Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Technologies Office: Materials for Hybrid and Electric Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

for Hybrid and for Hybrid and Electric Drive Systems to someone by E-mail Share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Facebook Tweet about Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Twitter Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Google Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Delicious Rank Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Digg Find More places to share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

2

Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use...

3

Hybrid Braking System for Non-Drive Axles  

Energy.gov (U.S. Department of Energy (DOE))

A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using regenerative braking, which extends hybrid technology to non-drive axles.

4

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

5

Vehicle Technologies Office: Electric Drive Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

6

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

7

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DEPARTMENT OF ENERGY HYBRID DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors

8

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities...

9

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

10

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways #  

E-Print Network (OSTI)

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways # Alain Girault a a Inria the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles of their merging lane. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor

Girault, Alain

11

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways  

E-Print Network (OSTI)

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways Alain Girault a aInria Rh of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor near Houston

Girault, Alain

12

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

13

Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer  

DOE Patents (OSTI)

An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

Tamai, Goro; Zhou, Jing; Weslati, Feisel

2014-09-02T23:59:59.000Z

14

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DRIVE U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). Specifically, the Partnership is a forum for pre-competitive technical information exchange among partners to discuss R&D needs, develop joint goals and technology roadmaps, and evaluate R&D progress for a broad range of technical areas. By providing a framework for frequent and regular interaction among technical experts in a common area of expertise, the Partnership -

15

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

16

FY 2014 Annual Progress Report- Electric Drive Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

FY 2014 Annual Progress Report for the Electric Drive Technologies Program of the Vehicle Technologies Office, DOE/EE-1163

17

Pollution prevention drives membrane technologies  

SciTech Connect

Currently, such membrane technologies as crossflow micro-, ultra-, and nanofiltration, reverse osmosis, electrodialysis and pervaporation offer interesting possibilities, each tackling a specific aspect of pollution control. Although none of these methods can, on its own, alter or break down pollutants, each has the ability to separate, fractionate and concentrate contaminants. In addition, they: permit continuous, uninterrupted processing via automatic control; use far less energy than traditional treatment methods; require only minimal temperature changes and no chemical additives; exert no impact on contaminants, and keep them physically separated from the stream; and are easy to install, either alone or combined with other treatment systems, since they are modular and contain few moving parts. The paper discusses the benefits and disadvantages of membrane technology and recommends thorough testing.

Cartwright, P.

1994-09-01T23:59:59.000Z

18

Hybrid Fuel Cell Technology Overview  

SciTech Connect

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

19

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network (OSTI)

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid cascaded H-bridge multilevel converter, DC voltage balance control, multilevel motor drive, electric

Tolbert, Leon M.

20

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...  

Energy Savers (EERE)

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vehicle Technologies Office: Fact #452: January 15, 2007 Driving  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 15, 2: January 15, 2007 Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on AddThis.com... Fact #452: January 15, 2007 Driving Differences Those living in the center city drive fewer miles in a day than those in

22

Numerical modeling of lower hybrid heating and current drive  

SciTech Connect

The generation of currents in toroidal plasma by application of waves in the lower hybrid frequency range involves the interplay of several physical phenomena which include: wave propagation in toroidal geometry, absorption via wave-particle resonances, the quasilinear generation of strongly nonequilibrium electron and ion distribution functions, and the self-consistent evolution of the current density in such a nonequilibrium plasma. We describe a code, LHMOD, which we have developed to treat these aspects of current drive and heating in tokamaks. We present results obtained by applying the code to a computation of current ramp-up and to an investigation of the possible importance of minority hydrogen absorption in a deuterium plasma as the ''density limit'' to current drive is approached.

Valeo, E.J.; Eder, D.C.

1986-03-01T23:59:59.000Z

23

Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive  

E-Print Network (OSTI)

drive train is modeled and compared to a series hybrid drive train in operation on the EPA Urban is leveraging the intrinsically high power density of the hydraulic energy storage system through optimal enginePaper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive Train with Independent Wheel

Li, Perry Y.

24

Vehicle Technologies Office: U.S. DRIVE  

Energy.gov (U.S. Department of Energy (DOE))

U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced...

25

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive Selection Issues for HEV  

E-Print Network (OSTI)

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive--Comparison, electric propulsion, hybrid electric vehicle (HEV). I. INTRODUCTION SELECTION of traction motors for hybrid of electric motors adopted or under serious consideration for HEVs as well as for EVs include the dc motor

26

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity 2012 DOE Hydrogen...

27

MHK Technologies/Anaconda bulge tube drives turbine | Open Energy  

Open Energy Info (EERE)

Anaconda bulge tube drives turbine Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile Primary Organization Checkmate SeaEnergy Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anaconda uses a large water filled distensible rubber tube floating just beneath the ocean surface and oriented parallel to wave direction As a wave passes the bulge tube is lifted with the surrounding water and this causes a bulge wave to be excited which then passes down the tubes walls gathering energy from the ocean wave as it passes By matching the speed of the bulge wave to that of the sea wave resonance is achieved and high power capture becomes possible The bulge waves are then used to drive a turbine generator located at the stern of the device

28

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

29

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's)...

30

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger concerning the electrical machine control. This paper deals with the control of this drive [1], focusing

Paris-Sud XI, Université de

31

Theoretical study of ion toroidal rotation in the presence of lower hybrid current drive in a tokamak  

E-Print Network (OSTI)

In this thesis, the effect of the lower hybrid current drive on ion toroidal rotation in a tokamak is investigated theoretically. Lower hybrid frequency waves are utilized to drive non-inductive current for steady state ...

Lee, Jungpyo

2013-01-01T23:59:59.000Z

32

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

33

Hybrid-drive implosion system for ICF targets  

DOE Patents (OSTI)

Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

Mark, J.W.K.

1987-10-14T23:59:59.000Z

34

A method for the prediction of future driving conditions and for the energy management optimisation of a hybrid electric vehicle  

Science Journals Connector (OSTI)

Vehicular communications are expected to enable the development of Intelligent Cooperative Systems for solving crucial problems related to mobility: road safety, traffic management etc. Information and Communication Technologies could also play an important role in order to optimise the energy management of conventional, hybrid and electrical vehicles and, thus, to reduce their environment impact. In particular, vehicular communications could be used to predict driving conditions with the objective to determine future load power demand. An adaptive energy management strategy for series Hybrid Electric Vehicles (HEVs) based on genetic algorithm optimised maps and the Simulation of Urban Mobility (SUMO) predictor is presented here.

Teresa Donateo; Damiano Pacella; Domenico Laforgia

2012-01-01T23:59:59.000Z

35

NETL: Control Technology: Advanced Hybrid Particulate Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

36

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

37

GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, Energy, and  

E-Print Network (OSTI)

GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, EnergyDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, Energy, and Endurance by Zhichao There are trade-offs among performance, energy, and device endurance for storage systems. These trade-offs become

Zadok, Erez

38

Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT  

SciTech Connect

Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

1985-03-01T23:59:59.000Z

39

Commissioning of the Lower Hybrid Current Drive System on Alcator C-Mod  

E-Print Network (OSTI)

cooled magnets which allow sustained 5 T pulse durations at up to 5 s (several resistive diffusion times System (TPS) and programmable logic controller. Critical protection, control and status information- A Lower Hybrid Current Drive (LHCD) system has been developed for current profile control of advanced

Basse, Nils Plesner

40

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Energy.gov (U.S. Department of Energy (DOE))

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

42

MHK Technologies/SMART Hybrid System | Open Energy Information  

Open Energy Info (EERE)

Application Technology Description Smart Hydro Power's hybrid system combines a micro hydro kinetic turbine with solar panels (and sometimes other sources) to provide...

43

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

44

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network (OSTI)

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

45

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

46

Argonne Transportation Technology R&D Center - APRF - Four-wheel Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Four-Wheel Drive Chassis Dynamometer Test Cell Argonne has lead responsibility for a project with the U.S. Department of Energy's (DOE's) Vehicle Technologies Program to conduct emission and energy-efficiency tests on hybrid electric vehicles (HEVs), sport utility vehicles, and advanced technology vehicles. These tests require a state-of-the-art electric four-wheel-drive (4WD) chassis dynamometer in a climate-controlled environment with appropriate controls and instrumentation for highly accurate emissions and fuel measurements. This test cell was built as part of the Advanced Powertrain Research Facility. 4WD Chassis Dynamometer Argonne obtained professional engineering/architectural services to assist with the preliminary design and construction documents for a world-class facility capable of benchmarking and developing the most advanced powertrains for future cars and trucks, and to have equipment ready for SULEV (super ultra low emission vehicle) and a full dilution tunnel for measurements of diesel particulate matter. The total test cell design was approximately 75% completed and the building foundation was finished in November 2000. Major equipment, such as the dynamometer, constant volume sampler, and emission bench, was ordered and built. A grand opening ceremony was held November 15, 2002.

47

Technological Advances in Hydraulic Drive Trains for Wind Turbines  

Science Journals Connector (OSTI)

The reliability of frequency converters is a major concern for wind turbines. ChapDrive AS has built and tested a hydraulic drive train for variable speed wind turbines which includes a synchronous generator that is connected to the grid without the use of a frequency converter. The hydraulic drive train consists of a hydraulic pump, a variable displacement hydraulic motor, and a synchronous generator, which enables rotor speed control while maintaining synchronous speed of the generator. It has been proven that the hydraulic drive train and the ChapDrive Control system are able to absorb fluctuations in the wind speed and maintain a constant power output without the use of frequency converters. The hydraulic drive train and the ChapDrive Control system has been modeled analytically and compared to measurements, demonstrating a good agreement between simulations and measurements.

K.E.Thomsen; O.G. Dahlhaug; M.O.K. Niss; S.K. Haugset

2012-01-01T23:59:59.000Z

48

Coupling of alpha-channeling to parallel wavenumber upshift in lower hybrid current drive  

E-Print Network (OSTI)

Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic alpha particles born from fusion reactions in eventual tokamak reactors. In the presence of the expected strong alpha particle birth gradient, however, this interaction can produce wave amplification rather than wave damping, but only if the launch position and orientation of the waveguides are suitably arranged. The flexibilities in achieving the amplification effect are identified through a consideration of symmetries in the channeling effect, in the wave propagation, and in the tokamak field configuration. Interestingly, for current drive that supports the poloidal magnetic field, the achievement of wave amplification through alpha channeling is fundamentally coupled to effects leading to the elusive parallel wavenumber upshift.

Ochs, Ian E; Fisch, Nat J

2014-01-01T23:59:59.000Z

49

Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report  

SciTech Connect

Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

Ayers, C.W.

2004-11-23T23:59:59.000Z

50

Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...  

Energy Savers (EERE)

VEAccomplishmentsReport.pdf More Documents & Publications US DRIVE Electrochemical Energy Storage Technical Team Roadmap Progress of DOE Materials, Manufacturing Process R&D, and...

51

Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations  

Energy.gov (U.S. Department of Energy (DOE))

Results of simulations of LDD hybrid vehicle under hybrid drive cycle conditions in PSAT show the potential impact of urea-SCR NOx controls on HEVs and PHEVs powered by lean-burn engines.

52

Comparative LCA of a Linear Motor and Hybrid Feed Drive under High Cutting Loads  

Science Journals Connector (OSTI)

Abstract Linear motor drives (LMDs) are well known to provide significant advantages in terms of positioning speed and accuracy over traditional screw drives (SDs), making them better suited for high-speed high-precision machine tools. However, their use in such machine tools is severely limited by their tendency to consume a lot of electrical energy and cause thermal issues, particularly under high cutting loads. A hybrid feed drive (HFD) has recently been proposed as a possible solution to this dilemma. The HFD switches between LMD and SD actuation depending on the mode of the manufacturing operation, thus achieving speeds and accuracies similar to \\{LMDs\\} while consuming much less energy. This paper presents a comparative life cycle analysis (LCA) of the proposed HFD with an LMD as the baseline for the comparison. The functional unit is taken as the production of parts that involve heavy cutting by a small-sized 3-axis precision milling machine for 250 8-hour work days per year over a 12-year first-use life span. Energy savings provided by the HFD during its use phase vis-a-vis the additional energy investments into the HFD at various phases in its life cycle are compared. The analysis predicts a net positive impact, in terms of energy and the environment, for the HFD compared to the LMD under high cutting loads.

Siddharth Kale; Nattasit Dancholvichit; Chinedum Okwudire

2014-01-01T23:59:59.000Z

53

Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised  

SciTech Connect

The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

2007-07-31T23:59:59.000Z

54

Lower Hybrid Heating and Current Drive on the Alcator C-Mod Tokamak  

SciTech Connect

On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n|| spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.

R. Wilson, R. Parker, M. Bitter, P.T. Bonoli, C. Fiore, R.W. Harvey, K. Hill, A.E. Hubbard, J.W. Hughes, A. Ince-Cushman, C. Kessel, J.S. Ko, O. Meneghini, C.K. Phillips, M. Porkolab, J. Rice, A.E. Schmidt, S. Scott,S. Shiraiwa, E. Valeo, G.Wallace, J.C. Wright and the Alcator C-Mod Team

2009-11-20T23:59:59.000Z

55

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles  

Science Journals Connector (OSTI)

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles ... We do not consider other life cycle stages of the vehicles (e.g., manufacturing and end-of-life) or energy supply infrastructure (e.g., facility construction, maintenance, decommissioning, and labor). ... Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids. ...

Leon Raykin; Heather L. MacLean; Matthew J. Roorda

2012-05-08T23:59:59.000Z

56

JV between Paratransit Inc and Hybrid Technologies Inc | Open Energy  

Open Energy Info (EERE)

Paratransit Inc and Hybrid Technologies Inc Paratransit Inc and Hybrid Technologies Inc Jump to: navigation, search Name JV between Paratransit, Inc and Hybrid Technologies, Inc Place Sacramento, California Zip 95822 Sector Vehicles Product JV to determine the utility of lithium powered vehicles produced by Hybrid Technologies for taxicabs and vehicles that are fully accessible to disabled passengers. Coordinates 38.579065°, -121.491014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.579065,"lon":-121.491014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors  

SciTech Connect

This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

Bosia, G.; Ragona, R. [Department of Physics, Universit di Torino (Italy); Helou, W.; Goniche, M.; Hillaret, J. [CEA/DSM/IRFM F-13 108 St Paul Les Durance (France)

2014-02-12T23:59:59.000Z

58

Cascaded H-bridge inverter motor drives for hybrid electric vehicle applications  

Science Journals Connector (OSTI)

This paper presents the asymmetric cascaded H-bridge multilevel inverter for electric vehicles (EV) and hybrid electric vehicles (HEV) applications. Currently available power inverter systems for HEVs use a DC-DC boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. Asymmetric cascaded H-bridge multilevel inverter design for EV and HEV applications without the use of inductors to output a boosted AC voltage is proposed in this paper. Traditionally, each H-bridge needs a DC power supply having equal values of DC power sources. The proposed design uses the asymmetric cascaded multilevel inverter using non-equal DC power sources based on specified ratios. A fundamental switching scheme is used to do modulation control and to produce a seven-level phase voltage.

P. Renuga; T. Prathiba

2012-01-01T23:59:59.000Z

59

Hybrid phase shifted carrier modulation fed five-phase multilevel inverter for multiphase induction motor drive  

Science Journals Connector (OSTI)

This paper proposes an energy efficient modulation scheme suitable for multilevel inverter fed five-phase induction motor. Five-phase multilevel inverter provides good quality five-phase variable voltage and variable frequency supply to five-phase induction motor, which ensure reduced torque ripple and improved drive efficiency. This modulation inherits the features of fundamental frequency modulation and phase shifted carrier modulation in power conversion and resolves the contradiction between high frequency and accuracy in a digital control scheme. Base modulator and hybrid formulation control algorithms are realised with TMS320F2407 DSP processor and Xilinx XC95108 CPLD controllers. The performance studies with induction motor are evaluated in terms of power loss, weighted total harmonic distortion and torque ripple. Selected simulation and experiment results are reported to verify and validate the effectiveness of the proposed technique.

C. Govindaraju

2013-01-01T23:59:59.000Z

60

Vehicle Technologies Office Merit Review 2014: E-drive Vehicle Sales Analyses  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the E-drive...

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

62

Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study  

SciTech Connect

To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

1997-12-01T23:59:59.000Z

63

Defining Real World Drive Cycles to Support APRF Technology Evaluations  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

64

MHK Technologies/Hybrid System | Open Energy Information  

Open Energy Info (EERE)

System System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid System.jpg Technology Profile Primary Organization Ryokuseisha Corporation Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description To take advantage of wave power and solar power to provide a stable power source a Wave Activated Generator was combined with a solar battery In stormy the wave activated generator is used and in fair weather solar battery is used to provide a power supply with a high output This is used as the power source for measuring instruments on the islands off the power source for measuring instruments on the islands off the southernmost coast of Japan and for the buoy of the United States Coast Guard and TRINITY HOUSE LIGHTHOUSES SERVICE

65

Feasible Caf Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

66

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

67

Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Herbert E. andrus, Jr. Principal Investigator ALSTOM Power 2000 Day Hill Rd. Windsor, CT 06095 860-285-4770 herbert.e.andrus@power.alstom.com Hybrid Combustion-GasifiCation CHemiCal loopinG Coal power teCHnoloGy development Description Gasification technologies can provide a stable, affordable energy supply for the nation, while also providing high efficiencies and near zero pollutants. With coal

68

Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

7: May 30, 2011 7: May 30, 2011 Number of Hybrid Models, 2001-2011 to someone by E-mail Share Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Facebook Tweet about Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Twitter Bookmark Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Google Bookmark Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Delicious Rank Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Digg Find More places to share Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on AddThis.com... Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011

69

Vehicle Technologies Office: Fact #431: July 3, 2006 Would You Buy a Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

1: July 3, 2006 1: July 3, 2006 Would You Buy a Hybrid Vehicle? to someone by E-mail Share Vehicle Technologies Office: Fact #431: July 3, 2006 Would You Buy a Hybrid Vehicle? on Facebook Tweet about Vehicle Technologies Office: Fact #431: July 3, 2006 Would You Buy a Hybrid Vehicle? on Twitter Bookmark Vehicle Technologies Office: Fact #431: July 3, 2006 Would You Buy a Hybrid Vehicle? on Google Bookmark Vehicle Technologies Office: Fact #431: July 3, 2006 Would You Buy a Hybrid Vehicle? on Delicious Rank Vehicle Technologies Office: Fact #431: July 3, 2006 Would You Buy a Hybrid Vehicle? on Digg Find More places to share Vehicle Technologies Office: Fact #431: July 3, 2006 Would You Buy a Hybrid Vehicle? on AddThis.com... Fact #431: July 3, 2006 Would You Buy a Hybrid Vehicle?

70

3736 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010 Asymmetrical Multilevel Inverter for Traction Drives  

E-Print Network (OSTI)

this "one-source" multilevel system. Index Terms--AC motor drives, electric vehicles (EVs), hybrid EVs (HEVs Multilevel Inverter for Traction Drives Using Only One DC Supply Juan Dixon, Senior Member, IEEE, Javier of isolated and floating dc supplies, which makes these converters complicated to implement in electric

Catholic University of Chile (Universidad Católica de Chile)

71

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

72

PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application  

SciTech Connect

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

Staunton, R.H.

