Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Process for electrochemically gasifying coal  

DOE Patents (OSTI)

A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

Botts, T.E.; Powell, J.R.

1985-10-25T23:59:59.000Z

2

Battery Materials and Electrochemical Processes I - Programmaster ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Mesoscale Computational Materials Science of Energy Materials: Battery Materials and Electrochemical Processes I Sponsored by: TMS ...

3

Electrochemical device and process of making  

DOE Patents (OSTI)

A process of making an electrochemical device comprising providing a trilayer structure comprising an electrode/electrolyte/electrode and simultaneously sintering the trilayer structure.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2004-07-27T23:59:59.000Z

4

Electrochemical process for the preparation of nitrogen ...  

Electrochemical process for the preparation of nitrogen fertilizers United States Patent. Patent Number: 8,152,988: Issued: April 10, 2012: Official Filing:

5

Process for electrochemically gasifying coal using electromagnetism  

DOE Patents (OSTI)

A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

1987-01-01T23:59:59.000Z

6

The Electrochemical Behavior of Electro-Deoxidation Process of ...  

Science Conference Proceedings (OSTI)

Presentation Title, The Electrochemical Behavior of Electro-Deoxidation Process of Ilmenite Concentrate in Molten Salt. Author(s), Xuyang Liu, Meilong Hu, ...

7

Electrochemical processing of nitrate waste solutions  

SciTech Connect

The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

1992-10-07T23:59:59.000Z

8

The Electrochemical Surface Potential Due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface  

E-Print Network (OSTI)

We demonstrate that the driving forces for ion adsorption to the air-water interface for point charge models results from both cavitation and a term that is of the form of a negative electrochemical surface potential. We carefully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory. Our research suggests that the electrochemical surface potential due to point charge models provides anions with a significant driving force to the air-water interface. This is contrary to the results of ab initio simulations that indicate that the average electrostatic surface potential should favor the desorption of anions at the air-water interface. The results have profound implications for the studies of ionic distributions in the vicinity of hydrophobic surfaces and proteins.

Marcel D. Baer; Abraham C. Stern; Yan Levin; Douglas J. Tobias; Christopher J. Mundy

2013-07-05T23:59:59.000Z

9

Query processing techniques for solid state drives  

Science Conference Proceedings (OSTI)

Solid state drives perform random reads more than 100x faster than traditional magnetic hard disks, while offering comparable sequential read and write bandwidth. Because of their potential to speed up applications, as well as their reduced power consumption, ... Keywords: columnar storage, flash memory, join index, late materialization, semi-join reduction, ssd

Dimitris Tsirogiannis; Stavros Harizopoulos; Mehul A. Shah; Janet L. Wiener; Goetz Graefe

2009-06-01T23:59:59.000Z

10

Electrochemical process and production of novel complex hydrides  

SciTech Connect

A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

Zidan, Ragaiy

2013-06-25T23:59:59.000Z

11

Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor  

DOE Green Energy (OSTI)

The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO/sub 3/ Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed.

Galloway, T.R.; Werner, R.W.

1980-01-01T23:59:59.000Z

12

Electrochemical processing of nitrate waste solutions. Phase 2, Final report  

SciTech Connect

The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

1992-10-07T23:59:59.000Z

13

Research & Development Opportunities in Electrosynthesis and Electrochemical Manufacturing Processes  

Science Conference Proceedings (OSTI)

This scoping study is a follow-up to the Electrochemical Synthesis Workshop cosponsored by EPRI and the National Science Foundation (NSF) to identify areas of research and development (R&D) that fit EPRI's charter. Participants identified several R&D opportunities. This report discusses some of those opportunities.

1997-12-31T23:59:59.000Z

14

Advanced materials and electrochemical processes in high-temperature solid electrolytes  

DOE Green Energy (OSTI)

Fuel cells for the direct conversion of fossil fuels to electric energy necessitates the use of high-temperature solid electrodes. This study has included: (1) determination of electrical transport, thermal and electrical properties to illucidate the effects of microstructure, phase equilibria, oxygen partial pressure, additives, synthesis and fabrication on these properties; (2) investigation of synthesis and fabrication of advanced oxide materials, such as La{sub 0.9}Sn{sub 0.1}MnO{sub 3}; and (3) application of new analytical techniques using complex impedance coupled with conventional electrochemical methods to study the electrochemical processes and behavior of materials for solid oxide fuel cells and other high-temperature electrolyte electrochemical process. 15 refs., 10 figs., 2 tabs. (BM)

Bates, J.L.; Chick, L.A.; Youngblood, G.E.; Weber, W.J.

1990-10-01T23:59:59.000Z

15

Monitoring charge storage processes in nanoscale oxides using electrochemical scanning probe microscopy.  

Science Conference Proceedings (OSTI)

Advances in electrochemical energy storage science require the development of new or the refinement of existing in situ probes that can be used to establish structure - activity relationships for technologically relevant materials. The drive to develop reversible, high capacity electrodes from nanoscale building blocks creates an additional requirement for high spatial resolution probes to yield information of local structural, compositional, and electronic property changes as a function of the storage state of a material. In this paper, we describe a method for deconstructing a lithium ion battery positive electrode into its basic constituents of ion insertion host particles and a carbon current collector. This model system is then probed in an electrochemical environment using a combination of atomic force microscopy and tunneling spectroscopy to correlate local activity with morphological and electronic configurational changes. Cubic spinel Li{sub 1+x}Mn{sub 2-x}O{sub 4} nanoparticles are grown on graphite surfaces using vacuum deposition methods. The structure and composition of these particles are determined using transmission electron microscopy and Auger microprobe analysis. The response of these particles to initial de-lithiation, along with subsequent electrochemical cycling, is tracked using scanning probe microscopy techniques in polar aprotic electrolytes (lithium hexafluorophosphate in ethylene carbonate:diethylcarbonate). The relationship between nanoparticle size and reversible ion insertion activity will be a specific focus of this paper.

