Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network (OSTI)

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid cascaded H-bridge multilevel converter, DC voltage balance control, multilevel motor drive, electric

Tolbert, Leon M.

2

Power control of dual-motor electric drive for tracked vehicles  

Science Journals Connector (OSTI)

The fundamental problem of the power control for the driving of a dual-motor drive electric tracked vehicle is analyzed. The tracked vehicle and its electric drive system are mathematically modeled. Power control...

Yuan Zou; Chengning Zhang; Fengchun Sun…

2010-03-01T23:59:59.000Z

3

High-frequency equivalent model of AC motor for electric vehicle drive system  

Science Journals Connector (OSTI)

The application of the motor drive system in electric and hybrid-electric vehicles can lead to a significant increase in electromagnetic compatibility. The AC motor as an important part of motor drive system must be considered. In this paper, a high frequency modelling method of the AC motor is presented. The modelling method consists of deriving the motor model parameters from mathematical resolution of the electrical circuit equations and observation of the variations of the motor impedance with the frequency. All parameters of the proposed models are obtained by differential mode (DM) and common mode (CM) impedance measurement in the frequency domain. The model is verified by impedance measurement of a synchronous motor. The method proposed can be used to obtain a high-frequency equivalent circuit of an AC motor and predict conducted electromagnetic interference in a motor drive system.

Yongming Yang; Hemeng Peng; Quandi Wang

2013-01-01T23:59:59.000Z

4

Data Acquisition System for Electric Vehicle's Driving Motor Test Bench Based on VC++  

Science Journals Connector (OSTI)

In order to solve such problems as great labor intensity, high cost, low efficiency and accuracy during the performance experiment for driving motor system of electric vehicles, and realize data acquisition automatically and synchronously, a data acquisition system for driving motor test bench based on visual instruments is designed. This data acquisition system can be used to obtain the driving motor's parameters of currents and voltages at the same time. This system's hardware is based on electric vehicle's motor test bench in Beijing Institute of Technology, and combined with PXI2010 data acquisition card from ADLINK Company. Visual c++ software is adopted as development tool. In this paper, the design and realization of the hardware and software are presented. Experiment results show that this system improves the efficiency and quality of testing task with high utility. And experiment data can be obtained accurately.

Song Qiang; Lv Chenguang

2012-01-01T23:59:59.000Z

5

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results obtained with an 8/6 switched reluctance motor drive are presented and exploited in the optimization process. The performance of the optimized controller is evaluated and validated by simulation.

David Cajander; Hoang Le-Huy

2006-01-01T23:59:59.000Z

6

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results ... Keywords: optimization, switched reluctance motor, torque control

David Cajander; Hoang Le-Huy

2006-06-01T23:59:59.000Z

7

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results ... Keywords: Optimization, Switched reluctance motor, Torque control

David Cajander; Hoang Le-Huy

2006-06-01T23:59:59.000Z

8

Development of traction control for front-wheel drive in-wheel motor electric vehicles  

Science Journals Connector (OSTI)

This paper proposes a novel traction control for a front-wheel drive in-wheel motor electric vehicle. The presented vehicle has advantages on high fuel efficiency and cost effectiveness. In order to achieve specific control performance, this study employed a high speed microcontroller as the vehicle's electronic control unit. The anti-skid function based on a reliable traction control kernel is embedded in the system, which can guarantee the steering safety in a slippery and dangerous situation. This study verifies that the traction control based on maximum torque regulation cannot only constrain the slip to improve the longitudinal friction force and lateral friction force, but also provide some information on tyre-road conditions, which can ensure the performance and the effectiveness of two-dimensional motion control. The numerical simulation and demonstration video reveal its effectiveness and feasibility.

Jia-Sheng Hu; Ying-Ruei Huang; Feng-Rung Hu

2012-01-01T23:59:59.000Z

9

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

10

Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)  

SciTech Connect

This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

Narumanchi, S.

2014-09-01T23:59:59.000Z

11

Analysis on cogging torque of driving in-wheel motor for electric vehicle  

Science Journals Connector (OSTI)

In order to reduce the torque fluctuation, vibration and acoustic noise of driving in-wheel motor for electric vehicle, this paper researches the generation mechanism and influence factors of cogging torque. Based on energy method and Fourier expansion, an analytical method is proposed to establish the expression of cogging torque, which can express its relation with design parameters. Based on the expression, the match of pole and slot, pole arc coefficient and permanent magnet eccentric distance are analysed and studied. Ansoft software is used to establish a time-varying movement electromagnetic field finite element model, which can compute the cogging torque about the different match of the pole and slot, different pole arc coefficient and different permanent magnet eccentric distance, in order to obtain the change regularity of the corresponding cogging torque. The conformity of the final simulation computation results with the theoretical analysis indicates this method can be used to provide a theoretical basis to make further optimal design of the new driving in-wheel motor and its control system, so as to reduce torque ripple of in-wheel motor.

Qiping Chen; Hongyu Shu; Limin Chen; Bo Chen; Jianhui Du

2012-01-01T23:59:59.000Z

12

Modelling and simulation of the electronic differential system for an electric vehicle with two-motor-wheel drive  

Science Journals Connector (OSTI)

In-wheel-motor drive electric vehicle (EV) is an innovative configuration, in which each wheel is driven individually by an electric motor. It is possible to use an electronic differential (ED) instead of the heavy mechanical differential because of the fast response time of the motor. A new control approach for ED of a two in-wheel-motor drive EV is proposed based on the fuzzy logic control. The fuzzy logic method employs to estimate the slip rate of each wheel considering the complex and non-linear of the system. Consequently, the ED system distributes torque and power to each motor according to requirements. The effectiveness of the control method is validated in the Matlab/Simulink environment. By simulation results, it is demonstrated that the present ED control system is effective on keeping the slip rate within the optimal range and ensuring the stability of the vehicle either on a straight or curvilinear line.

Yan-e Zhao; Jianwu Zhang

2009-01-01T23:59:59.000Z

13

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

14

EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan  

Energy.gov (U.S. Department of Energy (DOE))

DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

15

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

16

Vehicle Technologies Office: Electric Drive Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

17

Cascaded H-bridge inverter motor drives for hybrid electric vehicle applications  

Science Journals Connector (OSTI)

This paper presents the asymmetric cascaded H-bridge multilevel inverter for electric vehicles (EV) and hybrid electric vehicles (HEV) applications. Currently available power inverter systems for HEVs use a DC-DC boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. Asymmetric cascaded H-bridge multilevel inverter design for EV and HEV applications without the use of inductors to output a boosted AC voltage is proposed in this paper. Traditionally, each H-bridge needs a DC power supply having equal values of DC power sources. The proposed design uses the asymmetric cascaded multilevel inverter using non-equal DC power sources based on specified ratios. A fundamental switching scheme is used to do modulation control and to produce a seven-level phase voltage.

P. Renuga; T. Prathiba

2012-01-01T23:59:59.000Z

18

Stabilizer for motor vehicle  

SciTech Connect

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

19

PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application  

SciTech Connect

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

Staunton, R.H.

2004-10-11T23:59:59.000Z

20

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

SciTech Connect

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

22

Switched reluctance motor drive circuit evaluation criteria for vehicle efficiency responsiveness.  

E-Print Network (OSTI)

??This thesis intends to examine the principles of operation for switched reluctance machines (SRM) and examine the power electronic drive circuits that control them, in… (more)

Cunningham, John David

2011-01-01T23:59:59.000Z

23

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

1988-01-01T23:59:59.000Z

24

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

SciTech Connect

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

25

Hybrid vehicle motor alignment  

DOE Patents (OSTI)

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

26

Electric-Drive Vehicle engineering  

E-Print Network (OSTI)

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

27

Electric vehicle drive train with contactor protection  

DOE Patents (OSTI)

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

1994-01-01T23:59:59.000Z

28

Remedial neural network inverse control of a multi-phase fault-tolerant permanent-magnet motor drive for electric vehicles  

Science Journals Connector (OSTI)

A five-phase in-wheel fault-tolerant interior permanent-magnet (FT-IPM) motor incorporates the merits of high efficiency, high power density and high reliability, suitable for Electric Vehicles (EVs). A new remedial Neural Networks Inverse (NNI) control strategy is proposed to attain the post-fault operation. In this scheme, the NN is used to approximate the inverse model of the FT-IPM motor. With this NNI system and the original motor drive combined, a pseudo-linear compound system can be obtained. The simulation demonstrates that the proposed control strategy leads to excellent control performance at the faulty mode and offers good robustness against load disturbance.

Duo Zhang; Guohai Liu; Wenxiang Zhao

2013-01-01T23:59:59.000Z

29

US DRIVE Driving Research and Innovation for Vehicle Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy...

30

Advanced Electric Drive Vehicle Education Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Electric Drive Vehicle Education Program Advanced Electric Drive Vehicle Education Program 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

31

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

32

A Novel Approach to the Design of an In-Wheel Semi-Anhysteretic Axial-Flux Switched-Reluctance Motor Drive System for Electric Vehicles .  

E-Print Network (OSTI)

??This thesis presents the development of an in-wheel drive system consisting of an axial-flux switched-reluctance motor and a hub suspension. The motor is designed using… (more)

Lambert, Tim

2013-01-01T23:59:59.000Z

33

motor vehicles | OpenEI  

Open Energy Info (EERE)

motor vehicles motor vehicles Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data on rates and revenue statistics up to 1995. The data includes state motor-fuel tax receipts, 1919-1995, state motor fuel taxes and related receipts, 1950-1995, and state and federal motor fuel tax rates, 1919-1995 The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT highway motor vehicles rates revenues Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor-fuel tax receipts, 1919-1995 (xlsx, 13.8 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor fuel taxes and related receipts, 1950-1995 (xlsx, 78.5 KiB)

34

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2  

E-Print Network (OSTI)

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2 , Sofiane for presizing the power of an electric vehicle traction motor. Based on the vehicle desired performances motor, power presizing, driving cycle. Nomenclature EV = Electric Vehicle; V = Vehicle speed; Vb

Paris-Sud XI, Université de

35

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt039schwendeman2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles Advanced Electric Drive Vehicles Energy & Manufacturing Workforce...

36

Advanced Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

37

Research on the Torque Dynamic Distribution Algorithm of In-Wheel-Motor Electric Vehicle  

Science Journals Connector (OSTI)

This paper focuses on developing the torque dynamic distribution algorithm of In-Wheel-Motor electric vehicle. The algorithm is developed to regulate ... the vehicle body yaw rate by changing the motor drive torq...

Zhengyi He; Yang Ou; Jingming Yuan

2013-01-01T23:59:59.000Z

38

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

Konrad, Charles E. (Roanoke, VA)

1994-01-01T23:59:59.000Z

39

Electric Drive Vehicle Infrastructure Deployment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

40

Thermoelectric generator for motor vehicle  

SciTech Connect

A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

Bass, J.C.

1997-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

42

Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization  

E-Print Network (OSTI)

Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization Farid Khoucha1 a sensorless DSVM-DTC of an induction motor that propels an electrical vehicle or a hybrid one. The drive uses, as demonstrated in experimental results. Keywords: Electric vehicle (EV), induction motor, Discrete Space Vector

Paris-Sud XI, Université de

43

Frequency modulation drive for a piezoelectric motor  

DOE Patents (OSTI)

A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

Mittas, Anthony (Albuquerque, NM)

2001-01-01T23:59:59.000Z

44

Improving Motor and Drive System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drives. Energy-Efficient Electric Motors and Their Applications, 2nd Edition Author: Jordan, H.E. Publisher: Springer Description: Evaluates the energy savings potential of...

45

Modular PM Motor Drives for Automotive Traction Applications  

SciTech Connect

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

46

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...  

Energy Savers (EERE)

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

47

Aggregation method for motor drive systems  

Science Journals Connector (OSTI)

Abstract When many variable frequency drives are connected to a common switchboard, their aggregated effect on system dynamics can be significant. In this paper, the aggregation method for variable frequency drives and their motors in industrial facilities is proposed, which is suitable for power systems dynamic studies. The proposed method can be applied to various types of motor drive systems. There are two steps involved for the proposed aggregation method: (1) aggregate motor drive systems connected to the same bus, and (2) further combine the aggregated model of motor drive systems from Step 1 with upstream series impedance and/or transformers. Due to involvement of high-order transfer functions in dynamic models of individual motor drive systems, Pade approximation is used as a useful tool in the aggregation process. Using the proposed aggregation method, an equivalent aggregated dynamic model of motor drive systems can be obtained at the substation bus. A case study is conducted in the paper, and the proposed aggregation method is verified to be effective by the case study.

Xiaodong Liang; Wilsun Xu

2014-01-01T23:59:59.000Z

48

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

1995-01-01T23:59:59.000Z

49

Vehicle Technologies Office: U.S. DRIVE  

Energy.gov (U.S. Department of Energy (DOE))

U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced...

50

Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles  

E-Print Network (OSTI)

Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles B. NOMENCLATURE EV = Electric vehicle; IM = Induction motor; IFOC = Indirect field oriented control; PWM= Pulse force; Fcr = Climbing and downgrade resistance force; Pv = Vehicle driving power; J = Total inertia

Boyer, Edmond

51

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

52

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

53

Advanced Electric Drive Vehicles ? A Comprehensive Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced...

54

Advanced Electric Drive Vehicle Education Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Consortium (NAFTC), together with its partners, will develop an Advanced Electric Drive Vehicle Education Program that will help accelerate mass market introduction...

55

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

56

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

57

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300 Commercial EVSE...

58

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

59

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

60

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

62

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

63

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

64

Intelligent design of sensorless Switched reluctance motor drives; -.  

E-Print Network (OSTI)

??The Switched Reluctance Motor SRM drive technology has gone newlinethrough steady and significant development over the last two decades The newlinesimplicity in both motor construction… (more)

Marsaline Beno, M

2014-01-01T23:59:59.000Z

65

Design of Efficient In-Wheel Motor for Electric Vehicles  

Science Journals Connector (OSTI)

Abstract This research paper deals with the design and development of an in-wheel motor for electric vehicles. The proposed motor generates a 350-watt power drive with a power source of two 12 V batteries. The batteries are connected in series to increase the voltage to 24 volts and 18.23 A. The in-wheel motor is based on the principle of a DC electric motor to drive the vehicle wheels so that the mechanical components of the transmission and the energy loss are minimized. The proposed in-wheel motor has 46 poles, 51 slots and 51 teeth. In addition, the method lowers the maintenance cost. This research work assumes the maximum weight of 70 kg and the running speed of 20 km/hr. The experiment results show that the output power and efficiency of the in-wheel motor are subject to the variation in input power given that the input voltage remains constant at 25.41 volts. The maximum efficiency of the in-wheel motor of 82.56% is achieved at 2.5 N-m torque. The maximum torque of 6.25 N-m is achieved with the input power of 348.76 watts.

Winai Chanpeng; Prasert Hachanont

2014-01-01T23:59:59.000Z

66

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive Selection Issues for HEV  

E-Print Network (OSTI)

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive--Comparison, electric propulsion, hybrid electric vehicle (HEV). I. INTRODUCTION SELECTION of traction motors for hybrid of electric motors adopted or under serious consideration for HEVs as well as for EVs include the dc motor

67

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DRIVE U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). Specifically, the Partnership is a forum for pre-competitive technical information exchange among partners to discuss R&D needs, develop joint goals and technology roadmaps, and evaluate R&D progress for a broad range of technical areas. By providing a framework for frequent and regular interaction among technical experts in a common area of expertise, the Partnership -

68

Motor control and torque coordination of an electric vehicle actuated by two in-wheel motors  

Science Journals Connector (OSTI)

In this research, an electric vehicle actuated by two in-wheel DC motors is developed. By properly coordinating the motor torques, both drive-by-wire and electrical steering can be achieved. Two critical issues respectively related to the design of motor controllers and the coordination of the two motor torques under control saturation are investigated in this study. Firstly, as for the in-wheel motors that are used for driving and steering simultaneously, their operation covers a wider dynamic range that forward acceleration (deceleration), and reverse acceleration (deceleration) may occur alternately. To perform driving and steering smoothly and efficiently, each motor should be switched to an appropriate mode to generate the torque demanded. Secondly, during the high-speed maneuvering, the high back-emf voltage in the motor coil substantially reduces the motor’s torque generating capability. Since the electrical steering depends on the differential torque of two wheels, when electrical steering is demanded in this case, torque/current saturation may occur in either one of the motors and the electrical steering performance could be seriously degraded. To address these issues, controllers of two levels are proposed. For the low-level controller (the motor controller), it operates the motor automatically in an appropriate mode for performance and efficiency consideration. An input transformation is introduced to cancel the nonlinearity in current dynamics so as to control the motor torque easily and precisely regardless of mode switching. For the high-level controller (the torque coordination controller), besides generating reference commands to the low-level controllers, during control saturation it can also properly re-distributes control signals to maintain consistent steering performance and provides compensation for integrator windup. The control system is implemented and the performance is experimentally and numerically validated.

Feng-Kuang Wu; T.-J. Yeh; Chun-Feng Huang

2013-01-01T23:59:59.000Z

69

Electromagnetic analysis and design of in-wheel motor of micro-electric vehicle based on Maxwell  

Science Journals Connector (OSTI)

To obtain a good drivability and high efficiency of the micro-electric vehicle, a new driving in-wheel motor design was analyzed and optimized. Maxwell software ... element simulation model of the driving in-whee...

Qi-ping Chen ???; Hong-yu Shu ???; Kai Ren ??…

2012-08-01T23:59:59.000Z

70

Physical context management for a motor vehicle  

DOE Patents (OSTI)

Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

Dixon, Kevin R. (Albuquerque, NM); Forsythe, James C. (Sandia Park, NM); Lippitt, Carl E. (Albuquerque, NM); Lippitt, legal representative, Lois Diane (Albuquerque, NM)

2009-10-27T23:59:59.000Z

71

Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: December 14, 1: December 14, 2009 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on AddThis.com... Fact #601: December 14, 2009

72

Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

7: August 23, 7: August 23, 2010 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on AddThis.com... Fact #637: August 23, 2010 World Motor Vehicle Production

73

Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use...

74

The Impact of Motor Vehicle Operation on Water Quality: A Premilinary Assessment  

E-Print Network (OSTI)

$) for the U.S. Water externalities from motor vehicles arepolicies addressing water pollution from motor vehicles areCosts Quantifying the water externalities of motor vehicle

Nixon, Hillary; Saphores, Jean-Daniel

2003-01-01T23:59:59.000Z

75

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchNon-point Source Water Pollution from Motor Vehicles Motorof controlling water pollution from motor vehicles. For

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

76

The Impacts of Motor Vehicle Operation on Water Quality: A Preliminary Assessment  

E-Print Network (OSTI)

$) for the U.S. Water externalities from motor vehicles arepolicies addressing water pollution from motor vehicles areCosts Quantifying the water externalities of motor vehicle

Nixon, Hilary; Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

77

Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Motor Natural Gas Motor Vehicle Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Motor Vehicle Fuel Promotion An eight member Natural Gas Fuel Board (Board) was created to advise the

78

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

79

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

80

Electric Drive Vehicle Level Control Development Under Various...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 The objective is to develop the entire vehicle thermal management system for two electric drive vehicles (HEVs, PHEVs). Limited battery power and low engine efficiency at...

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

Assessmentof Electric-Drive Vehicles: Policies, Markets, andInternational Assessment Electric-Drive Vehicles: Policies,International Assessment Electric-Drive Vehicles Policies,

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

82

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

ECONOMIC ASSESSMENT OF ELECTRIC-DRIVE VEHICLE OPERATION INECONOMIC ASSESSMENT OF ELECTRIC-DRIVE VEHICLE OPERATION INconsumers to switch to electric-drive vehicles, including a

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

83

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities...

84

Semiconductor Alternating-Current Motor Drives and Energy Conservation  

Science Journals Connector (OSTI)

...60 hertz, and thus the standard two-pole motor runs at...1979 773 Commercial ex. HVAC motor drives 27% In ex. HVAC 5% Ind. and comm. HVAC motors 7 Residents, Elec...efficiently modu-late a standard induction motor. Al-though...