2004-10-11T23:59:59.000Z

73

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

SciTech Connect

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

74

MHK Technologies/Hybrid Float | Open Energy Information  

Open Energy Info (EERE)

Float Float < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid Float.jpg Technology Profile Primary Organization PerpetuWave Power Pty Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Elongated floats operate parallel to the wave fronts so that maximum energy extraction from the waves is possible by the large cross sectional area of the floats to be immersed in a wave front at once and thence moved upwards with the wave A further major feature of the Technology is the motion of the floats that due to the trailing arm type design move backwards as well as upwards so that the energy in the moving water and of any breaking waves on the floats is transferred to useable energy of the float by forcing the floats backwards as well as upwards This motion mimics the motion of an unattached float on the surface of the water as waves pass This is unique to our technology and combined with the large cross sectional area offered by the float design in the highest pulse loading possible This is repeated a number of times as a wave passes through with a resultant optimum energy extraction from the wave Below the vessel are fixed horizontal staliser plates that limit the r

75

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

76

Vehicle Technologies Office: Fact #268: May 19, 2003 New Hybrids Getting  

NLE Websites -- All DOE Office Websites (Extended Search)

8: May 19, 2003 8: May 19, 2003 New Hybrids Getting Better Fuel Economy to someone by E-mail Share Vehicle Technologies Office: Fact #268: May 19, 2003 New Hybrids Getting Better Fuel Economy on Facebook Tweet about Vehicle Technologies Office: Fact #268: May 19, 2003 New Hybrids Getting Better Fuel Economy on Twitter Bookmark Vehicle Technologies Office: Fact #268: May 19, 2003 New Hybrids Getting Better Fuel Economy on Google Bookmark Vehicle Technologies Office: Fact #268: May 19, 2003 New Hybrids Getting Better Fuel Economy on Delicious Rank Vehicle Technologies Office: Fact #268: May 19, 2003 New Hybrids Getting Better Fuel Economy on Digg Find More places to share Vehicle Technologies Office: Fact #268: May 19, 2003 New Hybrids Getting Better Fuel Economy on AddThis.com...

77

Vehicle Technologies Office: Fact #722: April 9, 2012 Hybrid Vehicles Can  

NLE Websites -- All DOE Office Websites (Extended Search)

2: April 9, 2012 2: April 9, 2012 Hybrid Vehicles Can Save Money over Time to someone by E-mail Share Vehicle Technologies Office: Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over Time on Facebook Tweet about Vehicle Technologies Office: Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over Time on Twitter Bookmark Vehicle Technologies Office: Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over Time on Google Bookmark Vehicle Technologies Office: Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over Time on Delicious Rank Vehicle Technologies Office: Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over Time on Digg Find More places to share Vehicle Technologies Office: Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over Time on AddThis.com...

78

Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 21, 2004 5: June 21, 2004 Diesel and Hybrid Vehicle Preferences to someone by E-mail Share Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Facebook Tweet about Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Twitter Bookmark Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Google Bookmark Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Delicious Rank Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Digg Find More places to share Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on AddThis.com...

79

Applicability of a Hybrid Retorting Technology in the Green River Formation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applicability of a Hybrid Retorting Technology in the Green River Applicability of a Hybrid Retorting Technology in the Green River Formation Applicability of a Hybrid Retorting Technology in the Green River Formation A broad range of new technologies is emerging, aimed at the efficient, economic, and sustainable production of fuels from oil shale resources. A number of these hybrid oil shale technologies are focused on development of near-surface oil shale resources. The purpose of this analysis is to identify the near surface oil shale resource in the Green River Formation that is amenable to commercial development using such hybrid technology. Applicability of a Hybrid Retorting Technology in the Green River Formation More Documents & Publications Microsoft Word - 338M_Geothermal_Project_Descriptions Before the House Energy and Commerce Subcommittee on Energy and Power

80

Applicability of a Hybrid Retorting Technology in the Green River Formation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applicability of a Hybrid Retorting Technology in the Green River Applicability of a Hybrid Retorting Technology in the Green River Formation Applicability of a Hybrid Retorting Technology in the Green River Formation A broad range of new technologies is emerging, aimed at the efficient, economic, and sustainable production of fuels from oil shale resources. A number of these hybrid oil shale technologies are focused on development of near-surface oil shale resources. The purpose of this analysis is to identify the near surface oil shale resource in the Green River Formation that is amenable to commercial development using such hybrid technology. Applicability of a Hybrid Retorting Technology in the Green River Formation More Documents & Publications Microsoft Word - 338M_Geothermal_Project_Descriptions Oil Shale Research in the United States

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network (OSTI)

Electric Vehicle Traction Drive Shengnan Li Student Member, IEEE The University of Tennessee Department Science Knoxville, TN, 37996, USA tolbert@utk.edu Abstract ­ In hybrid electric vehicles (HEV), a battery-source inverter, dc bus capacitor, Electric vehicle, Harmonic current, Hybrid electric vehicle. I. INTRODUCTION

Tolbert, Leon M.

82

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

of the engine and electric drive system. In the case of afor various types of electric drive mid- size passenger carsby relying on the electric drive, which is inherently

Burke, Andy

2009-01-01T23:59:59.000Z

83

Technology Solutions and Programmatic Approaches: Driving Innovation in Residential Energy Efficiency Strategies  

Energy.gov (U.S. Department of Energy (DOE))

"Technology Solutions and Programmatic Approaches: Driving Innovation in Residential Energy Efficiency Strategies," by Kat A. Donnelly, July 11, 2012. Describes how the program relies on technology to enhance the program including a new, industry specific platform customized in collaboration with program partners. The programs including homeowners/customers, trade allies, staff, and program administrators. The tools are technology platform provides tools for the various partners involved in specifically designed to increase uptake of energy efficiency programs, as well as provide real-time tracking of impacts and other key metrics.

84

Washington, D.C. and Indiana: Allison Hybrid Technology Achieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system, which features regenerative braking enabled by two motorgenerator electric machines within the hybrid system. In addition to WMATA's buses, Allison's hybrid bus...

85

Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a limited amount of all-electric driving range that is drawn from a plug and uses a gasoline engine to provide additional range when the battery is depleted. The automakers have...

86

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

Assessmentof Electric-Drive Vehicles: Policies, Markets, andInternational Assessment Electric-Drive Vehicles: Policies,International Assessment Electric-Drive Vehicles Policies,

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

87

Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 2, 5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost to someone by E-mail Share Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Facebook Tweet about Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Twitter Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Google Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Delicious Rank Vehicle Technologies Office: Fact #595: November 2, 2009

88

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open  

Open Energy Info (EERE)

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Focus Area: Electricity Topics: Policy Impacts Website: www.nrel.gov/vehiclesandfuels/vsa/pdfs/40485.pdf Equivalent URI: cleanenergysolutions.org/content/cost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Fuel Efficiency Standards This paper presents a comparison of the costs and benefits of plug-in hybrid electric vehicles (PHEVs) relative to hybrid electric and conventional vehicles. A detailed simulation model is used to predict

89

Techno-economic evaluation of hybrid energy storage technologies for a solarwind generation system  

Science Journals Connector (OSTI)

Huazhong University of Science and Technology is planning to establish a hybrid solarwind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted.

L. Ren; Y. Tang; J. Shi; J. Dou; S. Zhou; T. Jin

2013-01-01T23:59:59.000Z

90

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

91

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

92

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

93

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 30, NO. 1, JANUARY 1, 2012 1 Integrated Hybrid Silicon Transmitter  

E-Print Network (OSTI)

the III-V and silicon can be completely transferred to the silicon wave- guide enabling integration for wave-guiding and III-V for optical gain/absorption, the design space for the hybrid platform differsJOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 30, NO. 1, JANUARY 1, 2012 1 Integrated Hybrid Silicon

Bowers, John

94

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network (OSTI)

diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design

Grizzle, Jessy W.

95

NETL: News Release - Honeywell Hybrid Fuel Cell Technology To Be Added to  

NLE Websites -- All DOE Office Websites (Extended Search)

February 14, 2001 February 14, 2001 Honeywell Hybrid Fuel Cell Technology To be Added to DOE R&D Program Goal is to Develop Distributed Power Generation PITTSBURGH, PA - Generating power close to the consumer - a concept called distributed generation - may be one way to take the future strain off the nation's electric grid. Two of the best technologies for distributed generation are the fuel cell and the micro-turbine - but an even better approach may be a "hybrid" of both technologies. The Department of Energy's Office of Fossil Energy is already testing one type of fuel cell-turbine hybrid, and this spring will begin running a second type of test unit. Now, the Department, through its National Energy Technology Laboratory, plans to add a third hybrid system to its fossil energy research program.

96

Vehicle Technologies Office Merit Review 2014: Hoosier Heavy Hybrid Center of Excellence at Purdue University  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Purdue University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Hoosier Heavy Hybrid Center...

97

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

98

Technology Roadmap for Next Generation PC: Hybrid PC  

Science Journals Connector (OSTI)

Technology roadmap (TRM) is a powerful management tool for technology planning process. The uniqueness of this tool enables firms to identify and develop technology alternatives that are required to meet a ... li...

Zack Khalifa; Mohamed Burgan; Tila Bregaj

2014-01-01T23:59:59.000Z

99

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

hybrids with high power electric motors for which it may beusing only a 6 kW electric motor. Vehicle projects inhybrids with high power electric motors for which it may be

Burke, Andy

2009-01-01T23:59:59.000Z

100

Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the major accomplishments of the U.S. DRIVE Partnership over the course of 2013.

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

102

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data  

SciTech Connect

Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

LaClair, Tim J [ORNL

2012-01-01T23:59:59.000Z

103

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

104

Advancing Plug In Hybrid Technology and Flex Fuel Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss063bazzi2012...

105

Advancing Plug In Hybrid Technology and Flex Fuel Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss063bazzi2011...

106

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

107

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

10. Burke AF. Materials Research for High Energy Densityhigh energy density electrochemical capacitors .. 7 Table 5 Materialhigh energy density electrochemical capacitors Technology Energy storage Energy density Power type Electrode mechanisms Cell voltages Wh/kg density materials

Burke, Andy

2009-01-01T23:59:59.000Z

108

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System  

Science Journals Connector (OSTI)

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System ... In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. ...

A.I. Schfer; A. Broeckmann; B.S. Richards

2006-12-29T23:59:59.000Z

109

Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies  

SciTech Connect

Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.

David Holloway

2005-09-30T23:59:59.000Z

110

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy  

Office of Energy Efficiency and Renewable Energy (EERE)

Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

111

Technology and physics implications of oscillating-field current drive in reversed-field pinches  

SciTech Connect

The property of reversed-field pinches (RFPs) to relax to a near- minimum-energy state is the basis of oscillating-field current drive (OFCD), wherein plasma current is driven by modulating in quadrature the external toroidal and poloidal magnetic fields. Coupled plasma/circuit OFCD simulations of RFPs ranging from present experiments (ZT-P and ZT-40M) to the reactor (TITAN) indicate that the drive frequency and the amplitude of the plasma-current oscillations decrease with decreased plasma resistance so that minimum frequencies (/approximately/25 Hz) and plasma-current amplitudes (/approximately/1.6%) and maximum efficiencies (/approximately/0.3 A/W) are attained in the reactor regime. Methods for minimizing the reactive powers and for optimizing the current-drive efficiency for OFCD in RFPs have been identified. 15 refs., 4 figs., 1 tab.

Bathke, C.G.; Krakowski, R.A.; Schoenberg, K.F.

1988-01-01T23:59:59.000Z

112

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

113

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

114

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

115

Company Adds Commercial Trucks to List of Hybrids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids August 30, 2010 - 10:00am Addthis Allison’s bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Lindsay Gsell Allison Transmission uses $62.8 million in Recovery Act funding for commercial truck hybrid system Project will create or retain close to 100 manufacturing-related jobs in Indiana Hybrid systems could reduce diesel consumption by 35 percent in

116

Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

117

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

118

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

119

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

120

H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.  

SciTech Connect

The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lower hybrid current drive at densities required for thermonuclear reactors R. Cesario 1), L. Amicucci 2), M. L. Apicella 1), G. Calabr 1), A. Cardinali 1), C. Castaldo 1),  

E-Print Network (OSTI)

EXW/P7-02 Lower hybrid current drive at densities required for thermonuclear reactors R@frascati.enea.it Abstract. For the progress of the thermonuclear fusion energy research based on the tokamak concept in ITER (International Thermonuclear Experiment Reactor) at relatively high plasma densities also

Vlad, Gregorio

122

Investigation of dynamic driving cycle effect on the degradation of proton exchange membrane fuel cell by segmented cell technology  

Science Journals Connector (OSTI)

Abstract Durability is one of the most important limiting factors for the commercialization of proton exchange membrane fuel cell (PEMFC). Fuel cells are more vulnerable to degradation under operating conditions as dynamic load cycle or start up/shut down. The purpose of this study is to evaluate influences of driving cycles on the durability of fuel cells through analyzing the degradation mechanism of a segmented cell in real time. This study demonstrates that the performance of the fuel cell significantly decreases after 200 cycles. The segmented cell technology is used to measure the local current density distribution, which shows that the current density at the exit region and the inlet region declines much faster than the other parts. Meanwhile, electro-chemical impedance spectroscopy (EIS) reveals that after 200 cycles the ohmic resistance of fuel cell increases, especially at the cathode, and electro-chemical surface area (ESA) decreases from 392 to 307cm2mg?1. Furthermore, scanning electron microscopy (SEM) images of the membraneelectrode assembly (MEA) in cross-section demonstrate crackle flaw on the surface of the catalyst layer and the delamination of the electrodes from the membrane. Transmission electron microscope (TEM) results also show that the Pt particle size increases distinctly after driving cycles.

R. Lin; F. Xiong; W.C. Tang; L. Tcher; J.M. Zhang; J.X. Ma

2014-01-01T23:59:59.000Z

123

HybriDrive Propulsion System  

NLE Websites -- All DOE Office Websites (Extended Search)

HybriDrive HybriDrive ® Propulsion System Cleaner, smarter power for transit DOE/FTA Fuel Cell Research Priorities Workshop Washington, DC 7 June 2010 Bart W. Mancini Sr. Principal Systems Engineer BAE Systems Ph: 607-770-4103 bart.mancini@baesystems.com 2 Overview 3 * BAE Systems FC Experience / Deployments * Technology gaps/barriers to full commercialization of fuel cell buses * Well-to-wheels energy efficiency and emissions * Cost metrics * Bus integration issues * Fuel cell bus R&D needs * Future plans BAE Systems FC Experience / Deployments 4 * 1998 - Georgetown/FTA/DOE Fuel Cell Bus #1 (still serviceable) * UTC 100 kW Phosphoric Acid FC using on-board Methanol Reformate, Hybrid propulsion & Electric accessories * 2000 - Georgetown/FTA/DOE Fuel Cell Bus #2 (retired) *

124

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

SciTech Connect

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

125

Hybrid LCA of a Design for Disassembly Technology: Active Disassembling Fasteners of Hydrogen Storage Alloys for Home Appliances  

Science Journals Connector (OSTI)

Hybrid LCA of a Design for Disassembly Technology: Active Disassembling Fasteners of Hydrogen Storage Alloys for Home Appliances ... Hybrid LCA of the implementation of a new active disassembling fastener into appliances was conducted with emphasis on the quality of recovered scrap. ... This paper deals with a life cycle assessment (LCA) based on the waste input?output (WIO) model of an ADF developed using hydrogen storage alloys. ...

Shinichiro Nakamura; Eiji Yamasue

2010-05-18T23:59:59.000Z

126

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and...

127

EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA  

SciTech Connect

Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop a characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.

LaClair, Tim J [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Fu, Joshua S. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Calcagno, Jimmy [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Yun, Jeongran [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

128

MW-class hybrid power system based on planar solid oxide stack technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale-Up of Planar SOFC Stack Scale-Up of Planar SOFC Stack Technology for MW-Level Combined Cycle System Final Report TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Reference: D0136 Submitted to NETL October 3, 2003 1 NETL-Hybrid Scale-UP/D0136/SS/V1 1 Executive Summary 2 Background, Objectives & Approach 3 SOFC Cell Geometry and Modeling 4 SOFC Power Scale-up 5 System Design and Costs 6 Conclusions & Recommendations A Appendix 2 NETL-Hybrid Scale-UP/D0136/SS/V1 Executive Summary SECA Strategy NETL wanted to understand if and how SECA-style anode-supported SOFC stacks could be scaled-up for use in MW-level combined cycle plants. * SECA strategy relies on the use of modular, mass produced, SOFC stacks in the 3 - 10 kW capacity range for a wide range of applications. * Technical feasibility small-scale applications has been evaluated by SECA:

129

Advanced Electric Drive Vehicle Education Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Electric Drive Vehicle Education Program Advanced Electric Drive Vehicle Education Program 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

130

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids, Part 1: Technical

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

131

Traction Drive Systems Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Drive Systems Breakout Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov EV Everywhere Traction Drive System * DOE goals for Electric Traction Drive System (TDS) innovations must be disruptive innovation focused to meet the CY2022 price target ($20,000 $25,000) for a mid-sized 5 passenger sedan having 5 year simple payback. Enhanced Efficiency Reduced Cost Traction Drive System EETT Roadmap: "Therefore, research is needed to develop technologies that are less expensive and, at the same time, smaller, lighter, more efficient, and equally reliable as conventional automotive technologies. "

132

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

133

Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: A qualitative analysis of responses and evaluations  

Science Journals Connector (OSTI)

Plug-in electric vehicles can potentially emit substantially lower CO2 emissions than internal combustion engine vehicles, and so have the potential to reduce transport emissions without curtailing personal car use. Assessing the potential uptake of these new categories of vehicles requires an understanding of likely consumer responses. Previous in-depth explorations of appraisals and evaluations of electric vehicles have tended to focus on early adopters, who may not represent mainstream consumers. This paper reports a qualitative analysis of responses to electric cars, based on semi-structured interviews conducted with 40 UK non-commercial drivers (20 males, 20 females; age 2470years) at the end of a seven-day period of using a battery electric car (20 participants) or a plug-in hybrid car (20 participants). Six core categories of response were identified: (1) cost minimisation; (2) vehicle confidence; (3) vehicle adaptation demands; (4) environmental beliefs; (5) impression management; and, underpinning all other categories, (6) the perception of electric cars generally as work in progress products. Results highlight potential barriers to the uptake of current-generation (2010) plug-in electric cars by mainstream consumers. These include the prioritization of personal mobility needs over environmental benefits, concerns over the social desirability of electric vehicle use, and the expectation that rapid technological and infrastructural developments will make current models obsolete. Implications for the potential uptake of future electric vehicles are discussed.

Ella Graham-Rowe; Benjamin Gardner; Charles Abraham; Stephen Skippon; Helga Dittmar; Rebecca Hutchins; Jenny Stannard

2012-01-01T23:59:59.000Z

134

Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE partner, Allison Transmission, Inc., has achieved commercial success in the greater Washington, D.C. area, with 1,480 hybrid buses on the road.