Zavadil, Kevin Robert; Lu, Ping; Huang, Jian Yu

2010-11-01T23:59:59.000Z

16

Flotation process for removal of precipitates from electrochemical chromate reduction unit  

DOE Patents (OSTI)

This invention is an improved form of a conventional electrochemical process for removing hexavalent chromium or other metal-ion contaminants from cooling-tower blowdown water. In the conventional process, the contaminant is reduced and precipitated at an iron anode, thus forming a mixed precipitate of iron and chromium hydroxides, while hydrogen being evolved copiously at a cathode is vented from the electrochemical cell. In the conventional process, subsequent separation of the fine precipitate has proved to be difficult and inefficient. In accordance with this invention, the electrochemical operation is conducted in a novel manner permitting a much more efficient and less expensive precipitate-recovery operation. That is, the electrochemical operation is conducted under an evolved-hydrogen partial pressure exceeding atmospheric pressure. As a result, most of the evolved hydrogen is entrained as bubbles in the blowdown in the cell. The resulting hydrogen-rich blowdown is introduced to a vented chamber, where the entrained hydrogen combines with the precipitate to form a froth which can be separated by conventional techniques. In addition to the hydrogen, two materials present in most blowdown act as flotation promoters for the precipitate. These are (1) air, with which the blowdown water becomes saturated in the course of normal cooling-tower operation, and (2) surfactants which commonly are added to cooling-tower recirculating-water systems to inhibit the growth of certain organisms or prevent the deposition of insoluble particulates.

DeMonbrun, James R. (Knoxville, TN); Schmitt, Charles R. (Oak Ridge, TN); Williams, Everett H. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

17

Carbon activation process for increased surface accessibility in electrochemical capacitors  

DOE Patents (OSTI)

A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

Doughty, Daniel H. (Albuquerque, NM); Eisenmann, Erhard T. (Belpre, OH)

2001-01-01T23:59:59.000Z

18

Process for manufacturing a lithium alloy electrochemical cell  

DOE Patents (OSTI)

A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

Bennett, William R. (North Olmstead, OH)

1992-10-13T23:59:59.000Z

19

Decoupling Electrochemical Reaction and Diffusion Processes in Ionically-Conductive Solids on the Nanometer Scale  

SciTech Connect

We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency ({approx}1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.

Balke, Nina [ORNL; Jesse, Stephen [ORNL; Kim, Yoongu [Oak Ridge National Laboratory (ORNL); Adamczyk, Leslie A [ORNL; Ivanov, Ilia N [ORNL; Dudney, Nancy J [ORNL; Kalinin, Sergei V [ORNL

2010-01-01T23:59:59.000Z

20

High Temperature Electrochemical Polishing of H(2)S from Coal Gasification Process Streams.  

DOE Green Energy (OSTI)

An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the exiting syngas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation.

Winnick, J.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Treatment methods for spent decontamination electrolyte produced in the ABB Atom electrochemical decontamination process ELDECON  

E-Print Network (OSTI)

One of ABB Atom's methods under development, ELDECON, is an electrochemical process for decontamination of components used in nuclear power plants. ELDECON removes radioactive species while producing small amounts of waste. However, the waste sludge that is produced in the ELDECON process contains chromate (Cr 6+), which makes it a mixed waste problem (Cr 6+ and radioactivity) . According to 40 CFR 261, if a process in any step creates chromate, the final waste has to be tested in a toxicity characteristic leachate procedure. In order to pass the test, the chromate have to be reduced to chromium (Cr3+). Electrochemistry has proven to be a valuable tool. When incorporating indirect electrolysis into the ELDECON concept, the chromate (Cr6+) ions are being reduced. This is done by the use of an electrochemical cell (reactor bed). The method involves ferric nitrate as a reagent, which besides converting the chromate completely, also decreases the reaction time. The experiment showed a linear relationship to reduce varying amounts of solution. This makes the test cell feasible to scale up and use in the industry. Ion exchange was also studied as an alternative method of reducing chromate. However, the ion exchange resins investigated were not efficient enough to effectively reduce and exchange the chromate ions.

Carlsson, Charlotta Elisabeth

1995-01-01T23:59:59.000Z

22

Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel  

SciTech Connect

Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

2013-10-01T23:59:59.000Z

23

Composition of simulants used in the evaluation of electrochemical processes for the treatment of high-level wastes  

SciTech Connect

Four simulants are being used in the evaluation of electrochemical processes for the treatment of high-level wastes (HLW). These simulants represent waste presently stored at the Hanford, Idaho Falls, Oak Ridge, and Savannah River sites. Three of the simulants are highly alkaline salt solutions (Hanford, Oak Ridge, and Savannah River), and one is highly acidic (Idaho Falls).

Hobbs, D.T.

1994-06-27T23:59:59.000Z

24

Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing  

E-Print Network (OSTI)

There is great interest in the large potential market for electric drives in the gas transmission, gas storage, and gas processing industries. Progressive electric utilities and astute vendors are moving to meet the needs of these industries as they confront rapid changes and new realities. New policy and economic considerations, brought on by changes in environmental and business regulations and new compressor/driver technology, are causing these gas industry companies to consider electric motors for replacement of older gas engines and for new compressor installations. In ozone nonattainment regions, bringing gas compressor stations into compliance with NOx emission regulations is a must. Outside those regions, new electric drives are being considered because of their improved operating efficiencies and lower costs. The Electric Power Research Institute (EPRI), working through the EPRI Chemicals and Petroleum Office, is providing leadership in the efforts to further dialogue among gas companies, electric utilities, and vendors. EN strategists is working closely with EPRI, the electric utilities, and the gas transmission companies to promote consideration of The Electric Option.

Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

1995-04-01T23:59:59.000Z

25

Exploratory cell research and fundamental processes study in solid state electrochemical cells  

DOE Green Energy (OSTI)

Last year this program demonstrated that alternative to lithium had some merit on which to base new polymer electrolyte batteries and other electrochemical devices. We reported that Na, Zn, and Cu electrolytes have modest conductivities at 100{degree}C. Some preliminary cell cycling data were reported with V{sub 6}O{sub 13} insertion cathodes, and the successful cell cycling suggested that N{sup +}, Zn{sup +2} could be inserted and removed reversibly in the cathode material. Also, thin-film polymer cathodes were shown by impedance measurements to have three characteristic regions of behavior. Each region had different controlling processes with relaxation time constants that could be separated with careful manipulation of film thickness, morphology, and charging level. The present report gives results of the continuation of these studies. In particular, the sodium system was studied more intensively with conductivity measurements on sodium triflate in poly(ethyleneoxide)(PEO), and cell studies with V{sub 6}O{sub 13} and poly(pyrrole)(PPY) cathodes. The impedance work was concluded and several directions of new work in that area were identified. The insertion studies with single crystal V{sub 6}O{sub 13} were concluded on this program and transferred to NSF funding. 29 refs., 6 figs., 6 tabs.

Smyrl, W.H.; Owens, B.B.; White, H.S. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science)

1990-06-01T23:59:59.000Z

26

Scaled-physical-model studies of the steam-drive process. Final report  

SciTech Connect

The main goal of this project was to gain an understanding of the influence of controllable, operating practices and of reservoir parameters on the steam drive. The steam drive, because the chief phenomena of fluid flow and heat flow obey the same laws of diffusion, can be physically scaled. The validity of the results of the scaled models is evidenced by the correspondence of the results with those reported in field operations. In order to conserve on resources, this report is limited to a summary statement of the findings and conclusions of the overall project with separate chapters devoted to an account of specific tasks which came to fruition during the latter part of the project. Summary of results are presented for the following projects: gravitational instability of a steam drive; roles of oil viscosity and steam temperature on the production of crude oil when the steam flow is stratified; extension of the steam drive to tars and bitumens; occurrence of the optimum steam injection rate; emulsification and oil productivity; role of reservoir thickness; cyclic injection of steam in a steam drive; high gravity crudes; partial substitution of inert gas for steam. Two projects completed and described in detail are: effect of oil viscosity on reservoir thickness on the steam drive; and anticipated effect of diurnal injection on steam efficiency.

Doscher, T.M.

1982-11-01T23:59:59.000Z

27

Asymptotic analysis of extreme electrochemical transport  

E-Print Network (OSTI)

In the study of electrochemical transport processes, experimental exploration currently outpaces theoretical understanding of new phenomena. Classical electrochemical transport theory is not equipped to explain the behavior ...

Chu, Kevin Taylor

2005-01-01T23:59:59.000Z

28

Process for the manufacture of an electrode for electrochemical process and a cathode for the electrolytic production of hydrogen  

SciTech Connect

An electrically conductive substrate is coated with a material containing an unsintered powder of a metal active for electrochemical proton reduction and colloidal silica and the said material is heated on the substrate successively in an oxidizing atmosphere and then in a reducing atmosphere. The electrode may be employed as a cathode for electrolytic production of hydrogen in an alkaline medium.

Nicolas, E.; Merckaert, L.

1985-08-13T23:59:59.000Z

29

Scaled physical model studies of the steam drive process. Second annual report, September 1978-September 1979  

SciTech Connect

A scaled physical model was operated to simulate steam drive operations in five-spot patterns with reservoir and operational parameters similar to those encountered in California reservoirs. The goal of this study was to elucidate the role of two important controllable parameters, viz., steam injection rate and steam quality and to explore the role of two important factors, oil viscosity and reservoir permeability on the performance of the steam drive. In addition, the influence of bottom water and a basal permeable layer were investigated. The experiments demonstrated that there is an optimum injection rate; that in the vicinity of this optimum an increased quantity results in improved oil steam ratios; that the viscosity of the oil at steam temperature, raised to a fractional power, 0.5, appears to correlate with oil production; that permeabilities in the darcy range have little effect on performance, but an increasing one with low viscosity oil, and that bottom water, which facilitates injection, results in toorer early performance but one which eventually rivals the oil/steam ratio of a uniform reservoir at a somewhat higher recovery of original oil in place. It has been concluded that the major value of the physical model is in describing the role of the reservoir and operational parameters of a class of steam drive operations rather than providing an exact prediction of a given operation.The problem of supplying the latter lies in the virtually impossible-to-define distribution of oil, gas and water in the reservoir on initiating the steam drive. Two years of this project have now been completed. During the forthcoming final phase of the program, effort will be devoted to studying the relative effects of solvent and gas addition to the steam, of diurnal injection, and of (horizontal) well placement.

Dosher, T.M.