D. J. BenDaniel; E. E. David Jr.

1979-11-16T23:59:59.000Z

85

Design and Control of High Power Density Motor Drive.  

E-Print Network (OSTI)

??This dissertation aims at developing techniques to achieve high power density in motor drives under the performance requirements for transportation system. Four main factors influencing… (more)

Jiang, Dong

2011-01-01T23:59:59.000Z

86

VIA Motors electric vehicle platform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extended-Range Electric Trucks Extended-Range Electric Trucks The fuel economy of a Prius with the payload of a pickup VIA's E-REV powertrain is ideal for America's fleets, cutting fuel costs by up to 75%, while dramatically reducing petroleum consumption and emissions- electricity costs an average of 60 cents per equivalent gallon. Recharging daily, the average driver could expect to refill the gas tank less than 10 times a year rather than once a week. It offers all the advantages of an electric vehicle, without range limitations. Working with vehicle manufacturers, VIA plans to begin delivering E-REV trucks to government and utility fleets in 2011. The onboard generator provides a work site with 15 kW of exportable power Up to 40 miles in all-electric mode and up to 300 miles using the range extender

87

Comparison of AC drives for electric vehicles -- A report on experts` opinion survey  

SciTech Connect

It is recognized that wide applications of electric vehicles (EVs) will bring tremendous social, economical and ecological benefits. With the growing interests in electric vehicles, much effort is demanded for the development of efficient, reliable and economical AC drives` for EV propulsion purpose. Both induction motor (IM) drives and permanent magnet brushless DC motor (BDCM) drives have been applied to EVs. Switched reluctance motor (SRM) drives have been proposed as an alternative for EV propulsion. In order to assess the suitability of IM, BDCM and SRM drives for EV applications and to provide a technical support for the development and selection of future EV propulsion systems, the existing EV AC propulsion drives were compared, and a survey of experts` opinions was conducted. Comparison of the three AC drives was made on a relative and a quantitative basis using the survey questionnaires. According to the majority of the experts, induction motor drives are best suited for EV propulsion purpose, due to their low cost, high reliability, high speed, established converter and manufacturing technology, low torque ripple/noise and absence of position sensors. BDCM drives feature compactness, low weight and high efficiency and therefore provide an alternative for EV propulsion. The experts regard insulated gate bipolar transistors (IGBTs) as the most suited power semiconductor devices for AC drive converters at the present stage. 7 refs.

Chang, L. [New Brunswick Univ., Fredericton, New Brunswick (Canada). Dept. of Electrical Engineering] [New Brunswick Univ., Fredericton, New Brunswick (Canada). Dept. of Electrical Engineering

1994-08-01T23:59:59.000Z

88

Vehicle Technologies Office: Fact #452: January 15, 2007 Driving  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 15, 2: January 15, 2007 Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on AddThis.com... Fact #452: January 15, 2007 Driving Differences Those living in the center city drive fewer miles in a day than those in

89

Vehicle Technologies Office: Materials for Hybrid and Electric Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

for Hybrid and for Hybrid and Electric Drive Systems to someone by E-mail Share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Facebook Tweet about Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Twitter Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Google Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Delicious Rank Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Digg Find More places to share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

90

Electric machine for hybrid motor vehicle  

DOE Patents (OSTI)

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

Hsu, John Sheungchun (Oak Ridge, TN)

2007-09-18T23:59:59.000Z

91

Study of Advantages of PM Drive Motor with Selectable Windings for HEVs  

SciTech Connect

The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

Otaduy, Pedro J [ORNL; Hsu, John S [ORNL; Adams, Donald J [ORNL

2007-11-01T23:59:59.000Z

92

Electric Wheel Hub Motor  

Science Journals Connector (OSTI)

Wheel hub motors are an innovative drive concept for electric vehicles where the electric machine and, in some cases, the...

Dipl.-Ing. Michael Gröninger; Dipl.-Ing. Felix Horch…

2012-02-01T23:59:59.000Z

93

Design of outer-rotor-type multipolar switched reluctance motor for electric vehicle  

Science Journals Connector (OSTI)

In an electric vehicle(EV) with in-wheel motors reducing the weight of the motor is a very important problem in order to improve the driving performance. In this paper we examine the lightweight design of an outer-rotor-type multipolar switched reluctance (SR) motor applied to a prototype EV. We design three SR motors which have different yoke widths and calculate the motor characteristics at a steady rotational speed based on a finite element method. We discuss the optimum relationship between a pole and yoke widths.

Satoshi Fujishiro; Kazumi Ishikawa; Shinki Kikuchi; Kenji Nakamura; Osamu Ichinokura

2006-01-01T23:59:59.000Z

94

Fault diagnosis and management system for switched reluctance motor drives  

Science Journals Connector (OSTI)

An effective detection and diagnosis of faults is desirable for online condition monitoring, assessment, product quality assurance and improved operational efficiency of Switched Reluctance Motor (SRM) drives. The proposed fault diagnosis and management system uses the measured phase voltages, currents and speed of the motor. In this article, a Matlab/Simulink model-based fault diagnosis system is developed and simulated for SRM drive. The simulation results show that the SRM drive is capable of operating under faulty conditions.

S. Vijayan; S. Paramasivam

2008-01-01T23:59:59.000Z

95

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways #  

E-Print Network (OSTI)

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways # Alain Girault a a Inria the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles of their merging lane. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor

Girault, Alain

96

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways  

E-Print Network (OSTI)

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways Alain Girault a aInria Rh of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor near Houston

Girault, Alain

97

Extended cage adjustable speed electric motors and drive packages  

DOE Patents (OSTI)

The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

Hsu, J.S.

1999-03-23T23:59:59.000Z

98

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

99

Electric Drive Vehicles: A Huge New Distributed Energy Resource  

E-Print Network (OSTI)

with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

Firestone, Jeremy

100

Gas Mileage of 1984 Vehicles by American Motors Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 American Motors Corporation Vehicles 4 American Motors Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 20 Combined 22 Highway 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 21 Combined 23 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Automatic 3-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 15 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 16 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 5-spd, Regular Gasoline

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Magnetically Coupled Adjustable Speed Motor Drives  

Energy.gov (U.S. Department of Energy (DOE))

Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump. This tip sheet describes the advantages of magnetically coupled ASDs and provides suggested actions.

102

Electrical motor/generator drive apparatus and method  

DOE Patents (OSTI)

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

Su, Gui Jia

2013-02-12T23:59:59.000Z

103

Bifurcation and control of chaos in Induction motor drives  

E-Print Network (OSTI)

The induction motor controlled by Indirect Field Oriented Control (IFOC) is known to have high performance and better stability. This paper reports the dynamical behavior of an indirect field oriented control (IFOC) induction motor drive in the light of bifurcation theory. The speed of high performance induction motor drive is controlled by IFOC method. The knowledge of qualitative change of the behavior of the motor such as equilibrium points, limit cycles and chaos with the change of motor parameters and load torque are essential for proper control of the motor. This paper provides a numerical approach to understand better the dynamical behavior of an indirect field oriented control of a current-fed induction motor. The focus is on bifurcation analysis of the IFOC motor, with a particular emphasis on the change that affects the dynamics and stability under small variations of Proportional Integral controller (PI) parameters, load torque and k, the ratio of the rotor time constant and its estimate etc. Bifurcation diagrams are computed. This paper also attempts to discuss various types of the transition to chaos in the induction motor. The results of the obtained bifurcation simulations give useful guidelines for adjusting both motor model and PI controller parameters. It is also important to ensure desired operation of the motor when the motor shows chaotic behavior. Infinite numbers of unstable periodic orbits are embedded in a chaotic attractor. Any unstable periodic orbit can be stabilized by proper control algorithm. The delayed feedback control method to control chaos has been implemented in this system.

Krishnendu Chakrabarty; Urmila Kar

2014-10-24T23:59:59.000Z

104

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network (OSTI)

Non-point Source Water Pollution Motor vehicles are a majorpreventing water pollution from motor vehicles would be muchcosts of controlling water pollution from motor vehicles. It

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

105

Improving Motor and Drive System Performance – A Sourcebook for Industry  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook outlines opportunities to improve motor and drive systems performance, including practical guidelines, energy efficiency assessment instructions, and referrals to other information and assistance such as software, videos, and training opportunities.

106

A motor drive control system for the Lidar Polarimeter  

E-Print Network (OSTI)

and Quantitative Account Gear-Train Servo Error Types. IV. DC VARIABLE SPEED MOTOR DRIVE DESIGN CONSIDERATIONS AND RFALIZATION. Introduction. 27 29 30 30 34 34 Design Consideration. The DC Power Amplifier. System Operation. Scan System Alignment... and Quantitative Account Gear-Train Servo Error Types. IV. DC VARIABLE SPEED MOTOR DRIVE DESIGN CONSIDERATIONS AND RFALIZATION. Introduction. 27 29 30 30 34 34 Design Consideration. The DC Power Amplifier. System Operation. Scan System Alignment...

Leung, Waiming

2012-06-07T23:59:59.000Z

107

Electric propulsion motor for marine vehicles  

SciTech Connect

An electric propulsion motor for marine vehicles is described comprising: a disk-shaped rotor and two coaxial disk-shaped stators, the rotor being separated from each of the stators in an axial direction by an air gap; the rotor including a plurality of permanent magnets that produce a first magnetic field; each stator comprising an armature winding that is connected to a source of electrical current to produce a second magnetic field, the first and second magnetic fields being capable of interacting to create an electromagnetic torque; means for coupling the rotor to a propeller shaft for transferring the torque from the rotor to the shaft, and means for detecting the angle of the shaft; a current control means for receiving a current control signal and for employing pulse width modulation to control the source of electrical current; the current control means including means for storing compensation information related to torque variations that are a function of shaft angle; the current control means further including means connected and responsive to the shaft angle detecting means for selecting the compensation information as a function of shaft angle and means for combining the compensation information with the current control signal to control the source of electrical current such that the torque variations that are a function of shaft angle are minimized; and wherein the means for coupling the rotor to the propeller shaft includes means within the motor for isolating the shaft from sound produced by the motor.

Dade, T.B.; Leiding, K.W.; Mongeau, P.P.; Piercey, M.S.

1993-07-20T23:59:59.000Z

108

Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Back to the Future": Flex-Fuel Vehicle Awareness "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, these flex fuel vehicles help to decrease our reliance on imported oil and reduce carbon pollution. The "Big Three" U.S. auto makers (Ford, General Motors, and Chrysler) recently announced that half of their entire 2012 vehicle line will be FFVs-including the

109

EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Supplement to General Motors Corp., Electric 9: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) Overview Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 29, 2011 EA-1869: Final Environmental Assessment and Finding of No Significant

110

The calculation of stepper and synchronous electric motors for automobile electric drives  

Science Journals Connector (OSTI)

Peculiarities of calculations for electric motors for automobile electric drives integrated with electronic controls are considered.

V. V. Kozlov

2007-05-01T23:59:59.000Z

111

A Five-Leg Inverter for Driving a Traction Motor and a Compressor Motor  

SciTech Connect

This paper presents an integrated inverter for speed control of a traction motor and a compressor motor to reduce the compressor drive cost in EV/HEV applications. The inverter comprises five phase-legs; three of which are for control of a three-phase traction motor and the remaining two for a two-phase compressor motor with three terminals. The common terminal of the two-phase motor is tied to the neutral point of the three-phase traction motor to eliminate the requirement of a third phase leg. Further cost savings are made possible by sharing the switching devices, dc bus filter capacitors, gate drive power supplies, and control circuit. Simulation and experimental results are included to verify that speed control of the two motors is independent from each other.

Su, Gui-Jia [ORNL; Hsu, John S [ORNL

2006-01-01T23:59:59.000Z

112

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

2007) Impacts of Electric-drive Vehicles on California'sInteractions between electric-drive vehicles and the powerin emissions found for electric- drive vehicles is a result

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

113

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

114

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicle Emission Simulator (MOVES) Motor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Motor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/otaq/models/moves/index.htm Cost: Free Equivalent URI: cleanenergysolutions.org/content/motor-vehicle-emission-simulator-move Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: http://www.epa.gov/otaq/models/moves/index.htm Intended to replace MOBILE6, NONROAD, and NMIM. Estimates energy consumption emissions from highway vehicles from 1999-2050 and accounts for

115

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

116

Electric Drive Vehicle Climate Control Load Reduction  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

117

Electric Drive Vehicle Climate Control Load Reduction  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

118

Advanced Electric Drive Vehicle Education Program  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

119

Advanced Electric Drive Vehicle Education Program  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

120

Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 12, 1998 1: May 12, 1998 Growth in Motor Vehicles: 1940-1996 to someone by E-mail Share Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Facebook Tweet about Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Twitter Bookmark Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Google Bookmark Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Delicious Rank Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Digg Find More places to share Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on AddThis.com... Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

122

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

123

Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The figure below shows the Environmental Protection Agency (EPA) driving ranges for electric vehicles (EVs) offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV...

124

Phenomenological Driving Behavior Model of the Suburban Vehicle-to-Vehicle Propagation Channel at  

E-Print Network (OSTI)

Phenomenological Driving Behavior Model of the Suburban Vehicle-to-Vehicle Propagation Channel at 5 a hierarchical phenomenological model of driving behavior to describe this observation. As an example, we a phenomenological model in a hierarchical manner to describe the expected relative velocity vs. distance of two

Stancil, Daniel D.

125

Nevada Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Nevada Department of Motor Vehicles Name Nevada Department of Motor Vehicles Address 555 Wright Way Place Carson City, Nevada Zip 89711 Phone number 702-486-4368 Website http://dmvnv.com/ Coordinates 39.1549237°, -119.7635207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1549237,"lon":-119.7635207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Texas Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Texas Department of Motor Vehicles Name Texas Department of Motor Vehicles Short Name TxDMV Address 4000 Jackson Ave. Place Austin, Texas Zip 78731 Phone number 1-888-368-4689 Website http://www.txdmv.gov/ Coordinates 30.3134782°, -97.7553907° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3134782,"lon":-97.7553907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Gas Mileage of 1993 Vehicles by J.K. Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

3 J.K. Motors Vehicles 3 J.K. Motors Vehicles EPA MPG MODEL City Comb Hwy 1993 J.K. Motors 190E 2.3 MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 190E 2.3 MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 230E MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 230E MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 300SL 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 300SL 14 City 15 Combined 16 Highway 1993 J.K. Motors BMW535I 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW535I 12 City 14 Combined 18 Highway 1993 J.K. Motors BMW635CSI 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW635CSI 12 City 14 Combined 18

128

Research on Induction Motor for Mini Electric Vehicles  

Science Journals Connector (OSTI)

The motor of a mini electric vehicle uses dozens of storage batteries as power supply, which has low voltage and large current. Therefore, the loss and temperature raise of the motor is high. In this paper, the loss of different induction motors for mini electric vehicles is calculated and the effects of rotor materials and air gap length on the performance of these motors are studied. The analyses show that the efficiency of the motor with a copper mouse cage rotor is considerably higher than that of the motor with a aluminum rotor. The temperature raise of both an air-cooling and a water-cooling induction motor is analyzed, which demonstrates that the temperature raise of the motor windings is higher than that of the other parts, and the temperature raise of the water-cooling motor is lower than that of the air-cooling motor. To verify the results of the theoretical analyses, four prototype induction motors (aluminum rotor, copper mouse cage rotor, air-cooling and spiral groove machine) have been designed and processed. The experiments to measure the efficiency and temperature raise were carried out on these motors. The experimental results prove that the theoretical analyses are correct.

Shukang Cheng; Cuiping Li; feng Chai; Hailong Gong

2012-01-01T23:59:59.000Z

129

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt039tischwendeman2012o.pdf More Documents &...

130

Minimize Adverse Motor and Adjustable Speed Drive Interactions  

Energy.gov (U.S. Department of Energy (DOE))

Electronic adjustable speed drives (ASDs) are extremely efficient and valuable assets to motor systems. They allow precise process control and provide energy savings within systems that do not need to operate continuously at full output. This tip sheet discusses design considerations to take into account when considering ASDs and offers suggested actions.

131

MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor  

E-Print Network (OSTI)

In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

Meenen, Jordan N

2010-01-01T23:59:59.000Z

132

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

SciTech Connect

This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

Pesaran, A. A.

2011-05-01T23:59:59.000Z

133

Analysis and design of energy recovery snubbers for switched reluctance motor drives  

SciTech Connect

Snubber studies for switched reluctance motor (SRM) drives are nonexistent even though the power converter topologies are unique and do not fall under the category of inverter topologies applicable to AC motor drives. The importance of the snubbers does not come into the picture until either the power rating of the converter is high and in the multi-kW range or the switching frequency requirement is in the 20 kHz range. Such requirements are coming to the fore in many product development applications such as extruders, general purpose drives, integral starter generators for aircraft, electric vehicles, high speed spindles and centrifuges, etc. This paper is concerned with extending the Undeland snubber configuration to the two-switches per phase power converter topology of the SRM drive including the energy recovery feature. The energy recovery snubbers are then analyzed in terms of the various modes of operation encountered in the converter. A design procedure for the energy recovery snubbers is developed. The design procedure and the operation of the proposed snubber configuration in the SRM drive are experimentally verified with a laboratory prototype SRM drive. The impact of the proposed snubber on the power converter efficiency and its comparison with conventional snubber based systems, such as RCDs, is evaluated to assess the advantages of the proposed energy recovery snubber. 10 refs.

Gharpure, V.S.; Krishnan, R.; Lee, S. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering

1994-12-31T23:59:59.000Z

134

Simulation Evaluation of Green Driving Strategies Based on Inter-Vehicle Communications  

E-Print Network (OSTI)

green driving strategies for different market penetration rates and communicationGreen Driving Strategies Based on Inter-Vehicle CommunicationsGREEN DRIVING STRATEGIES BASED ON INTER-VEHICLE COMMUNICATIONS

Yang, Hao; Yuan, Daji; Jin, W L; Saphores, Jean-Daniel M

2010-01-01T23:59:59.000Z

135

DOE Hydrogen Analysis Repository: MOVES (Motor Vehicle Emission Simulator)  

NLE Websites -- All DOE Office Websites (Extended Search)

MOVES (Motor Vehicle Emission Simulator) MOVES (Motor Vehicle Emission Simulator) Project Summary Full Title: MOVES (Motor Vehicle Emission Simulator) Previous Title(s): New Generation Mobile Source Emissions Model (NGM) Project ID: 179 Principal Investigator: Margo Oge Brief Description: Estimates emissions for on-road and nonroad sources, multiple pollutants, fine-scale analysis to national inventory estimation. Keywords: Vehicle; transportation; emissions Purpose Estimate emissions for on-road and nonroad sources, cover a broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national inventory estimation. When fully implemented MOVES will serve as the replacement for MOBILE. Performer Principal Investigator: Margo Oge Organization: U.S. Environmental Protection Agency

136

Electric Motors for Vehicle Propulsion; Elektriska motorer för fordonsframdrivning.  

