drive Evaluation Protocol

    SciTech Connect (OSTI)

    Romberger, J.

    2014-11-01

    An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol. Other ASD devices, such as magnetic drive, eddy current drives, variable belt sheave drives, or direct current motor variable voltage drives, are also not addressed. The VFD is by far the most common type of ASD hardware. With VFD speed control on a centrifugal fan or pump motor, energy use follows the affinity laws, which state that the motor electricity demand is a cubic relationship to speed under ideal conditions. Therefore, if the motor runs at 75% speed, the motor demand will ideally be reduced to 42% of full load power; however, with other losses it is about 49% of full load power.

  8. Sandia Energy - Electric Drive Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |EducationChemicalContactECECElectric

  9. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI)

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  10. Merging photovoltaic hardware development with hybrid applications in the USA

    SciTech Connect (OSTI)

    Bower, W.

    1993-11-01

    The use of multi-source power systems, ``hybrids,`` is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The US Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

  11. "Hybrid" Black Holes

    E-Print Network [OSTI]

    Valeri P. Frolov; Andrei V. Frolov

    2014-12-30

    We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

  12. Porosity in hybrid materials

    SciTech Connect (OSTI)

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  13. Wind turbine ring/shroud drive system

    DOE Patents [OSTI]

    Blakemore, Ralph W.

    2005-10-04

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  14. Corn Hybrids for Texas. 

    E-Print Network [OSTI]

    Rogers, J. S.; McAfee, T. E.

    1954-01-01

    Corn Hybrids for Terns ST LOCATIONS AREA I AREA II ARE4 Ill AREA IV 2Prdrie View 7.Tylw lZ.Lockhart 17.Waxahachie 22San Antonio 3.Cleveland 8.Mt. Pbctont I3Brsnha B.Garland 23Lamposas 4.Colbqe Sta. 9Sulphw Spp. 14Holland l9.0reenvilb 24...Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea...

  15. 10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1

  16. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    OF TECHNOLOGIES FOR HYBRID-ELECTRIC VEHICLES 4.1EnginesG.H. , SIMPLEV: Simple Electric Vehicle Simulation Program-G.H, SIMPLEV: Simple Electric Vehicle Simulation Program-

  17. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es009jang2011o.pdf More Documents & Publications Hybrid Nano...

  18. Hybrid Cryptography Alexander W. Dent

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Hybrid Cryptography Alexander W. Dent January 3, 2009 Version 1.1 This version is an update asymmet­ ric encryption schemes can benefit from a formalisation of the prin­ ciples of hybrid cryptography. The main focus of research in hybrid cryptography has been in producing e#cient asymmetric

  19. Hybrid Cryptography Alexander W. Dent

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Hybrid Cryptography Alexander W. Dent January 3, 2009 Version 1.1 This version is an update asymmet- ric encryption schemes can benefit from a formalisation of the prin- ciples of hybrid cryptography. The main focus of research in hybrid cryptography has been in producing efficient asymmetric

  20. Phase modulated rotor angle encoder for switched reluctance motor drive 

    E-Print Network [OSTI]

    Mahajan, Shailendra

    1993-01-01

    Advantages of the switched reluctance motor (SRM) drive makes it an attractive candidate for replacing many adjustable speed ac and dc drives, in both industrial and consumer applications. The switched reluctance drives ...