1981-02-01T23:59:59.000Z

30

Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001  

Science Conference Proceedings (OSTI)

This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

Huang, Chin-Pao

2001-05-31T23:59:59.000Z

31

Using process definitions to drive user interactions with digital government systems  

Science Conference Proceedings (OSTI)

This poster is showing that process definitions can be effective in specifying and guiding Online Dispute Resolution (ODR) to facilitate effective interactions and mediation among disputants. Simply specifying these interactions is not sufficient to ... Keywords: dispute resolution, online dispute resolution, process, process definition, process driven interfaces, prototyping

Lori Clarke; Alan Gaitenby; Ethan Katsh; Matthew Marzilli; Leon Osterweil; Daniel Rainey; Borislava Simidchieva; Norman Sondheimer; Leah Wing; Alexander Wise

2007-05-01T23:59:59.000Z

32

Electrochemical machining process for forming surface roughness elements on a gas turbine shroud  

SciTech Connect

The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

Lee, Ching-Pang (Cincinnati, OH); Johnson, Robert Alan (Simpsonville, SC); Wei, Bin (Mechanicville, NY); Wang, Hsin-Pang (Rexford, NY)

2002-01-01T23:59:59.000Z

33

New Carbon Activation Process for Increased Surface Accessibility in Electrochemical Capacitors  

DOE Patents (OSTI)

A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm{sup 3} is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350 C for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

Doughty, Daniel H.; Eisenmann, Erhard T.

1999-03-16T23:59:59.000Z

34

Electrochemical Energy Storage Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

35

Electrochemical photovoltaic cells and electrodes  

DOE Patents (OSTI)

Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, Terje A. (East Patchogue, NY)

1984-01-01T23:59:59.000Z

36

HIGH TEMPERATURE REMOVAL OF H{sub 2}S FROM COAL GASIFICATION PROCESS STREAMS USING AN ELECTROCHEMICAL MEMBRANE SYSTEM  

SciTech Connect

A bench scale set-up was constructed to test the cell performance at 600-700 C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO{sub 2}, 35% H{sub 2}, 8% H{sub 2}O, and 450-2000 ppm H{sub 2}S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H{sub 2}S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H{sub 2}S removal. The results identify sulfide diffusion across the membrane as the rate-limiting step in H{sub 2}S removal. The maximum H{sub 2}S removal flux of 1.1 x 10-6 gmol H{sub 2}S min{sup -1} cm{sup -2} (or 3.5 mA cm{sup -2}) was obtained at 650 C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e. cobalt sulfides and Y{sub 0.9}Ca{sub 0.1}FeO{sub 3}) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd{sub 2}TiMoO{sub 7} and La{sub 0.7}Sr{sub 0.3}VO{sub 3} were the compounds that retained their structure best even when exposed to high H{sub 2}S, CO{sub 2}, and H{sub 2}O concentrations.

Jack Winnick; Meilin Liu

2003-06-01T23:59:59.000Z

37

High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams. Quarterly progress report, October 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

An advanced process for the separation of hydrogen sulfide (H{sub 2}S) from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is made economically attractive by the lack of need for a Claus process for sulfur recovery. Membrane manufacturing coupled with full-cell experimentation was the primary focus this quarter. A tape-casted zirconia membrane was developed and utilized in one full-cell experiment (run 25); run 24 utilized a fabricated membrane purchased from Zircar Corporation. Results are discussed.

Winnick, J.

1995-12-31T23:59:59.000Z

38

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

Redey, L.I.; Vissers, D.R.; Prakash, J.

1996-07-16T23:59:59.000Z

39

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

Redey, Laszlo I. (Downers Grove, IL); Vissers, Donald R. (Naperville, IL); Prakash, Jai (Downers Grove, IL)

1994-01-01T23:59:59.000Z

40

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

Redey, Laszlo I. (6851 Carpenter St., Downers Grove, IL 60516); Vissers, Donald R. (611 Clover Ct., Naperville, IL 60540); Prakash, Jai (2205 Arbor Cir. 8, Downers Grove, IL 60515)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electrochemical device  

DOE Patents (OSTI)

A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Bellows, Richard J. (Westfield, NJ)

1988-01-12T23:59:59.000Z

42

Electrochemical construction  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Einstein, Harry (Springfield, NJ); Grimes, Patrick G. (Westfield, NJ)

1983-08-23T23:59:59.000Z

43

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

Redey, Laszlo I. (Downers Grove, IL); Vissers, Donald R. (Naperville, IL); Prakash, Jai (Downers Grove, IL)

1994-01-01T23:59:59.000Z

44

Electrochemical cell  

DOE Patents (OSTI)

This invention is comprised of an electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 900 in either direction while maintaining the working-and counter electrodes submerged in the electrolyte.

Nagy, Z.; Yonco, R.M.; You, Hoydoo; Melendres, C.A.

1991-04-23T23:59:59.000Z

45

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

1992-08-25T23:59:59.000Z

46

Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process  

DOE Patents (OSTI)

A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

Garcia, E.J.; Sniegowski, J.J.

1994-12-31T23:59:59.000Z

47

Theoretical thermodynamic analysis of a closed-cycle process for the conversion of heat into electrical energy by means of a distiller and an electrochemical cell  

E-Print Network (OSTI)

We analyse a device aimed at the conversion of heat into electrical energy, based on a closed cycle in which a distiller generates two solutions at different concentrations, and an electrochemical cell consumes the concentration difference, converting it into electrical current. We first study an ideal model of such a process. We show that, if the device works at a single fixed pressure (i.e. with a "single effect"), then the efficiency of the conversion of heat into electrical power has an upper bound, given by the efficiency of a reversible Carnot engine operating between the boiling temperatures of the concentrated solution and of the pure solvent. When two heat reservoirs with a higher temperature difference are available, the overall efficiency can be incremented by employing an arrangement of multiple cells working at different pressures ("multiple effects"). We find that a given efficiency can be achieved with a reduced number of effects by using solutions with a high boiling point elevation.

Carati, Andrea; Brogioli, Doriano

2013-01-01T23:59:59.000Z

48

Electrochemical modeling of lithium polymer batteries.  