E-Print Network (OSTI)

?? This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by first… (more)

Larsson, Martin

2014-01-01T23:59:59.000Z

137

Vehicles on demand... Why drive your own vehicle  

E-Print Network (OSTI)

to renter. Vehicle should be returned with no less than a half tank of gas (local gas stations on next page *Daily Rate $50 *Includes gas, unlimited miles, mainte- nance and insurance. No smoking. Hands

138

Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study  

E-Print Network (OSTI)

Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study M. Zeraoulia1 Combustion Engine (ICE) and the electric motor to deliver power in parallel to drive the wheels. Since both the ICE and electric motor are generally coupled to the drive shaft of the wheels via two clutches

Paris-Sud XI, Université de

139

Intelligent Control of the Linear Motor Direct Drive Feed System for CNC Machine Tools  

Science Journals Connector (OSTI)

The linear feed system directly driven by a linear motor is more and more widely used in high speed CNC machine tools. In this linear “direct drive” feed system, all mechanical transmission elements are eliminated. The linear motor’s ... Keywords: intelligent control, linear motor, direct drive, linear feed system, machine tool

Shuhong Xiao; Guangyuan Zheng; Shuquan Chen

2008-12-01T23:59:59.000Z

140

Optimization of direct drive induction motors for electric ship propulsion with high speed propellers  

Science Journals Connector (OSTI)

Direct drive electric ship propulsion can offer increased flexibility and reduced overall fuel consumption compared to geared mechanical systems [Davis 1987, Doerry 2007]. As a well-established technology, induction motors are a dependable and economical ... Keywords: AC motors, induction motor drives, induction motors, thermal analysis

S. C. Englebretson; J. L. Kirtley, Jr; C. Chryssostomidis

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

142

Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

143

The drive toward hydrogen vehicles just got shorter  

NLE Websites -- All DOE Office Websites (Extended Search)

The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter Researchers have revealed a new single-stage method for recharging the hydrogen storage compound ammonia borane. March 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

144

Vehicle Technologies Office Merit Review 2014: E-drive Vehicle Sales Analyses  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the E-drive...

145

Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer  

DOE Patents (OSTI)

An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

Tamai, Goro; Zhou, Jing; Weslati, Feisel

2014-09-02T23:59:59.000Z

146

MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

MOtor Vehicle Emission Simulator (MOVES) MOtor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary Name: MOtor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: U.S. Environmental Protection Agency Focus Area: GHG Inventory Development Topics: Analysis Tools Website: www.epa.gov/otaq/models/moves/index.htm This emission modeling system estimates emissions from mobile sources, including cars, trucks, and motorcycles. The modeling tool covers a broad range of pollutants and allows multiple scale analysis. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

147

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

7.8.3 The motor-vehicle fraction of air, water, and solid-7.8.3 The motor-vehicle fraction of air, water, and solid-travel. The motor-vehicle related costs of water treatment

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

148

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

7.8.3 The motor-vehicle fraction of air, water, and solid-7.8.3 The motor-vehicle fraction of air, water, and solid-travel. The motor-vehicle related costs of water treatment

Delucchi, Mark

2005-01-01T23:59:59.000Z

149

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Motor Vehicle Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

150

Heel and toe driving on fuel cell vehicle  

DOE Patents (OSTI)

A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

Choi, Tayoung; Chen, Dongmei

2012-12-11T23:59:59.000Z

151

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

152

A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors  

Science Journals Connector (OSTI)

Abstract Variable frequency drives (VFDs) can provide reliable dynamic systems and significant savings in energy usage and costs of the induction motors (IMs). Sensorless controlled IM drives have advantages in terms of efficiency enhancement and energy savings for critical applications such as electric vehicles, high performance machine tools, fans, compressors, etc. IM drives without having speed sensors or optical encoders mounted at the motor shaft are attractive because of their lower cost and higher reliability. When mechanical speed sensor is removed, the rotor speed information is estimated using the measured quantities of stator voltages and currents at the IM terminals. This paper highlights the sensorless techniques applied to the IM drives for sustainable reliability and energy savings. Overview on the IM mathematical model is briefly summarized to establish a physical basis for the sensorless schemes used. Further, the different types of IM-VFDs are presented in the paper. The main focus of this review is on the sensorless estimation techniques which are being applied to make IM-VFDs more effective during wide speed operations including very-high and very-low speed regions.

Ibrahim M. Alsofyani; N.R.N. Idris

2013-01-01T23:59:59.000Z

153

EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

154

Do Motor-Vehicle Users in the US Pay Their Way?  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles,related to the use of Persian-Gulf oil by MVs Annualizedto protect the use of Persian-Gulf oil for motor vehicles. 9

Delucchi, Mark

2007-01-01T23:59:59.000Z

155

Lung Adenocarcinoma Incidence Rates and Their Relation to Motor Vehicle Density  

Science Journals Connector (OSTI)

...with about one motor vehicle per square mile...study design. In ecological studies, none of...as follows: As an ecological study, the data of motor vehicle density was obtained...individuals; that is, the ecological fallacy could not...

Fan Chen; Haley Jackson; and William F. Bina

2009-03-01T23:59:59.000Z

156

Effects of motor vehicle exhaust on male reproductive function and associated proteins  

Science Journals Connector (OSTI)

Air pollution is consistently associated with various diseases and subsequent death among children, adult, and elderly people worldwide. Motor vehicle exhaust contributes to a large proportion of the air pollution present. The motor vehicle exhaust ...

Deivendran Rengaraj; Woo-Sung Kwon; Myung-Geol Pang

2014-10-20T23:59:59.000Z

157

Dissipative Hamiltonian realisation and robust H? control of induction motor considering iron losses for electric vehicles  

Science Journals Connector (OSTI)

The dissipative Hamiltonian realisation and robust H? control of induction motor considering iron losses for electric vehicle are investigated in this paper. First, the dissipative Hamiltonian of the electric vehicle drive system is obtained based on the system's mathematical model in a synchronously rotating frame. Then, a robust co-ordinated tracking controller is designed based on the dissipative Hamiltonian form. One part of the controller is designed by using the method of interconnection and damping assignment to ensure the system's stability, and another part is designed by using the Hamiltonian system's robust H? technique to attenuate external disturbances. The simulation results show that the controller proposed in the paper works very well in robust tracking of induction motor.

Wenhui Pei; Chenghui Zhang; Naxin Cui; Ke Li

2013-01-01T23:59:59.000Z

158

The cell phone effect on motor vehicle fatality rates: A Bayesian and classical econometric evaluation  

Science Journals Connector (OSTI)

This paper examines the potential effect of cell phones on motor vehicle fatality rates normalized for other driving related and socioeconomic factors. The model used is non-linear so as to address both life-taking and life-saving attributes of cell phones. The model is evaluated using classical methods along with Bayesian Extreme Bounds Analysis (EBA). The use of both classical and Bayesian methods diminishes the model and parameter uncertainties which afflict more conventional modeling methods which rely on only one of the two methods. The results indicate the presence of both life-taking and life-saving attributes of cell phones on motor vehicle fatality rates depending on the volume of cell phone subscribers in existence.

Richard Fowles; Peter D. Loeb; Wm. A. Clarke

2010-01-01T23:59:59.000Z

159

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

160

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...  

Energy Savers (EERE)

4 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles Fact 854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model...

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A study of alternative drive control interfaces for next-generation electric vehicles  

E-Print Network (OSTI)

The drive control interface in automobiles has not significantly changed for almost a century. Recent advances in electric vehicles and drive-by-wire technology allow for new alternative interfaces that enable novel vehicle ...

Post, C. Christopher (Charles Christopher)

2011-01-01T23:59:59.000Z

162

Control of a Fuel-Cell Powered DC Electric Vehicle Motor  

E-Print Network (OSTI)

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models and Control Strategies Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models

Skogestad, Sigurd

163

Design and Control of the Induction Motor Propulsion of an Electric Vehicle  

E-Print Network (OSTI)

Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

Brest, Université de

164

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Vehicles Get Put to the Test at General Motors' Proving EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? EcoCar challenges students to reduce the environmental impact of vehicles by minimizing the vehicle's fuel consumption and emissions -- while retaining the vehicle's performance, safety and consumer appeal.

165

Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles  

E-Print Network (OSTI)

of Traciton Motors in Hybrid Electric Vehicles Xiaofeng Ding 1 , Jinglin Liu 2 , and Chris Mi 3 1 Department Generation of Traciton Motors in Hybrid Electric Vehicles 1460 2. SIMPLE ANALYTICAL MODEL OF UCG 2.1 ModelJournal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 1459 Uncontrolled Generation

Mi, Chunting "Chris"

166

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles (to Protect the Use of Persian-Gulf Oil for Motor Vehicles,related to the use of Persian-Gulf oil by MVs B.11

Delucchi, Mark

2005-01-01T23:59:59.000Z

167

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates  

E-Print Network (OSTI)

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter Driving Smart Growth: Electric Vehicle Adoption Page 2 Executive Summary Reducing our dependence to electric vehicles (EVs)1 is core to reducing reliance on fossil fuels and driving smart growth

Holsinger, Kent

168

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

169

A System for Measuring the Active Power of the Asynchronous Motor of a Lathe Electric Drive  

Science Journals Connector (OSTI)

A system for measuring the active power of the asynchronous motor of a lathe electric drive is described. The possibility of using...

V. A. Kuzovkin; V. V. Filatov; A. N. Porvatov; A. N. Porvatova

2014-05-01T23:59:59.000Z

170

Development of Monitoring and Control System for Switched Reluctance Motor Drive System.  

E-Print Network (OSTI)

??The reluctance torque of switched reluctance motor could drive the rotor directly. Rotor doesnât need to be made from permanent magnet and the demagnetization and… (more)

Wang, Yung-chin

2005-01-01T23:59:59.000Z

171

Abstract Efficiency issues of variable-capacitance micromotors are discussed in context of combined drive and motor  

E-Print Network (OSTI)

motors, electric drives, efficiency I. INTRODUCTION An active area of research for commercial of combined drive and motor interaction. It is shown that variable-capacitance motors ideally have nearly, the drive system consisting of both the motor and electronics is not ideal when considering different

Chapman, Patrick

172

Improvements in EMC performance of inverter-fed motor drives  

SciTech Connect

An experimental investigation of conducted radio-noise emission from a conventional pulse width modulated (PWM) inverter of medium power feeding an induction motor is described. It is determined that the inverter system generates considerable impulse currents through the power leads feeding the system resulting in serious conducted electromagnetic interference (EMI) problems and significant voltage waveform distortion in the power system. The dominant emission sources in the system are identified. A proposed model of the drive system for the purpose of evaluation of EMI are developed. Several low-cost strategies for improvement in EMC performance of the PWM inverter are then proposed. Experimental results demonstrate that disturbance from the modified system can be dramatically reduced and that the EMC performance of the system has come very close to meeting the IEC CISPR and FCC limits on conducted emissions for digital devices.

Zhong, E.; Lipo, T.A. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Electrical and Computer Engineering

1995-11-01T23:59:59.000Z

173

Neural and Fuzzy Adaptive Control of Induction Motor Drives  

SciTech Connect

This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

Bensalem, Y. [Research Unit of Modelisation, Analyse, Command of Systems MACS (Tunisia); Sbita, L.; Abdelkrim, M. N. [6029 Universite High School of Engineering-Gabes-Tunisia (Tunisia)

2008-06-12T23:59:59.000Z

174

Health Monitoring of Drive Connected Three-Phase Induction Motors ----- From Wired Towards Wireless Sensor Networks  

E-Print Network (OSTI)

three-phase induction motor drives a DC generator through ainduction machines. Temperature Temperature is widely monitored in electrical drives and generators.Induction Motor Resistors pack Pulley V-belt 2b Terminal box 1a Terminal box 1b DC Generator

Xue, Xin

2009-01-01T23:59:59.000Z

175

SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2  

E-Print Network (OSTI)

SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2 , A. Kheloui2 , M torque control of an induction motor based electric vehicle. In this case, stator flux and rotational, comprising the electric motor, power converter, and electronic controller, is the core of the EV propulsion

Paris-Sud XI, Université de

176

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have questions? Ask us here or on #LabChat. Ask Us Addthis What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet your questions to @ENERGY using #LabChat. Send questions via email to NewMedia@hq.doe.gov.

177

Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive  

DOE Patents (OSTI)

A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

Konrad, C.E.; Boothe, R.W.

1996-01-23T23:59:59.000Z

178

Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive  

DOE Patents (OSTI)

A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

Konrad, Charles E. (Roanoke, VA); Boothe, Richard W. (Roanoke, VA)

1996-01-01T23:59:59.000Z

179

Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive  

DOE Patents (OSTI)

A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

Konrad, Charles E. (Roanoke, VA); Boothe, Richard W. (Roanoke, VA)

1994-01-01T23:59:59.000Z

180

Background-aware Pedestrian/Vehicle Detection System for Driving Environments  

E-Print Network (OSTI)

Background-aware Pedestrian/Vehicle Detection System for Driving Environments Ji Hoon Joung, M. S to enhance the reliability of detection of objects in a driving envi- ronment (e.g. pedestrian and vehicle detections. Our approach considers that if we remove a certain region from an image taken from a vehicle

Ryoo, Michael S.

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Improving Motor and Drive System Performance: A Sourcebook for Industry  

SciTech Connect

This is one in a series of sourcebooks to assist industrial personnel in understanding and optimizing motors and motor-driven systems

Not Available

2008-09-01T23:59:59.000Z

182

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger concerning the electrical machine control. This paper deals with the control of this drive [1], focusing

Paris-Sud XI, Université de

183

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles  

E-Print Network (OSTI)

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries to the safety and performance of electric-drive batteries. The innovative Isothermal Battery Calorimeters (IBCs

184

A CONTROL THEORETIC FORMULATION OF GREEN DRIVING STRATEGY1 BASED ON INTER-VEHICLE COMMUNICATIONS2  

E-Print Network (OSTI)

green driving strategies based on inter-vehicle communications.25 With Newell's car-following modelA CONTROL THEORETIC FORMULATION OF GREEN DRIVING STRATEGY1 BASED ON INTER-VEHICLE COMMUNICATIONS2 fuels, various green driving strategies that smooth traffic flow and reduce23 congestion can

Detwiler, Russell

185

Control Realization for an Interior Permanent Magnet Synchronous Motor (IPMSM) in Automotive Drive Trains  

E-Print Network (OSTI)

Control Realization for an Interior Permanent Magnet Synchronous Motor (IPMSM) in Automotive Drive Trains Wilhelm Peters, Tobias Huber, Joachim Böcker Power Electronics and Electrical Drives, Paderborn automotive traction drives are a wide speed range, a wide constant-power operation range and high efficiency

Paderborn, UniversitÀt

186

Mechanical fault detection in induction motor drives through stator current monitoring -Theory  

E-Print Network (OSTI)

. Common failures occurring in electrical drives can be roughly classified into: Electrical faults: stator in the load part of the drive) A reliability survey on large electric motors (>200 HP) revealed that most drive including the load, but they show that mechanical fault detection is of great concern in electric

Paris-Sud XI, Université de

187

Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the progress made on the research and development projects funded by the Advanced Power Electronics and Electric Motors subprogram in the Vehicle Technologies Office.

188

On fuel-optimal velocity control of a motor vehicle  

Science Journals Connector (OSTI)

This paper presents the motor vehicle velocity control that, under certain well-defined conditions, ensures a minimum fuel consumption. To this purpose, a vehicle with a stepped mechanical transmission is considered, assuming that the gear is unchanged during the movement. The optimal control problem is formulated for different cases and solved by applying Pontryagin's maximum principle. Whenever there is a singular solution, it is shown to correspond to the uniform motion law. The optimal velocity controls include the following phases that may be combined in different ways: deceleration without engine shut-off (null engine power), strong decelerative braking, constant speed movement and full-throttle acceleration. Examples are presented by using the experimental data on engine fuel consumption. The stress falls on the significant reductions in fuel consumption that can be achieved compared to uniform motion.

A.P. Stoicescu

1995-01-01T23:59:59.000Z

189

The Vibration Analysis of Eco-Friendly Vehicle Based on the Electric Motor Excitation  

Science Journals Connector (OSTI)

Using the Switched Reluctance Motor (SRM) as the excitation source, the ... multi-body dynamics model of the eco-friendly electric vehicle on ADAMS software platform; given out ... vehicle vibration system which ...

Peicheng Shi; Yuan Shang

2013-01-01T23:59:59.000Z

190

Improving Motor and Drive System Performance - A Sourcebook for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Is it Cost-Effective to Replace Old Eddy-Current Drives? Adjustable Speed Pumping Applications Consider Steam Turbine Drives for Rotating Equipment...

191

Low-cost motor drive embedded fault diagnosis systems  

E-Print Network (OSTI)

Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low...

Akin, Bilal

2009-05-15T23:59:59.000Z

192

Shock absorber mount assembly for motor vehicle suspension  

SciTech Connect

A mount assembly is described for mounting a shock absorber/coil assembly in a motor vehicle suspension, the shock absorber/coil assembly including a fluid cylinder, a piston rod movable into and out of the cylinder, a vibration isolator mounted on an end of the piston rod, and a coil spring disposed around the fluid cylinder and the piston rod. The mount assembly consists of: a retainer adapted to be mounted on the vibration isolator and having an attachment portion adapted for attachment to a motor vehicle frame; a spring seat adapted to engage an end of the coil spring; and a thrust bearing interposed between the attachment portion of the retainer and the spring seat and adapted to extend around the vibration isolator, the thrust bearing including a pair of first and second races and a plurality of balls rotatably disposed between the first and second races, the first race engaging the retainer and the second race engaging the spring seat.

Kubo, K.

1987-09-01T23:59:59.000Z

193

#LabChat Recap: Innovations Driving More Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations Driving More Efficient Vehicles Innovations Driving More Efficient Vehicles #LabChat Recap: Innovations Driving More Efficient Vehicles December 21, 2012 - 10:47am Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #LabChat Recap: Innovations Driving More Efficient Vehicles The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy. Three researchers answered questions about advanced combustion, lightweighting and hybridization. Here is an overview of some of the conversations. Storified by Energy Department · Fri, Dec 21 2012 08:19:22 We kicked off the #LabChat with introductions from all the researchers. Each researcher focuses on a different vehicle technology that is expected to make great strides in improving vehicle

194

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

195

Energy Efficiency of Electric Motors and Drives: Australian and New Zealand Programmes  

Science Journals Connector (OSTI)

Motor drives consume between 25% to 30% of energy used in Australia and New Zealand, and are therefore a worthwhile target for the application of energy efficiency measures. Estimates of savings achievable ran...

David Cogan

1997-01-01T23:59:59.000Z

196

Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation  

E-Print Network (OSTI)

Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation transfer line residence time, enhanced nanoparticle emission associated with reduced soot emission of the nanoparticles in motor vehicle exhaust. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols

Yu, Fangqun

197

Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles  

E-Print Network (OSTI)

Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles A. Kolli1 , Student Magnet Synchronous Machine in Electric Vehicle application. First, a short survey of existing power control methods are compared with three innovative ones using EV-drive specifications in the normal

Paris-Sud XI, Université de

198

FPGA based neural network position and speed estimator for switched reluctance motor drive  

Science Journals Connector (OSTI)

This paper presents the design and implementation of the sensorless control system for the Switched Reluctance Motor (SRM) drive without a position sensor. The SRM has been receiving attention for industry applications due to its low cost in mass production, ... Keywords: position estimation, resistance estimation, switched reluctance motor

Jakub Talla; Josef Stehlik

2008-12-01T23:59:59.000Z

199

Would You Consider Driving a Vehicle that Can Run on Biodiesel? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? September 16, 2010 - 7:30am Addthis On Monday, Shannon told you about biodiesel, a renewable fuel that can power a vehicle using less fuel and producing fewer greenhouse gas emissions. DOE has an Alternative Fuel Station Locator that can help drivers find the nearest fueling station to fill up their vehicles. Would you consider driving a vehicle that can run on biodiesel? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at

200

Motor vehicle noise emission while accelerating up a hill  

Science Journals Connector (OSTI)

A noise survey was performed in 1975 to determine motor vehiclenoise emissions while accelerating up a grade. A?weighted sound levels were measured at locations 50 ft from urban streets with grades carrying between 4.3% and 9.6%. The recorded sound level data are presented as a function of grade for five classes of vechicles: passenger cars light trucks (GVW: under 8000 lb) light?medium trucks (GVW: 8–14 000 lb) medium trucks (GVW: 14–24 000 lb) and heavy trucks (GVW: over 24 000 lb). Statistical distributions of the recorded sound level data are presented for each class of vehicle and compared to level street acceleration data measured in 1974 [Michael F. Nechvatal and Robert D. Hellweg Jr. J. Acoust. Soc. Am. 56 S34(A) (1974)].