135

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

136

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

Not Available

2002-01-01T23:59:59.000Z

137

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

139

Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Web site and in print publications. Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION ◆ DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles

140

Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Testing of a 50-kW wind-diesel hybrid system at the National Wind Technology Center  

SciTech Connect

To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this paper include component characterization, such as power conversion losses for the rotary converter systems and battery round trip efficiencies. In addition, systems operation over this period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D.A.; Green, J.; Allderdice, A.; Rand, K.; Bianchi, J. [National Renewable Energy Lab., Golden, CO (United States); Linton, E. [New World Village Power, Waitsfield, VT (United States)

1996-07-01T23:59:59.000Z

142

Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management Combining Fluid Loops in Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

143

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

144

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

chemistries. In summary, electric-drive interest groups,the present and future of electric-drive vehicles, including24 -vii- 1.0 Introduction Electric-drive continues to pique

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

145

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

146

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

147

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

148

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

149

1308 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 15, AUGUST 1, 2008 Fundamental and Subharmonic Hybrid  

E-Print Network (OSTI)

]. In this letter we demonstrate fundamental and subharmonic hybrid mode-locking of a high-power (220 mW) InGaAsP saturation and slow saturable absorption. The externally applied RF gain or loss modulation locks the timing

Afshari, Ehsan

150

Vehicle Technologies Office Merit Review 2014: GATE Center for Electric Drive Transportation at the University of Michigan- Dearborn  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Regents University of Michigan at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

151

#LabChat Recap: Innovations Driving More Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations Driving More Efficient Vehicles Innovations Driving More Efficient Vehicles #LabChat Recap: Innovations Driving More Efficient Vehicles December 21, 2012 - 10:47am Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #LabChat Recap: Innovations Driving More Efficient Vehicles The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy. Three researchers answered questions about advanced combustion, lightweighting and hybridization. Here is an overview of some of the conversations. Storified by Energy Department · Fri, Dec 21 2012 08:19:22 We kicked off the #LabChat with introductions from all the researchers. Each researcher focuses on a different vehicle technology that is expected to make great strides in improving vehicle

152

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

153

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

154

Vehicle Technologies Office Merit Review 2014: Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

155

Texas Hydrogen Highway- Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

156

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

157

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

158

High-Temperature, Air-Cooled Traction Drive Inverter Packaging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

159

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...  

Energy Savers (EERE)

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

160

Vehicle Technologies Office Merit Review 2014: SAE J2907 Hybrid Motor Ratings Support  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SAE J2907...

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

162

Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center  

SciTech Connect

In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

1996-07-01T23:59:59.000Z

163

A hypothesis of inductive drive to explain the sawtooth measurements of tokamak experiment for technology oriented research (TEXTOR)  

SciTech Connect

A hypothesis, based on the current density profile determined from the principle of minimum dissipation of magnetic energy, is applied to explain the measurement of q(0) and current variation in a sawtooth cycle in tokomak experiment for technology oriented research (TEXTOR) [Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1985), Vol. I, p. 193]. A sawtooth oscillation is triggered when the on-axis current density in a configuration with m=0 and n=0 symmetry is driven inductively to a limit.

Chu, T. K. [Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, New Jersey 08543 (United States)

2006-07-15T23:59:59.000Z

164

2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Energy Savers (EERE)

Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

165

Battery Technology for Electric and Hybrid Vehicles: Expert Views about Prospects for Advancement.  

E-Print Network (OSTI)

, 220 Elab, University of Massachusetts, Amherst, MA 01003; edbaker@ecs.umass.edu; 413-545-0670 Haewon of Massachusetts, Boston, MA 02125; jeff.keisler@umb.edu 1 #12;Abstract In this paper we present the results change energy technologies including solar photovoltaics [3], nuclear power [2], CCS [4], electricity

Massachusetts at Amherst, University of

166

Electric Drive Vehicle Infrastructure Deployment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

167

Cone Drive Operations Inc | Open Energy Information  

Open Energy Info (EERE)

Cone Drive Operations Inc Place: Traverse City, Michigan Zip: 49684 Sector: Solar Product: US-based manufacturers of double enveloping worm gear technology. The company supplies...

168

Status of advanced light-duty transportation technologies in the US  

Science Journals Connector (OSTI)

The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R&D targets and technology validation programs of the US government.

David Andress; Sujit Das; Fred Joseck; T. Dean Nguyen

2012-01-01T23:59:59.000Z

169

Vehicle Technologies Office: Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

170

Hybrid options for light-duty vehicles.  

SciTech Connect

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

171

Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report  

SciTech Connect

The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

Hitchcock, David

2012-06-29T23:59:59.000Z

172

Technology Transfer Webinar on November 12: High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support  

Energy.gov (U.S. Department of Energy (DOE))

DOE/OE and EPRI will host a technology transfer webinar on Wednesday, November 12, 2014 from noon to 2 p.m. (ET). The purpose of this open webinar is to disseminate results and outcomes of the recently completed project High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support, which is one of the awarded projects of the DOE Advanced Modeling Grid Research Program.

173

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

174

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology...

175

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 2, FEBRUARY 2010 589 Electric, Hybrid, and Fuel-Cell Vehicles  

E-Print Network (OSTI)

, and Fuel-Cell Vehicles: Architectures and Modeling C. C. Chan, Fellow, IEEE, Alain Bouscayrol, Member, IEEE, fuel economy, and global warming, as well as energy resource constraints, electric, hybrid, and fuel-cell systems. This paper reviews the state of the art for electric, hybrid, and fuel-cell vehicles

Leung, Ka-Cheong

176

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

177

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

How Plug-in Hybrids Save Money How Plug-in Hybrids Save Money Plug-in hybrid recharging Plug-in hybrids reduce fuel costs by Using high-capacity batteries that allow them to operate on electricity from the outlet for significant distances-electricity typically costs less than half as much as gasoline Using a larger electric motor that typically allows the vehicle to use electricity at higher speeds than regular hybrids Using regenerative braking to recover energy typically wasted when you apply the brakes Plug-in hybrid designs differ, and your driving habits, especially the distance you drive between re-charging, can have a big effect on your fuel bill. My Plug-in Hybrid Calculator estimates gasoline and electricity costs for any available plug-in hybrid using your driving habits and fuel costs.

178

Distribution Drive | Open Energy Information  

Open Energy Info (EERE)

Drive Drive Jump to: navigation, search Name Distribution Drive Place Dallas, Texas Zip 75205 Product Biodiesel fuel distributor. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system  

E-Print Network (OSTI)

This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration nanofiltration / reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating ...

Richards, B.S.; Capo, D.P.S.; Schfer, Andrea

2008-01-01T23:59:59.000Z

180

Close Look at Hybrid Vehicle Loyalty and Ownership  

SciTech Connect

In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk initially released their findings. In this brief review, the team has looked at factors that might contribute to a consumer choosing to not purchase a hybrid; including the increase in manufacture s overall vehicle mpg and the percentage of the vehicle market owned by hybrids.

Hwang, Ho-Ling [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Wilson, Daniel W [ORNL] [ORNL; Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Taylor, Rob D [ORNL] [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus:...

182

The S. M. Stoller Corporation 105 Technology Drive Suite 190 Broomfield, Colorado 80021 Phone (303) 546-4300 FAX (303) 443-1408 established 1959  

E-Print Network (OSTI)

Protection Specialist Colorado Department of Public Health and Environment Remediation Program 4300 Cherry Creek Drive, South Denver, CO 80246-1530 RE: Clay Pits Investigation Colorado School of Mines Research to investigate the Clay Pits Area of the CSMRI Site in Golden, Colorado (Site). The goal of this investigation

183

Engineering AnteaterDrive  

E-Print Network (OSTI)

Rockw ell & M DEA Engineering Tower AnteaterDrive AnteaterDrive East Peltason Drive EastPeltasonDrive East Peltason Drive Anteater Parking Structure EngineeringServiceRoad Engineering Laboratory Facility Engineering Gateway Engineering Hall AIRB Calit2 Engineering Lecture Hall Campus Building Engineering Building

Mease, Kenneth D.

184

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks  

SciTech Connect

We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

Gao, Zhiming [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; LaClair, Tim J [ORNL; Smith, David E [ORNL

2014-01-01T23:59:59.000Z

185

Economical Aspects of Adjustable Speed Drives in Pumping Systems  

E-Print Network (OSTI)

Speed variations of pumps have become increasingly popular as the technology to produce variable frequency drives has progressed. Variable speed drives have many advantages compared to throttle valves when it comes to regulation of flow. They offer...

Hovstadius, G.

186

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

187

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

188

Full Hybrid: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

highlighted Stop/Start button banner graphic: blue bar highlighted Stop/Start button banner graphic: blue bar subbanner graphic: gray bar Overview Button highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some driving conditions. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection.

189

Full Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some driving conditions. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection.

190

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain  

E-Print Network (OSTI)

of a hybrid electric vehicle (HEV) powertrain test cell is proposed. The test cell consists of a motor combustion engine (ICE) and an electric motor/generator (EM) in series or parallel configurations. The ICE charges the battery or by- passes the battery to propel the wheels via an electric motor. This electric

Mi, Chunting "Chris"

191

Control system design for a parallel hybrid electric vehicle  

E-Print Network (OSTI)

This thesis addresses the design of control systems for a parallel hybrid electric drive train which is an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine...

Buntin, David Leighton

1994-01-01T23:59:59.000Z

192

Driving the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future the Future A r g o n n e ' s v e h i c l e s ys t e m s r e s e A r c h 3 2 v e h i c l e s y s t e m s r e s e a r c h At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help reduce our nation's petroleum consumption and greenhouse gas emissions. Our Vehicle Systems research focuses on maximizing vehicle performance and efficiency through in-depth studies of the interactions and integration of components and controls in a large, complex vehicle system. Working with the U.S. Department of Energy (DOE) and the automotive industry, we investigate the potential of vehicle technologies ranging from alternative fuels to advanced powertrains, such as plug-in hybrids and electric vehicles. Funding

193

How Hybrids Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Hybrids Work How Hybrids Work Diagram of full hybrid vehicle components, including (1) an internal combustion engine, (2) an electric motor, (3) a generator, (4) a power split device, and (5) a high-capacity battery. Flash Animation: How Hybrids Work (Requires Flash 6.0 or higher) HTML Version: How Hybrids Work Hybrid-electric vehicles (HEVs) combine the benefits of gasoline engines and electric motors and can be configured to obtain different objectives, such as improved fuel economy, increased power, or additional auxiliary power for electronic devices and power tools. Some of the advanced technologies typically used by hybrids include Regenerative Braking. The electric motor applies resistance to the drivetrain causing the wheels to slow down. In return, the energy from the

194

OUTCOMES FROM THE FRENCH NATIONAL PROJECT DRIVE  

E-Print Network (OSTI)

OUTCOMES FROM THE FRENCH NATIONAL PROJECT DRIVE EXPERIMENTAL DATA FOR THE EVALUATION OF HYDROGEN with success a project called DRIVE to the National Research Agency. This project aims at providing procedures and technologies will provide only limited guidance for hydrogen-powered vehicles. That is because

Paris-Sud XI, Université de

195

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network (OSTI)

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

196

Vehicle Technologies Office Merit Review 2014: Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of...

197

Optimal sizing method for stand-alone hybrid solarwind system with LPSP technology by using genetic algorithm  

Science Journals Connector (OSTI)

System power reliability under varying weather conditions and the corresponding system cost are the two main concerns for designing hybrid solarwind power generation systems. This paper recommends an optimal sizing method to optimize the configurations of a hybrid solarwind system employing battery banks. Based on a genetic algorithm (GA), which has the ability to attain the global optimum with relative computational simplicity, one optimal sizing method was developed to calculate the optimum system configuration that can achieve the customers required loss of power supply probability (LPSP) with a minimum annualized cost of system (ACS). The decision variables included in the optimization process are the PV module number, wind turbine number, battery number, PV module slope angle and wind turbine installation height. The proposed method has been applied to the analysis of a hybrid system which supplies power for a telecommunication relay station, and good optimization performance has been found. Furthermore, the relationships between system power reliability and system configurations were also given.

Hongxing Yang; Wei Zhou; Lin Lu; Zhaohong Fang

2008-01-01T23:59:59.000Z

198

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network (OSTI)

R. Firestone, Optimal Technology Selection and Operation ofDOE - Energy Vehicle Technologies Program. Plug-in HybridUsing vehicle-to-grid technology for frequency regulation

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

199

Strategies and Technologies for Improving Air Quality Around Ports  

E-Print Network (OSTI)

132 Figure 7-1: Diesel Electric Drive Train on the HybridA Schematic of the diesel electric drive train is shown inMain Engine Figure 7-1: Diesel Electric Drive Train on the

Khan, Mohammad Yusuf

2013-01-01T23:59:59.000Z

200

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network (OSTI)

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Technology Vehicle Testing  

SciTech Connect

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

202

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

203

Accelerating the Electrification of U.S. Drive Trains: Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced...

204

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting vss033carlson2012o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office...

205

Intelligent design of sensorless Switched reluctance motor drives; -.  

E-Print Network (OSTI)

??The Switched Reluctance Motor SRM drive technology has gone newlinethrough steady and significant development over the last two decades The newlinesimplicity in both motor construction (more)

Marsaline Beno, M

2014-01-01T23:59:59.000Z

206

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

SciTech Connect

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

207

Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

208

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

209

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

safety and cost. Third, Li-Ion battery designs are betterattributes of one type of Li-Ion battery cannot necessarilycapabilities. In any case, Li-Ion battery technologies hold

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

210

Holiday Food Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Food Drive Food Drive Holiday Food Drive During the recent holiday food drive, employees donated enough food to provide about 23,604 holiday meals for Northern New Mexico families. More than 432 frozen turkeys were donated this year by employees and other donors during 'Bring a Turkey to Work Day,' an annual Lab event that takes places Thanksgiving week. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Giving Drives Ed Vigil Community Programs Office (505) 665-9205 Email Giving Drives Enrique Trujillo Community Programs Office (505) 665-6384 Email Helping feed Northern New Mexico families Community partners The Food Depot (Santa Fe) Del Norte Credit Union Smith's Food and Drug Giving Holiday Food Drive Holiday Gift Drive LANL Laces Los Alamos Employees' Scholarship Fund

211

The University of Tennessee's GATE Center for Hybrid Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The University of Tennessee's GATE Center for Hybrid Systems The University of Tennessee's GATE Center for Hybrid Systems 2009 DOE Hydrogen Program and Vehicle Technologies Program...

212

Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.  

SciTech Connect

This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

2005-03-01T23:59:59.000Z

213

US DRIVE Driving Research and Innovation for Vehicle Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy...

214

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tweeting from @Argonne. A co-author of several patents related to hybrid powertrain architecture and vehicle operation, Rask explores new technological developments in electric and...

215

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles  

E-Print Network (OSTI)

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries to the safety and performance of electric-drive batteries. The innovative Isothermal Battery Calorimeters (IBCs

216

Hybrid Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Energy Integrated energy systems could improve fossil resource utilization, reduce greenhouse gas emissions and stabilize renewable energy contributions. These hybrid...

217

EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

218

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

219

Electrifying Your Drive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrifying Your Drive Electrifying Your Drive Electrifying Your Drive April 27, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For anyone who grew up watching The Jetsons (or Back to the Future, depending on your generation), the "Car of the Future!" flew through the skies with the greatest of ease. Although most of us have given up on our hopes of a flying car, anything beyond the internal combustion engine has seemed hopelessly out of reach until recently. However, with several manufacturers planning on producing plug-in and all-electric vehicles, the Car of the Future will be available soon! But before you put down a deposit, it's helpful to understand the different types of electric drive technologies. The most basic form of electric drive

220

Electrifying Your Drive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrifying Your Drive Electrifying Your Drive Electrifying Your Drive April 27, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For anyone who grew up watching The Jetsons (or Back to the Future, depending on your generation), the "Car of the Future!" flew through the skies with the greatest of ease. Although most of us have given up on our hopes of a flying car, anything beyond the internal combustion engine has seemed hopelessly out of reach until recently. However, with several manufacturers planning on producing plug-in and all-electric vehicles, the Car of the Future will be available soon! But before you put down a deposit, it's helpful to understand the different types of electric drive technologies. The most basic form of electric drive

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office: Partnerships | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnerships Vehicle Technologies Office: Partnerships Partnerships are at the heart of the Vehicle Technologies Office's (VTO) work, driving innovation, technology development,...

222

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

223

Development of lead-free solders for hybrid microcircuits  

SciTech Connect

Extensive work has been conducted by industry to develop lead-free solders for electronics applications. The driving force behind this effort is pressure to ban or tax the use of lead-bearing solders. There has been further interest to reduce the use of hazardous chemical cleaners. Lead-free soldering and low-residue, ``no clean`` assembly processing are being considered as solutions to these environmental issues. Most of the work has been directed toward commercial and military printed wiring board (PWB) technology, although similar problems confront the hybrid microcircuit (HMC) industry, where the development of lead-free HMC solders is generally lagging. Sandia National Laboratories is responsible for designing a variety of critical, high reliability hybrid components for radars. Sandia has consequently initiated a project, as part of its Environmentally Conscious Manufacturing program, to develop low-residue, lead-free soldering for HMCs. This paper discusses the progress of that work.

Hosking, F.M.; Vianco, P.T.; Frear, D.R.; Robinson, D.G.

1996-01-01T23:59:59.000Z

224

DistributionDrive | Open Energy Information  

Open Energy Info (EERE)

DistributionDrive DistributionDrive Jump to: navigation, search Name DistributionDrive Place Addison, Texas Zip 75001 Product Supplier of Biodiesel, Straight Vegetable Oil (SVO), Recycled Vegetable Oil (WVO) and Engine Conversion Kits to use this fuels. Coordinates 38.477365°, -80.412149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.477365,"lon":-80.412149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Holiday Gift Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Holiday Gift Drive Holiday Gift Drive Holiday Gift Drive Every year, Laboratory employees help fulfill the holiday wishes of children and seniors in our communities. In 2012, our employees helped more than 1,030 Northern New Mexico children, senior citizens and families have a brighter holiday season. September 16, 2013 Every holiday season, employees of Los Alamos National Laboratory donate and distribute gifts to families in need throughout Northern New Mexico. Contacts Giving Drives Ed Vigil Community Programs Office (505) 665-9205 Email Giving Drives Enrique Trujillo Community Programs Office (505) 665-6384 Email Helping New Mexico families feel the holiday spirit The 2013 campaign runs from November 21-December 18. 2012 Holiday Gift Drive partners Boys and Girls Club Del Norte (Abiquiu Site)

226

Massachusetts Technology Collaborative - Renewable Energy Trust | Open  

Open Energy Info (EERE)

Technology Collaborative - Renewable Energy Trust Technology Collaborative - Renewable Energy Trust Jump to: navigation, search Logo: Massachusetts Technology Collaborative - Renewable Energy Trust Name Massachusetts Technology Collaborative - Renewable Energy Trust Address 75 North Drive Place Westborough, Massachusetts Zip 01581 Region Greater Boston Area Coordinates 42.2882622°, -71.630121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2882622,"lon":-71.630121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Solar Energy Technologies Office  

Energy.gov (U.S. Department of Energy (DOE))

In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

228

Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint  

SciTech Connect

Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

2008-07-01T23:59:59.000Z

229

Apex Technology | Open Energy Information  

Open Energy Info (EERE)

Apex Technology Apex Technology Address 2703 Merrywood Drive Place Edison, NJ Zip 08817 Website http://www.apextgi.com/ Coordinates 40.5288539°, -74.4094414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5288539,"lon":-74.4094414,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.  

SciTech Connect

This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

Not Available

2006-03-01T23:59:59.000Z

231

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network (OSTI)

various powertrains and alternative fuel options have beenthe corresponding breakeven alternative fuel price needed totruck, hybridization, alternative, fuel cell, fuel economy,

Zhao, Hengbing

2013-01-01T23:59:59.000Z

232

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

Treu, C.A. Jr.