SciTech Connect

An electrochemical model for lithium polymer cells was developed and a parameter set for the model was measured using a series of laboratory experiments. Examples are supplied to demonstrate the capabilities of the electrochemical model to obtain the concentration, current, and potential distributions in lithium polymer cells under complex cycling protocols. The modeling results are used to identify processes that limit cell performance and for optimizing cell design. Extension of the electrochemical model to examine two-dimensional studies is also described.

Dees, D. W.; Battaglia, V. S.; Belanger, A.; Chemical Engineering; Inst. de recherche d' Hydro-Quebec

2002-08-22T23:59:59.000Z

49

Electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

Redey, L.I.; Vissers, D.R.; Prakash, J.

1994-08-23T23:59:59.000Z

50

Electrochemical cell  

Science Conference Proceedings (OSTI)

An electrochemical cell is disclosed that has a lithium anode, a thionyl chloride depolarizer and a sulphur dioxide passivation control agent which further includes having the pressure relieved to substantially reduce the internal pressure of the cell. The internal cell pressure is relieved by venting for sufficient time at an elevated temperature to reduce the internal cell pressure to less than five psi at room temperature, preferably by a plurality of venting cycles and a temperature ranging from room temperature to the elevated temperature. Normally, the elevated temperature ranges from at least 100/sup 0/ to greater than 150/sup 0/ F.

Chua, D.L.; Garoutte, K.F.; Levy, L.L.

1982-11-23T23:59:59.000Z

51

Wide electrochemical window solvents for use in electrochemical ...  

Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents United States Patent

52

Driving Down HB-LED Costs: Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth  

SciTech Connect

The overall objective of this multi-faceted program is to develop epitaxial growth systems that meet a goal of 75% (4X) cost reduction in the epitaxy phase of HB-LED manufacture. A 75% reduction in yielded epitaxy cost is necessary in order to achieve the cost goals for widespread penetration of HB-LEDâ??s into back-lighting units (BLU) for LCD panels and ultimately for solid-state lighting (SSL). To do this, the program will address significant improvements in overall equipment Cost of Ownership, or CoO. CoO is a model that includes all costs associated with the epitaxy portion of production. These aspects include cost of yield, capital cost, operational costs, and maintenance costs. We divide the program into three phases where later phases will incorporate the gains of prior phases. Phase one activities are enabling technologies. In collaboration with Sandia National Laboratories we develop a Fluent-compatible chemistry predictive model and a set of mid-infrared and near-ultraviolet pyrometer monitoring tools. Where previously the modeling of the reactor dynamics were studied within FLUENT alone, here, FLUENT and Chemkin are integrated into a comprehensive model of fluid dynamics and the most advanced transport equations developed for Chemkin. Specifically, the Chemkin model offered the key reaction terms for gas-phase nucleation, a key consideration in the optimization of the MOCVD process. This new predictive model is used to design new MOCVD reactors with optimized growth conditions and the newly developed pyrometers are used monitor and control the MOCVD process temperature to within 0.5°C run-to-run and within each wafer. This portion of the grant is in collaboration with partners at Sandia National Laboratories. Phase two activities are continuous improvement projects which extend the current reactor platform along the lines of improved operational efficiency, improved systems control for throughput, and carrier modifications for increased yield. Programmatically, improvements made in Phase I are applied to developments of Phase II when applicable. Phase three is the culmination of the individual tasks from both phases one and two applied to proposed production platforms. We selectively combine previously demonstrated tasks and other options to develop a high-volume production-worthy MOCVD system demonstrating >3x throughput, 1.3x capital efficiency, and 0.7x cost of ownership. In a parallel demonstration we validate the concept of an improved, larger deposition system which utilizes the predictive modeling of chemistry-based flow analysis and extensions of the improvements demonstrated on the current platforms. This validation includes the build and testing of a prototype version of the hardware and demonstration of 69% reduction in the cost of ownership. Also, in this phase we present a stand-alone project to develop a high-temperature system which improves source efficiency by 30% while concurrently increasing growth rate by 1.3x. The material quality is held to the same material quality specifications of our existing baseline processes. The merits of other line item tasks in phase three are discussed for inclusion on next-generation platforms.

William Quinn

2012-04-30T23:59:59.000Z

53

Microfluidic electrochemical reactors  

DOE Patents (OSTI)

A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

2011-03-22T23:59:59.000Z

54

System and method for networking electrochemical devices  

DOE Patents (OSTI)

An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

Williams, Mark C. (Morgantown, WV); Wimer, John G. (Morgantown, WV); Archer, David H. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

55

Electrochemical planarization  

DOE Patents (OSTI)

In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

Bernhardt, A.F.; Contolini, R.J.

1993-10-26T23:59:59.000Z

56

Electrochemical planarization  

DOE Patents (OSTI)

In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer.

Bernhardt, Anthony F. (Berkeley, CA); Contolini, Robert J. (Pleasanton, CA)

1993-01-01T23:59:59.000Z

57

High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams: Quarterly progress report, October 1, 1994--December 31, 1994  

SciTech Connect

A high temperature electrochemical cell capable of polishing hydrogen sulfide from fuel gas streams is being perfected. The operation, to be used in compliance with high efficiency energy conversion systems, takes advantage of an electrochemical potential gradient instead of typical separation techniques to separate hydrogen sulfide from the fuel gas stream leaving hydrogen to enrich the exiting gases. Vaporous sulfur is the by-product carried downstream by a separate inert sweep gas and condensed. Work continued this quarter to improve experimental conditions (laboratory and equipment enhancement). The oven containing the Electrochemical Membrane Separator (EMS) is the main focus of improvement readjusting spatial requirements conforming to the controlled environmental emissions equipment while creating a controlled atmosphere gauntlet to unfavorable reactions with electrolytic species. Manufacturing of yttria-stabilized zirconia matrices was the primary focus of laboratory experimentation while full-cell testing is not possible.