Robert D Hellweg Jr.; Michael F. Nechvatal

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New Probabilistic Approach to Estimate Vehicle Failure Trajectories in Curve Driving  

E-Print Network (OSTI)

on vehicle dynamic system. These works are undertaken on the topic of the detection and/or control vehicle and its environment. These interactions can generate discontinu- ities in the system parametersNew Probabilistic Approach to Estimate Vehicle Failure Trajectories in Curve Driving Abdourahmane

Paris-Sud XI, Université de

202

Semiconductor Alternating-Current Motor Drives and Energy Conservation  

Science Journals Connector (OSTI)

...required to avoid high heating losses in the motors...important user concerns-price, efficiency, and...been offered at a price thatjustified broad...direct-ly, causes motor heating, mechanical stress...000 barrels of oil equivalent per day...University, New Haven, Connecticut, and is currently...

D. J. BenDaniel; E. E. David Jr.

1979-11-16T23:59:59.000Z

203

Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhera Tabbache1,2  

E-Print Network (OSTI)

Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle BekheĂŻra Tabbache1://www.lbms.fr Keywords Electric Vehicle (EV), Induction motor, Sensor fault, Fault-tolerant control (FTC), Direct torque a reconfigurable direct torque control of an induction motor-based electric vehicle. The proposed strategy concerns

Paris-Sud XI, Université de

204

Indirect rotor position sensing in real time for brushless permanent magnet motor drives  

SciTech Connect

This paper describes a modern solution to real-time rotor position estimation of brushless permanent magnet (PM) motor drives. The position estimation scheme, based on flux linkage and line-current estimation, is implemented in real time by using the abc reference frame, and it is tested dynamically. The position estimation model of the test motor, development of hardware, and basic operation of the digital signal processor (DSP) are discussed. The overall position estimation strategy is accomplished with a fast DSP (TMS320C30). The method is a shaft position sensorless method that is applicable to a wide range of excitation types in brushless PM motors without any restriction on the motor model and the current excitation. Both rectangular and sinewave-excited brushless PM motor drives are examined, and the results are given to demonstrate the effectiveness of the method with dynamic loads in closed estimated position loop.

Ertugrul, N. [Univ. of Adelaide (Australia). Dept. of Electrical and Electronic Engineering] [Univ. of Adelaide (Australia). Dept. of Electrical and Electronic Engineering; Acarnley, P.P. [Univ. of Newcastle upon Tyne (United Kingdom). Dept. of Electrical and Electronic Engineering] [Univ. of Newcastle upon Tyne (United Kingdom). Dept. of Electrical and Electronic Engineering

1998-07-01T23:59:59.000Z

205

A Novel Fuzzy Controller for Switched Reluctance Motor Drive  

Science Journals Connector (OSTI)

There are serious nonlinear, variable strongly coupling characteristic in switched reluctance motor (SRM),and its electromagnetic relationship is hard to analyze. According to the nonlinear inductance model of SRM,a control system for SRM is carried ...

Yiwang Wang

2009-05-01T23:59:59.000Z

206

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

207

Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

2007-01-01T23:59:59.000Z

208

Quantifying the benefits of vehicle pooling with shareability networks  

Science Journals Connector (OSTI)

...wasted time and fuel caused by congestion...of Collaborative Consumption ( HarperCollins...factor of speed and engine load, which are...vehicle emissions and fuel consumption in urban driving...vehicle speed and engine load on motor vehicle...

Paolo Santi; Giovanni Resta; Michael Szell; Stanislav Sobolevsky; Steven H. Strogatz; Carlo Ratti

2014-01-01T23:59:59.000Z

209

Variable Frequency Drives: Energy Savings and Impact on Motor Performance  

E-Print Network (OSTI)

Variable frequency drives (VFDs) have found widespread application in recent years. VFDs are valued for their potential to save energy and improve processes. Reliability has improved significantly, but there are still pitfalls to be addressed...

Petro, D.

210

Equivalent circuit modeling of hybrid electric vehicle drive train  

E-Print Network (OSTI)

The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool...

Routex, Jean-Yves

2012-06-07T23:59:59.000Z

211

Advanced Electric Drive Vehicle Education Program: CSU Ventures  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

212

Electric Drive Vehicle Level Control Development Under Various Thermal Conditions  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

213

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

214

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

215

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

216

Advanced Electric Drive Vehicle Education Program: CSU Ventures  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

217

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

218

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

219

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

220

Radial-Gap Permanent Magnet Motor and Drive Research FY 2004  

SciTech Connect

The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power regardless of speed for relative speeds, n = {omega}/{omega}{sub base} {ge} 2. Performance was also examined with efficiency measurements during the 30-kW PM motor test. Material requirements were examined with finite-element analyses (FEA) to determine the speed and location where yield starts and the corresponding deformations and stresses.

McKeever, J.W.

2005-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Plan Partnership Plan March 2013 U.S. DRIVE Partnership Plan Table of Contents Foreword ....................................................................................................................................................... 2 Definition ...................................................................................................................................................... 3 Partners ......................................................................................................................................................... 3 U.S. DRIVE Vision ........................................................................................................................................... 3 U.S. DRIVE Mission ........................................................................................................................................ 4

222

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network (OSTI)

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

223

Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

224

Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves  

E-Print Network (OSTI)

Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. The original definition...

Gu, Chaoyi

2013-07-31T23:59:59.000Z

225

The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile  

E-Print Network (OSTI)

This paper examines the relationships between the built environment—both ‘neighborhood’ design characteristics and relative location—and motor vehicle ownership and use in a rapidly motorising, developing city context, ...

Zegras, P. Christopher

226

Analyzing spatial-temporal patterns of motor vehicle crashes using GIS: a case study in Dallas  

E-Print Network (OSTI)

This paper uses GIS to analyze the characteristics of temporal and spatial distributions of motor vehicle crashes. These characteristics include that traffic accidents are most likely to occur in the afternoon "rush hour" (4:00 - 6:00PM...

Lu, Bing

2012-06-07T23:59:59.000Z

227

Driving Change in Energy Use at Ford Motor Company | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Change in Energy Use at Ford Motor Company Driving Change in Energy Use at Ford Motor Company Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

228

Performance analysis of PV pumping systems using switched reluctance motor drives  

SciTech Connect

A PV pumping system using switched reluctance motor (SRM) is thoroughly investigated in this work. This motor is supplied by a d.c. voltage through a simple switching circuit. This drive circuit is much simpler than the normal d.c./a.c. inverter required to supply the induction motor. The efficiency of this motor is considerably higher than that of the equivalent d.c. or induction motors. In addition, because of the simple construction, SRM is cheaper than these conventional drives. Because of the above advantages of the SRM, the proposed system has higher efficiency and lower cost as compared with other systems. A design example is studied in detail to explore the advantages of PV pumping systems based on this new drive. The study of the performance of the proposed system showed that the operating efficiency of the motor is about 85% during most of its working time. The matching efficiency between the PV array and the proposed system approaches 95%. The major part of the losses takes place in the pump and the riser pipes. This loss represents one-third of the total available energy. 21 refs., 10 figs.

Metwally, H.M.B. [Zagazig Univ. (Egypt)] [Zagazig Univ. (Egypt); Anis, W.R. [Ain Shams Univ., Cairo (Egypt)] [Ain Shams Univ., Cairo (Egypt)

1996-12-31T23:59:59.000Z

229

An Exploration of Bicycle-Motor Vehicle Crash Types and Causes in Portland-Metro, Oregon  

E-Print Network (OSTI)

An Exploration of Bicycle-Motor Vehicle Crash Types and Causes in Portland-Metro, Oregon by Kouros. This research project investigates ways to improve traffic safety, focusing specifically on bicycle- motor of BMV crashes resulted in fatal injury and 127 of resulted in incapacitating injury. Each bicycle crash

Bertini, Robert L.

230

PS3060: Perception and Action (L.3) Driving a vehicle: control of heading,  

E-Print Network (OSTI)

1 PS3060: Perception and Action (L.3) Driving a vehicle: control of heading, collision avoidance 11, 12 of Bruce, Green & Georgeson 2003) · the ecological approach to vision: from insects to humans · collision: judging time to impact, braking a vehicle · heading: how you know in which direction you

Zanker, Johannes M.

231

Advanced Electric Drive Vehicle Education Program: CSU Ventures  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

232

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

233

Electric Drive Vehicle Level Control Development Under Various...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Energy Management Strategies for Fast Battery Temperature Rise and...

234

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tweeting from @Argonne. A co-author of several patents related to hybrid powertrain architecture and vehicle operation, Rask explores new technological developments in electric and...

235

Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...  

Energy Savers (EERE)

VEAccomplishmentsReport.pdf More Documents & Publications US DRIVE Electrochemical Energy Storage Technical Team Roadmap Progress of DOE Materials, Manufacturing Process R&D, and...

236

Design trends and trade-offs for sensorless operation of switched reluctance motor drives  

SciTech Connect

The aligned to unaligned phase inductance ratio and the number of stator and rotor poles strongly affect the resolution of indirect rotor position sensing methods for switched reluctance motor (SRM) drives. A higher inductance ratio increases the resolution, while higher number of phases increases the available sampling window for indirect position sensing. However, these requirements are conflicting design criteria for an SRM. In this paper, the design considerations and trade-offs for sensorless SRM drives are analyzed by computer simulations. The existing indirect position sensing methods and their applicability for various SRM drives are also discussed.

Perl, T.; Husain, I.; Elbuluk, M. [Univ. of Akron, OH (United States). Dept. of Electrical Engineering

1995-12-31T23:59:59.000Z

237

Dual-decay converter for switched reluctance motor drives in low-voltage applications  

SciTech Connect

A modified converter topology for star-connected switched reluctance motors suitable for low-voltage applications is proposed in this paper. A dual time constant freewheeling circuit has been designed to improve the drive performance and efficiency over a wide range of speeds. The different modes of operation of the converter are discussed, and a comparison is made with other converter configurations.

Ehsani, Mehrdad; Husain, Iqbal; Ramani, K.R. (Texas A and M Univ., College Station, TX (United States). Dept. of Electrical Engineering); Galloway, J.H. (J.H. Galloway and Associates, Brookfield, CT (United States))

1993-04-01T23:59:59.000Z

238

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle  

SciTech Connect

Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

239

PM brushless DC motor drive with a new power converter topology  

SciTech Connect

With the growing potential for widespread use of permanent magnet brushless dc motor drives (hereafter referred to as PMBDC drives) in many low-cost applications such as in hvac, refrigerators, and freezers in houses and small velocity servos in process industries, it has become important to minimize the cost. One obvious place for cost reduction is in the cost of the inverter and its associated controller. With that perspective, a novel application of the converter topology for the PMBDC known as C-dump in the switched reluctance motor drives is proposed in this paper. The advantages and disadvantages of this topology vis-a-vis the conventional 3 phase H-bridge converter, are highlighted from the points of view of economy in switches, volt ampere rating, associated controller cost, and packaging. Design considerations for the PMBDC motor are derived for use with the proposed converter topology. The operational and design characteristics of this converter driven PMBDC drive are derived for four quadrant performance. Guidelines for the design of the proposed performance. Guidelines for the design of the proposed topology are derived and presented in the paper. Experimental results from a laboratory prototype are presented to validate the feasibility of the proposed PMBDC drive system.

Krishnan, R.; Lee, S. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

1995-12-31T23:59:59.000Z

240

Driving an electric vehicle. A sociological analysis on pioneer users  

Science Journals Connector (OSTI)

In most of the western countries, car is the prevalent means of transport for ... favourable to a reduction of carbon emissions), energy-efficient vehicles will probably develop in the future—car manufacturers ac...

Magali Pierre; Christophe Jemelin; Nicolas Louvet

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

242

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

243

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

VSATT provides the analytic support and subsystem characterizations that guide technology and system selections and assist U.S. DRIVE Technical Teams in determining performance goals and validation metrics.

244

Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle  

DOE Patents (OSTI)

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

1999-09-28T23:59:59.000Z

245

The Torque Vector Control System of the Switched Reluctance Motor Used in Electric Vehicle  

Science Journals Connector (OSTI)

In the paper, the micro-step method based on the phase current aiming to reduce the torque ripple is proposed. The SRM driving system used in the electric vehicle is presented by TMS320LF2407 as main controller. The hardware circuit and the software ... Keywords: SRM, micro-step, DSP controller, the electric vehicle

Li Jisheng; Gu Ye; Lei Shuying

2010-06-01T23:59:59.000Z

246

The lived experience of post-traumatic stress disorder as described by motor vehicle accident victims in Jordan.  

E-Print Network (OSTI)

??Aim: To explore the lived experience of post-traumatic stress disorder (PTSD) as described by individuals who have been involved in a motor vehicle accident (MVA)… (more)

Al-Kofahy, Lilibeth

2011-01-01T23:59:59.000Z

247

Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah Ortzar and Felipe Ros  

E-Print Network (OSTI)

Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah converters for electric vehicles using multilevel inverters. They are being compared with inverters using. Introduction Power Electronics technologies contribute with important part in the development of electric

Catholic University of Chile (Universidad CatĂłlica de Chile)

248

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

Energy.gov (U.S. Department of Energy (DOE))

This document describes the vision, mission, scope, and governing policies of the U.S. DRIVE Partnership (“Partnership”). Dated December 2014.

249

Control methods of the switched reluctance motor in electric vehicle during acceleration  

Science Journals Connector (OSTI)

In this paper the equations describing the performance of the electric vehicle are derived. Performance characteristics for each part in the vehicle system are obtained when the vehicle is accelerated under voltage turn on and turn off angle control. A comparison between the different methods of control is established. From these comparisons it can be noticed that the acceleration time for the case at which the turn on angle is controlled will be smaller than that for the other cases; also the motor efficiency at the voltage control method has the highest value especially at the higher values of the vehicle speed.

Fathy El Sayed Abdel-Kader; M. Z. Elsherif; Naser M. B. Abdel-Rahim; Mohamed M. Fathy

2012-01-01T23:59:59.000Z

250

Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

251

Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

252

Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

253

Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

254

Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program  

SciTech Connect

The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

Caille, Gary

2013-12-13T23:59:59.000Z

255

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

SciTech Connect

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

256

Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking  

E-Print Network (OSTI)

to develop a complete and representative model of the heat processes in the electric motors. In this paper in Ansoft ePhysics soft- ware. Keywords hybrid electric vehicle, surface permanent magnet synchronous motors needs to be thor- oughly understood. The optimal design of electrical motors with solid thermal

Mi, Chunting "Chris"

257

Impacts of motor vehicle operation on water quality in the US – Cleanup costs and policies  

Science Journals Connector (OSTI)

This paper investigates the costs of controlling some of the environmental impacts of motor vehicle transportation on groundwater and on surface waters. We estimate that annualized costs of cleaning-up leaking underground storage tanks range from $0.8 billion to $2.1 billion per year over 10 years. Annualized costs of controlling highway runoff from principal arterials in the US are much larger: they range from $2.9 billion to $15.6 billion per year over 20 years (1.6–8.3% of annualized highway transportation expenditures). Some causes of non-point source pollution were unintentionally created by regulations or could be addressed by simple design changes of motor vehicles. A review of applicable measures suggests that effective policies should combine economic incentives, information campaigns, and enforcement, coupled with preventive environmental measures. In general, preventing water pollution from motor vehicles would be much cheaper than cleaning it up.

Hilary Nixon; Jean-Daniel Saphores

2007-01-01T23:59:59.000Z

258

Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

SciTech Connect

This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

2013-06-01T23:59:59.000Z

259

Modular axial-flux permanent-magnet motor for ship propulsion drives  

SciTech Connect

Original features such as compactness and lightness make slotless axial-flux permanent-magnet machines (AFPMs) eligible for application in large power motor drives devoted to the direct drive of ship propellers. This paper discusses characteristics of AFPMs designed for application in marine propulsion, and machine performances such as efficiency, weight and torque density are evaluated for a comparison with those of conventional synchronous machines. A newly-conceived modular arrangement of the machine stator winding is proposed and experimental results taken from a small-size machine prototype are finally shown.

Caricchi, F.; Crescimbini, F.; Honorati, O.

1999-09-01T23:59:59.000Z

260

Robust control of switched reluctance motor drives using Kharitonov theorem and swarm intelligence  

Science Journals Connector (OSTI)

The paper presents a design technique for proportional integral (PI) robust current and speed controllers of switched reluctance motor (SRM) drives. The variations of stator inductance, equivalent resistance, moment of inertia and coefficient of friction are considered leading to uncertain plant representation of the drive. Robustness of the controllers is achieved through Kharitonov theorem considering parameter uncertainties over wide ranges of operation. To attain best performance, the design is cast as an optimisation problem solved by particle swarm optimisation (PSO) to ensure maximum possible degree of stability. Extensive comparisons with the classical methods are carried out showing noteworthy advantages of the proposed routine.

E.H.E. Bayoumi; M.A. Awadallah; H.M. Soliman

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A simple and low-cost measurement system for switched reluctance motor drive  

Science Journals Connector (OSTI)

This paper describes a low cost digital measurement system for measuring the voltage, current and flux linkage and rotor position of switched reluctance motor (SRM) drive. The digital measurement scheme was developed using a eZdsp TMS320F2812 board along with CCS-IDE environment. The graphical window allows plotting the current, voltage, flux linkage and rotor position waveforms of SRM with a high degree of accuracy and presentation of results. The complete digital measurement scheme of the SRM incorporating the magnetic characteristics implementation algorithm is experimentally implemented and validated using a digital signal processor board TMS320F2812 for SRM drive.

M. Marsaline Beno; N.S. Marimuthu

2009-01-01T23:59:59.000Z

262

Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power fundamentals: Calculating capacity  

E-Print Network (OSTI)

; Vehicle-to-grid power; Ancillary services; V2G 1. Introduction The electric power grid and light vehicle-drive vehicles (EDVs), that is, vehicles with an electric-drive motor powered by batteries, a fuel cellJournal of Power Sources xxx (2005) xxx­xxx Vehicle-to-grid power fundamentals: Calculating

Firestone, Jeremy

263

Novel digital control of conventional electric motor drives for home appliances  

Science Journals Connector (OSTI)

Research has been done on developing advanced control strategies for industrial DC motor drives. However, there is little advancement in the controllers designed for small appliance motors, which still use old and inefficient methods of control. The old methods of appliance motor control are the triac control and the PWM control. These methods are cheap and easy to implement, but they have a drawback – not regulating the controlled quantity properly and fast enough. The only reason they still persist in the appliance market is because of their cost of implementation. Appliance markets are very sensitive to cost changes; therefore, everything for an appliance motor is optimised for low cost. In this paper, we present a new control strategy for appliance motors, which is inherently digital in nature. 'The pulse adjustment method' can be used to control the speed of appliance motors very effectively. The implementation is easy and the cost of implementation is also low; yet, this method gives better results as compared to the PWM and triac control. The said performance of the pulse adjustment method is proven through simulations.

Srdjan Lukic; Abhijeet Bhandwale; Ali Emadi

2010-01-01T23:59:59.000Z

264

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

265

The 4 phase VSR motor: The ideal prime mover for electric vehicles  

SciTech Connect

4 phase variable switched reluctance motors are gaining acceptance in many applications due to their fault tolerant characteristics. A 4 phase variable switched reluctance motor (VSR) is modelled and its performance is predicted for several operating points for an electric vehicle application. The 4 phase VSR offers fault tolerance, high performance, and an excellent torque to weight ratio. The actual system performance was measured both on a teststand and on an actual vehicle. While the system described is used in a production electric motorscooter, the technology is equally applicable for high efficiency electric cars and buses. 4 refs.

Holling, G.H.; Yeck, M.M.

1994-12-31T23:59:59.000Z

266

Hybrid phase shifted carrier modulation fed five-phase multilevel inverter for multiphase induction motor drive  

Science Journals Connector (OSTI)

This paper proposes an energy efficient modulation scheme suitable for multilevel inverter fed five-phase induction motor. Five-phase multilevel inverter provides good quality five-phase variable voltage and variable frequency supply to five-phase induction motor, which ensure reduced torque ripple and improved drive efficiency. This modulation inherits the features of fundamental frequency modulation and phase shifted carrier modulation in power conversion and resolves the contradiction between high frequency and accuracy in a digital control scheme. Base modulator and hybrid formulation control algorithms are realised with TMS320F2407 DSP processor and Xilinx XC95108 CPLD controllers. The performance studies with induction motor are evaluated in terms of power loss, weighted total harmonic distortion and torque ripple. Selected simulation and experiment results are reported to verify and validate the effectiveness of the proposed technique.