1999-08-31T23:59:59.000Z

233

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

Treu, Jr., Charles A. (Raymore, MO)

1999-08-31T23:59:59.000Z

234

Memory Hard Drive Peripherals  

E-Print Network (OSTI)

1! CSI3131 Topics CPU Memory Hard Drive Peripherals Computing Systems OS Overview StructureDeadlocks M em ory M anagem ent Basic Memory Managermtn Virtual Memory Storage and I/O File Systems Hard Drive Management Swap I/O Management 2 Module 7: Memory Management Reading: Chapter 8 § To provide a detailed

Stojmenovic, Ivan

235

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

gasoline or diesel with electric motors that use electricityadditional power from an electric motor. Future designs maypower plant and larger electric motor. Hybrid technology is

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

236

Hybrid Models  

Science Journals Connector (OSTI)

Up to this point, we have been discussing systems of equations involving continuous variables. In this chapter, we will discuss hybrid system behavior. Hybrid behavior involves not just continuous variables and e...

Michael Tiller Ph.D.

2001-01-01T23:59:59.000Z

237

Design optimization of the electrically peaking hybrid (ELPH) vehicle. Research report  

SciTech Connect

Electrically Peaking Hybrid (ELPH) is a parallel hybrid electric vehicle propulsion concept that was invented at Texas A and M University, by the advanced vehicle systems research group. Over the past six years, design methodologies, component development, and system optimization work has been going on for this invention. This project was a first attempt in integrating the above developments into an optimized design of an ELPH passenger car. Design specifications were chosen for a full size passenger car, performing as well as any conventional car, over the EPA-FTP-75 combined city/highway drive cycles. The results of this design project were two propulsion systems. Both were appropriate for commercial production, from the points of view of cost, availability of the technologies, and components. One utilized regenerative braking and the other did not. Substantial fuel savings and emissions reductions resulted from simulating these designs on the FTP-75 drive cycle. For example, the authors` ELPH full size car, with regenerative braking, was capable of delivering over 50 miles per gallon in city driving, with corresponding reductions in its emissions. This project established the viability of the authors` ELPH concept and their design methodologies, in computer simulations. More work remains to be done on investigating more advanced power plants, such as fuel cells, and more advanced components, such as switched reluctance motor drives, for the authors` designs. Furthermore, the authors` design optimization can be carried out to more detailed levels, for prototyping and production.

Ehsani, M.; Gao, Y.; Butler, K.

1998-10-01T23:59:59.000Z

238

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network (OSTI)

hybrid (gas or diesel) electric vehicle technology (Langer,e.g. hybrid gasoline-electric vs. diesel vehicles). Dealing

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

239

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 2, MARCH 2007 557 Modeling of a Series Hybrid Electric High-Mobility  

E-Print Network (OSTI)

Hybrid Electric High-Mobility Multipurpose Wheeled Vehicle Margaret Ducusin, Associate Member, IEEE to reduce fuel costs and gas emissions, the U.S. Army is looking into replacing their diesel high-mobility multipurpose wheeled vehicle (HMMWV) with hybrid electric vehicles. The aim of this paper is to present

Mi, Chunting "Chris"

240

Fast-Wave Current Drive in a Toroidal Plasma  

Science Journals Connector (OSTI)

Fast-wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfvn wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into a plasma by a fast-wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast-wave current drive is appropriate for higher plasma densities.

J. Goree; M. Ono; P. Colestock; R. Horton; D. McNeill; H. Park

1985-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle  

E-Print Network (OSTI)

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing and hybrid driving mode. During the pure electric driving mode, the vehicle is only powered by the battery

Mi, Chunting "Chris"

242

A study of alternative drive control interfaces for next-generation electric vehicles  

E-Print Network (OSTI)

The drive control interface in automobiles has not significantly changed for almost a century. Recent advances in electric vehicles and drive-by-wire technology allow for new alternative interfaces that enable novel vehicle ...

Post, C. Christopher (Charles Christopher)

2011-01-01T23:59:59.000Z

243

Hybrid powertrain controller  

DOE Patents (OSTI)

A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

Jankovic, Miroslava (Birmingham, MI); Powell, Barry Kay (Belleville, MI)

2000-12-26T23:59:59.000Z

244

Hard Drive Power Consumption Uncovered Computer Laboratory  

E-Print Network (OSTI)

Hard Drive Power Consumption Uncovered Computer Laboratory Digital Technology Group Anthony Hylick, Andrew Rice, Brian Jones, Ripduman Sohan Motivation Attempts to reduce power consumption have mainly of power consumption and identify the need for a more expressive API between the OS and hardware devices

Cambridge, University of

245

Predictions of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks  

SciTech Connect

The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX.

Batchelor, D.B.; Baity, F.W.; Carter, M.D. [and others

1994-12-31T23:59:59.000Z

246

Variable Frequency Drives  

NLE Websites -- All DOE Office Websites (Extended Search)

How BPA Supports VFDs Rebates are available from your utility for Variable Frequency Drives on pumps 20hp or greater and storage fans.. Energy savings from VFDs vary and can...

247

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

248

Automobile Driving and Aggressive Behavior  

E-Print Network (OSTI)

The accident prone automobile driver. American Journal ofAutomobile Driving And Aggressive Behavior Raymond W. Novacofor its content or use. Automobile Driving and Aggressive

Novaco, Raymond W.

1991-01-01T23:59:59.000Z

249

Traction Drive Systems Breakout Group  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

overlook profit motive in value chain * 4 - Today's HEV systems drive EV traction drive systems because of manufacturing base Barriers Interfering with Reaching the Targets * 1 -...

250

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

251

Technology-to-Market Portfolio  

Energy.gov (U.S. Department of Energy (DOE))

BTOs Technology-to-Market (T2M) team drives high impact technologies from R&D to market readiness, preparing these technologies for real building demonstration, market deployment, and ultimately mass-market adoption.

252

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

The subject of future markets for diesel powered and hybrid-as the European market for diesel-powered vehicles grows.of a large market for light duty diesel vehicles. Figure 2

Burke, Andy

2004-01-01T23:59:59.000Z

253

Pulsed hybrid field emitter  

DOE Patents (OSTI)

A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

Sampayan, Stephen E. (Manteca, CA)

1998-01-01T23:59:59.000Z

254

Driving on Biomass  

Science Journals Connector (OSTI)

...the land and less infrastructure. In fact, if the...changes in electrical infrastructure because up to 70...existing electrical grid (8). By contrast, the infrastructure for fueling this...sell plug-in hybrid or all-electric...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

255

Driving on Biomass  

Science Journals Connector (OSTI)

...chemical energy conversion to...and less infrastructure. In fact...electrical infrastructure because up...electrical grid (8). By contrast, the infrastructure for fueling...plug-in hybrid or all-electric...of higher energy density and...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

256

Fusionfission hybrids for nuclear waste transmutation: A synergistic step between Gen-IV fission and fusion reactors  

Science Journals Connector (OSTI)

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusionfission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280kg of actinide wastes per year and produces 3000MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusionfission hybrids and Generation-IV reactors.

T.A. Mehlhorn; B.B. Cipiti; C.L. Olson; G.E. Rochau

2008-01-01T23:59:59.000Z

257

Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors.  

SciTech Connect

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

Olson, Craig Lee; Mehlhorn, Thomas Alan; Cipiti, Benjamin B.; Rochau, Gary Eugene

2007-09-01T23:59:59.000Z

258

Hybrid Vehicle Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Links Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Hybrid Vehicles and Manufacturers Acura ILX Hybrid Audi Q5 Hybrid BMW ActiveHybrid 3 ActiveHybrid 5 ActiveHybrid 7 Buick LaCrosse eAssist* Regal eAssist* Chevrolet Malibu Eco* Impala eAssist* Ford Fusion Hybrid Honda Accord Hybrid Civic Hybrid Honda CR-Z Honda Insight Hyundai Sonata Hybrid Infiniti M Hybrid Q50 Hybrid Q50 S Hybrid QX60 Hybrid Kia Optima Hybrid Lexus CT 200h Lexus ES 300h GS 450h LS 600h L RX 450h Lincoln MKZ Hybrid Mercedes-Benz Mercedes E400 Hybrid Nissan Pathfinder Hybrid Porsche Cayenne S Hybrid Subaru XV Crosstrek Hybrid Toyota Avalon Hybrid

259

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

VSATT provides the analytic support and subsystem characterizations that guide technology and system selections and assist U.S. DRIVE Technical Teams in determining performance goals and validation metrics.

260

EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Vehicle Technologies Office analyst Jake Ward at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office: 2013 Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that...

262

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

263

Hybride Montagesysteme  

Science Journals Connector (OSTI)

Hybride Montagesysteme sind Einrichtungen zur Montage von Baugruppen und/oder Produkten, in denen Automatikstationen mit Handarbeitspltzen kombiniert sind. Sie liegen hinsichtlich Stckzahl, Variantenvielfalt...

Edwin Lotter

2006-01-01T23:59:59.000Z

264

Hybride Montagesysteme  

Science Journals Connector (OSTI)

Hybride Montagesysteme sind Einrichtungen zur Montage von Baugruppen und/oder Produkten, in denen Automatikstationen mit Handarbeitspltzen kombiniert sind. Sie liegen hinsichtlich Stckzahl, Variantenvielfalt...

Edwin Lotter

2012-01-01T23:59:59.000Z

265

An On-line Method for Stator Fault Detection in Multi-phase PMSM Drives  

E-Print Network (OSTI)

An On-line Method for Stator Fault Detection in Multi-phase PMSM Drives Fabien Meinguet*, Eric deals with an on-line fault detection method for multi-phase PMSM drives. The method is based have been investigated for transport applications such as hybrid electric vehicle [1], [2] and ship

Paris-Sud XI, Université de

266

Electric-Drive Vehicle engineering  

E-Print Network (OSTI)

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

267

Vehicle Technologies and Bus Fleet Replacement Optimization  

E-Print Network (OSTI)

with multiple bus drivetrain technologies (electric trolley buses, conventional diesel buses, hybrid diesel (conventional diesel, hybrid, electric trolley, etc.), bus designs, and operating environments (congested utilizing real-world data from King County (Seattle) transit agency. Two distinct technologies, diesel

Bertini, Robert L.

268

Drive5 | Open Energy Information  

Open Energy Info (EERE)

Drive5 Drive5 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drive5 Agency/Company /Organization: Drive5 Sector: Energy Focus Area: Vehicles Resource Type: Software/modeling tools User Interface: Website, Mobile Device Website: www.drive5.us Web Application Link: www.drive5.us Cost: Free OpenEI Keyword(s): Challenge Generated Drive5 Screenshot References: Drive5[1] Challenge.gov[2] Challenge.gov Submission Page[3] Measure your fuel economy real time with five metrics to save on fuel costs. Overview Drive1: Fuel Economy Drive5 gives you real time fuel economy feedback for any car 1984 and newer by simply utilizing the sensors embedded in your phone or tablet. It uses a statistical algorithm which leverages the fueleconomy.gov's open dataset along with data from thousands of automobile trips. No connections to the

269

Variable Frequency Pump Drives  

E-Print Network (OSTI)

-frequency electric motor drive. What is happenin9 with variable frequency driven pun,ps is a classical illustration that evolution in technical products takes place not only because of changes in the processes served by these products, or because of innovations...-pole 3550 rpm squirrel caqe induction motor became available in the early 1930s that high pressure pumps operating at that speed could be buil t. And now, in the 1980s, the development of the solid-state, variable frequency electric motor drive...

Karassik, I. J.; Petraccaro, L. L.; McGuire, J. T.

270

Drive Less, Save More | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive Less, Save More Drive Less, Save More Drive Less, Save More May 24, 2011 - 12:31pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For someone who works in the Vehicle Technologies Program, I actually don't spend that much time in my automobile. I usually get around using a combination of public transit, my bike, and my own two feet. But I'm an exception. In the U.S., the vehicle miles travelled per person is actually twice as high as it is in Western Europe and three times higher than in Japan. However, alternatives to using your car have a wealth of benefits. In addition to reducing petroleum consumption, they can lower greenhouse gas emissions, improve air quality, decrease stress, and bring communities together. Fortunately, there are a variety of ways to minimize the distance

271

Drive Less, Save More | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive Less, Save More Drive Less, Save More Drive Less, Save More May 24, 2011 - 12:31pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For someone who works in the Vehicle Technologies Program, I actually don't spend that much time in my automobile. I usually get around using a combination of public transit, my bike, and my own two feet. But I'm an exception. In the U.S., the vehicle miles travelled per person is actually twice as high as it is in Western Europe and three times higher than in Japan. However, alternatives to using your car have a wealth of benefits. In addition to reducing petroleum consumption, they can lower greenhouse gas emissions, improve air quality, decrease stress, and bring communities together. Fortunately, there are a variety of ways to minimize the distance

272

Heritage Drive EastCampusDrive  

E-Print Network (OSTI)

) . . . . . . . . . . . . . . . . . . . .c/14 axmb Auxiliary Maintenance Building . . . . i/5,6 b-34, b-38, b-41, b-51 (Service Halls and Cannon Center (canc) . . . . . . . . . .d­f/8,9 hlra Helaman Recreation Area Intramural Recreation Area . . . . .a,b/4­6 itb Information Technology Building . . .c/8,9 swkt

Hart, Gus

273

Driving on "Green" Electrons | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving on "Green" Electrons Driving on "Green" Electrons Driving on "Green" Electrons September 6, 2011 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program So you've decided you want to drive on electricity. You've considered your commute, how often you could plug in your car, and whether you want a plug-in hybrid electric (PHEV) or all-electric vehicle (EV) . But you have one more decision to make - your electricity source. Although electricity is cleaner than petroleum once it gets to your car, not all electricity is created equal. Greenhouse gases that contribute to climate change and smog-forming emissions can come from two different sources in cars - the vehicle's tailpipe and the production of the fuel. The total of these sources is the

274

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network (OSTI)

Fuel Cell Technologies http://www.hydrogen.energy.gov/pdfs/12020_fuel_cell_system_cost_2012.pdf; Program Record, [

Zhao, Hengbing

2013-01-01T23:59:59.000Z

275

Argonne Transportation Technology R&D Center - Advanced Powertrain Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Powertrain Research Facility Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) is the principal U.S. Department of Energy (DOE) facility for assessing advanced and hybrid electric vehicle (HEV) technologies for the Vehicle Technologies Program. The APRF is an integrated multi-dynamometer vehicle and component test facility capable of testing conventional and hybrid vehicle propulsion systems and vehicles (two- or four-wheel drive) in a precise laboratory environment using a variety of fuels (including hydrogen). The facility is used to assess powertrain technology for light- and medium-duty propulsion systems with state-of-the-art performance and emissions measurement equipment and techniques. Argonne's Advanced Powertrain Research Facility

276

Advanced Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

277

Traction Drive System Modeling  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

278

Vehicle Technologies Office Merit Review 2014: Hierarchical Assembly...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hierarchical Assembly of InorganicOrganic Hybrid Si Negative Electrodes Vehicle Technologies Office Merit Review 2014: Hierarchical Assembly of InorganicOrganic Hybrid Si...

279

SVTC Technologies (Texas) | Open Energy Information  

Open Energy Info (EERE)

SVTC Technologies SVTC Technologies Address 2706 Montopolis Drive Place Austin, Texas Zip 78741 Sector Solar Product Provides emiconductor process tools for new silicon developers Website http://www.svtc.com/ Coordinates 30.218411°, -97.709111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.218411,"lon":-97.709111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Composite Technology Development | Open Energy Information  

Open Energy Info (EERE)

Composite Technology Development Composite Technology Development Address 2600 Campus Drive, Suite D Place Lafayette, Colorado Zip 80026 Phone number 303-664-0394 Website http://www.ctd-materials.com/ Coordinates 39.9673767°, -105.0896737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9673767,"lon":-105.0896737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

American Solar Technology | Open Energy Information  

Open Energy Info (EERE)

American Solar Technology American Solar Technology Address 5265 Turquoise Drive Place Colorado Springs, Colorado Zip 80918 Sector Solar Product Solar installer Coordinates 38.908071°, -104.742645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.908071,"lon":-104.742645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Transportation and its Infrastructure  

E-Print Network (OSTI)

example, although hybrid electric drive trains have made agreater use of electric-drive technologies, includingthe discussion of hybrid electric drive trains). The use of

2007-01-01T23:59:59.000Z

283

GenDrive Limited | Open Energy Information  

Open Energy Info (EERE)

GenDrive Limited GenDrive Limited Jump to: navigation, search Name GenDrive Limited Place Cambridge, United Kingdom Zip CB23 3GY Sector Renewable Energy, Solar, Wind energy Product Developing a range of grid-connected inverters, 'Plug & Play', for renewable energy (mostly solar and wind) systems. These are intended to improve ease of installation. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Fast wave current drive in DEMO  

SciTech Connect

The ability to non-inductively drive a large fraction of the toroidal plasma current in magnetically confined plasmas is an essential requirement for steady state fusion reactors such as DEMO. Besides neutral beam injection (NBI), electron-cyclotron resonance heating (ECRH) and lower hybrid wave heating (LH), ion-cyclotron resonance heating (ICRH) is a promising candidate to drive current, in particular at the high temperatures expected in fusion plasmas. In this paper, the current drive (CD) efficiencies calculated with coupled ICRF wave / CD numerical codes for the DEMO-1 design case (R{sub 0}=9m, B{sub 0}=6.8T, a{sub p}=2.25m) [1] are presented. It will be shown that although promising CD efficiencies can be obtained in the usual ICRF frequency domain (20-100MHz) by shifting the dominant ion-cyclotron absorption layers to the high-field side, operation at higher frequencies (100-300MHz) has a stronger CD potential, provided the parasitic RF power absorption of the alpha particles can be minimized.

Lerche, E.; Van Eestera, D.; Messiaen, A. [Association EURATOM-Belgian State, LPP-ERM/KMS, TEC partner, Brussels (Belgium); Franke, T. [Max-Planck-Institut fr Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Collaboration: EFDA-PPPT Contributors

2014-02-12T23:59:59.000Z

285

Energetic Drives LLC | Open Energy Information  

Open Energy Info (EERE)

Energetic Drives LLC Energetic Drives LLC Jump to: navigation, search Name Energetic Drives LLC Place Gresham, Oregon Zip 97030 Sector Efficiency, Wind energy Product Oregon-based engineering firm that conducts industrial efficiency improvements, as well as repair and maintenance work for grid-tie inverters and wind turbines ranging from 10kW to 1.2MW. Coordinates 44.84866°, -88.786959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.84866,"lon":-88.786959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Aircraft Power Generators: Hybrid Modeling and  

E-Print Network (OSTI)

Aircraft Power Generators: Hybrid Modeling and Simulation for Fault Detection ASHRAF TANTAWY University Integrated drive generators (IDGs) are the main source of electrical power for a number, and a majority of the existing FDI techniques for the electrical subsystem (brushless generator) are based

Koutsoukos, Xenofon D.

287

Hybrid Cars Now, Fuel Cell Cars Later  

Science Journals Connector (OSTI)

...spark ignition engine; (B) HICE, a...over the urban drive cycle. We include a power...conventional ICE (14). A diesel ICE with a hybrid...direct-injection engine has an efficiency...vehicle and fuel cycle for the 2020 ICE...government support on fundamental, high-risk research...