Winnick, J.

1994-12-31T23:59:59.000Z

58

aqueous and electrochemical processing ii  

Science Conference Proceedings (OSTI)

A Dynamic LCA Model For Assessing The Impact Of Lead Free Solder [pp. .... For Recycling Of Spent Nickel-Metal Hydride Secondary Battery (Invited) [pp.

59

aqueous and electrochemical processing i  

Science Conference Proceedings (OSTI)

Dowa Mining Co., Ltd. (Japan) [p. 431]. Flogen Technologies Inc.(Canada) [p. 432]. Furukawa Co., Ltd.(Japan) [p. 433]. Korea Zinc Co. Ltd.(South Korea) [p. 434].

60

Holiday Food Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Food Drive Food Drive Holiday Food Drive During the recent holiday food drive, employees donated enough food to provide about 23,604 holiday meals for Northern New Mexico families. More than 432 frozen turkeys were donated this year by employees and other donors during 'Bring a Turkey to Work Day,' an annual Lab event that takes places Thanksgiving week. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Giving Drives Ed Vigil Community Programs Office (505) 665-9205 Email Giving Drives Enrique Trujillo Community Programs Office (505) 665-6384 Email Helping feed Northern New Mexico families Community partners The Food Depot (Santa Fe) Del Norte Credit Union Smith's Food and Drug Giving Holiday Food Drive Holiday Gift Drive LANL Laces Los Alamos Employees' Scholarship Fund

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

62

AOCS USB Flash Drive  

Science Conference Proceedings (OSTI)

1 GB flash drive. AOCS logo printed on aluminum cover. AOCS USB Flash Drive Membership Merchandise Membership Merchandise 7F95621DF44FEA960BA8EE1D1E39CED4 1 GB USB flash drive. AOCS logo printed on aluminum cover. M-USB 17770

63

Characterizing electrocatalytic surfaces: Electrochemical and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing electrocatalytic surfaces: Electrochemical and NMR studies of methanol and carbon monoxide on PtC Title Characterizing electrocatalytic surfaces: Electrochemical...

64

Electrochemical thermodynamic measurement system  

DOE Patents (OSTI)

The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

Reynier, Yvan (Meylan, FR); Yazami, Rachid (Los Angeles, CA); Fultz, Brent T. (Pasadena, CA)

2009-09-29T23:59:59.000Z

65

Planar electrochemical device assembly  

DOE Patents (OSTI)

A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

Jacobson; Craig P. (Lafayette, CA), Visco; Steven J. (Berkeley, CA), De Jonghe; Lutgard C. (Lafayette, CA)

2010-11-09T23:59:59.000Z

66

Planar electrochemical device assembly  

DOE Patents (OSTI)

A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2007-06-19T23:59:59.000Z

67

Drill drive mechanism  

DOE Patents (OSTI)

A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

Dressel, Michael O. (Englewood, CO)

1979-01-01T23:59:59.000Z

68

Variable temperature electrochemical strain microscopy of Sm-doped ceria  

Science Conference Proceedings (OSTI)

Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

Jesse, Stephen [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Kalinin, Sergei V [ORNL; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Yang, Nan [ORNL; Doria, Sandra [ORNL; Tebano, Antonello [ORNL

2013-01-01T23:59:59.000Z

69

DC Drive Ride-Through Technology Alternatives and Development  

Science Conference Proceedings (OSTI)

Adjustable speed drive (ASD) ride-through issues have caused increased concerns due to drive susceptibility to power disturbances and the costly results of process disruptions. Losses incurred due to DC drive trips can be avoided for critical production processes by employing ride-through alternatives. The purpose of this study is to determine the DC drive ride-through requirements of industrial customers and match those ride-through needs with possible solutions.

1998-12-19T23:59:59.000Z

70

Holiday Gift Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Holiday Gift Drive Holiday Gift Drive Holiday Gift Drive Every year, Laboratory employees help fulfill the holiday wishes of children and seniors in our communities. In 2012, our employees helped more than 1,030 Northern New Mexico children, senior citizens and families have a brighter holiday season. September 16, 2013 Every holiday season, employees of Los Alamos National Laboratory donate and distribute gifts to families in need throughout Northern New Mexico. Contacts Giving Drives Ed Vigil Community Programs Office (505) 665-9205 Email Giving Drives Enrique Trujillo Community Programs Office (505) 665-6384 Email Helping New Mexico families feel the holiday spirit The 2013 campaign runs from November 21-December 18. 2012 Holiday Gift Drive partners Boys and Girls Club Del Norte (Abiquiu Site)

71

Handbook of Electrochemical Nanotechnology  

SciTech Connect

This 2-volume handbook provides an overview of recent advances in the field of electrochemical nanotechnology. It will be of great interst to graduate students, scientists, and engineering professionals whose research is at the interface of electrochemistry and nanotechnology.

Lin, Yuehe; Nalwa, H. S.

2009-02-12T23:59:59.000Z

72

Solid state electrochemical composite  

SciTech Connect

Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2009-06-30T23:59:59.000Z

73

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

Treu, Jr., Charles A. (Raymore, MO)

1999-08-31T23:59:59.000Z

74

Piezoelectric drive circuit  

DOE Patents (OSTI)

A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

Treu, C.A. Jr.