C. Govindaraju

2013-01-01T23:59:59.000Z

267

MOTOR VEHICLE (Pursuant to RSA 260:14)  

E-Print Network (OSTI)

permitted pursuant to RSA 260:14, V (a ), other than for bulk distribution for surveys, marketing/I.D. #: _________________________________ Vehicle Identification #: _________________________________ Last Known Address/Town _______________________________ Other Identification Information: ________________________ ***Reverse Side Must Be Completed Before

New Hampshire, University of

268

News Release Off-Highway Motor Vehicle Recreation Division  

E-Print Network (OSTI)

the acceptable level of risk for public health." Abbott says he "welcomes the dialog" with the OHMVR Division at the CCMA to mitigate risk while still allowing access to this premier off-highway vehicle (OHV) recreation

269

Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

270

Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

271

Modeling and controller performance assessment for a switched reluctance motor drive based on setpoint relay  

Science Journals Connector (OSTI)

This paper considers the implementation of a current control method for switched reluctance motors (SRMs) and presents a novel approach to the accurate on-line modeling of an SRM drive. A simple autotuning technique for the SRM drives using a PWM controller is considered. Furthermore, conventional PI control and Internal Model Control (IMC) are considered to validate this method and present corresponding robust control analysis for the process. The control structures are comparatively analyzed using standard robustness measures for stability and performance. The proposed PWM controller is simulated and a hardware prototype is then implemented using digital signal processor control to evaluate the method using a 12/8, three-phase SRM. The experimental results of the SRM drive model validates the performance of the current loop.

L.L.N. dos Reis; A.A.R. Coelho; O.M. Almeida; J.C.T. Campos

2009-01-01T23:59:59.000Z

272

Sliding mode-based DTC-SVM control of permanent magnet synchronous motors for plug-in electric and hybrid vehicles  

Science Journals Connector (OSTI)

This paper presents a sliding mode controller design for a permanent magnet synchronous motor used in an integrated powertrain for plug-in electric and hybrid vehicles. In order to adapt to complicated driving environment and improve the robustness of the system, a sliding mode-based torque controller is developed. At the same time, a sliding mode speed controller is also proposed to meet the need of gear shift of the integrated powertrain. The stability and robustness of the proposed controllers are analysed. Computer simulations are performed to verify the effectiveness of the proposed control system. The simulation results illustrate that fast response and small ripples are achieved using the proposed control scheme. It is also shown that the control system is robust against load variations, measurement errors and parameter uncertainty. In addition, the transition during shift is smooth. Therefore, the proposed control scheme is suitable for control of the propulsion motor for plug-in electric and hybrid vehicles.

Hong Fu; Yaobin Chen; Guangyu Tian; Quanshi Chen

2011-01-01T23:59:59.000Z

273

Intake of Toxic and Carcinogenic Volatile Organic Compounds from Secondhand Smoke in Motor Vehicles  

Science Journals Connector (OSTI)

...BR.Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds...Ott W , Klepeis N, Switzer P.Air change rates of motor vehicles and...experimental investigation of tobacco smoke pollution in cars.Nicotine Tob Res 2009...

Gideon St.Helen; Peyton Jacob III; Margaret Peng; Delia A. Dempsey; S. Katharine Hammond; and Neal L. Benowitz

2014-12-01T23:59:59.000Z

274

Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

275

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

in order to bring the price of oil closer to its marginal social cost. There is in fact a long historyUS military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi l e i n f o Article history: Received 7 May 2007 Accepted 3 March 2008 Available online 21 April

Murphy, James J.

276

Research on Switched Reluctance Motor Drive System for the Electric Forklift Based on DSP and ”C/OS  

Science Journals Connector (OSTI)

According to the special requirements of electric forklift, a six-phase 12/10 pole switched reluctance motor drive system is proposed based on DSP and ?C/OS-?. In this paper, the design details of the controller is described and in order to ... Keywords: switched reluctance motor, fuzzy neural network, DSP, electric forklift, ”C/OS-?

Wu Xia; De-an Zhao; Minggong Hua; Jianzhang Han

2010-06-01T23:59:59.000Z

277

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

278

Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

279

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

280

A Fuzzy-Based Strategy to Improve Control Reconfiguration Performance of a Sensor Fault-Tolerant Induction Motor Propulsion  

E-Print Network (OSTI)

recovery in the Electric (EV) or Hybrid Electric Vehicle (HEV) induction motor drive. To achieve this goal-ref · Fault Tolerant Controller HybridHybrid ElectricElectric VehicleVehicle Induction Motor Sensorless Fuzzy-Tolerant Induction Motor Propulsion Bekheira Tabbache1,2 , Mohamed Benbouzid1 , Abdelaziz Kheloui2 and Jean

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles  

E-Print Network (OSTI)

is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive; however, they have not yet used the most remarkable advantages of electric motors. Indeed, an electric, Algeria. The electric propulsion system is the heart of EVs [1-2]. It consists of the motor drive

Paris-Sud XI, Université de

282

Manufacturability and assembly aspects of an advanced cable gland design for an electrical motor drive  

Science Journals Connector (OSTI)

At present, typical motor junction boxes do not incorporate cable glands, which would provide good electrical performance in terms of electromagnetic compatibility and ease of use, especially regarding the grounding connection. In this paper, a manufacturability and assembly analysis for the new construction of a rigid body feeder cable junction of an electric motor is presented especially for converter drives. Design for manufacturing and assembly aspects are presented in detail. One of the novelty values of the paper is to estimate the manufacturability with respect to the product's performance. Further, assembling and mounting the cable gland should be made easy, and the need of various tools and installing stages should be eliminated. The new connector design makes mounting easy and installation stages are minimised. The electrical performance of the cable gland is also measured and verified in a real environment for glands constructed with steel and zinc coated steel.

Juha-P. Strom; Pertti Silventoinen; Harri Eskelinen

2009-01-01T23:59:59.000Z

283

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

SciTech Connect

The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

Center for Energy and Innovative Technologies; NEC Laboratories America Inc.; Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

2013-10-27T23:59:59.000Z

284

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark

2005-01-01T23:59:59.000Z

285

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

286

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles (related to the use of Persian-Gulf oil by MVs Annualizedas the cost of defending Persian-Gulf oil, that also can be

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

287

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles (related to the use of Persian-Gulf oil by MVs Annualizedas the cost of defending Persian-Gulf oil, that also can be

Delucchi, Mark

2005-01-01T23:59:59.000Z

288

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

United States and the Persian Gulf Conflict, Policy Analysisof land forces allocated to Persian Gulf. Uses this ratio tobut did not consume Persian- Gulf oil oilc 5. Motor vehicles

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

289

U.S. Motor Vehicle Output and Other GDP, 1968-2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Output and Other GDP, 1968-2007 Motor Vehicle Output and Other GDP, 1968-2007 Danilo J. Santini, Ph. D. Senior Economist Center for Transportation Research Argonne National Laboratory 9700 South Cass Avenue Phone: 630 252 3758 Fax: 630 252 3443 E-mail: dsantini@anl.gov David A Poyer, Ph.D. Associate Professor of Economics Morehouse College 830 Westview Dr. SW Atlanta, GA 30314 Phone: 404 681 2800, ext. 2553 E-mail: dpoyer@morehouse.edu THE 66th INTERNATIONAL ATLANTIC ECONOMIC CONFERENCE Montreal, Canada 9-12 October 2008 BUSINESS FLUCTUATIONS AND CYCLES 12 October 2008 Sunday 11:15 AM - 1:15 PM The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. . The U.S. Government

290

Comparative Analysis of Control Techniques for Efficiency Improvement in Electric Vehicles  

E-Print Network (OSTI)

-SVM scheme is the best candidate. Keywords--Electric vehicle, induction motor, efficiency, field oriented. In fact, the motor drive, comprising of the electric motor, power converter, and electronic controller by the driver. Many researches [2-3] have demonstrated the induction motor is one of the right electric motor

291

Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles  

Energy.gov (U.S. Department of Energy (DOE))

In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many cold/warm starts.

292

Fault-tolerant cruise control of electric vehicles with induction motors  

Science Journals Connector (OSTI)

A fault-tolerant control scheme is proposed for the cruise control of electric vehicles (trains, cars) that make use of induction motors. It relies on a rotor speed reference generator and on a flux observer which is adaptive with respect to the uncertain rotor and stator resistances and to the load torque as well. The closed loop on-line identification of those three critical uncertain parameters allows for: (i) on-line estimating and imposing the motor flux modulus reference value which minimizes power losses at steady-state and improves power efficiency; (ii) the on-line detection of speed sensor faults as well as the fast switching on redundant motor speed sensors. CarSim simulations illustrate the effectiveness of the proposed approach.

R. Marino; S. Scalzi; P. Tomei; C.M. Verrelli

2013-01-01T23:59:59.000Z

293

Semiconductor converters of electric energy electromagnetic and electromechanical processes in an electric drive under frequency converter parallel operation to induction motor  

Science Journals Connector (OSTI)

The processes occurring in the two PWM-controlled frequency converters operating in parallel to an induction motor in the high-power electric drive’s start and self-start modes ... current consumed from the suppl...

D. V. Belyaev; A. M. Veinger; G. B. Lazarev…

2007-05-01T23:59:59.000Z

294

Comparative LCA of a Linear Motor and Hybrid Feed Drive under High Cutting Loads  

Science Journals Connector (OSTI)

Abstract Linear motor drives (LMDs) are well known to provide significant advantages in terms of positioning speed and accuracy over traditional screw drives (SDs), making them better suited for high-speed high-precision machine tools. However, their use in such machine tools is severely limited by their tendency to consume a lot of electrical energy and cause thermal issues, particularly under high cutting loads. A hybrid feed drive (HFD) has recently been proposed as a possible solution to this dilemma. The HFD switches between LMD and SD actuation depending on the mode of the manufacturing operation, thus achieving speeds and accuracies similar to \\{LMDs\\} while consuming much less energy. This paper presents a comparative life cycle analysis (LCA) of the proposed HFD with an LMD as the baseline for the comparison. The functional unit is taken as the production of parts that involve heavy cutting by a small-sized 3-axis precision milling machine for 250 8-hour work days per year over a 12-year first-use life span. Energy savings provided by the HFD during its use phase vis-a-vis the additional energy investments into the HFD at various phases in its life cycle are compared. The analysis predicts a net positive impact, in terms of energy and the environment, for the HFD compared to the LMD under high cutting loads.

Siddharth Kale; Nattasit Dancholvichit; Chinedum Okwudire

2014-01-01T23:59:59.000Z

295

Nonsinusoidal electrical measurement accuracy in adjustable-speed motors and drives  

SciTech Connect

Accurate measurements of voltage, current, and power under nonsinusoidal conditions are essential for determining the efficiency of a drive system and performing separation of losses between an adjustable-speed drive (ASD) and an electric motor. That information is invaluable for equipment designers, manufacturers, and users. Three modern power meters and analyzers were tested to determine their accuracy with various nonsinusoidal waveforms applied. The meters were subjected to waveforms that are characteristic to the three most common fractional and integral horsepower ASD technologies, namely, pulsewidth modulation induction, brushless dc, and switched-reluctance drives. The tests were performed under field conditions and in a computer-controlled laboratory environment. The obtained results show that some meters are able to measure accurately electric power at the input to ASD`s. However, the output power of ASD`s for brushless dc and switched-reluctance technology was not measured with acceptable accuracy by any of the tested meters. Possible reasons of meters inaccuracies and suggestions for performance improvement are presented. Conclusions on the present state of ASD electric power measurements and recommendations for further research are given.

Domijan, A. [Univ. of Florida, Gainesville, FL (United States)] [Univ. of Florida, Gainesville, FL (United States); Czarkowski, D. [Polytechnic Univ., Brooklyn, NY (United States). Dept. of Electrical Engineering] [Polytechnic Univ., Brooklyn, NY (United States). Dept. of Electrical Engineering; Johnson, J.H. [J.H. Johnson Associates, Inc., Tipp City, OH (United States)] [J.H. Johnson Associates, Inc., Tipp City, OH (United States)

1998-11-01T23:59:59.000Z

296

Smart bacterial foraging algorithm based controller for speed control of switched reluctance motor drives  

Science Journals Connector (OSTI)

Abstract In this paper, a innovative methodology for Switched Reluctance Motor (SRM) drive control using Smart Bacterial Foraging Algorithm (SBFA) is presented. This method mimics the chemotactic behavior of the E. Coli bacteria for optimization. The proposed algorithm uses individual and social intelligences, so that it can search responses among local optimums of the problem adaptively. This method is used to tune the coefficients of a conventional Proportion–Integration (PI) speed controller for SRM drives with consideration of torque ripple reduction. This matter is done by applying the proposed algorithm to a multi-objective function including both speed error and torque ripple. This drive is implemented using a DSP-based (TMS320F2812) for an 8/6, 4-kW SRM. The simulation and experimental results confirm the improved performance of adjusted PI controller using SBFA in comparison with adjusted PI controller using standard BFA. Excellent dynamic performance, reduced torque ripple and current oscillation can be achieved when the coefficients of PI controller are optimized by using SBFA.

Ehsan Daryabeigi; Behzad Mirzaeian Dehkordi

2014-01-01T23:59:59.000Z

297

Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint  

SciTech Connect

The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

2014-11-01T23:59:59.000Z

298

A self-tuning fuzzy controller with union rule base for switched reluctance motor drives  

Science Journals Connector (OSTI)

This paper presents a modified self-tuning fuzzy controller with union rule base for application in the switched reluctance motor (SRM) drive system. Based on the redevelopment of control rule base, this paper aims to simplify the programme hierarchy and computational complexity of the controller by reducing the number of fuzzy sets in the membership function (MF) without losing the system performance and stability. With the error and change of error as the input variables, the output scaling factor (SF) of the proposed controller can be adjusted continuously via a gain updating factor, whose value is derived from the fuzzy logic reasoning. The controller is implemented based on the dSPACE DS1104 control desk. Experimental results show that the proposed controller is in good agreement with theoretical derivation. Comparisons with the conventional PI-like fuzzy controller (PIFC) demonstrate that the effectiveness of the devised control scheme outperforms its conventional counterpart.

Shun-Chung Wang; Yi-Hua Liu; Yih-Chien Chen; Chia-Cheng Lee

2011-01-01T23:59:59.000Z

299

Intelligent speed controller for a Switched Reluctance Motor drive using FPGA  

Science Journals Connector (OSTI)

In this paper, an FPGA-based digital speed control scheme is presented to overcome the drawbacks in the previous speed control schemes, proposed for Switched Reluctance Motor (SRM) drives. It is based on discrete control algorithm, and requires simple mathematical models. The real-time experimental results given in this paper show that the closed-loop speed control method proposed could provide accurate speed control upto 6.2 rpm depending on the needed operating speed range, with a step response settling time of 0.25-1.05 s. It can also perform accurately at different operating conditions and over a wide range of speeds. Complete descriptions of the experimental system along with FPGA implementation are presented.

S. Vijayan; S. Paramasivam

2009-01-01T23:59:59.000Z

300

Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report  

SciTech Connect

Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Linear motor drive system for continuous-path closed-loop position control of an object  

DOE Patents (OSTI)

A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

Barkman, William E. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

302

Motorization, Vehicle Purchase and Use Behavior in China: A Shanghai Survey????????????????????????????  

E-Print Network (OSTI)

49: Motorized Two-wheeler / Motorcycle Use vs. Motorized98 Table 50: Motorized Two-wheeler / Motorcycle Use vs.Motorcycle Ownership 98 Table 51: Motorized Two-

Ni, Jason

2008-01-01T23:59:59.000Z

303

220,000-r/min, 2-kW Permanent Magnet Motor Drive for Turbocharger Toshihiko Noguchi, Yosuke Takata *  

E-Print Network (OSTI)

and diesel engines mounted on automobiles, vessels and so forth. Their principal objectives are improvement. In general, it is rather insufficient to overcharge the compressed fuel/air mixture into the engine cylinders-combustion engine. The electric drive makes it possible to enhance output power of the turbocharger in a motoring

Fujimoto, Hiroshi

304

Ferrite permanent magnet electrical machine and the application thereof within vehicle traction drives  

SciTech Connect

This patent describes, in combination, a land vehicle having axially aligned ground engaging tractive wheels, and a drivetrain carried by the vehicle for the propulsion thereof. The drivetrain comprises: (a) a substantially fixed DC power source including at least one chemical battery, (b) transmission means including selectable multiple gear ratios, an input shaft and a mechanical differential operative to transfer torque to the wheels, (c) a single-phase self-synchronous permanent magnet motor including, (i) an elongated central shaft, (ii) a generally u-shaped frame assembly adapted for mechanical grounding the shaft to a relatively stationary portion of the vehicle, the shaft being secured to the frame proximate each end thereof, (iii) a stator assembly secured to the shaft and characterized by a plurality of outwardly directed integrally formed salient poles and associated bifilar-wound induction coils, and (iv) a rotor assembly rotatably disposed on the shaft and substantially enclosing the stator assembly, the rotor assembly comprising a cylindrical shell defining an inner surface.

Gritter, D.J.; O'Neil, W.K.; Turner, D.

1987-03-17T23:59:59.000Z

305

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 47, NO. 1, JANUARY/FEBRUARY 2011 223 EMI Study of Three-Phase Inverter-Fed Motor Drives  

E-Print Network (OSTI)

of Three-Phase Inverter-Fed Motor Drives Bertrand Revol, James Roudet, Jean-Luc Schanen, Senior Member setup and can be used during the design of a variable-speed inverter motor association. The objective in an inverter­motor association in order to depict the influence of elements, such as the elec- tromagnetic

Paris-Sud XI, Université de

306

Vehicle for carrying an object of interest  

DOE Patents (OSTI)

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

Zollinger, W.T.; Ferrante, T.A.

1998-10-13T23:59:59.000Z

307

An Improved Sensorless DTC Scheme for EV Induction Motors  

E-Print Network (OSTI)

to increase the efficiency of a Direct Torque Control (DTC) of an induction motor propelling an Electric is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive; however, they have not yet used the most remarkable advantages of electric motors. Indeed, an electric

Paris-Sud XI, Université de

308

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network (OSTI)

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The… (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

309

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network (OSTI)

Electric Vehicle Traction Drive Shengnan Li Student Member, IEEE The University of Tennessee Department Science Knoxville, TN, 37996, USA tolbert@utk.edu Abstract ­ In hybrid electric vehicles (HEV), a battery-source inverter, dc bus capacitor, Electric vehicle, Harmonic current, Hybrid electric vehicle. I. INTRODUCTION

Tolbert, Leon M.