Nurettin Demirdven; John Deutch

2004-08-13T23:59:59.000Z

288

Drive alignment pays maintenance dividends  

SciTech Connect

Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

Fedder, R. [Rexnord Industries, Milwaukee, WI (United States)

2008-12-15T23:59:59.000Z

289

Poulsen Hybrid, LLC | Open Energy Information  

Open Energy Info (EERE)

Poulsen Hybrid, LLC Poulsen Hybrid, LLC Jump to: navigation, search Name Poulsen Hybrid, LLC Address 6 Waterview Drive Place Shelton, Connecticut Zip 06615 Sector Vehicles Product Poulsen Hybrid Year founded 2007 Number of employees 1-10 Phone number 203-954-0050 Website http://www.poulsenhybrid.com Coordinates 41.2940567°, -73.0830626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2940567,"lon":-73.0830626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles  

E-Print Network (OSTI)

An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles F. Khoucha1 presents a fuzzy logic controller for a Parallel Hybrid Electric Vehicle (PHEV). The PHEV required driving economy, and emissions. Index Terms--Parallel Hybrid Electric Vehicle (PHEV), Internal Combustion Engine

Brest, Université de

291

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network (OSTI)

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor

Mi, Chunting "Chris"

292

NREL: Transportation Research - DRIVE: Drive-Cycle Rapid Investigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Evaluation Towards Heavy Hybrid Vehicle Applications Printable Version Transportation Research Home Capabilities Projects Success Stories Facilities Working with Us...

293

Electric Drive Transportation Association Conference | Department...  

Energy Savers (EERE)

Association Conference Electric Drive Transportation Association Conference Addthis Test Drive 1 of 5 Test Drive Deputy Assistant Secretary for Transportation Reuben Sarkar...

294

Equivalent circuit modeling of hybrid electric vehicle drive train  

E-Print Network (OSTI)

The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool...

Routex, Jean-Yves

2012-06-07T23:59:59.000Z

295

Driving Pattern Recognition for Control of Hybrid Electric Trucks  

E-Print Network (OSTI)

strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified that determines the proper power split and transmission gear position to minimize the fuel consumption of Energy and Department of Defense, is one such example [1.]. It is widely believed that the 3-times fuel

Peng, Huei

296

Hybrid dark energy  

E-Print Network (OSTI)

Extending previous results [Phys. Rev. Lett. 97, 081301 (2006)], we explore the cosmological implications of a new quintessence scenario driven by a slow rolling homogeneous scalar field whose equation of state behaved as freezing over the entire cosmic evolution, is approaching -1 today, but will become thawing in the near future, thereby driving the Universe to an eternal deceleration. We argue that such a mixed behavior, named \\emph{hybrid}, may reconcile the slight preference of current observational data for freezing potentials with the impossibility of defining observables in the String/M-theory context due to the existence of a cosmological event horizon in asymptotically de Sitter universes as, e.g., pure freezing scenarios.

J. S. Alcaniz; R. Silva; F. C. Carvalho; Zong-Hong Zhu

2008-07-16T23:59:59.000Z

297

Driving Home to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Working here at the Department of Energy, I hear a lot about the latest efforts to design and build vehicles for a more energy-efficient future. The clean energy innovations in vehicle technologies that DOE and its partners are advancing will help American families save money at the pump-or even allow them to quit the gas pump altogether. Today, I want to highlight a few of the recent developments that will encourage drivers to be smarter consumers, help industry leaders make the cars and trucks we drive more energy efficient, and allow us to spend less of our hard-earned

298

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

299

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

300

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Case Study: Ebus Hybrid Electric Buses and Trolleys  

NLE Websites -- All DOE Office Websites (Extended Search)

experiences and different transit agencies. Technology Ebus's hybrid electric vehicles are propelled by battery-powered electric motors that supply power to the wheels. Two...

302

NETL's Hybrid Performance, or Hyper, facility  

ScienceCinema (OSTI)

NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

None

2014-06-26T23:59:59.000Z

303

Hybrid powertrains versus diesel engines Concepts for the future?  

Science Journals Connector (OSTI)

In the triad markets of Europe, the US and Japan, vastly different traffic and legal situations prevail which either favour or hamper specific technological solutions. What will be the drive technology of the ...

Dr.-Ing. Leopold Mikulic

2006-03-01T23:59:59.000Z

304

Driving on Biomass  

Science Journals Connector (OSTI)

...Annual Supply ( USDA and DOE , Washington, DC , 2005 ); www1.eere.energy.gov/biomass/pdfs/final_billionton_vision...hybridcars.com/. 12 Vehicle Technologies Program, DOE , www1.eere.energy.gov/vehiclesandfuels/facts/2008_fotw514...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

305

Next Generation Environmentally Friendly Driving Feedback Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Next Generation Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and...

306

Hybrid Membranes for Light Gas Separations  

E-Print Network (OSTI)

Membrane separations provide a potentially attractive technology over conventional processes due to their advantages, such as low capital cost and energy consumption. The goal of this thesis is to design hybrid membranes that facilitate specific gas...

Liu, Ting

2012-07-16T23:59:59.000Z

307

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results obtained with an 8/6 switched reluctance motor drive are presented and exploited in the optimization process. The performance of the optimized controller is evaluated and validated by simulation.

David Cajander; Hoang Le-Huy

2006-01-01T23:59:59.000Z

308

Argonne's GREET Model - Driving Transportation Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Driving Transportation Solutions Model Argonne's GREET D r i v i n g Tr a n s p o r t a t i o n S o l u t i o n s ARGONNE'S GREET Argonne's GREET model is widely recognized as the "gold standard" for evaluating and comparing the energy and environmental impacts of transportation fuels and advanced vehicles. The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model is a one-of-a-kind analytical tool that simulates the energy use and emissions output of various vehicle and fuel combinations. Sponsored by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, the free software program gives researchers the unique ability to analyze technologies over an entire life cycle - from well to wheels and from raw material mining to vehicle disposal.

309

Intergral Drive Systems AG IDS | Open Energy Information  

Open Energy Info (EERE)

Intergral Drive Systems AG IDS Intergral Drive Systems AG IDS Jump to: navigation, search Name Intergral Drive Systems AG (IDS) Place Zurich, Swaziland Zip CH-8005 Sector Wind energy Product Zurich based producer of power electronics systems for wind turbines, PV plants, and propulsion systems. Coordinates 47.37706°, 8.53955° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.37706,"lon":8.53955,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have questions? Ask us here or on #LabChat. Ask Us Addthis What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet your questions to @ENERGY using #LabChat. Send questions via email to NewMedia@hq.doe.gov.

311

Direct Drive Systems DDS | Open Energy Information  

Open Energy Info (EERE)

Systems DDS Systems DDS Jump to: navigation, search Name Direct Drive Systems (DDS) Place Cerritos, California Zip CA 90703 Product Manufactures high speed, permanent magnet (PM), high-power motors, generators and power electronics. Coordinates 33.868545°, -118.063704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.868545,"lon":-118.063704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

An Optimization Model for Plug-In Hybrid Electric Vehicles  

SciTech Connect

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2011-01-01T23:59:59.000Z

313

Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Affordable Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Wyandotte, Michigan PROJECT INFORMATION Construction: New home Type: Single-family, affordable Builder: City of Wyandotte with various local homebuilders www.wyandotte.net Size: 1,150 to 1,500 ft 2 Price Range: $113,000-$138,000 Date completed: 2012 Climate Zone: Cold PERFORMANCE DATA HERS index: * 2009 IECC = 102 * Case study house 1,475 ft 2 * With renewables = NA * Without renewables = 75 Projected annual energy cost savings: $604 Incremental cost of energy efficiency measures: $30,947 (including GSHP and well) Incremental annual mortgage: $2,631/yr Annual cash flow: -$1,375 Billing data: Not available Even builders who are relatively new to energy-efficient construction can

314

Efficient Energy Management: Is Variable Frequency Drives the Solution  

Science Journals Connector (OSTI)

Abstract Over the last few years the cost of power electricity has increased significantly. Researchers and manufacturers of electrical goods have been trying to find ways to minimize the use of power electricity while maintaining the efficiency of electrical equipments. To provide efficient energy management for today's market, manufacturers are now turning to a technology known as variable frequency drives (VFDs). \\{VFDs\\} are being used for various equipments ranging from small electrical appliances to the largest of mine mill drives and compressors. Household air conditioning compressors, for example, are not short of running on VFD technology. This concept paper will discuss the alternative use of this energy.

Nasir Khalid

2014-01-01T23:59:59.000Z

315

Hybrid: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

316

Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

317

Hybrid Mesons  

E-Print Network (OSTI)

The SU(3)_flavor constituent quark model has been quite successful to explain the properties as well as the observed spectrum of mesons with pseudoscalar and vector quantum numbers. Many radial and orbital excitations of quark-antiquark systems predicted by the model, however, have not yet been observed experimentally or assigned unambiguously. In addition, a much richer spectrum of mesons is expected from QCD, in which quarks interact which each other through the exchange of colored self-interacting gluons. Owing to this particular structure of QCD, configurations are allowed in which an excited gluonic field contributes to the quantum numbers J^{PC} of the meson. States with a valence color-octet qqbar' pair neutralized in color by an excited gluon field are termed hybrids. The observation of such states, however, is difficult because they will mix with ordinary qqbar' states with the same quantum numbers, merely augmenting the observed spectrum for a given J^{PC}. Since the gluonic field may carry quantum numbers other than 0^{++}, however, this can give rise to states with "exotic" quantum numbers J^{PC}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-},... The lowest-lying hybrid multiplet is expected to contain a state with exotic quantum numbers J^{PC}=1^{-+}. The identification of such a state is considered a "smoking gun" for the observation of non-qqbar mesons. The search for hybrid states has been a central goal of hadron spectroscopy in the last 20 years. Ongoing and upcoming high-statistics experiments are expected to shed new light on the existence of such states in nature. In this paper, theoretical predictions for masses and decay modes as well as recent experimental evidence for hybrid meson states and future experimental directions are discussed.

Bernhard Ketzer

2012-08-25T23:59:59.000Z

318

Manufacturing and testing VLPC hybrids  

SciTech Connect

To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of {+-}0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.

Adkins, L. R.; Ingram, C. M.; Anderson, E. J. [Guidance, Navigation and Sensors, Boeing (United States)

1998-11-09T23:59:59.000Z

319

Overmodulation in Current Controlled Drives  

E-Print Network (OSTI)

220 Chapter 5 Overmodulation in Current Controlled Drives 5.1 Introduction The performance of voltage feedforward controlled constant V f PWM-VSI drives is insu cient for most industrial processes performance control methods. Electric traction, el- evators, textile machines, paper and plastic machines

Hava, Ahmet

320

Chapter Seven - Variable speed drives  

Science Journals Connector (OSTI)

Publisher Summary The electromechanical controllers are a kind of variable speed drives (VSDs) that are obsolete but are still in use because when a motor and a drive is combined, they become a power drive system (PDS). There are two ways of varying the speed of an induction motor, either by varying the motor slip or by varying the supply frequency. The preferred practice for electrical speed variation is to change the supply frequency with a variable frequency drive (VFD). Many other designs also have been developed. However, except the specialized applications, few are still in operation. A number of motor and drive manufacturers are now producing the integrated motor/VFD units. These units consist of a motor and a specially designed VFD, produced as a single package, with the VFD unit mounted variously on the top, side, or end of the motor.

Europump; Hydraulic Institute

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bioenergy Technologies Office Overview | Department of Energy  

Office of Environmental Management (EM)

More Documents & Publications Bioenergy Technologies Office Overview August 2014 Monthly News Blast Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

322

Cruising to Energy Savings This Summer Driving Season | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cruising to Energy Savings This Summer Driving Season Cruising to Energy Savings This Summer Driving Season Cruising to Energy Savings This Summer Driving Season May 11, 2010 - 7:30am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy My dad is obsessed with fuel efficiency. I joked with him on a recent road trip that when he retires, he'll have more time to pursue his dream career as a fuel-economy promoter. Well guess what, I just found the treasure trove of information on smart driving that's going to make his whole week-it's at fueleconomy.gov. Now, I know we've blogged on this in the past. But it's been a while, and this stuff is good to keep fresh in your mind as the price of gasoline creeps up this summer. The site provides information on everything

323

EcoCar Drives Students to Innovate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate October 26, 2010 - 5:21pm Addthis EcoCar Drives Students to Innovate Shannon Brescher Shea Communications Manager, Clean Cities Program Last year, Americans used about 138 billion gallons of gasoline - mostly imported - for transportation, costing Americans about $300 billion. The Department of Energy, through the Recovery Act, is investing in more fuel-efficient battery and electric vehicles to reduce these costs and training a strong, talented workforce to develop these cleaner, more sustainable technologies. Recognizing the importance of engaging students in this endeavor, the Department of Energy and General Motors (GM) established the EcoCar Challenge - a three-year Advanced Vehicle

324

November 30, 2006 -TCAT to put six hybrid buses on the road Home News Opinion Accent Sports Click. Exclusively Online  

E-Print Network (OSTI)

immediately. The TCAT purchased the diesel-electric hybrids from the GILLIG Corporation in California. Hybrid recent $500,000 federal grant. At least 40 cities and areas in the U.S. are using diesel-electric hybrid-powered electric engine. They reduce emissions, save on fuel, and drive more smoothly and quietly than conventional

325

Optimal design of hybrid and non-hybrid fuel cell vehicles  

E-Print Network (OSTI)

Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

Papalambros, Panos

326

Laboratory technologies ENDURE(tm) SCR Catalyst and Hyperion...  

NLE Websites -- All DOE Office Websites (Extended Search)

a LANL technology called the E-POD(tm)-a hybrid technology designed for large diesel and natural gas stationary engines that dramatically reduces emissions. Installation of the...

327

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel...  

Energy Savers (EERE)

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Vehicle Technologies Office Merit Review 2014:...

328

Technology Transfer Webinar on November 12: High-Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on...

329

Hybrid Vehicles: a Temporary Step J.J. CHANARON1  

E-Print Network (OSTI)

of full electric vehicles probably with hydrogen powered fuel cells. Such assumption is shared by several the diffusion of hybrid electric technology in vehicles. It is put into question whether the current strong electric components. It is found that most companies integrate hybrid electric vehicles in their technology

Paris-Sud XI, Université de

330

Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Announces New Biofuels Projects to Drive Cost Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs August 1, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and reduce greenhouse gas emissions from the transportation sector. Secretary Moniz also announced over $22 million in new investments to help develop cost-competitive algae fuels and streamline the biomass feedstock supply chain for advanced biofuels. "By partnering with industry and universities, we can help make clean,

331

Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moniz Announces New Biofuels Projects to Drive Cost Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs August 1, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and reduce greenhouse gas emissions from the transportation sector. Secretary Moniz also announced over $22 million in new investments to help develop cost-competitive algae fuels and streamline the biomass feedstock supply chain for advanced biofuels. "By partnering with industry and universities, we can help make clean,

332

Detection of lower hybrid waves at the plasma edge of a diverted tokamak  

E-Print Network (OSTI)

In this thesis, two experimental investigations are presented in an attempt to understand the loss of lower hybrid current drive (LHCD) efficiency in reactor-relevant, high-density plasmas on the diverted Alcator C-Mod ...

Baek, Seung Gyou

2014-01-01T23:59:59.000Z

333

Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume I, January 2000  

Energy.gov (U.S. Department of Energy (DOE))

An assessment of the opportunities for micropower and fuel cell/gas turbine hybrid technologies in the industrial sector.

334

US DRIVE Electrochemical Energy Storage Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

335

Nonlinear lower hybrid modeling in tokamak plasmas  

SciTech Connect

We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

Napoli, F.; Schettini, G. [Universit Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)

2014-02-12T23:59:59.000Z

336

Driving Green com | Open Energy Information  

Open Energy Info (EERE)

Driving Green com Jump to: navigation, search Name: Driving Green.com Place: Melbourne, Florida Zip: 32904 Sector: Vehicles Product: Driving green.com is a website that allows...

337

NREL: Fleet Test and Evaluation - Electric and Plug-In Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Plug-In Hybrid Electric Drive Systems Electric and Plug-In Hybrid Electric Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of electric and plug-in hybrid electric drive systems in medium-duty trucks operated by fleets. Photo of medium-duty truck with the words "All Electric Vehicle" and "Plug-in" written on its side. NREL evaluates the performance of electric and plug-in hybrid electric vehicles in fleet operation. All-electric vehicles (EVs) use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. Plug-in hybrid electric vehicles (PHEVs) are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be

338

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

339

Induction-drive magnetohydrodynamic propulsion  

Science Journals Connector (OSTI)

The use of magnetohydrodynamic propulsion for marine applications is reviewed with emphasis on induction- ... . Comparisons are made with direct-drive MHD propulsion systems. Application to pumps for hazardous fl...

D. L. Mitchell; D. U. Gubser

1993-08-01T23:59:59.000Z

340

Adjustable Speed Drive Industrial Applications  

E-Print Network (OSTI)

Electric motors are significant users of electricity in the United States. Approximately 66 percent of the total electricity in the U.S. is used by electric motors. Electronic adjustable speed drives (ASDs) can save energy, lower maintenance cost...

Poole, J. N.

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electric Drive Status and Challenges  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by technical manager Susan Rogers at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

342

Hybrid Wind and Solar Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems July 2, 2012 - 8:21pm Addthis Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. How does it work? A small "hybrid" electric system that combines wind and solar technologies can offer several advantages over either single system. According to many renewable energy experts, a small "hybrid" electric system that combines home wind electric and home solar electric (photovoltaic or PV) technologies offers several advantages over either

343

Grand Challenge Portfolio: Driving Innovations in Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January...

344

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt039schwendeman2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles Advanced Electric Drive Vehicles Energy & Manufacturing Workforce...

345

Integrated Biogeochemical and Hydrologic Processes Driving Arsenic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemical and Hydrologic Processes Driving Arsenic Release from Shallow Sediments to Groundwaters of the Mekong Integrated Biogeochemical and Hydrologic Processes Driving...

346

Optimization of direct drive induction motors for electric ship propulsion with high speed propellers  

Science Journals Connector (OSTI)

Direct drive electric ship propulsion can offer increased flexibility and reduced overall fuel consumption compared to geared mechanical systems [Davis 1987, Doerry 2007]. As a well-established technology, induction motors are a dependable and economical ... Keywords: AC motors, induction motor drives, induction motors, thermal analysis

S. C. Englebretson; J. L. Kirtley, Jr; C. Chryssostomidis

2009-07-01T23:59:59.000Z

347

9. Technology Validation Introduction  

E-Print Network (OSTI)

.20 2.20 2.25 2.20 2.20 2.22 Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure and the corresponding hydrogen infrastructure that can be addressed only by integrating the components into complete infrastructure). Technology validation confirms that component technologies can be incorporated into a complete

348

MHK Technologies/Centipod | Open Energy Information  

Open Energy Info (EERE)

Centipod Centipod < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Centipod.jpg Technology Profile Primary Organization Ecomerit Technologies LLC see Dehlsen Associates LLC Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Centipod ocean wave generating system a horizontally stable floating platform optimally yawed active to wavefront exposure has flotation pods driving hydraulic rams Fluid drives the hydroelectric generating system providing cost competitive electric power Mooring Configuration Proprietary Technology Dimensions Device Testing

349

Fundamental of HDD Technology (2)  

E-Print Network (OSTI)

's RAMAC 305 5 MB stored on 50 24" disks First Air Bearing Heads (1962): IBM's model 1301 28 MB, flying://home.npru.ac.th/piya 2 Outline Hard Disk Drive (HDD) Key Technological Firsts Important HDD Characteristics HDD Structure Platters Media Materials 3 Hard Disk Drive (HDD) HDD is the most important of permanent storage devices (e

Kovintavewat, Piya

350

Optimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles  

E-Print Network (OSTI)

, Electrical Engineering and Mathematics Institute of Power Electronics and Electrical Drives, D-33095 vehicles are composed of a combination of a combustion engine, one ore more electrical drivesOptimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles

Paderborn, Universität

351

Hybrid Multicore Consortium Tackles Programming Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Multicore Hybrid Multicore Consortium Tackles Programming Challenges Hybrid Multicore Consortium Tackles Programming Challenges Oak Ridge, Lawrence Berkeley and Los Alamos national laboratories to pool high-end computing expertise with Georgia Tech, Swiss University November 18, 2009 HMC PORTLAND, Oregon-While hybrid multicore technologies will be a critical component in future high-end computing systems, most of today's scientific applications will require a significant re-engineering effort to take advantage of the resources provided by these systems. To address this challenge, three U.S. Department of Energy national laboratories, including the Berkeley Lab, and two leading universities have formed the Hybrid Multicore Consortium, or HMC, and held their first meeting at SC09.