1999-08-31T23:59:59.000Z

75

Traction Drive Systems Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Drive Systems Breakout Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov EV Everywhere Traction Drive System * DOE goals for Electric Traction Drive System (TDS) innovations must be disruptive innovation focused to meet the CY2022 price target ($20,000 $25,000) for a mid-sized 5 passenger sedan having 5 year simple payback. Enhanced Efficiency Reduced Cost Traction Drive System EETT Roadmap: "Therefore, research is needed to develop technologies that are less expensive and, at the same time, smaller, lighter, more efficient, and equally reliable as conventional automotive technologies. "

76

Carbon microstructures for electrochemical studies  

DOE Green Energy (OSTI)

Thin layers of photoresist were spin coated onto silicon wafers, and then carbonized to form smooth carbon films by heating in nitrogen for 1 hour at temperatures between 600 to 1100 C. Well-defined carbon microstructures on Si wafers that are being considered for electrodes in a microbattery concept were obtained by additional processing steps involving patterning and lithography of the photoresist prior to carbonization. The status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist, characterization of the carbons by surface-sensitive techniques and electrochemical analysis by cyclic voltammetry of the I{sup -}/I{sub 3}{sup -} redox reaction is described.

Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim

2001-06-22T23:59:59.000Z

77

Buffered Electrochemical Polishing of Niobium  

SciTech Connect

The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop'. In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature ({approx} 120 C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

Gianluigi Ciovati, Hui Tian, Sean Corcoran

2011-03-01T23:59:59.000Z

78

Titanium Carbide Bipolar Plate for Electrochemical Devices  

DOE Patents (OSTI)

Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

1998-05-08T23:59:59.000Z

79

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network (OSTI)

electric recharge energy in urban driving, kW·h/km Max recharge time, h Safety features Meet Federal Motor Vehicle Safety

Cairns, Elton J.

2012-01-01T23:59:59.000Z

80

An improved system and method for networking electrochemical devices  

DOE Patents (OSTI)

An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices are disclosed, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. Improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

Williams, M.C.; Wimer, J.G.; Archer, D.H.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Intrusions: What Drives Them?  

Science Conference Proceedings (OSTI)

The driving mechanism for the observed interleaving of water masses is generally assumed to be double-diffusive mixing. However, some observations of intrusions have been made in regions where the mean stratification is stable to double-diffusive ...

Dave Hebert

1999-06-01T23:59:59.000Z

82

Control rod drive  

DOE Patents (OSTI)

A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

Hawke, Basil C. (Solana Beach, CA)

1986-01-01T23:59:59.000Z

83

Mediated electrochemical hazardous waste destruction  

SciTech Connect

There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag{sup 2+} or Ce{sup +4} are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs.

Hickman, R.G.; Farmer, J.C.; Wang, F.T.

1991-08-01T23:59:59.000Z

84

CONTROL ROD DRIVE  

DOE Patents (OSTI)

BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

Chapellier, R.A.

1960-05-24T23:59:59.000Z

85

Electrochemical Thermodynamic Measurement System - Energy ...  

The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy ...

86

Available Technologies: Electrochemical Environmental Cell ...  

Electrochemical Environmental Cell with Vertical, Aligned Electrodes for TEM IB-3330. ... Energy storage device / battery research and development;

87

School supply drive winding down  

NLE Websites -- All DOE Office Websites (Extended Search)

submit School supply drive winding down The drive is collecting materials for schools throughout Northern New Mexico and will be distributed by the Lab and Self Help, Inc....

88

Electric Drive Status and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

to Achieve Traction Drive Cost Target * Inverter: cold plate, drive boards, thermal interface material, bus bar, current sensors, housing, control board, etc. Motor:...

89

Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries  

E-Print Network (OSTI)

Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

Mui, Simon C., 1976-

2005-01-01T23:59:59.000Z

90

Electrochemical Membrane Incinerator  

DOE Patents (OSTI)

Electrochemical incineration of benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 {micro}g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called ''supporting electrolyte'' was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

1998-12-08T23:59:59.000Z

91

Electrochemical micro sensor  

DOE Patents (OSTI)

A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-09-12T23:59:59.000Z

92

Electrochemical membrane incinerator  

DOE Patents (OSTI)

Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

Johnson, Dennis C. (Ames, IA); Houk, Linda L. (Ames, IA); Feng, Jianren (Ames, IA)

2001-03-20T23:59:59.000Z

93

Electrochemical Energy Storage for the Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid More...

94

Ceramic vane drive joint  

SciTech Connect

A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

Smale, Charles H. (Indianapolis, IN)

1981-01-01T23:59:59.000Z

95

Adjustable Speed Drive Industrial Applications  

E-Print Network (OSTI)

Electric motors are significant users of electricity in the United States. Approximately 66 percent of the total electricity in the U.S. is used by electric motors. Electronic adjustable speed drives (ASDs) can save energy, lower maintenance cost and improve product quality. By providing a variable frequency output to ac motors the speed of the motors can be controlled and matched to the process requirements. The benefits that may be derived from using ASDs are described and the type of ASDs, applications and specific case studies of ASD installations are also discussed.

Poole, J. N.