310

Towards a unified x-by-wire solution with HUMS, HM & TTP: Lessons learned in implementing it to a drive-by-wire vehicle  

E-Print Network (OSTI)

for alternatively powered vehicles such as hybrids and electric vehicles require additional real-time control due it to a drive-by-wire vehicle John Melentis Elias Stipidis Periklis Charchalakis Falah Ali Vetronics Research capability for vehicles. TTP is a safety-critical network, designed specifically to meet requirements

Paris-Sud XI, Université de

311

Simplified Sensorless Control for BLDC Motor, Using DSP Technology Juan W. Dixon, Matas Rodrguez and Rodrigo Huerta  

E-Print Network (OSTI)

(BLDC) motor for electric vehicle applications. To control this machine it is generally required: electric drive, brushless motor, control system, drive. 1. Introduction In electric traction, like in other applications, a wide range in speed and torque control for the electric motor is desired. The DC machine

Catholic University of Chile (Universidad CatĂłlica de Chile)

312

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

313

DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains  

E-Print Network (OSTI)

DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains BekheĂŻra Tabbache, Mohamed-tolerant control for a high performance induction motor drive that propels an electrical vehicle. The proposed and simulations on an electric vehicle are carried-out using a European urban and extra urban driving cycle

Brest, Université de

314

Modelling and steady state simulation of a switched reluctance motor drive  

SciTech Connect

The switched reluctance motor (SRM) has been a popular topic of research for the last 15 years. As a result of this development activity, the SRM has evolved into a practical alternative to other machines for a variety of applications. It is now becoming increasingly important to understand the SRM`s control characteristics and power requirements. To accomplish this a thorough description of the machine`s terminal characteristics is required. The SRM can be described as a system with two ports, the windings through which electrical power is transferred and the shaft through which mechanical power flows. These systems are coupled by a magnetic system, through which the energy conversion process occurs. The windings can be modelled as an inductor and much work has focused on the modelling of the SRM inductance. The difficulty with this approach is that the SRM magnetic structures must operate in deep saturation resulting in a nonlinear winding inductance. Many people have linearized this inductance using a variety of techniques but each results in unnecessarily complicated models for many applications. In this paper a relatively simple model for the SRM is developed. This type of model could be a cheap and effective tool for the development of SRM drive systems. This approach will become increasingly relevant as these drives become increasingly popular. In this paper the machine terminal characteristics in terms of flux linkage are described. It will be shown that flux linkage is a function of two variables resulting in a surface function. Additionally it will be shown that this surface function contains the terminal characteristics of the SRM. Finally measurements from actual hardware are made and used to develop a model using the techniques developed here. Results of model simulation are then compared with measured data.

Ruckstadter, E.J. [Wright Lab., Wright-Patterson AFB, OH (United States); Kee, R.J. [Univ. of Dayton, OH (United States). Dept. of Electrical Engineering

1995-12-31T23:59:59.000Z

315

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles  

Science Journals Connector (OSTI)

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles ... We do not consider other life cycle stages of the vehicles (e.g., manufacturing and end-of-life) or energy supply infrastructure (e.g., facility construction, maintenance, decommissioning, and labor). ... Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids. ...

Leon Raykin; Heather L. MacLean; Matthew J. Roorda

2012-05-08T23:59:59.000Z

316

Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation  

Science Journals Connector (OSTI)

Abstract The future market diffusion of electric vehicles (EVs) is of great importance for transport related green house gas emissions and energy demand. But most studies on the market diffusion of \\{EVs\\} focus on average driving patters and neglect the great variations in daily driving of individuals present in real-world driving data. Yet these variations are important for \\{EVs\\} since range limitations and the electric driving share of plug-in hybrids strongly impact the economic evaluation and consumer acceptance of EVs. Additionally, studies often focus on private cars only and neglect that commercial buyers account for relevant market shares in vehicle sales. Here, we propose a detailed, user specific model for the market diffusion of \\{EVs\\} and evaluation of EV market diffusion policies based on real-world driving data. The data and model proposed include both private and commercial users in Germany and allow the calculation of realistic electric driving shares for all usage patterns. The proposed model explicitly includes user heterogeneity in driving behaviour, different user groups, psychological aspects and the effect of charge-at-home options. Our results show that the proposed model reproduces group specific market shares, gives confidence bands of market shares and simulates individual electric driving shares.

Patrick Plötz; Till Gnann; Martin Wietschel

2014-01-01T23:59:59.000Z

317

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network (OSTI)

vehicles powered by clean fuel technology. Participants werewith respect to clean vehicle technology. The post-clinic

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

318

Highway Vehicle Electric Drive in the United States: 2009 Status and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL/ESD/10-9 ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States: 2009 Status and Issues Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

319

Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of Research Engine and Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation Thomas Wallner, Henning Lohse-Busch, Henry Ng Argonne National Laboratory Robert Peters University of Alabama at Birmingham NHA Annual Hydrogen Conference 2007 San Antonio/Texas March 19 th - 22 nd 2007 DOE-Sponsors: Lee Slezak, Gurpreet Singh Government license The submitted manuscript was developed by the UChicago Argonne LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC-02-06CH11357 with DOE. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on

320

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

SciTech Connect

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes  

Science Journals Connector (OSTI)

Abstract To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively.

D Arun Dominic; Thanga Raj Chelliah

2014-01-01T23:59:59.000Z

322

An Improved Fault-Tolerant Control Scheme for PWM Inverter-Fed Induction Motor-Based EVs  

E-Print Network (OSTI)

and simulations on an electric vehicle are carried-out using a European urban driving cycle to show for such systems. In particular, voltage source inverters are a key component of these electric motor drive systems of an electric vehicle on the variable-speed ac drives and particularly on the power inverter is rapidly

Paris-Sud XI, Université de

323

Robust Condition Monitoring and Fault Diagnosis of Variable Speed Induction Motor Drives  

E-Print Network (OSTI)

detection (FD) probability versus SNR. ........................ 33 2.6 Experimental setup: (a) faulty test motors, (b) DC generator, (c) 3-hp induction motor, (d) data acquisition board, (e) torque monitor, (f) oscilloscope, and (g) spectrum analyzer... detection (FD) probability versus SNR. ........................ 33 2.6 Experimental setup: (a) faulty test motors, (b) DC generator, (c) 3-hp induction motor, (d) data acquisition board, (e) torque monitor, (f) oscilloscope, and (g) spectrum analyzer...

Choi, Seungdeog

2012-02-14T23:59:59.000Z

324

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

325

Novel estimation of tyre-road friction coefficient and slip ratio using electrical parameters of traction motor for electric vehicles  

Science Journals Connector (OSTI)

The estimation of the friction coefficient and the slip ratio is crucial for advanced traction control or anti-brake control of electric vehicles. In this paper, dynamic behaviours of electrical parameters of the traction motor under road change are modelled and analysed. Novel estimation only using the measurements of the armature voltage and the current is proposed. The proposed method is much quicker than traditional methods, contributing to adjust the vehicle's motion state more quickly and precisely. Further, it can eliminate the speed measuring devices of the wheel speed and the vehicle speed. Simulations verify the effectiveness.

Guoqing Xu; Kun Xu; Weimin Li

2013-01-01T23:59:59.000Z

326

A permit is required for ALL motorized vehicles parking on the Vanderbilt University Campus. Motorcycles, motorized bicycles, motor scooters and mopeds are  

E-Print Network (OSTI)

. Motorcycles, motorized bicycles, motor scooters and mopeds are required to display "U" permits. The cost. Motorcycle, motorized bicycle, motor scooter and moped parking areas can be found on the parking map (http://www.vanderbilt.edu/parking and click on "Maps") as designated by the motorcycle symbols. Parking is authorized only in spaces marked

Simaan, Nabil

327

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop  

E-Print Network (OSTI)

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop@du.edu ABSTRACT In 1993, on-road emissions in Continental Europe showed a pronounced South/North declining gradient for CO, HC and NO fuel specific emissions (gm/kg). Emissions in Hamburg and Rotterdam were

Denver, University of

328

Study on controlling chaos of permanent magnet synchronous motor in electric vehicles  

Science Journals Connector (OSTI)

The objective of this study is to analyse chaotic motion and its control in a Permanent Magnet Synchronous Motor (PMSM) in an Electric Vehicle (EV). Complex non-linear behaviours are observed over a range of parameter values in the bifurcation diagram. Hopf bifurcation and chaos may even occur in the PMSMs if the PMSMs are not properly sized. The Lyapunov exponent approach is utilised to identify the onset of chaotic motion and to verify the above analyses. Finally, an approach for effectively controlling a chaotic PMSM system is presented. The state feedback control procedure is employed to control chaotic motions in the PMSM effectively. Simulation results are presented to demonstrate the feasibility of the proposed approach.

Shun-Chang Chang; Hai-Ping Lin

2012-01-01T23:59:59.000Z

329

A method for measuring the coordinates of an asynchronous motor in a frequency-controlled electric drive of mine excavator mechanisms  

Science Journals Connector (OSTI)

This paper deals with methods for calculating the electromagnetic torque of an asynchronous motor with a square-cage rotor of the electric drive of the bucket-lifting mechanism of ... description of electromagnet...

P. A. Osipov; A. L. Karyakin

2012-09-01T23:59:59.000Z

330

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network (OSTI)

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor

Mi, Chunting "Chris"

331

A Novel Current Angle Control Scheme in a Current Source Inverter Fed Permanent Magnet Synchronous Motor Drive for Automotive Applications  

SciTech Connect

This paper describes a novel speed control scheme to operate a current source inverter (CSI) driven surface-mounted permanent magnet synchronous machine (SPMSM) for hybrid electric vehicles (HEVs) applications. The idea is to use the angle of the current vector to regulate the rotor speed while keeping the two dc-dc converter power switches on all the time to boost system efficiency. The effectiveness of the proposed scheme was verified with a 3 kW CSI-SPMSM drive prototype.

Tang, Lixin [ORNL] [ORNL; Su, Gui-Jia [ORNL] [ORNL

2011-01-01T23:59:59.000Z

332

AVTA: 2014 Smart Electric Drive Coupe All-Electric Vehicle Testing Reports  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

333

Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation  

SciTech Connect

This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

1989-11-01T23:59:59.000Z

334

Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private,  

E-Print Network (OSTI)

Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private, have created an increased risk to pedestrians and has damaged walkways Director or the designee. · Private and vendor vehicles are restricted at all times. Vehicles requiring

de Lijser, Peter

335

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network (OSTI)

R. Firestone, “Optimal Technology Selection and Operation ofDOE - Energy Vehicle Technologies Program. Plug-in HybridUsing vehicle-to-grid technology for frequency regulation

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

336

Development of Digital Signal Processor Based Drive System for Switched Reluctance Motor.  

E-Print Network (OSTI)

??The switched reluctance motor has the advantages of the low production cost, high operating efficiency, high stability, and high start torque. It can deliver a… (more)

Wu, Chun-yen

2006-01-01T23:59:59.000Z

337

Model Year 2010 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV AHNXT03.7W19 SUV 7 16 21 18 4 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT03.7W19 SUV 6 16 21 18 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 17 22 19 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 17 22 19 4 no ACURA RL 3.7 6 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXV03.7PB9 midsize car

338

Model Year 2011 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXT03.7M19 SUV 6 16 21 18 3 no ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT03.7M19 SUV 5 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 17 22 19 3 no ACURA RL 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXV03.7PB9 midsize car

339

Model Year 2012 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT03.7R19 SUV 5 16 21 18 3 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV CHNXT03.7R19 SUV 6 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 19 24 21 4 no ACURA TL 3.5 6 SemiAuto-6 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXV03.5EB3 midsize car 5

340

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A self-reconfigurable and fault-tolerant induction motor control architecture  

E-Print Network (OSTI)

. Index Terms-- Fault tolerant, induction motor drive, hy- brid electric vehicule, observers. I the major requirements of automotive electric traction [1]. Several failures afflict electrical motor drives electric vehicles M. Hilairet, D. Diallo and M.E.H. Benbouzid Abstract-- This paper describes an adaptive

Paris-Sud XI, Université de

342

A complete and novel sensorless method for rotor position sensing in switched reluctance motor drives  

Science Journals Connector (OSTI)

This paper presents a complete and novel method which is designed to detect the rotor position at standstill and also low speeds in switched reluctance motor. The method applies a high frequency sine wave signal to the three successive stator pole windings ... Keywords: indirect rotor, position sensing in SRM, sensorless operation of SRM, switch reluctance motor

E. Afjei; M. M. Nezamabadi; A. Javeh

2005-07-01T23:59:59.000Z

343

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network (OSTI)

hydrogen vehicles in public transportation, including taxis. This study exploring fuel cell powered passenger cars

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

344

Effect of hard-disk drive spindle motor vibration on dynamic microwaviness and flying-height modulation  

Science Journals Connector (OSTI)

In order to achieve higher recording densities up to 1 Terabit per square inch using conventional magnetic recording technologies, the recording slider will need to be physically spaced very close to the rotating disk, possibly via the use of an air-bearing surface. However, as the recording slider is flying at such ultra-low spacing of few nanometers over a high-speed rotating disk, it is experiencing disturbances from various different sources and of a wide frequency range. These disturbances may cause the recording slider to vibrate significantly, a condition known as flying-height modulation (FHM), which may result in data loss and possibly head–disk interface failure. A significant source of slider excitation is due to low frequency surface topographical features of the rotating disk, termed dynamic microwaviness. Dynamic microwaviness is a dynamic property of the disk and differs from regular topographical microwaviness, which is a static property. Most research works on dynamic microwaviness and FHM have been focused at the component level, using somewhat idealized conditions, such as high performance air-spindle motors that exhibit very low vibration amplitudes. In this paper, actual hard-disk drive spindle motors are used to investigate the effect of spindle motor vibration on dynamic microwaviness and FHM. It is found that there is a clear connection between spindle motor vibration and dynamic microwaviness that affects FHM.

Sung-Chang Lee; Andreas A. Polycarpou

2005-01-01T23:59:59.000Z

345

A method for the prediction of future driving conditions and for the energy management optimisation of a hybrid electric vehicle  

Science Journals Connector (OSTI)

Vehicular communications are expected to enable the development of Intelligent Cooperative Systems for solving crucial problems related to mobility: road safety, traffic management etc. Information and Communication Technologies could also play an important role in order to optimise the energy management of conventional, hybrid and electrical vehicles and, thus, to reduce their environment impact. In particular, vehicular communications could be used to predict driving conditions with the objective to determine future load power demand. An adaptive energy management strategy for series Hybrid Electric Vehicles (HEVs) based on genetic algorithm optimised maps and the Simulation of Urban Mobility (SUMO) predictor is presented here.

Teresa Donateo; Damiano Pacella; Domenico Laforgia

2012-01-01T23:59:59.000Z

346

Traction Drive Systems Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Drive Systems Breakout Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov EV Everywhere Traction Drive System * DOE goals for Electric Traction Drive System (TDS) innovations must be disruptive innovation focused to meet the CY2022 price target ($20,000 $25,000) for a mid-sized 5 passenger sedan having 5 year simple payback. Enhanced Efficiency Reduced Cost Traction Drive System EETT Roadmap: "Therefore, research is needed to develop technologies that are less expensive and, at the same time, smaller, lighter, more efficient, and equally reliable as conventional automotive technologies. "

347

A Five-Level Cascade Multilevel Inverter Three-Phase Motor Drive Using a Single DC Source  

SciTech Connect

A method is presented showing that a 5-level cascade multilevel inverter for a three-phase permanent magnet sychronous motor drive can be implemented using only a single DC link to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors. It is shown that the capacitor voltages can be regulated while achieving an output voltage waveform that is 20% greater than that obained using the standard 3-leg inverter alone. Finally conditions are given in terms of the power factor and modulation index that determine when the capacitor voltage can regulated.

Chiasson, J. N. [University of Tennessee, Knoxville (UTK)

2006-10-01T23:59:59.000Z

348

A Five-Level Cascade Multilever Invertor Three-Phase Motor Drive Using a Single DC Source  

SciTech Connect

A method is presented showing that a 5-level cascade multilevel inverter for a three-phase permanent magnet synchronous motor drive can be implemented using only a single DC link to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors. It is shown that the capacitor voltages can be regulated while achieving an output voltage waveform that is 20% greater than that obtained using the standard 3-leg inverter alone. Finally conditions are given in terms of the power factor and modulation index that determine when the capacitor voltage can regulated.

Chiasson, J.N. (Univ. Tennessee-Knoxville)

2006-09-15T23:59:59.000Z

349

SDTC Neural Network Traction Control of an Electric Vehicle without Differential Gears  

E-Print Network (OSTI)

, using two electric in-wheel motors give the possibility to have a torque and speed control in each wheel on the 2Ă?4 electrical vehicles, with independent driving in-wheel motor at the front and with classicalSDTC Neural Network Traction Control of an Electric Vehicle without Differential Gears A. Haddoun1

Paris-Sud XI, Université de

350

Rotor reference frame models of a multiloop 2-phase motor drive in brushless DC and microstepping modes  

SciTech Connect

This paper describes non-linear models of a 2-phase permanent magnet synchronous motor drive in brushless DC and microstepping modes. The models account for everything from the main power bus up to and including the mechanical load and velocity feedback loop. In particular, the models include the power electronics for each phase complete with their internal feedback loops. Classical state space averaged power electronics models are transformed to the rotor reference frame along with the usual electromechanical variables. Since SPICE linearizes the rotor reference frame model about shaft velocity, instead of shaft angle, frequency domain methods apply. The frequency domain analysis detects unstable interactions between torque angle and deliberate feedback within the drives. Time domain simulations using stator reference frame models confirm the results. All models are SPICE-compatible but were developed on Cadence`s Analog Workbench.

Chen, J.E. [Lockheed Missiles and Space Co. Inc., Sunnyvale, CA (United States)

1995-12-31T23:59:59.000Z

351

A novel direct torque control for induction motor drive system with low torque ripple and current distortion utilising FPGA  

Science Journals Connector (OSTI)

The conventional Direct Torque Control (DTC) is known to produce quick and robust response in ac drives. However, during steady state, notable torque and current pulsations occur. They are reflected in speed estimation, torque response and also produce acoustic noise. In this paper, a novel Space Vector Modulated Direct Torque Control (SVM-DTC) with Low Pass Filter (LPF) for induction motor drive system is proposed, which features low torque ripple, low current distortion and fixed switching frequency. The proposed scheme has been implemented on the Xilinx Spartan 3E FPGA, both simulation and experimental results show that the proposed system can dramatically improve the steady state performance while preserving the dynamic performance of the conventional DTC.

R. Rajendran; N. Devarajan

2013-01-01T23:59:59.000Z

352

Control of a Linear Switched Reluctance Motor as a Propulsion System for Autonomous Railway Vehicles  

E-Print Network (OSTI)

Control of a Linear Switched Reluctance Motor as a Propulsion System for Autonomous Railway) and the linear switched reluctance motor (LSRM). Switched reluctance motors generally offer a very simple issue with the switched reluctance motors is the highly nonlinear magnetisation characteristic

Paderborn, UniversitÀt

353

Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving  

Energy.gov (U.S. Department of Energy (DOE))

The efficiencies of electric vehicles can vary significantly; however, compared with conventional vehicles, they are very efficient—converting about 60% of the energy from the grid to power at the...

354

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

355

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

356

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

357

Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

358

Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

359

Advanced Electric Drive Vehicles ? A Comprehensive Education, Training, and Outreach Program  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

360

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Electric Drive Vehicles ? A Comprehensive Education, Training, and Outreach Program  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

362

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

363

Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the major accomplishments of the U.S. DRIVE Partnership over the course of 2013.

364

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

365

Motor Drives of Modern Drilling and Servicing Rigs for Oil and Gas Wells  

Science Journals Connector (OSTI)

This paper provides a synthetic view on the most recent achievements in the field of drilling and servicing rig drives for oil and gas wells. This field is featuring ... kilowatts and speeds of 150–250 rpm for drilling

Aurelian Iamandei; Gheorghe Miloiu

2013-01-01T23:59:59.000Z

366

Design and testing of a sensorless switched reluctance motor drive with a custom integrated circuit controller  

E-Print Network (OSTI)

presents a breadboard level SRM drive that emirates a custom IC controller implementing closedloop speed control and starting torque.The rotor position sensing information is essential for determining the switching instants to have proper control of speed...

Zhang, Yingxia

2012-06-07T23:59:59.000Z

367

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles  

Energy.gov (U.S. Department of Energy (DOE))

Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi i-MiEV has the...

368

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

369

Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results  

SciTech Connect

Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

Thomas, John F [ORNL

2014-01-01T23:59:59.000Z

370

Operation algorithm for a parallel hybrid electric vehicle with a relatively small electric motor  

Science Journals Connector (OSTI)

In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the ... proposed. In the power assist algorithm, an electric motor is used to assist th...