352

Airport Drive, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Drive, Missouri: Energy Resources Drive, Missouri: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.1425588°, -94.5107824° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.1425588,"lon":-94.5107824,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Electric machine and current source inverter drive system  

SciTech Connect

A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

Hsu, John S

2014-06-24T23:59:59.000Z

354

A versatile computer model for the design and analysis of electric and hybrid vehicles  

E-Print Network (OSTI)

The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct...

Stevens, Kenneth Michael

1996-01-01T23:59:59.000Z

355

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

356

Office of Information Technology Newark Computing Services  

E-Print Network (OSTI)

1 Office of Information Technology Newark Computing Services Hill Hall, Room 218 Rutgers, The State to an external hard drive, USB flash drive, or CD prior to upgrading your computer. A clean installation of Information Technology Newark Computing Services Hill Hall, Room 218 Rutgers, The State University of New

Hanson, Stephen José

357

Converting a commercial electric direct-drive robot to operate from joint torque commands  

SciTech Connect

Many robot control algorithms for high performance in-contact operations including hybrid force/position, stiffness control and impedance control approaches require the command the joint torques. However, most commercially available robots do not provide joint torque command capabilities. The joint command at the user level is typically position or velocity and at the control developer level is voltage, current, or pulse-width, and the torque generated is a nonlinear function of the command and joint position. To enable the application of high performance in-contact control algorithms to commercially available robots, and thereby facilitate technology transfer from the robot control research community to commercial applications, an methodology has been developed to linearize the torque characteristics of electric motor-amplifier combinations. A four degree of freedom Adept 2 robot, having pulse-width modulation amplifiers and both variable reluctance and brushless DC motors, is converted to operate from joint torque commands to demonstrate the methodology. The commercial robot controller is replaced by a VME-based system incorporating special purpose hardware and firmware programmed from experimental data. The performance improvement is experimentally measured and graphically displayed using three-dimensional plots of torque vs command vs position. The average percentage torque deviation over the command and position ranges is reduced from as much as 76% to below 5% for the direct-drive joints 1, 2 and 4 and is cut by one half in the remaining ball-screw driven joint 3. Further, the torque deviation of the direct-drive joints drops below 2.5% if only the upper 90% of the torque range is considered. 23 refs., 20 figs., 2 tabs.

Muir, P.F.

1991-07-01T23:59:59.000Z

358

Recativation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modem reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1997-03-24T23:59:59.000Z

359

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

360

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Steven Schamel

1997-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

1999-02-01T23:59:59.000Z

362

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

1997-10-21T23:59:59.000Z

363

F1 Hybrid  

Science Journals Connector (OSTI)

Abstract An F1 hybrid consists of crosses between populations, breeds, or cultivars between or within species. This meaning is often used in plant and animal breeding, where hybrids are commonly produced and chosen (artificially selected) because they have desirable characteristics. This flow of genetic material between populations is often called hybridization. Mostly, F1 hybrids between diverse parentages give great vigor than hybrids between parents of same ancestry.

N.U. Khan

2013-01-01T23:59:59.000Z

364

M-7 Technologies | Open Energy Information  

Open Energy Info (EERE)

M-7 Technologies M-7 Technologies Jump to: navigation, search Name M-7 Technologies Address 1019 Ohio Works Drive Place Youngstown, Ohio Zip 44510 Sector Buildings, Efficiency, Services, Solar, Wind energy Product Energy audits/weatherization; Engineering/architectural/design; Maintenance and repair;Manufacturing; Refining;Research and development; Trainining and education Website http://www.m7tek.com Coordinates 41.11069°, -80.676384° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.11069,"lon":-80.676384,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

SciTech Connect

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

366

Thirteen States Receive Energy Department Awards to Drive Greater Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States Receive Energy Department Awards to Drive Greater States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money November 26, 2013 - 2:44pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on the Obama Administration's efforts to double energy productivity by 2030 and help communities save on energy bills, the Energy Department today awarded nearly $4 million to 13 states to increase statewide energy savings and boost the energy efficiency of public institutions, local governments and industrial sectors. The Department's State Energy Program has a long history in assisting states in saving energy and deploying new clean energy technologies. "Smart, cost-effective investments in energy efficiency are helping

367

Aircraft AC Generators: Hybrid System Modeling and Simulation  

E-Print Network (OSTI)

1 Aircraft AC Generators: Hybrid System Modeling and Simulation Ashraf Tantawy, Student Member--Integrated Drive Generators (IDGs) are the main source of electrical power for a number of critical systems is a difficult task. dq0 models have been developed for design and control of generators, but these models

Koutsoukos, Xenofon D.

368

Accessibility for lower hybrid waves in PBX-M  

SciTech Connect

Understanding the wave damping mechanism in the presence of a spectral gap' is an important issue for the current profile control using Lower Hybrid Current Drive (LHCD). The authors examine a traditional explanation based upon upshifting of the wave parallel refractive index (n[sub [parallel

Takahashi, H.; Bell, R.; Bernabei, S.; Chance, M.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Manickam, J.; Okabayashi, M.; Ono, M.; Paul, S.; Perkins, F.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Tighe, W.; Valeo, E.; von Goeler, S. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Batha, S.; Levinton, F. (Fusion Physics and Technology

1993-07-01T23:59:59.000Z

369

DOE Hydrogen and Fuel Cells Program: U.S. DRIVE Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background U.S. DRIVE Partnership Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > Background > U.S. DRIVE Partnership Printable Version U.S. DRIVE Partnership The U.S. DRIVE Partnership is a collaborative effort among DOE and companies from the automotive, fuels, and electric utility industries, focused on advanced automotive and related infrastructure technology research and development. U.S. DRIVE Logo The U.S. DRIVE partners are: Automobile industry: U.S. Council for Automotive Research LLC (USCAR, the cooperative research organization for Chrysler Group, Ford Motor Company, and General Motors Company); Tesla Motors Electric utility industry: DTE Energy Company, Southern California

370

Vehicle Technologies Office: Fact #531: August 11, 2008 Preferences for  

NLE Websites -- All DOE Office Websites (Extended Search)

1: August 11, 1: August 11, 2008 Preferences for Hybrids and Diesels to someone by E-mail Share Vehicle Technologies Office: Fact #531: August 11, 2008 Preferences for Hybrids and Diesels on Facebook Tweet about Vehicle Technologies Office: Fact #531: August 11, 2008 Preferences for Hybrids and Diesels on Twitter Bookmark Vehicle Technologies Office: Fact #531: August 11, 2008 Preferences for Hybrids and Diesels on Google Bookmark Vehicle Technologies Office: Fact #531: August 11, 2008 Preferences for Hybrids and Diesels on Delicious Rank Vehicle Technologies Office: Fact #531: August 11, 2008 Preferences for Hybrids and Diesels on Digg Find More places to share Vehicle Technologies Office: Fact #531: August 11, 2008 Preferences for Hybrids and Diesels on AddThis.com...

371

Vehicle Technologies Office: Summary Report - Discussion Meeting on  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary Report - Summary Report - Discussion Meeting on Plug-In Hybrid Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: Summary Report - Discussion Meeting on Plug-In Hybrid Electric Vehicles on Facebook Tweet about Vehicle Technologies Office: Summary Report - Discussion Meeting on Plug-In Hybrid Electric Vehicles on Twitter Bookmark Vehicle Technologies Office: Summary Report - Discussion Meeting on Plug-In Hybrid Electric Vehicles on Google Bookmark Vehicle Technologies Office: Summary Report - Discussion Meeting on Plug-In Hybrid Electric Vehicles on Delicious Rank Vehicle Technologies Office: Summary Report - Discussion Meeting on Plug-In Hybrid Electric Vehicles on Digg Find More places to share Vehicle Technologies Office: Summary Report - Discussion Meeting on Plug-In Hybrid Electric Vehicles on

372

Comparison of AC drives for electric vehicles -- A report on experts` opinion survey  

SciTech Connect

It is recognized that wide applications of electric vehicles (EVs) will bring tremendous social, economical and ecological benefits. With the growing interests in electric vehicles, much effort is demanded for the development of efficient, reliable and economical AC drives` for EV propulsion purpose. Both induction motor (IM) drives and permanent magnet brushless DC motor (BDCM) drives have been applied to EVs. Switched reluctance motor (SRM) drives have been proposed as an alternative for EV propulsion. In order to assess the suitability of IM, BDCM and SRM drives for EV applications and to provide a technical support for the development and selection of future EV propulsion systems, the existing EV AC propulsion drives were compared, and a survey of experts` opinions was conducted. Comparison of the three AC drives was made on a relative and a quantitative basis using the survey questionnaires. According to the majority of the experts, induction motor drives are best suited for EV propulsion purpose, due to their low cost, high reliability, high speed, established converter and manufacturing technology, low torque ripple/noise and absence of position sensors. BDCM drives feature compactness, low weight and high efficiency and therefore provide an alternative for EV propulsion. The experts regard insulated gate bipolar transistors (IGBTs) as the most suited power semiconductor devices for AC drive converters at the present stage. 7 refs.

Chang, L. [New Brunswick Univ., Fredericton, New Brunswick (Canada). Dept. of Electrical Engineering] [New Brunswick Univ., Fredericton, New Brunswick (Canada). Dept. of Electrical Engineering

1994-08-01T23:59:59.000Z

373

Laser Direct Drive: Scientific Advances,  

E-Print Network (OSTI)

· Simpler targets & physics · Predict Fusion Class Gains (> 140) at lower laser energy (500 kJ - 1 MJ) #12;7 KrF lasers have advantages for fusion energy PHYSICS Deeper UV (248 nm vs 351 for glass): -- Greater · chamber #12;9 Gain for Fusion Energy New Direct Drive Designs: Power plant class gains, much smaller laser

374

Anomalous-viscosity current drive  

DOE Patents (OSTI)

The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

Stix, T.H.; Ono, M.

1986-04-25T23:59:59.000Z

375

Plug-In Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Downloadable Dynanometer Database (D3) * Modeling * Prototypes * Testing * Assessment PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Argonne Leads DOE's Effort to Evaluate Plug-in Hybrid Technology aprf testing Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles such as PHEVs. Argonne's Research Argonne National Laboratory is the U.S. Department of Energy's lead national laboratory for the simulation, validation and laboratory evaluation of plug-in hybrid electric vehicles and the advanced

376

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

Schamel, S.

1996-11-01T23:59:59.000Z

377

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

378

Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic fatigue characteristics of silica fibers  

E-Print Network (OSTI)

Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic. Wojcik c , A. Walewski c a Hybrid Glass Technologies, Inc., Monmouth Junction, NJ 08852, USA b Rutgers coatings. Recently developed sol-gel derived inorganic- organic hybrid materials called hybrid glass

Matthewson, M. John

379

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Plan Partnership Plan March 2013 U.S. DRIVE Partnership Plan Table of Contents Foreword ....................................................................................................................................................... 2 Definition ...................................................................................................................................................... 3 Partners ......................................................................................................................................................... 3 U.S. DRIVE Vision ........................................................................................................................................... 3 U.S. DRIVE Mission ........................................................................................................................................ 4

380

Electric Drive Component Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

US Electric Drive Manufacturing Center  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

382

Electric Drive Component Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

383

US Electric Drive Manufacturing Center  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

384

US Electric Drive Manufacturing Center  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

385

Electric Drive Component Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

386

Hindawi Publishing Corporation International Journal of Vehicular Technology  

E-Print Network (OSTI)

Cascaded H-Bridge Multilevel Inverter with a Modified DTC Scheme for Induction Motor-Based Electric Vehicle a new hybrid cascaded H-bridge multilevel inverter motor drive DTC scheme for electric vehicles where electric propulsion system is the heart of EV. It consists of the motor drive, transmission device

Paris-Sud XI, Université de

387

AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus testing results  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus.

388

Virtual reality and hybrid technology for neurorehabilitations  

Science Journals Connector (OSTI)

Disabilities that follow Cerebrovascular accidents (CVA) and spinal cord injuries (SCI) severely impair motor functions and thereby prevent the affected individuals from full and autonomous participation in daily activities. Several studies have shown ... Keywords: brain neuro-machine interface, cerebrovascular accidents, motor-neuroprosthetics, neuro-robotics, spinal cord injury, virtual reality

Alessandro De Mauro; Aitor Ardanza; Chao Chen; Eduardo Carrasco; David Oyarzun; Diego Torricelli; Shabs Rajasekharan; Jos Luis Pons; ngel Gil-Agudo; Julin Flrez Esnal

2007-06-01T23:59:59.000Z

389

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

390

E-Print Network 3.0 - array hybridization experiments Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Information Sciences ; Biotechnology 2 Laser beam relaying with a hybrid imaging system Barbara Lunitz, Jurgen Jahns Summary: reconstructs the light...

391

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

392

dHybrid: a massively parallel code for hybrid simulations of space plasmas  

E-Print Network (OSTI)

A massively parallel simulation code, called \\textit{dHybrid}, has been developed to perform global scale studies of space plasma interactions. This code is based on an explicit hybrid model; the numerical stability and parallel scalability of the code are studied. A stabilization method for the explicit algorithm, for regions of near zero density, is proposed. Three-dimensional hybrid simulations of the interaction of the solar wind with unmagnetized artificial objects are presented, with a focus on the expansion of a plasma cloud into the solar wind, which creates a diamagnetic cavity and drives the Interplanetary Magnetic Field out of the expansion region. The dynamics of this system can provide insights into other similar scenarios, such as the interaction of the solar wind with unmagnetized planets.

Gargat'e, L; Fonseca, R A; Silva, L O

2006-01-01T23:59:59.000Z

393

Mesoscale hybrid calibration artifact  

DOE Patents (OSTI)

A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

2010-09-07T23:59:59.000Z

394

Granular gases under extreme driving  

E-Print Network (OSTI)

We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady-state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

W. Kang; J. Machta; E. Ben-Naim

2010-02-04T23:59:59.000Z

395

Optimization of condensing gas drive  

E-Print Network (OSTI)

- cal, undersaturated reservoir with gas being injected into the crest and oil being produced from the base of the structure. Fractional oil re- covery at gas breakthrough proved to be less sensitive to changes in oil withdrawal rates as the gas... injection pressure was increased. The validity of the model was established by accurately simulating several low pressure gas drives conducted in the laboratory. Oil recoveries at gas breakthrough using the model compared closely with those recoveries...

Lofton, Larry Keith

2012-06-07T23:59:59.000Z

396

Hybrid armature projectile  

DOE Patents (OSTI)

A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

1993-03-02T23:59:59.000Z

397

Hybrid armature projectile  

DOE Patents (OSTI)

A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

1993-01-01T23:59:59.000Z

398

Current drive operation in a tokamak  

Science Journals Connector (OSTI)

Three modes of current drive operation in a tokamak continuous, cyclic, and rfinitiated-are ... A model design of a saturable iron core tokamak for current drive experiments is also presented.

O. Mitarai; A. Hirose

1985-12-01T23:59:59.000Z

399

What Drives the BrewerDobson Circulation?  

Science Journals Connector (OSTI)

Recent studies have revealed strong interactions between resolved Rossby wave and parameterized gravity wave driving in stratosphere-resolving atmospheric models. Perturbations to the parameterized wave driving are often compensated by opposite ...

Naftali Y. Cohen; Edwin P. Gerber; Oliver Bhler

2014-10-01T23:59:59.000Z

400

October Blood Drive Announcement | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

American Red Cross Blood Drive Scheduled for Oct. 31 The American Red Cross Blood Drive will take place Friday, October 31st from 10 a.m.-4 p.m. in CEBAF Center, Room F113. New and...

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Application of hybrid EGR systems to turbocharged GDI engines  

Science Journals Connector (OSTI)

In a hybrid exhaust gas recirculation system, high-pressure EGR is combined with low-pressure EGR. As BorgWarner demonstrates, proven technology from diesel engines can also be used for gasoline engines in ord...

David Roth; Rolf Sauerstein; Dr.-Ing. Michael Becker; Rob Meilinger

2010-04-01T23:59:59.000Z

402

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

403

Consider Steam Turbine Drives for Rotating Equipment  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

404

Conceptual Design of the Drive Beam for a PWFA-LC  

SciTech Connect

Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for bunch with triangular shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective than the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed by the PWFA collaboration. Here we will describe the conceptual design and optimization of the drive beam, which includes the drive beam linac and distribution system. We apply experience of the CLIC drive beam design and demonstration in the CLIC Test Facility (CTF3) to this study. We discuss parameter optimization of the drive beam linac structure and evaluate the drive linac efficiency in terms of the drive beam distribution scheme and the klystron/modulator requirements.

Pei, S.; Hogan, M.J.; Raubenheimer, T.O.; Seryi, A.; /SLAC; Braun, H.H.; Corsini, R.; Delahaye, J.P.; /DESY

2009-08-03T23:59:59.000Z

405

Indianapolis Offers a Lesson on Driving Demand  

Energy.gov (U.S. Department of Energy (DOE))

Successful program managers know that understanding the factors that drive homeowners to make upgrades is critical to the widespread adoption of energy efficiency. What better place to learn about driving demand for upgrades than in Indianapolis, America's most famous driving city?

406

Commercial viability of hybrid vehicles : best household use and cross national considerations.  

SciTech Connect

Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

Santini, D. J.; Vyas, A. D.

1999-07-16T23:59:59.000Z

407

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

408

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

409

Hybrid Electric Vehicles - HEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Modeling Background Because of time and cost constraints, designers cannot build and test each of the many possible powertrain configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a collaborative effort to further develop Autonomie in collaboration with General Motors. Autonomie is sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Program. Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

410

NIST's Advanced Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

411

Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report  

SciTech Connect

The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

Not Available

1980-01-01T23:59:59.000Z

412

NewGen Fuel Technologies Ltd | Open Energy Information  

Open Energy Info (EERE)

NewGen Fuel Technologies Ltd NewGen Fuel Technologies Ltd Jump to: navigation, search Name NewGen Fuel Technologies, Ltd Place Charlotte, North Carolina Zip 28210 Product 50:50 JV between NewGen Technologies and AG Global Partners to drive global expansion. The JV is involved in all steps of the fuel supply chain internationally. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

414

Driving Sensing Technology in Oil & Gas | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Author Loucas Tsakalakos Lab Manager Photonics Loucas leads a team developing advanced, micronano structure enabled sub-systems, components and devices that use light for data...