Kyoungcheol Oh; Donghyeon Kim; Talchol Kim; Chulsoo Kim…

2004-01-01T23:59:59.000Z

371

The measurement of mechanical parameters of a switched reluctance motor drive system  

Science Journals Connector (OSTI)

The switched reluctance motor has been receiving attention recently after the availability of power electronics devices, for its robustness, simple construction and a high torque/mass ratio. The electromagnetic characteristic measurement for the motor has been widely researched and reported despite nonlinear behavior of the motor. The electromagnetic characteristic data are being used as look-up tables for modeling and simulation purposes. However, for dynamic simulation, mechanical parameters such as friction coefficients and moment of inertia are equally important. There has not been much work done to measure the parameters as mostly they are provided by the manufacturer of mechanical parts (the motor etc) which are not accurate for the entire mechanical system, when they are coupled. A few measurement methods have been used widely to measure the mechanical parameters but the important friction constants such as Coulomb friction constant were neglected. This paper introduces a new technique which was derived from the classical viscous plus Coulomb friction model for all the mechanical parameter measurements including the Coulomb friction. The results obtained were verified using experimental data.

R Gobbi; N C Sahoo; R Vejian

2007-01-01T23:59:59.000Z

372

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

373

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network (OSTI)

on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

374

Development and Implementation of Degree Programs in Electric Drive Vehicle Technology  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

375

Neuro-fuzzy-based space vector modulation for THD reduction in VSI fed induction motor drive  

Science Journals Connector (OSTI)

Space vector modulation is an optimal pulse width modulation technique for variable speed drive application. This paper proposes adaptive neuro-fuzzy inference system (ANFIS) based space vector modulation (SVM) technique for voltage source inverter. The proposed ANFIS network is independent of the switching frequency and uses hybrid learning algorithm for training. Due to this learning algorithm, SVM algorithm can be implemented very fast and the desired training error can be obtained with less number of iterations compared to other optimisation techniques like neural, fuzzy and genetic. The performance of ANFIS controlled drive is compared with the conventional SVM-based drive. The simulation results of inverter phase voltages obtained are verified experimentally using a Dspace kit (DS1104). The % THD value of simulation and experimental waveforms of inverter phase voltages for 3 kHz switching frequency is presented.

G. Durgasukumar; Mukesh Kumar Pathak

2012-01-01T23:59:59.000Z

376

DC-DC converter current source fed naturally commutated brushless DC motor drive  

E-Print Network (OSTI)

, thereby generating switching losses and entail the use of large heatsinks. VSI needs a huge dc link capacitor that is inherently unreliable and is one of the most expensive components of a drive. Hence, a Current Source Inverter (CSI) is used to replace...

Khopkar, Rahul Vijaykumar

2004-11-15T23:59:59.000Z

377

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

378

Multilevel Inverters for Electric Vehicle Applications  

SciTech Connect

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

379

An improved energy management strategy for FC/UC hybrid electric vehicles propelled by motor-wheels  

Science Journals Connector (OSTI)

Abstract The hybridization of the fuel-cell electric-vehicle (FCEV) by a second energy source has the advantage of improving the system's dynamic response and efficiency. Indeed, an ultra-capacitor (UC) system used as an energy storage device fulfills the FC slowest dynamics during fast power transitions and recovers the braking energy. In FC/UC hybrid vehicles, the search for a suitable power management approach is one of the main objectives. In this paper, an improved control strategy managing the active power distribution between the two energy sources is proposed. The UC reference power is calculated through the DC link voltage regulation. For the FC power demand, an algorithm with five operating modes is developed. This algorithm, depending on the UC state of charge (SOC) and the vehicle speed level, minimizes the FC power demand transitions and therefore ameliorates its durability. The traction power is provided using two permanent magnetic synchronous motor-wheels to free more space in the vehicle. The models of the FC/UC vehicle system parts and the control strategy are developed using MATLAB software. Simulation results show the effectiveness of the proposed energy management strategy.

Islem Lachhab; Lotfi Krichen

2014-01-01T23:59:59.000Z

380

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Measurable energy savings of installing variable frequency drives for cooling towers’ fans, compared to dual speed motors  

Science Journals Connector (OSTI)

Abstract In recent years the building management system (BMS) controllers have been used to control the operation of heating, ventilation, and air conditioning system in addition to lighting and some electrical equipment in order to save energy. In the water cooled system, the BMS controls the operation process of the cooling towers (CTs) fans of dual speed motors to maintain a constant leaving water temperature for different cooling loads and different ambient wet bulb temperature (WBT). This paper presents the effect of installing variable frequency drives (VFDs) for \\{CTs\\} fans in Kuwait during summer season on energy savings compared to dual speed control. The results have shown that with VFD mode, the reduction in water consumption was over 13% compared to the commonly used dual speed mode. More importantly, the combined power for the chillers and the \\{CTs\\} fans for the same amount of cooling produced were reduced by 5.8% in the VFD mode.

E. Al-Bassam; R. Alasseri

2013-01-01T23:59:59.000Z

382

Modeling and Simulation of an Electric Scooter Driven by a Single-Phase Induction Motor  

E-Print Network (OSTI)

Abstract:- An electric vehicle driven by DC motors has been widely used for several applications. In this paper, replacement of the DC motor by a single-phase induction motor on the electric vehicle is proposed. Low cost and less maintenance make the single-phase induction motor more impressive although a complicated inverter onboard the vehicle is required. This paper investigates this possibility through a whole system of electric vehicle movement simulation. The whole system simulation consists of three main parts: 1) power supply interface 2) motor performance calculation and 3) vehicle movement simulation. The electric scooter of 0.26 kW rating was employed for test. As a result, a single-phase induction motor showed ability to drive an electric scooter carrying with 80-kg load at almost constant speed of 20 kph.

C. Sukcharoen; T. Kulworawanichapong

383

Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles  

Science Journals Connector (OSTI)

Abstract The cooling of the motor in an in-wheel system is critical to its performance and durability. In the present study, the shape of the channel in the hollow shaft for the oil spray cooling of a high-capacity 35 kW in-wheel motor was optimized, and the thermal performance of the motor was evaluated by numerical analysis and experiments. The thermal flow was analyzed by evaluating the thermal performance of two conventional cooling models of in-wheel motors under conditions of continuous rating base speed. For conventional model #1, in which the cooling oil is stagnant in the lower end of the motor, the maximum temperature of the coil was 221.7 °C. For conventional model #2, in which the cooling oil circulates through the exit and entrance of the housing and jig, the maximum temperature of the coil was 155.4 °C. Both models thus proved to be unsuitable for in-wheel motors because the motor control specifications limit the maximum temperature to 150 °C. We designed and manufactured an enhanced model for in-wheel motors, which we equipped with an optimized channel for the oil spray cooling mode, and evaluated its thermal performance under continuous rating conditions. The maximum temperatures of the coil at the base and maximum speeds, which were set as the design points, were below the motor temperature limit, being 138.1 and 137.8 °C, respectively.

Dong Hyun Lim; Sung Chul Kim

2014-01-01T23:59:59.000Z

384

Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis  

E-Print Network (OSTI)

coefficients in order to build a high-level, yet accurate state of charge prediction model. Moreover, this work utilizes automotive grade lithium-based batteries for realistic outcomes in the electrified vehicle realm. The fourth chapter describes an advanced...

Hausmann, Austin Joseph

2012-08-31T23:59:59.000Z

385

the 4th Power Electronics, Drive Systems & Technologies Conference, PEDSTC 2013 Simultaneous Sensing cum Actuating Linear Motor  

E-Print Network (OSTI)

of an electric machine (a linear motor) without using conventional sensors. Tested is a back-drivable linear motor stage which uses the linear motor electric machine as simultaneous sensor cum actuator, and mechanical impedance of the motor by measuring the motor's time variant electrical impedance. The method

Paris-Sud XI, Université de

386

Exploring the practical issues and use of modern power, control and sensing circuitries of a 6/4-pole switched reluctance motor drive  

Science Journals Connector (OSTI)

This paper explores practical issues and use of modern power, control and sensing circuitries of a 6/4-pole Switched Reluctance Motor (SRM) drive. A DSP-based SRM drive system consists of classic bridge converter including power MOSFETs and their gate drivers, freewheeling diodes, sensing circuit, DSP controller and a SRM that is being controlled by the controller. Few logic components are also required that will interface with the DSP for communication. The complete practical issues experienced with modern power, control and sensing circuitries of a 6/4-pole SRM drive is presented.

Shanmugam Paramasivam; R. Arumugam

2007-01-01T23:59:59.000Z

387

A Proposed Software Framework Aimed at Energy-Efficient Autonomous Driving of Electric Vehicles  

Science Journals Connector (OSTI)

This paper describes the development of an electric car prototype, aimed at autonomous, energy-efficient driving. Starting with an urban electric car, we describe the mechanical and mechatronics add...

José-Luis Torres Moreno…

2014-01-01T23:59:59.000Z

388

Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a limited amount of all-electric driving range that is drawn from a plug and uses a gasoline engine to provide additional range when the battery is depleted. The automakers have...

389

Vehicle Technologies Office: Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

390

Rotating vector methods for smooth torque control of a switched reluctance motor drive  

SciTech Connect

This paper has two primary contributions to switched reluctance motor (SRM) control: a systematic approach to smooth torque production and a high-performance technique for sensorless motion control. The systematic approach to smooth torque production is based on development of novel rotating spatial vectors methods that can be used to predict the torque produced in an arbitrary SRM. This analysis directly leads to explicit, insightful methods to provide smooth torque control of SRM's. The high-performance technique for sensorless motion control is based on a rotating vector method for high bandwidth, high resolution, position, and velocity estimation suitable for both precise torque and motion control. The sensorless control and smooth torque control methods are both verified experimentally.

Nagel, N.J.; Lorenz, R.D.

2000-04-01T23:59:59.000Z

391

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

392

Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

393

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

394

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

395

Vehicle Technologies Office Merit Review 2014: Convective Cooling and Passive Stack Improvements in Motors  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

396

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape08elrefaie...

397

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08salasoo...

398

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape013elrefaie2010o...

399

As Electric Vehicles Take Charge, Costs Power Down | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager The record number of electric-drive vehicles on the floor of Detroit's

400

Vehicle Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Adsorption: The adhesion of the molecules of gases, dissolved substances, or liquids in more or less concentrated form to the surface of solids or liquids with which they are in contact. Commercial adsorbent materials have enormous internal surfaces. AEMD (Automotive Electric Drive Motor): A U.S. Department of Energy program to develop low-cost traction drive motors for automotive applications. Aerosol: A cloud consisting of particles dispersed in a gas or gases. AIPM (Automotive Integrated Power Module) A U.S. Department of Energy program to integrate the power devices, control electronics, and thermal management of a vehicle into a single low-cost package that will meet all requirements for automotive motor control applications.

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Carbon Emission Targets for Driving Sustainable Mobility with US Light-Duty Vehicles  

Science Journals Connector (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) and many independent scientists warn that if global mean temperatures rise 1?5 °C from 1990 levels due to anthropogenic greenhouse gas emissions, risks of extreme climate events and widespread regional ecological and economic impacts will significantly increase (11, 12). ... PHEVs can displace on-road gasoline-powered vehicles and help to meet the defined targets if the average carbon intensity of the remaining conventional and PHEV vehicle mix is less than the LDV g/mile target. ... Keoleian, G. A.; Kar, K.; Manion, M.; Bulkley, J. W. Industrial Ecology of the Automobile: A Life Cycle Assessment; Society of Automotive Engineers: Warrendale, PA, 1997. ...

Hilary G. Grimes-Casey; Gregory A. Keoleian; Blair Willcox

2008-12-31T23:59:59.000Z

402

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

efficiency motors Switched reluctance drives Adjustable/efficiency motors Switched reluctance drives Adjustable/

Galitsky, Christina

2008-01-01T23:59:59.000Z

403

Effect on energy use and greenhouse microclimate through fan motor control by variable frequency drives  

Science Journals Connector (OSTI)

A comparison was conducted between ON–OFF and variable frequency drive (VFD) systems to control greenhouse ventilation fans. The study aimed to determine the effect of each system on the energy consumption and resulting greenhouse microclimate. The experiments were conducted in a commercial size greenhouse in which pepper was grown. To check the performance of the fan that was controlled by a VFD system, it was installed in a test facility and operated under several rotation speeds. At each speed of rotation, the static pressure on the fan was changed and parameters, such as electricity consumption and air flow rate, were measured. Reducing the fan speed with the VFD system resulted in reductions in the air flow rate through the greenhouse and energy consumption, the latter being much more significant. The study showed that VFD control can reduce electricity consumption compared with ON–OFF operation by an amount that depends on the weather. In the present study, the average energy consumption with the VFD control system over a period of one month, was about 0.64 of that with an ON–OFF system. The average greenhouse daily air temperatures and humidity ratios obtained with each control system between 0700 and 1800 were nearly equal during that month. The results obtained in the greenhouse further show that the VFD system has a greater potential than the ON–OFF to reduce the range of amplitude variations in the air temperature and humidity ratio within the greenhouse.

Meir Teitel; Yun Zhao; Moti Barak; Eli Bar-lev; David Shmuel

2004-01-01T23:59:59.000Z

404

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 10 ± 2% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 30 ± 12% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 23 ± 5% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

405

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

406

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Electric Vehicles International - 260-hp AC permanent magnet motor with...

407

Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models  

E-Print Network (OSTI)

vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners...

Schultz, Grant George

2004-09-30T23:59:59.000Z

408

Vehicle Technologies Office Merit Review 2014: Scalable Non-Rare Earth Motor Development  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scalable non...

409

Vehicle Technologies Office Merit Review 2014: SAE J2907 Hybrid Motor Ratings Support  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SAE J2907...

410

Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by UQM Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unique lanthide-free...

411

Energy saving in agricultural buildings through fan motor control by variable frequency drives  

Science Journals Connector (OSTI)

A comparison was conducted between ON–OFF and variable frequency drive (VFD) systems to control ventilation fans of greenhouses and poultry houses. The study aimed to determine the effect of each system on the energy consumption and resulting microclimate within the houses. The experiments were carried out in a commercial-size greenhouse in which pepper was grown and in commercial poultry houses. Reducing the fan speed with the VFD system resulted in reductions in the airflow rate through the houses and energy consumption, the latter being much more significant. The study showed that VFD control can reduce electricity consumption compared with ON–OFF operation. In the present study, the average energy consumption with the VFD control system was about 0.64 and 0.75 of that with an ON–OFF system in the greenhouse and poultry houses, respectively. The average greenhouse daily air temperatures and humidity ratios obtained with each control system between 07:00 and 18:00 were nearly equal. The results obtained in the greenhouse further showed that the VFD system has a greater potential than the ON–OFF, to reduce the range of amplitude variations in the air temperature and humidity ratio within the greenhouse. The average air temperatures over day and night, in the poultry houses, with each control system were nearly equal. The relative humidity, however, was slightly lower with VFD than with ON–OFF. Reductions in the range of amplitude variations of the air temperature and humidity were also observed in the poultry houses.

Meir Teitel; Asher Levi; Yun Zhao; Moti Barak; Eli Bar-lev; David Shmuel

2008-01-01T23:59:59.000Z

412

Nonsensor control of centrifugal water pump with asynchronous electric-drive motor based on extended Kalman filter  

Science Journals Connector (OSTI)

An approach is described for estimating the pump’s variables based only on measuring the motor’s electrical variables. The method is based on extended Kalman filter estimation of the pump’s shaft power and vel...

O. I. Kiselichnik; M. Bodson

2011-02-01T23:59:59.000Z

413

A Cooperative Action of the ATP-Dependent Import Motor Complex and the Inner Membrane Potential Drives Mitochondrial Preprotein Import  

Science Journals Connector (OSTI)

...The mtHsp70 import motor has been shown to...proposed that the electric potential across...activity of the import motor complex, our results...activity exerted by the electric potential across...ATP-dependent import motor complex and the inner...preproteins requires an electric potential across...

Martin Krayl; Joo Hyun Lim; Falk Martin; Bernard Guiard; Wolfgang Voos

2006-10-30T23:59:59.000Z

414

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

415

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

416

A Unique Approach to Power Electronics and Motor Cooling in a Hybrid Electric Vehicle Environment  

SciTech Connect

An innovative system for cooling the power electronics of hybrid electric vehicles is presented. This system uses a typical automotive refrigerant R-134a (1,1,1,2 tetrafluoroethane) as the cooling fluid in a system that can be used as either part of the existing vehicle passenger air conditioning system or separately and independently of the existing air conditioner. Because of the design characteristics, the cooling coefficient of performance is on the order of 40. Because liquid refrigerant is used to cool the electronics directly, high heat fluxes can result while maintaining an electronics junction temperature at an acceptable value. In addition, an inverter housing that occupies only half the volume of a conventional inverter has been designed to take advantage of this cooling system. Planned improvements should result in further volume reductions while maintaining a high power level.

Ayers, Curtis William [ORNL; Hsu, John S [ORNL; Lowe, Kirk T [ORNL; Conklin, Jim [ORNL

2007-01-01T23:59:59.000Z

417

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

418

Electric Vehicles  

SciTech Connect

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

419

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

420

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

Treu, C.A. Jr.

1999-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

Treu, Jr., Charles A. (Raymore, MO)

1999-08-31T23:59:59.000Z

422

3736 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010 Asymmetrical Multilevel Inverter for Traction Drives  

E-Print Network (OSTI)

this "one-source" multilevel system. Index Terms--AC motor drives, electric vehicles (EVs), hybrid EVs (HEVs Multilevel Inverter for Traction Drives Using Only One DC Supply Juan Dixon, Senior Member, IEEE, Javier of isolated and floating dc supplies, which makes these converters complicated to implement in electric

Catholic University of Chile (Universidad CatĂłlica de Chile)

423

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

424

On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions  

Science Journals Connector (OSTI)

An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM10–2.5, PM2.5–0.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM10–2.5 while emission factors for \\{PAHs\\} and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of \\{PAHs\\} resulted in higher levels of \\{PAHs\\} in the particulate phase for LDV tunnel studies (Phuleria et al., 2006) and lower levels of \\{PAHs\\} in the particulate phase for freeway studies (Ning et al., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19–C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 1–2, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

Winnie Kam; James W. Liacos; James J. Schauer; Ralph J. Delfino; Constantinos Sioutas

2012-01-01T23:59:59.000Z

425

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Energy.gov (U.S. Department of Energy (DOE))

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

426

New Energy 101 Video: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles January 17, 2012 - 5:15am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Electric vehicles, sometimes called EVs, can give drivers like you a convenient way to get around, while saving you money on fuel, reducing emissions, and supporting the nation's energy security. Learn about the advantages of electric vehicles, see EVs in action, and find out how they work by checking out DOE's new Electric Vehicle 101 video. The basics principles behind this technology are this: the EV's battery transfers energy to an electric motor, the motor turns a drive train, which then turns the wheels. Up to 80% of the energy in the battery is

427

New Energy Tax Credit for Electric Vehicles Purchased in 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Electric Vehicles Federal Tax Credits for Electric Vehicles Photo of cash and keys Federal Tax Credit Up To $7,500! Electric vehicles (EVs) purchased in 2009 may be eligible for a federal income tax credit of up to $7,500. The amount will vary based on the capacity of the battery used to power the vehicle. This credit was replaced with a similar credit for EVs purchased after 2009. The maximum amount of this credit is the same, but the the requirements and credit phase-out criteria are slightly different. For more information on the credit for EVs purchased after 2009, click here. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Tesla Motors Jan. 1, 2010, to Present TBD TBD TBD Tesla Roadster 2008-10 Tesla Roadster $7,500 -- -- -- Qualified Plug-In Electric Drive Motor Vehicles (IRC 30D)

428

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

429

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

430

High reduction transaxle for electric vehicle  

DOE Patents (OSTI)

A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

Kalns, Ilmars (Plymouth, MI)

1987-01-01T23:59:59.000Z

431

At the new General Motors, we are passionate about designing, building and selling the world's best vehicles. This vision unites us as a team each and every day and is the hallmark  

E-Print Network (OSTI)

electrification with advancements in batteries, electric motors and power controls. The GM team is also working vehicles. This vision unites us as a team each and every day and is the hallmark of our customer-driven culture. Making the world's best vehicles can only happen with the world's greatest employees. We take

Ghosh, Joydeep

432

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DEPARTMENT OF ENERGY HYBRID DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors

433

Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle  

E-Print Network (OSTI)

energy sources especially for vehicular applications. Different energy sources such as batteries, ultra-capacitors, fuel cells etc. are available. Usage of these varied energy sources alone or together in different combinations in automobiles requires...

Emani, Sriram S.

2011-08-08T23:59:59.000Z

434

CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control  

E-Print Network (OSTI)

In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

435

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

kW) Vehicle Mass (kg) Electric Motor (kW) Fuel Cell StackkW) Vehicle Mass (kg) Electric Motor (kW) Fuel Cell Stack

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

436

Method of converting an existing vehicle powertrain to a hybrid powertrain system  

DOE Patents (OSTI)

A method of converting an existing vehicle powertrain including a manual transmission to a hybrid powertrain system with an automated powertrain transmission. The first step in the method of attaching a gear train housing to a housing of said manual transmission, said gear train housing receiving as end of drive shaft of said transmission and rotatably supporting a gear train assembly. Secondly, mounting an electric motor/generator to said gear train housing and attaching a motor/generator drive shaft of said electric motor/generator to said gear train assembly. Lastly, connecting an electro-mechanical clutch actuator to a friction clutch mechanism of said manual transmission.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

2001-12-25T23:59:59.000Z

437

EcoCar Drives Students to Innovate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate October 26, 2010 - 5:21pm Addthis EcoCar Drives Students to Innovate Shannon Brescher Shea Communications Manager, Clean Cities Program Last year, Americans used about 138 billion gallons of gasoline - mostly imported - for transportation, costing Americans about $300 billion. The Department of Energy, through the Recovery Act, is investing in more fuel-efficient battery and electric vehicles to reduce these costs and training a strong, talented workforce to develop these cleaner, more sustainable technologies. Recognizing the importance of engaging students in this endeavor, the Department of Energy and General Motors (GM) established the EcoCar Challenge - a three-year Advanced Vehicle

438

Compare Fuel Cell Vehicles Side-by-Side  

NLE Websites -- All DOE Office Websites (Extended Search)

Recently Tested Vehicles Recently Tested Vehicles Fuel cell vehicles (FCVs) are not yet for sale in the United States. However, manufacturers are producing small fleets of FCVs for evaluation and have estimated the fuel economy of some vehicles using EPA test procedures. Fuel economy estimates and other information for recently tested vehicles are provided below. 2012 Honda FCX Clarity Honda FCX Clarity 2012 Mercedes-Benz F-Cell Mercedes F-Cell Fuel Economy and Driving Range Fuel Economy (miles/kg) Note: One kg of hydrogen is roughly equivalent to one gallon of gasoline. Hydrogen 60 Combined 60 City 60 Hwy Hydrogen 52 Combined 52 City 53 Hwy Range (miles) 240 190 Vehicle Characteristics Vehicle Class Midsize Car Small Station Wagon Motor DC Brushless 100kW DC Permanent Magnet (brushless) Type of Fuel Cell Proton Exchange Membrane Proton Exchange Membrane

439

Vehicle Technologies Office Merit Review 2014: GATE Center for Electric Drive Transportation at the University of Michigan- Dearborn  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Regents University of Michigan at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

440

Environmental Protection Agency (EPA) evaluation of the Super-Mag Fuel Extender under Section 511 of the Motor Vehicle Information and Cost Savings Act. Technical report  

SciTech Connect

This document announces the conclusions of the EPA evaluation of the 'Super-Mag Fuel Extender' device under provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. On December 10, 1980, the EPA received a written request from the Metropolitan Denver District Attorney's Office of Consumer Fraud and Economic Crime to test at least one 'cow magnet' type of fuel economy device. Following a survey of devices being marketed, the Metropolitan Denver District Attorney's Office selected the 'Super-Mag' device as typical of its category and on April 13, 1981 provided EPA with units for testing. The EPA evaluation of the device using three vehicles showed neither fuel economy nor exhaust emissions were affected by the installation of the 'Super-Mag' device. In addition, any differences between baseline test results and results from tests with the device installed were within the range of normal test variability.

Ashby, H.A.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting ape030bennion2012o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies...

442

Trexa Motor Corporation TMC | Open Energy Information  

Open Energy Info (EERE)

Trexa Motor Corporation TMC Jump to: navigation, search Name: Trexa Motor Corporation (TMC) Place: Los Angeles, California Sector: Vehicles Product: Los Angeles - based subsidiary...

443

Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

444

Microsoft Word - General Motors Pre-final EA 4-20-2010.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 FINAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan April 2010 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors RWD National Energy Technology Laboratory Pre-final Environmental Assessment ______________________________________________________________________________ Table of Contents i April 2010 TABLE OF CONTENTS LIST OF TABLES ......................................................................................................................... iv LIST OF FIGURES ....................................................................................................................... iv

445

Drive alignment pays maintenance dividends  

SciTech Connect

Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

Fedder, R. [Rexnord Industries, Milwaukee, WI (United States)

2008-12-15T23:59:59.000Z

446

Chapter Seven - Variable speed drives  

Science Journals Connector (OSTI)

Publisher Summary The electromechanical controllers are a kind of variable speed drives (VSDs) that are obsolete but are still in use because when a motor and a drive is combined, they become a power drive system (PDS). There are two ways of varying the speed of an induction motor, either by varying the motor slip or by varying the supply frequency. The preferred practice for electrical speed variation is to change the supply frequency with a variable frequency drive (VFD). Many other designs also have been developed. However, except the specialized applications, few are still in operation. A number of motor and drive manufacturers are now producing the integrated motor/VFD units. These units consist of a motor and a specially designed VFD, produced as a single package, with the VFD unit mounted variously on the top, side, or end of the motor.

Europump; Hydraulic Institute

2005-01-01T23:59:59.000Z

447

Adjustable Speed Drive Industrial Applications  

E-Print Network (OSTI)

Electric motors are significant users of electricity in the United States. Approximately 66 percent of the total electricity in the U.S. is used by electric motors. Electronic adjustable speed drives (ASDs) can save energy, lower maintenance cost...

Poole, J. N.

448

Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of...

449

Vehicle Technologies Office: 2012 Advanced Power Electronics...  

Energy Savers (EERE)

2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress...

450

Alternative Fuels Data Center: Vehicle Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Doosan Infracore America Corp. Electric Vehicles International Emission Solutions Inc. Energy Conversions Inc. Enova Systems Ford Motor Co. General Motors Hino Hydrogenics ISE...

451

Analysis and Simulation of Mechanical Trains Driven by Variable Frequency Drive Systems.  

E-Print Network (OSTI)

??Induction motors and Variable Frequency Drives (VFDs) are widely used in industry to drive machinery trains. However, some mechanical trains driven by VFD-motor systems have… (more)

Han, Xu

2012-01-01T23:59:59.000Z

452

Cost effectiveness of converting to alternative motor vehicle fuels. A technical assistance study for the City of Longview  

SciTech Connect

The City of Longview can obtain significant fuel savings benefits by converting a portion of their vehicle fleet to operate on either compressed natural gas (CNG) or liquid petroleum gas (LPG) fuels. The conversion of 41 vehicles including police units, sedans, pickups, and light duty trucks to CNG use would offset approximately 47% of the city's 1982 gasoline consumption. The CNG conversion capital outlay of $115,000 would be recovered through fuel cost reductions. The Cascade Natural Gas Corporation sells natural gas under an interruptible tariff for $0.505 per therm, equivalent to slightly less than one gallon of gasoline. The city currently purchases unleaded gasoline at $1.115 per gallon. A payback analysis indicates that 39.6 months are required for the CNG fuel savings benefits to offset the initial or first costs of the conversion. The conversion of fleet vehicles to liquid petroleum gas (LPG) or propane produces comparable savings in vehicle operating costs. The conversion of 59 vehicles including police units, pickup and one ton trucks, street sweepers, and five cubic yard dump trucks would cost approximately $59,900. The annual purchase of 107,000 gallons of propane would offset the consumption of 96,300 gallons of gasoline, or approximately 67% of the city's 1982 usage. Propane is currently retailing for $0.68 to $0.74 per gallon. A payback analysis indicates that 27.7 months are required for the fuel savings benefits to offset the initial LPG conversion costs.

McCoy, G.A.

1983-11-18T23:59:59.000Z

453

Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Motor Company to someone by E-mail Ford Motor Company to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

454

FxLMS method for suppressing in-wheel switched reluctance motor vertical force based on vehicle active suspension system  

Science Journals Connector (OSTI)

The vibration of SRM obtains less attention for in-wheel motor applications according to the present research works. In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in ...

Yan-yang Wang, Yi-nong Li, Wei Sun, Chao Yang, Guang-hui Xu

2014-01-01T23:59:59.000Z

455

Disc rotors with permanent magnets for brushless dc motor  

SciTech Connect

This patent describes a brushless dc permanent magnet motor for driving an autonomous underwater vehicle. It comprises first and second substantially flat, generally cylindrical stators disposed in side by side relation; a first substantially flat, generally cylindrical rotor; a first shaft connected to the first rotor and a second, concentric shaft connected to the second rotor; and means for providing rotation of the first and second shafts in opposite directions.

Hawsey, R.A.; Bailery, J.M.

1992-05-26T23:59:59.000Z

456

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman, Gary Bishop, Allison Peddle, University of Denver Department of Chemistry and Biochemistry Denver CO 80208. www.feat.biochem.du.edu  

E-Print Network (OSTI)

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman Nitrogen dioxide: Less than 5% of the NOx BUT with an outstanding peak for the 2007 MY in Fresno 0. Nitrogen dioxide: less than 5% of NOx except the Fresno fleet containing the 2007 Sprinter ambulances. #12;

Denver, University of

457

Please note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking facilities  

E-Print Network (OSTI)

/scooter parking areas Annual -- $154.00 ($6.42/pay period) Semester -- $51.33 2014-15 Faculty and Staff DecalPlease note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking

Mazzotti, Frank

458

Please note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking facilities  

E-Print Network (OSTI)

/scooter parking areas Annual -- $154.00 ($6.42/pay period) Semester -- $51.33 2013-14 Faculty and Staff DecalPlease note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking

Roy, Subrata

459

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

460

Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production  

E-Print Network (OSTI)

gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass

Cohen, Ronald C.

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

462

Report on Toyota/Prius Motor Torque-Capability, Torque-Property, No-Load Back EMF, and Mechanical Losses  

SciTech Connect

In today's hybrid vehicle market, the Toyota Prius drive system is currently considered the leader in electrical, mechanical, and manufacturing innovations. It is significant that in today's marketplace, Toyota is able to manufacture and sell the vehicle for a profit. This project's objective is to test the torque capability of the 2004 Prius motor and to analyze the torque properties relating to the rotor structure. The tested values of no-load back electromotive force (emf) and mechanical losses are also presented.

Hsu, J.S.

2004-09-30T23:59:59.000Z

463

The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington  

Science Journals Connector (OSTI)

This study examined the correlates of injury severity using police records of pedestrian–motor-vehicle collisions on state routes and city streets in King County, Washington. Levels of influence on collision outcome considered (1) the characteristics of individual pedestrians and drivers and their actions; (2) the road environment; and (3) the neighborhood environment. Binary logistic regressions served to estimate the risk of a pedestrian being severely injured or dying versus suffering minor or no injury. Significant individual-level influences on injury severity were confirmed for both types of roads: pedestrians being older or younger; the vehicle moving straight on the roadway. New variables associated with increased risk of severe injury or death included: having more than two pedestrians involved in a collision; and on city streets, the driver being inebriated. Road intersection design was significant only in the state route models, with pedestrians crossing at intersections without signals increasing the risk of being injured or dying. Adjusting for pedestrians’ and drivers’ characteristics and actions, neighborhood medium home values and higher residential densities increased the risk of injury or death. No other road or neighborhood environment variable remained significant, suggesting that pedestrians were not safer in areas with high pedestrian activity.

Anne Vernez Moudon; Lin Lin; Junfeng Jiao; Philip Hurvitz; Paula Reeves

2011-01-01T23:59:59.000Z

464

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

465

Halbach array DC motor/generator  

DOE Patents (OSTI)

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

466

Driving Green com | Open Energy Information  

Open Energy Info (EERE)

Driving Green com Jump to: navigation, search Name: Driving Green.com Place: Melbourne, Florida Zip: 32904 Sector: Vehicles Product: Driving green.com is a website that allows...

467

Variable Frequency Pump Drives  

E-Print Network (OSTI)

-frequency electric motor drive. What is happenin9 with variable frequency driven pun,ps is a classical illustration that evolution in technical products takes place not only because of changes in the processes served by these products, or because of innovations...-pole 3550 rpm squirrel caqe induction motor became available in the early 1930s that high pressure pumps operating at that speed could be buil t. And now, in the 1980s, the development of the solid-state, variable frequency electric motor drive...

Karassik, I. J.; Petraccaro, L. L.; McGuire, J. T.

468

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Allison Transmission (2) Azure Dynamics (1) BAE Systems (1) DesignLine Allison Transmission (2) Azure Dynamics (1) BAE Systems (1) DesignLine Corp. (1) Eaton (3) Hino (1) Parker Hannifin Corp. (1) Proterra (1) Smith Electric Vehicles (1) Fuel Type All Hybrid - Diesel Electric (8) Hybrid - Gasoline Electric (1) Application All Bus - School (4) Bus - Shuttle (2) Bus - Transit (6) Refuse hauler (2) Tractor (2) Trolley (2) Vocational truck (2) Go Compare Allison Transmission - Allison H 40 EP Allison Transmission - Allison H 50 EP Azure Dynamics - Balance Parallel Hybrid Drive BAE Systems - HybriDrive DesignLine Corp. - ECOSaver IV Eaton - Diesel Electric Hybrid Eaton - Hybrid Drive System Eaton - Hybrid Hydraulic Launch Assist (HLA) Hino - Hino Hybrid Drive Parker Hannifin Corp. - RunWise Proterra - ProDrive System Smith Electric Vehicles - 120 kw induction motor with Lithium-ion batteries

469

Vision Industries dba Vision Motor Corp | Open Energy Information  

Open Energy Info (EERE)

Vision Motor Corp) Place: Santa Monica, California Zip: 90405 Product: Santa Monica-based electric vehicle manufacturer. References: Vision Industries (dba Vision Motor Corp)1...

470

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

471

Vehicle Technologies Office: Partnerships | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnerships Vehicle Technologies Office: Partnerships Partnerships are at the heart of the Vehicle Technologies Office's (VTO) work, driving innovation, technology development,...

472

EV Project Chevrolet Volt Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 1 A trip is defined as all the driving done between consecutive...

473

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2010 July 20, 2010 Eco-Driving: An Everyday Way to Reduce Our Oil Dependence Global warming and oil dependence are on the front burner for good, and for good reason. Thankfully, there is something we can all do today. July 15, 2010 VP 100: President Obama Hails Electric-Vehicle Battery Plant President Obama visits Compact Power in Holland, Michigan -- one of nine new battery plants under construction as a result of the $2.4 billion in Recovery Act advanced battery and electric vehicle awards the President announced last August. July 15, 2010 UQM will manufacture electric vehicle propulsion systems like this at its new facility in Longmont, Colo. | Photo courtesy of UQ VP 100: UQM revving up electric motor production How UQM Technologies, a Colorado-based manufacturer and developer of

474

Improve Motor Operation at Off-Design Voltages | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selection and Application Guide - A Handbook for Industry Improving Motor and Drive System Performance - A Sourcebook for Industry Determining Electric Motor Load and Efficiency...

475

Electric Motors and Critical Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motors and Critical Materials Electric Motors and Critical Materials Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric...

476

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vs. Utility Meter Utilize communication strategies to alter EVSE operation - Demand Response demonstration Approach EVSE Utility HARDWARE DEPLOYMENT 7,871 Level 2...

477

Alcohol and Motor Accidents  

Science Journals Connector (OSTI)

... averaged 18 a day and the injuries more than 600. Half the deaths were among pedestrians and a fifth among pedal cyclists, while drivers of motor vehicles and their passengers ... vehicles and their passengers had only a third to a fourth as many accidents as pedestrians. Although the data of the Ministry of Transport indicate that only 1 in 80 ...

1937-01-30T23:59:59.000Z

478

NREL: Continuum Magazine - Fuel Cell Electric Vehicles: Paving the Way to  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Issue 5 Print Version Share this resource Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Research focuses on boosting reliability, reducing costs, and designing infrastructure of the future. A photo of a white Toyota fuel cell hybrid vehicle driving on a road. The side of the vehicle includes a blue NREL logo and a decal that reads, "Powered by 100% Renewable Sources". Enlarge image Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a nickel-metal-hydride battery, and a power-control unit, the Toyota fuel cell electric vehicle has zero tailpipe emissions. Photo by Dennis Schroeder, NREL As nations around the world pursue sustainable transportation solutions,

479

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids, Part 1: Technical

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive motor vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


482

Advanced Motors  

SciTech Connect

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?ÂąĂ?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Motors and Generators for the 21st CenturyĂ?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?ÂąĂ?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

483

A New Class of Switched Reluctance Motors without Permanent Magnets...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A New Class of Switched Reluctance Motors without Permanent Magnets A Segmented Drive Inverter Topology with a Small DC Bus Capacitor A Segmented Drive Inverter Topology with a...

484

EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled Analysis Assumptions:...

485

High-Temperature, Air-Cooled Traction Drive Inverter Packaging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

486

Electric Drive Vehicle Infrastructure Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid * Help...

487

Department of Electrical Engineering Fall 2009 Electridyne Motor  

E-Print Network (OSTI)

PENNSTATE Department of Electrical Engineering Fall 2009 Electridyne Motor Overview Our sponsored project was to design an elecrtic motor for an urban transportation vehicle, the challenges involved included research into motor design, consideration of the materials, and the electromagnetic parameters

Demirel, Melik C.

488

Sensorless Speed Control of Permanent Magnet-Assisted Synchronous Reluctance Motor (PMa-SynRM)  

E-Print Network (OSTI)

An interesting alternative for today's high efficiency variable speed drives is the Permanent Magnet-Assisted Synchronous Reluctance Motor drive, which belongs to the family of brushless synchronous AC motor drives. Generally, the reluctance torque...

Chakali, Anil K.

2011-02-22T23:59:59.000Z

489

Counterrotating brushless dc permanent magnet motor  

SciTech Connect

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-12-31T23:59:59.000Z

490

Counterrotating brushless dc permanent magnet motor  

SciTech Connect

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-01-01T23:59:59.000Z

491

Commercial viability of hybrid vehicles : best household use and cross national considerations.  

SciTech Connect

Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

Santini, D. J.; Vyas, A. D.

1999-07-16T23:59:59.000Z

492

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

494

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles,to Protect the Use of Persian Gulf Oil for Motor Vehicles,military expense for Persian Gulf and fraction of Persian

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

495

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

496

FY 2014 Annual Progress Report- Electric Drive Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

FY 2014 Annual Progress Report for the Electric Drive Technologies Program of the Vehicle Technologies Office, DOE/EE-1163

497

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

498

Report on Toyota Prius Motor Thermal Management  

SciTech Connect

In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

Hsu, J.S.

2005-02-11T23:59:59.000Z

499

Trends in On-Road Vehicle Emissions of Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

500

Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Heat Transfer Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping yourself cool while driving your car on a hot, sunny day can be a challenge. But it can be even more challenging to cool the power electronic components that are critically important in hybrid electric and all-electric vehicles. Researchers at the National Renewable Energy Laboratory (NREL) investigate and develop these vehicles and their components to help reduce our use of imported petroleum and curb the emissions associated with climate change. A vehicle's power electronic components include the motor controller, converters, and inverters that condition the flow of electrical power between the battery and the electric motor. The problem is that power electronics generate a lot of heat. This heat can decrease