415

Technologies for Mobile ITS Applications and Safer Driving  

E-Print Network (OSTI)

Erl, T. : 'Service-Oriented Architecture (SOA): Concepts,17] based Service-Oriented Architecture (SOA). This has thea SOAP- based Service-Oriented Architecture. It is XML-based

Manasseh, Christian Georges

2010-01-01T23:59:59.000Z

416

Navistar-Driving efficiency with integrated technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

better fuel economy is centered around some of the main themes of the greenhouse gas (GHG) regulations deer11mooney.pdf More Documents & Publications The Business of Near Zero...

417

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

418

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 1  

SciTech Connect

The mine proving ground to be used for the hybrid off highway vehicle (OHV) demonstration was visited, to obtain haul route profile data and OHV vehicle data. A 6500-ft haul mission with 7% average grade was selected. Enhancements made to a dynamic model of hybrid missions provided capability to analyze hybrid OHV performance. A benefits study defined relationships between fuel and productivity benefits and hybrid system parameters. OHV hybrid system requirements were established, and a survey of candidate energy storage technology characteristics was carried out. Testing of the performance of an existing power battery bank verified its suitability for use in the hybrid OHV demonstration.

Salasoo, Lembit

2003-02-11T23:59:59.000Z

419

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results ... Keywords: optimization, switched reluctance motor, torque control

David Cajander; Hoang Le-Huy

2006-06-01T23:59:59.000Z

420

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results ... Keywords: Optimization, Switched reluctance motor, Torque control

David Cajander; Hoang Le-Huy

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chapter 24 - Fuel Cells: Energy Conversion Technology  

Science Journals Connector (OSTI)

The drive for fuel cell technology research and development stems from cleanliness of the technology, high chemical to electrical conversion efficiency and versatile applications ranging from large-scale, stand-alone stationary power plant to modular distributed generation systems to advanced mobile auxiliary power units. Portable systems and those that can be carried are also currently being designed for civilian and military markets. Fuel cells are capable of generating electricity with virtually negligible to zero pollution (e.g. SOx, NOx, volatile organic compounds (VOC), particulate matters (PMs)). They also offer a reduced carbon footprint and have the potential to be engineered for zero carbon systems. Despite the potential to meet the pressing needs for clean and efficient fuel cellbased power generation systems, high capital and maintenance cost remains a challenge for large-scale commercialisation and global market entry. Solid oxide fuel cell (SOFC) is one of the most promising fuel cell technologies as it offers significantly higher electrical efficiency as well as co-production of high-quality process heat. The system lifetime, its reliability and cost, however, remain a concern due to the performance degradation with time, commonly associated with the instability of materials in complex operating environment and high exposure temperature (6501000)C. New materials, systems design and operating conditions are being developed to increase the lifetime. Centralised and distributed SOFC power systems in the range of hundreds of kilowatt to megawatt are being considered for integration with advanced coal power plants, hybrid systems integrated with energy storage and carbon-capture technologies to fully exploit the commercial potential.

Manoj K. Mahapatra; Prabhakar Singh

2014-01-01T23:59:59.000Z

422

Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah Ortzar and Felipe Ros  

E-Print Network (OSTI)

Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah converters for electric vehicles using multilevel inverters. They are being compared with inverters using. Introduction Power Electronics technologies contribute with important part in the development of electric

Catholic University of Chile (Universidad Católica de Chile)

423

Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to  

NLE Websites -- All DOE Office Websites (Extended Search)

1: August 5, 1: August 5, 2013 Comparative Costs to Drive an Electric Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Facebook Tweet about Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Twitter Bookmark Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Google Bookmark Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Delicious Rank Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Digg Find More places to share Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on

424

Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban  

NLE Websites -- All DOE Office Websites (Extended Search)

9: December 24, 9: December 24, 2012 Rural vs. Urban Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #759: December 24, 2012 Rural vs. Urban Driving Differences on AddThis.com...

425

Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1  

E-Print Network (OSTI)

HyLo 2006 Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1 Andr´e Platzer2 Carnegie platzer@informatik.uni-oldenburg.de Abstract We introduce a hybrid variant of a dynamic logic for this extended hybrid dynamic logic. With the addition of satisfaction operators, this hybrid logic provides

Platzer, André

426

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

427

Understanding fuel savings mechanisms from hybrid vehicles to guide optimal battery sizing for India  

Science Journals Connector (OSTI)

Global transportation-related CO2 emissions are expected to substantially increase by 2050, with a majority of growth coming from rapidly developing countries like India. To understand the potential for using hybrid vehicles to limit the CO2 emissions growth, this paper compares driving conditions and the fuel savings potential of hybrids in the USA and India. It is shown that hybrids offer more fuel savings potential in India than in the USA, largely because of the limited highway driving in India. In order of relative importance, the analysis shows that fuel savings from power-split hybrids come from: 1) enabling higher efficiency engine operation; 2) energy recovered from regenerative braking; 3) engine shutdown. This understanding of the fuel savings mechanisms of hybrids and their relative importance is used in assessing how smaller battery capacities for hybrids in India can be used to reduce costs for this highly cost-sensitive market while preserving fuel savings. A parametric analysis of battery size on fuel savings mechanisms is carried out, and it is shown that hybrid vehicles for Indian driving conditions should ideally have a power capacity between 15 and 20 kW, with 10 kW as a lower limit.

Samveg Saxena; Amol Phadke; Anand Gopal; Venkat Srinivasan

2014-01-01T23:59:59.000Z

428

Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual...  

Energy Savers (EERE)

materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics...

429

New & Upcoming Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Hybrids New & Upcoming Hybrids 2014 Model Year Vehicle EPA MPG Estimates Price (MSRP) Chevrolet Impala eAssist Large Car Chevrolet Impala eAssist Chart: City, 25; Highway, 35; Combined, 29 NA Infiniti Q50 Hybrid Compact Car Infiniti Q50 Hybrid Chart: City, 29; Highway, 36; Combined, 31 $43,950 Infiniti Q50 Hybrid AWD Compact Car Infiniti Q50 Hybrid AWD Chart: City, 28; Highway, 35; Combined, 30 $45,750 Infiniti Q50S Hybrid Compact Car Infiniti Q50S Hybrid Chart: City, 28; Highway, 34; Combined, 30 $46,350 Infiniti Q50S Hybrid AWD Compact Car Infiniti Q50S Hybrid AWD Chart: City, 27; Highway, 31; Combined, 28 $48,150 Infiniti QX60 Hybrid AWD Standard SUV Infiniti QX60 Hybrid AWD Chart: City, 25; Highway, 28; Combined, 26 NA Infiniti QX60 Hybrid FWD

430

Truck Technology Efficiency Assessment (TTEA) Project  

E-Print Network (OSTI)

cycle data in order to quantify the fuel savings and emissions reduction potential of technologies climate change in transportation, and related environmental impacts. Drive Cycle Data Analysis to Evaluate Fuel and Emissions Benefits Drive cycle data (velocity, acceleration and elevation histories

432

Corn Hybrids for Texas.  

E-Print Network (OSTI)

Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea....1 in 1941 to 74.5 percent in 1953. Most of the present acreage is devoted to the newer, better-adaptt hybrids-Texas 26, 28 and 30. These new hybrids usually outyield the older Texas hybrids h!. least 10 percent. Corn is one of the most important...

Rogers, J. S.; McAfee, T. E.

1954-01-01T23:59:59.000Z

433

High-frequency equivalent model of AC motor for electric vehicle drive system  

Science Journals Connector (OSTI)

The application of the motor drive system in electric and hybrid-electric vehicles can lead to a significant increase in electromagnetic compatibility. The AC motor as an important part of motor drive system must be considered. In this paper, a high frequency modelling method of the AC motor is presented. The modelling method consists of deriving the motor model parameters from mathematical resolution of the electrical circuit equations and observation of the variations of the motor impedance with the frequency. All parameters of the proposed models are obtained by differential mode (DM) and common mode (CM) impedance measurement in the frequency domain. The model is verified by impedance measurement of a synchronous motor. The method proposed can be used to obtain a high-frequency equivalent circuit of an AC motor and predict conducted electromagnetic interference in a motor drive system.

Yongming Yang; Hemeng Peng; Quandi Wang

2013-01-01T23:59:59.000Z

434

Neuro-fuzzy-based space vector modulation for THD reduction in VSI fed induction motor drive  

Science Journals Connector (OSTI)

Space vector modulation is an optimal pulse width modulation technique for variable speed drive application. This paper proposes adaptive neuro-fuzzy inference system (ANFIS) based space vector modulation (SVM) technique for voltage source inverter. The proposed ANFIS network is independent of the switching frequency and uses hybrid learning algorithm for training. Due to this learning algorithm, SVM algorithm can be implemented very fast and the desired training error can be obtained with less number of iterations compared to other optimisation techniques like neural, fuzzy and genetic. The performance of ANFIS controlled drive is compared with the conventional SVM-based drive. The simulation results of inverter phase voltages obtained are verified experimentally using a Dspace kit (DS1104). The % THD value of simulation and experimental waveforms of inverter phase voltages for 3 kHz switching frequency is presented.

G. Durgasukumar; Mukesh Kumar Pathak

2012-01-01T23:59:59.000Z

435

TMV Technology Capabilities Brake Stroke Monitor  

E-Print Network (OSTI)

TMV Technology Capabilities Brake Stroke Monitor Brake monitoring systems are proactive maintenance This technology allows for CMV operators to have knowledge of their steer, drive, and tandem axle group weights setup is required. Current Safety/Enforcement Technologies EOBR (electronic on-board recorder) On

436

Electric vehicle drive train with contactor protection  

DOE Patents (OSTI)

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

1994-01-01T23:59:59.000Z

437

Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 14, 2: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Facebook Tweet about Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Twitter Bookmark Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Google Bookmark Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Delicious Rank Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Digg

438

Property:Technology Resource | Open Energy Information  

Open Energy Info (EERE)

Resource Resource Jump to: navigation, search Property Name Technology Resource Property Type Text Pages using the property "Technology Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Anaconda bulge tube drives turbine + Wave MHK Technologies/AquaBuoy + Wave MHK Technologies/Aquanator + Current/Tidal MHK Technologies/Aquantis + Current MHK Technologies/Archimedes Wave Swing + Wave MHK Technologies/Atlantis AN 150 + Current/Tidal MHK Technologies/Atlantis AR 1000 + Current/Tidal MHK Technologies/Atlantis AS 400 + Current/Tidal MHK Technologies/Atlantisstrom + Current MHK Technologies/Benkatina Turbine + Current MHK Technologies/Blue Motion Energy marine turbine + Current MHK Technologies/Bluetec + Current MHK Technologies/Brandl Generator + Wave

439

Property:Technology Type | Open Energy Information  

Open Energy Info (EERE)

Technology Type Technology Type Property Type Text Pages using the property "Technology Type" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + OTEC - Closed Cycle MHK Technologies/Aegir Dynamo + Point Absorber - Floating MHK Technologies/Anaconda bulge tube drives turbine + Oscillating Wave Surge Converter MHK Technologies/AquaBuoy + Point Absorber MHK Technologies/Aquanator + Cross Flow Turbine MHK Technologies/Aquantis + Axial Flow Turbine MHK Technologies/Archimedes Wave Swing + Point Absorber MHK Technologies/Atlantis AN 150 + Axial Flow Turbine MHK Technologies/Atlantis AR 1000 + Axial Flow Turbine MHK Technologies/Atlantis AS 400 + Axial Flow Turbine MHK Technologies/Atlantisstrom + Cross Flow Turbine MHK Technologies/BOLT Lifesaver + Oscillating Wave Surge Converter

440

DOE Drives Big Data Push  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Volume 9 Issue 2 2 Volume 9 Issue 2 From YAGS to Planetary Biology . . . . . . . . . . . . . . . 2 DOE Drives Big Data Push . . . . . . . . . . . . . . . . . . . . 3 Sweating Small Scale Genomics . . . . . . . . . . . . . . . 6 The Future of the DOE JGI . . . . . . . . . . . . . . . . . . . . 7 Save the Date for Meeting 8 . . . . . . . . . . . . . . . . . . . 8 also in this issue With a record 488 genomics researchers and bioinformaticians sitting in the Marriott Walnut Creek ballroom, New York Times science writer Carl Zimmer opened the DOE Joint Genome Institute's 7th Annual Genomics of Energy & Environment Meeting on March 20, 2012. Sharing his thoughts about being "On the Genome Beat," he informed the audience that he was worn down by seeing news about scientists successfully sequencing yet another genome sequence, and that "maybe some genomes shouldn't be written about." Zimmer's words engaged the audience in a discussion that

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Current Drive in Recombining Plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

P.F. Schmit and N.J. Fisch

2012-05-15T23:59:59.000Z

442

Modelling market diffusion of electric vehicles with real world driving data Part I: Model structure and validation  

Science Journals Connector (OSTI)

Abstract The future market diffusion of electric vehicles (EVs) is of great importance for transport related green house gas emissions and energy demand. But most studies on the market diffusion of \\{EVs\\} focus on average driving patters and neglect the great variations in daily driving of individuals present in real-world driving data. Yet these variations are important for \\{EVs\\} since range limitations and the electric driving share of plug-in hybrids strongly impact the economic evaluation and consumer acceptance of EVs. Additionally, studies often focus on private cars only and neglect that commercial buyers account for relevant market shares in vehicle sales. Here, we propose a detailed, user specific model for the market diffusion of \\{EVs\\} and evaluation of EV market diffusion policies based on real-world driving data. The data and model proposed include both private and commercial users in Germany and allow the calculation of realistic electric driving shares for all usage patterns. The proposed model explicitly includes user heterogeneity in driving behaviour, different user groups, psychological aspects and the effect of charge-at-home options. Our results show that the proposed model reproduces group specific market shares, gives confidence bands of market shares and simulates individual electric driving shares.

Patrick Pltz; Till Gnann; Martin Wietschel

2014-01-01T23:59:59.000Z

443

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network (OSTI)

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

444

MHK Technologies/SQUID | Open Energy Information  

Open Energy Info (EERE)

is filled with water Sitting just under the surface the absorber is moved by passing waves and the energy from this motion drives a generator to produce electricity Technology...

445

Application of Innovative Technologies During Continuous Commissioning  

E-Print Network (OSTI)

,436 square feet was used as a case study building. The new technologies are a variable speed drive volumetric tracking method for building pressure control, a recently developed fan airflow measurement method for duct static pressure reset, and a new...

Joo, I. S.; Liu, M.; Wang, J.; Hansen, K.

2003-01-01T23:59:59.000Z

446

Improving Motor and Drive System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drives. Energy-Efficient Electric Motors and Their Applications, 2nd Edition Author: Jordan, H.E. Publisher: Springer Description: Evaluates the energy savings potential of...

447

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

448

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

449

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

450

Advanced Electric Drive Vehicle Education Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Consortium (NAFTC), together with its partners, will develop an Advanced Electric Drive Vehicle Education Program that will help accelerate mass market introduction...

451

Marketing & Driving Demand: Social Media Tools & Strategies ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand: Social Media Tools & Strategies - January 16, 2011 Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 January 16, 2011 Conference Call...

452

Marketing & Driving Demand Collaborative - Social Media Tools...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the BetterBuildings...

453

Collaboration drives achievement in protein structure research  

NLE Websites -- All DOE Office Websites (Extended Search)

AlumniLink November 2014 Collaboration drives achievement in protein structure research Alumni Link: Opportunities, News and Resources for Former Employees Latest...

454

Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical Approach  

E-Print Network (OSTI)

International technology transfer..........................................................51 6 Conclusion ......................................................................................................62 Research paper 2: What Drives the International Transfer of Climate Change Mitigation Technologies1 Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical

Paris-Sud XI, Université de

455

Formula Hybrid International Competition  

E-Print Network (OSTI)

Jack Ratta Media Center Acceleration Runs NASCAR Oval - Main Straight Tech. Inspection North Garage:00 4:00 5:00 6:00 7:00 8:00 9:00 Design Finals Group Photo NASCAR Oval - Main Straight Barbeque Hosted of the hybrid gasoline engine, there are more components to a hybrid drivetrain, including the electric motor

Carver, Jeffrey C.

456

Building America Whole-House Solutions for New Homes: Affordable Cold Climate Infill Housing with Hybrid Insulation Approach  

Energy.gov (U.S. Department of Energy (DOE))

Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)

457

Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System  

SciTech Connect

HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

None

2012-01-04T23:59:59.000Z

458

Hybrid Quantum Cloning Machine  

E-Print Network (OSTI)

In this work, we introduce a special kind of quantum cloning machine called Hybrid quantum cloning machine. The introduced Hybrid quantum cloning machine or transformation is nothing but a combination of pre-existing quantum cloning transformations. In this sense it creates its own identity in the field of quantum cloners. Hybrid quantum cloning machine can be of two types: (i) State dependent and (ii) State independent or Universal. We study here the above two types of Hybrid quantum cloning machines. Later we will show that the state dependent hybrid quantum-cloning machine can be applied on only four input states. We will also find in this paper another asymmetric universal quantum cloning machine constructed from the combination of optimal universal B-H quantum cloning machine and universal anti-cloning machine. The fidelities of the two outputs are different and their values lie in the neighborhood of ${5/6} $

Satyabrata Adhikari; A. K. Pati; Indranil Chakrabarty; B. S. Choudhury

2007-05-04T23:59:59.000Z

459

Hybrid Baryons in QCD  

SciTech Connect

We present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

Jozef J. Dudek, Robert G. Edwards

2012-03-01T23:59:59.000Z

460

MHK Technologies/Wavemill | Open Energy Information  

Open Energy Info (EERE)

Wavemill Wavemill < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wavemill.jpg Technology Profile Primary Organization Wavemill Energy Project(s) where this technology is utilized *MHK Projects/Wavemill Energy Cape Breton Island NS CA Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wavemill device utilizes wave motion to drive pistons, which drive a water pump. The water is then pumped ashore where it undergoes reverse osmosis and becomes desalinated. Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Emerging Technologies Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Activities Emerging Technologies Activities Emerging Technologies Activities The Emerging Technologies team focuses on the development and testing of next-generation technologies that can increase the energy efficiency of existing technologies and help support the goal of reducing energy consumption by at least 50%. By partnering with industry, researchers, and other stakeholders, the Department of Energy (DOE) acts as a catalyst in driving research in energy efficient technologies, including: Refrigerators, washers, dryers, and other appliances Parts of the building envelope, including insulation, roofing and attics, foundations, and walls Window, skylight, and door technologies, such as highly-insulating windows, glazings and films, window frames, and daylighting and shading

462

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

463

Argonne Transportation - Plug-in Hybrid Electric Vehicle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Prius testing by Argonne researchers. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to commercializing PHEVs. Argonne National Laboratory, working together with Idaho National Laboratory, leads DOE's efforts to evaluate PHEVs and PHEV technology with the nation’s best vehicle technology evaluation tools and expertise. These two national laboratories are Centers for Excellence that combine state-of-the-art facilities; world-class expertise; long-term collaborative relationships with other DOE national laboratories, industry, and academia;

464

Modular PM Motor Drives for Automotive Traction Applications  

SciTech Connect

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

465

High frequency fast wave current drive for DEMO  

SciTech Connect

A steady-state tokamak reactor (SSTR) requires a high efficiency current drive system, from plug to driven mega-amps. RF systems working in the ion-cyclotron range of frequencies (ICRF) have high efficiency from plug to antenna but a limited current drive (CD) efficiency and centrally peaked CD profiles. The latter feature is not adequate for a SSTR where the current should be sufficiently broad to keep the central safety factor (possibly significantly) above 1. In addition, the fact that the fast wave (FW) is evanescent at the edge limits coupling, requiring high voltage operation, which makes the system dependent on plasma edge properties and prone to arcing, reducing its reliability. A possible way to overcome these weaknesses is to operate at higher frequency (10 times or more the cyclotron frequency). The advantages are: (1) The coupling can be much better (waves propagate in vacuum) if the parallel refractive index n{sub ||} is kept below one, (2) The FW group velocity tends to align to the magnetic field, so the power circumnavigates the magnetic axis and can drive off-axis current, (3) Due to the latter property, n{sub ||} can be upshifted along the wave propagation path, allowing low n{sub ||} launch (hence good coupling, large CD efficiency) with ultimately good electron absorption (which requires higher n{sub ||}. Note however that the n{sub ||} upshift is a self-organized feature, that electron absorption is in competition with {alpha}-particle absorption and that uncoupling of the FW from the lower hybrid resonance at the edge requires n{sub ||} slightly above one. The latter possibly counterproductive features might complicate the picture. The different aspects of this potentially attractive off-axis FWCD scheme are discussed.

Koch, R.; Lerche, E.; Van Eester, D. [LPP/ERM-KMS, Association 'EURATOM-Belgian State', 1000 Brussels, TEC Partner (Belgium); Nightingale, M. [Culham Centre for Fusion Energy, Abingdon OX14 3DB (United Kingdom)

2011-12-23T23:59:59.000Z

466

METHODS OF RADIO-FREQUENCY CURRENT DRIVE  

E-Print Network (OSTI)

METHODS OF RADIO-FREQUENCY CURRENT DRIVE N. J. FISCH* Princeton Plasma Physics Laboratory-670 Radio-frequency waves can penetrate thermonuclear plasmas, depositing momentum and energy with great. INTRODUCTION Using radio-frequency (rf) waves to drive the toroidal current in tokamak reactors is attractive

467

Driving Innovation A Satellite Applications TIC  

E-Print Network (OSTI)

Driving Innovation A Satellite Applications TIC 8 December 2011 Michael Lawrence Head of Special Projects #12;Driving Innovation SatApps TIC - goal `generating growth across the economy through new satellite enabled business' · Note : overall TIC strategy goal ­ accelerating the commercialisation

468

Courtyard Hanover Lebanon 10 Morgan Drive  

E-Print Network (OSTI)

· Boston Logan International Airport (BOS) Airport Phone:1-800-235-6426 Hotel direction: 111 mile for persons with disabilities· #12;Driving Directions from Airport Lebanon Municipal Airport (LEB) Airport Phone:1-603-298-8878 Hotel direction: 4 mile(s) S Driving directions:From Lebanon Airport to the hotel

Myers, Lawrence C.

469

Electric top drives gain wide industry acceptance  

SciTech Connect

Since its introduction, the top drive drilling system has gained acceptance as a productive and safe method for drilling oil and gas wells. Originally, the system was used mostly for offshore and higher cost land drilling, and it had to be installed as a permanent installation because of its enormous weight and size. Essentially, a top drive replaces the kelly and rotary table as the means of rotating drillpipe on oil, gas and geothermal rigs and is considered to be 15% to 40% more efficient than a kelly drive. Top drive systems allow the operator to drill and maintain directional orientation for triple stands and provide tripping efficiency because of the ability to ream and circulate with triple stands, to reduce the risk of stuck pipe or lost wells, and to improve well control and pipe handling safety. The paper describes electric top drives with DC motors, top drives with AC motors, top drives with permanent magnet motors, and top drives with permanent magnet brushless synchronous motors.

Riahi, M.L.

1998-05-01T23:59:59.000Z

470

U.S. DRIVE Highlights of Technical Accomplishments 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 February 2012 Preface The U.S. DRIVE Partnership is a voluntary government-industry partnership focused on precompetitive, advanced automotive and related infrastructure technology research and development (R&D). Partners are the United States Department of Energy (DOE); the United States Council for Automotive Research LLC (USCAR), a consortium composed of Chrysler Group LLC, Ford Motor Company, and General Motors Company; Tesla Motors; five energy companies (BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US); two electric utilities, DTE Energy and Southern California Edison; and the Electric Power Research Institute.

471

Head wear reduction in future hard-disk drives  

Science Journals Connector (OSTI)

Head wear and head vibration due to head-disk contact are two main issues that must be resolved for the future high-density Hard Disk Drives (HDDs). To reduce head wear, disk lubricant, carbon overcoat films on head and disk surfaces, head flying characteristics and so on have been studied. In this paper, we first show the effects of several parameters on head wear, including lubricant types, their MW, and disk burnishing. Our recent results on the effects of humidity and temperature on head wear are also explained. We then explain our extended wear equation and estimate the head wear life with present technologies.

Youichi Kawakubo; Shinnichi Nakazawa; Shinnichi Kobatake

2008-01-01T23:59:59.000Z

472

Gas Mileage Tips - Driving More Efficiently  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving More Efficiently Driving More Efficiently Personalize Fuel Prices Select the fuel type and enter your fuel price to personalize savings estimates. Regular Midgrade Premium Diesel E85 CNG LPG $ 3.33 /gal Save My Prices Use Default Prices Click "Save My Prices" to apply your prices to other pages, or click "Use Default Prices" use national average prices. Drive Sensibly frustrated driver Aggressive driving (speeding, rapid acceleration and braking) wastes gas. It can lower your gas mileage by 33% at highway speeds and by 5% around town. Sensible driving is also safer for you and others, so you may save more than gas money. Fuel Economy Benefit: 5%-33% Equivalent Gasoline Savings: $0.17-$1.10/gallon Observe the Speed Limit (New Information) Graph showing MPG decreases rapidly at speeds above 50 mph

473

Adjustable Speed Drive Study, Part 2.  

SciTech Connect

Advances in speed control for motors in recent years, notably those in power electronics, have widened the range of application for several adjustable speed drive (ASD) types to include the smaller horsepower sizes. The DC motor drive, formerly in almost universal use for speed control, is being challenged by the high efficiency induction motor/pulse width modulation (PWM) drive; and for special small horsepower size applications, by the permanent magnet motor/PWM inverter drive or by the switched reluctance motor drive. The main characteristics of the several ASD types suitable for small horsepower size applications are discussed, as well as their unwanted side effects: poor power factor, harmonic distortion of the supply, acoustic noise, and electromagnetic interference. A procedure is recommended for determining which, if any, ASD to use.

Wallace, Alan K.; Oregon State University. Dept. of Electrical and Computer Engineering.

1989-08-01T23:59:59.000Z

474

Adjustable Speed Drive Study, Part 1.  

SciTech Connect

Advances in speed control for motors in recent years, notably those in power electronics, have widened the range of application for several adjustable speed drive (ASD) types to include the smaller horsepower sizes. The dc motor drive, formerly in almost universal use for speed control, is being challenged by the high efficiency induction motor/pulse width modulation (PWM) drive; and for special small horsepower size applications, by the permanent magnet motor/PWM inverter drive or by the switched reluctance motor drive. The main characteristics of the several ASD types suitable for small horsepower size applications are discussed, as well as their unwanted side effects: poor power factor, harmonic distortion of the supply, acoustic noise, and electromagnetic interference. A procedure is recommended for determining which, if any, ASD to use. 31 figs., 6 tabs.

Wallace, Alan K.; Oregon State University. Dept. of Electrical and Computer Engineering.

1989-08-01T23:59:59.000Z

475

Drilling of wells with top drive unit  

SciTech Connect

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

476

Vehicle Technologies Office: Fact #518: May 12, 2008 Top 10 States for New  

NLE Websites -- All DOE Office Websites (Extended Search)

8: May 12, 2008 8: May 12, 2008 Top 10 States for New Hybrid Registrations, 2007 to someone by E-mail Share Vehicle Technologies Office: Fact #518: May 12, 2008 Top 10 States for New Hybrid Registrations, 2007 on Facebook Tweet about Vehicle Technologies Office: Fact #518: May 12, 2008 Top 10 States for New Hybrid Registrations, 2007 on Twitter Bookmark Vehicle Technologies Office: Fact #518: May 12, 2008 Top 10 States for New Hybrid Registrations, 2007 on Google Bookmark Vehicle Technologies Office: Fact #518: May 12, 2008 Top 10 States for New Hybrid Registrations, 2007 on Delicious Rank Vehicle Technologies Office: Fact #518: May 12, 2008 Top 10 States for New Hybrid Registrations, 2007 on Digg Find More places to share Vehicle Technologies Office: Fact #518: May 12, 2008 Top 10 States for New Hybrid Registrations, 2007 on

477

Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

4: April 14, 4: April 14, 2008 Historical U.S. Hybrid Vehicle Sales to someone by E-mail Share Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Facebook Tweet about Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Twitter Bookmark Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Google Bookmark Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Delicious Rank Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Digg Find More places to share Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on AddThis.com...

478

Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 12, 2: January 12, 2004 More People Can Name Hybrid Cars in 2003 to someone by E-mail Share Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Facebook Tweet about Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Twitter Bookmark Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Google Bookmark Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Delicious Rank Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Digg Find More places to share Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on AddThis.com...

479

Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

2: March 26, 2: March 26, 2007 Historical U.S. Hybrid Vehicle Sales to someone by E-mail Share Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Facebook Tweet about Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Twitter Bookmark Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Google Bookmark Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Delicious Rank Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Digg Find More places to share Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on AddThis.com...

480

Vehicle Technologies Office: Fact #685: July 25, 2011 Reasons for Buying a  

NLE Websites -- All DOE Office Websites (Extended Search)

5: July 25, 2011 5: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle on Facebook Tweet about Vehicle Technologies Office: Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle on Twitter Bookmark Vehicle Technologies Office: Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle on Google Bookmark Vehicle Technologies Office: Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle on Delicious Rank Vehicle Technologies Office: Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle on Digg Find More places to share Vehicle Technologies Office: Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle on AddThis.com...

Note: This page contains sample records for the topic "drive technology hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hybrid Automata-based CEGAR for Rectangular Hybrid Systems  

E-Print Network (OSTI)

Hybrid Automata-based CEGAR for Rectangular Hybrid Systems Pavithra Prabhakar, Sridhar Duggirala- example guided abstraction-refinement (CEGAR) for systems modelled as rectangular hybrid automata. The main difference, between our ap- proach and previous proposals for CEGAR for hybrid automata

Liberzon, Daniel

482

PDF Approach Hybrid Methodology Validation DEVELOPMENT OF A HYBRID  

E-Print Network (OSTI)

PDF Approach Hybrid Methodology Validation DEVELOPMENT OF A HYBRID EULERIAN-LAGRANGIAN METHOD CNRS / INPT / UPS PhD Defense X. PIALAT Hybrid Eulerian-Lagrangian Method (HELM) #12;PDF Approach Hybrid Methodology Validation Introduction Gas-Particle Flows Applications pollutant dispersion

Paris-Sud XI, Université de

483

Hybrid Systems State estimation for hybrid systems: applications  

E-Print Network (OSTI)

Hybrid Systems State estimation for hybrid systems: applications to aircraft tracking I. Hwang, H of a stochastic linear hybrid system, given only the continuous system output data, is studied. Well established techniques for hybrid estimation, known as the multiple model adaptive estimation algorithm

Tomlin, Claire

484

HYBRID LIMIT CYCLES AND HYBRID POINCARE-BENDIXSON  

E-Print Network (OSTI)

HYBRID LIMIT CYCLES AND HYBRID POINCAR´E-BENDIXSON Slobodan N. Simi´c Department of Electrical regular hybrid systems with no branching (Simi´c et al., 2000a). The first one provides a condition for asymptotic stability of hybrid closed orbits in terms of contraction-expansion rates of resets and flows

Johansson, Karl Henrik

485

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests to Drive Down Costs of Carbon Capture, Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

486

Eco-Driving: An Everyday Way to Reduce Our Oil Dependence | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eco-Driving: An Everyday Way to Reduce Our Oil Dependence Eco-Driving: An Everyday Way to Reduce Our Oil Dependence Eco-Driving: An Everyday Way to Reduce Our Oil Dependence July 20, 2010 - 7:30am Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition Global warming and oil dependence are on the front burner for good, and for good reason. The Gulf of Mexico oil spill that began on April 20 is now the worst oil disaster in American history. Meanwhile, U.S. transportation is still almost totally dependent on oil and responsible for about 30% of the nation's greenhouse gas emissions. About 60% of that oil comes from foreign sources. Is there anything we can do? Thankfully, there is something we can all do today, whether we drive the latest advanced-technology vehicle or a junkyard special. It's called

487

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests to Drive Down Costs of Carbon Capture, Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

488

hybrid electric vehicle and lithium polymer nev testing  

NLE Websites -- All DOE Office Websites (Extended Search)

P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing James Edward Francfort Advanced Vehicle Testing Activity Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID. 83415-3830 james.francfort@inl.gov Abstract: The U.S. Department of Energy's Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery. Keywords: hybrid; neighborhood; electric; battery; fuel;

489

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment  

NLE Websites -- All DOE Office Websites (Extended Search)

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment DOE-funded research, in collaboration with Allison Buses and General Motors Corporation has led to the commercialization of a dramatically different hybrid transmission system for heavy-duty and light-duty applications. The Dual-Mode or Two-Mode hybrid system is an infinitely variable speed hybrid transmission that works with the engine and battery system and automatically chooses to operate in a parallel or series hybrid path to maximize efficiency and minimize emissions, fuel consumption and noise. Parallel and Series hybrid configurations are found on most hybrid vehicles today, both with their own pluses and minuses. The Dual- Mode/Two-Mode systems uses the positive characteristics from both systems to maximize fuel

490

Overview of Capabilities Conversion System Technology  

E-Print Network (OSTI)

cycles Heat exchanger design and optimization TES Material Integration & Optimization: Solar power plantOverview of Capabilities Conversion System Technology - Power System Demonstrations - Systems Conceptual Design/Trade Space Exploration - Simulation Modeling for Manufacturing - Hybrid Energy Systems

Lee, Dongwon

491

Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Efficient Driving Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Management Strategies

492

Solar air-conditioning-active, hybrid and passive  

SciTech Connect

After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

Yellott, J. I.

1981-04-01T23:59:59.000Z

493

NORTH CAROLINA 2013-2014 CLEAN TRANSPORTATION TECHNOLOGY INDUSTRY DIRECTORY  

E-Print Network (OSTI)

on following categories to jump to specific section Biodiesel Electric Vehicles Hybrid Electric Vehicles (Light Duty) Plug-In Hybrid Vehicles (Light Duty) Electric Low-Speed Vehicles Ethanol Natural Gas and Propane (CNG/LPG) Heavy Duty Vehicles Diesel Retrofit Technologies Idle Reduction Technologies Motor

494

Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction  

SciTech Connect

Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

Malikopoulos, Andreas [ORNL

2013-01-01T23:59:59.000Z

495

Installation considerations for IGBT AC drives  

SciTech Connect

In the last four years, Adjustable Speed ac Drive (ASD) manufacturers have migrated from Bipolar Junction Transistor (BJT) semiconductors to Insulated Gate Bipolar Transistors (IGBTs) as the preferred Output switching device. The advantage of IGBTs over BJTs is that device rise and fall time switching capability is 5 - 10 times faster, resulting in lower device switching loss and a more efficient drive. However, for a similar motor cable length as the BJT drive, the faster output voltage risetime of the IGBT drive may increase the dielectric voltage stress on the motor and cable due to a phenomenon called reflected wave. Faster output dv/dt transitions of IGBT drives also increase the possibility for phenomenon such as increased Common Mode (CM) electrical noise, Electromagnetic Interference (EMI) problems and increased capacitive cable charging current problems. Also, recent experience suggests any Pulse Width Modulated (PWM) drive with a steep fronted output voltage wave form may increase motor shaft voltage and lead to a bearing current phenomenon known as fluting. This paper provides a basic understanding of these issues, as well as solutions, to insure a successful drive system installation.

Skibinski, G.L.

1997-06-01T23:59:59.000Z

496

A high-fidelity harmonic drive model.  

SciTech Connect

In this paper, a new model of the harmonic drive transmission is presented. The purpose of this work is to better understand the transmission hysteresis behavior while constructing a new type of comprehensive harmonic drive model. The four dominant aspects of harmonic drive behavior - nonlinear viscous friction, nonlinear stiffness, hysteresis, and kinematic error - are all included in the model. The harmonic drive is taken to be a black box, and a dynamometer is used to observe the input/output relations of the transmission. This phenomenological approach does not require any specific knowledge of the internal kinematics. In a novel application, the Maxwell resistive-capacitor hysteresis model is applied to the harmonic drive. In this model, sets of linear stiffness elements in series with Coulomb friction elements are arranged in parallel to capture the hysteresis behavior of the transmission. The causal hysteresis model is combined with nonlinear viscous friction and spectral kinematic error models to accurately represent the harmonic drive behavior. Empirical measurements are presented to quantify all four aspects of the transmission behavior. These measurements motivate the formulation of the complete model. Simulation results are then compared to additional measurements of the harmonic drive performance.

Preissner, C.; Royston, T. J.; Shu, D. (APS Engineering Support Division); ( MCS); (Univ. of Illinois)

2012-01-01T23:59:59.000Z

497

Chapter 18: Variable Frequency Drive Evaluation Protocol  

SciTech Connect

An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol. Other ASD devices, such as magnetic drive, eddy current drives, variable belt sheave drives, or direct current motor variable voltage drives, are also not addressed. The VFD is by far the most common type of ASD hardware. With VFD speed control on a centrifugal fan or pump motor, energy use follows the affinity laws, which state that the motor electricity demand is a cubic relationship to speed under ideal conditions. Therefore, if the motor runs at 75% speed, the motor demand will ideally be reduced to 42% of full load power; however, with other losses it is about 49% of full load power.

Romberger, J.

2014-11-01T23:59:59.000Z

498

Aggregation method for motor drive systems  

Science Journals Connector (OSTI)

Abstract When many variable frequency drives are connected to a common switchboard, their aggregated effect on system dynamics can be significant. In this paper, the aggregation method for variable frequency drives and their motors in industrial facilities is proposed, which is suitable for power systems dynamic studies. The proposed method can be applied to various types of motor drive systems. There are two steps involved for the proposed aggregation method: (1) aggregate motor drive systems connected to the same bus, and (2) further combine the aggregated model of motor drive systems from Step 1 with upstream series impedance and/or transformers. Due to involvement of high-order transfer functions in dynamic models of individual motor drive systems, Pade approximation is used as a useful tool in the aggregation process. Using the proposed aggregation method, an equivalent aggregated dynamic model of motor drive systems can be obtained at the substation bus. A case study is conducted in the paper, and the proposed aggregation method is verified to be effective by the case study.

Xiaodong Liang; Wilsun Xu

2014-01-01T23:59:59.000Z

499

Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth  

Energy.gov (U.S. Department of Energy (DOE))

On Tuesday, November 18, Energy Secretary Moniz joined Senior Advisor to the President John Podesta, Edison Electric Institute (EEI) President Tom Kuhn, and Pacific Gas and Electric (PG&E) CEO Tony Earley for a special event at the White House to announce several new developments in advancing the use of electric vehicles. These developments included the Energy Department announcing a Notice of Intent for a potential funding opportunity announcement for aggregated purchasing of alternative fuel and advanced technology vehicles 70 EEI members committing 5% of their annual fleet budgets to plug-in electric vehicles, 150 members of the Workplace Charging Challenge, and a new plug-in hybrid electric bucket truck.

500

Heavy Hybrid mesons Masses  

E-Print Network (OSTI)

We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

F. Iddir; L. Semlala

2006-11-13T23:59:59.000Z