1989-09-01T23:59:59.000Z

96

Drive5 | Open Energy Information  

Open Energy Info (EERE)

Drive5 Drive5 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drive5 Agency/Company /Organization: Drive5 Sector: Energy Focus Area: Vehicles Resource Type: Software/modeling tools User Interface: Website, Mobile Device Website: www.drive5.us Web Application Link: www.drive5.us Cost: Free OpenEI Keyword(s): Challenge Generated Drive5 Screenshot References: Drive5[1] Challenge.gov[2] Challenge.gov Submission Page[3] Measure your fuel economy real time with five metrics to save on fuel costs. Overview Drive1: Fuel Economy Drive5 gives you real time fuel economy feedback for any car 1984 and newer by simply utilizing the sensors embedded in your phone or tablet. It uses a statistical algorithm which leverages the fueleconomy.gov's open dataset along with data from thousands of automobile trips. No connections to the

97

Current drive, anticurrent drive, and balanced injection  

SciTech Connect

In lower hybrid (LH) discharges, the number of suprathermal electrons is limited by the upper bound on the current density from the q = 1 condition, which is caused by the onset of the m = 1 MHD instability. The stored energy of suprathermal electrons, measured in terms of a poloidal beta, scales with plasma current as I/sub p//sup -1/. Potentially, these bounds represent very restrictive conditions for heating in larger machines. Consequently, it seems necessary to perform experiments where the electrons are driven in both directions, parallel and antiparallel to the magnetic field, i.e., bidirectional scenarios like anticurrent drive or balanced injection. Data from PLT relevant to these ideas are discussed. 6 refs., 4 figs.

von Goeler, S.; Stevens, J.; Beiersdorfer, P.; Bell, R.; Bernabei, S.; Bitter, M.; Cavallo, A.; Chu, T.K.; Fishman, H.; Hill, K.

1987-08-01T23:59:59.000Z

98

LCLS Injector Drive Laser  

SciTech Connect

Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

2007-11-02T23:59:59.000Z

99

CONTROL ROD DRIVE  

DOE Patents (OSTI)

Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

Chapellier, R.A.; Rogers, I.

1961-06-27T23:59:59.000Z

100

Electrochemical and Integrated Process Opportunities for On-Site/On-Demand Generation of Chlorine Dioxide - Final Report - 08/02/1996 - 08/01/1999  

DOE Green Energy (OSTI)

Due to continued evidence of environmental harm from elemental chlorine bleaching, the nation's paper industry continues to search for cost effective alternative bleaching. A practical and cost effective bleaching alternative is chlorine dioxide manufactured entirely from sodium chlorate. Sodium chlorate is produced by the electrolysis of brine in an undivided cell with steel plate cathodes and dimensionally stable anodes. Although the overpotential at the anode is only 50 mV, the cathodic overpotential is 940 mV. Thus, nearly one volt of electricity is wasted in driving hydrogen evolution at the cathode. Auburn University's Center for Microfibrous Materials Manufacturing has demonstrated that high performance, three dimensional, microfibrous electrodes can improve the performance of capacitors, batteries, hybrid power cells, and electrolysis electrodes in a variety of applications. The goal of this research was to apply this technology to a chlorate cell's cathode and reduce the overpotential between 200 and 400 mV. An economic analysis of the industry has shown that for every 100 mV reduction in overpotential, $100 per square meter of electrode can be saved annually. Due to their enhanced surface area over plates, corrosion of microfibrous electrodes is a major issue in this research. Samples based on chromium protection (i.e. stainless steel) have proved unfeasible for chlorate application. However, samples based on stainless steel and nickel show dramatic performance improvements over industry status quo in chlor-alkali application. Building microfibrous electrodes on a titanium base protected with a silver coating alleviates the corrosion problem and provides 100 mV or more of overpotential reduction. Further reduction is realized by impregnating silver-titanium microfibrous mesh with a PVDF binder and dispersed platinum on activated carbon. The resulting electrodes are mechanically sound, active towards hydrogen evolution, and hold promise for practical industry use.

Tatarchuk, Bruce J.; Krishnagopalan, G.; Nickell, Ryan A.

2000-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Remote electrochemical sensor  

DOE Patents (OSTI)

An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

1997-01-01T23:59:59.000Z

102

Electrochemical processes (i.e. inter-conversion between electric energy and chemical energy) are essential for rechargeable battery materials. Many  

E-Print Network (OSTI)

) are essential for rechargeable battery materials. Many conversions between structural phases in the electrodes rechargeable battery cell. Both sensitivity and resolution are expected to be improved significantly with our in situ Li ion motion in a battery cell during the charge/discharge process, thus to understand ionic

Weston, Ken

103

ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES  

DOE Patents (OSTI)

An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

McLaren, J.A.; Goode, J.H.

1958-05-13T23:59:59.000Z

104

Electrochemical Energy Storage and Conversion  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Design and Discovery of Novel Energy Materials: Stephan Lany1; 1NREL ... determine and characterise the state of an electrochemical system, ...

105

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

106

Electrochemical Characterization Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel...

107

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

108

Electrochemical thinning of silicon  

DOE Patents (OSTI)

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

Medernach, J.W.

1994-01-11T23:59:59.000Z

109

Remote electrochemical sensor  

DOE Patents (OSTI)

An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

Wang, J.; Olsen, K.; Larson, D.

1997-10-14T23:59:59.000Z

110

Electrochemical Characterization Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrochemical Characterization Laboratory at the Energy Systems Integration Facility. The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel materials synthesized by various techniques and understanding and delineating the reaction mechanisms to provide practical solutions to PEMFCs commercialization issues of cost, performance and durability. It is also involved in the development of new tools and techniques for electrochemical characterization. The laboratory concentrates on the development and characterization of new materials for PEMFCs such as electrocatalysts, catalyst supports in terms of electrochemical activity, electrochemical surface area and corrosion/durability. The impact of impurities and/or contaminants on the catalyst activity is also under study. Experiments that can be performed include: (1) Determination and benchmarking of novel electrocatalyst activity; (2) Determination of electrochemical surface area; (3) Determination of electrocatalyst and support corrosion resistance and durability; (4) Synthesis and characterization of novel electrocatalyst; (5) Determination of fundamental electrochemical parameters; and (6) Estimation of electrocatalyst utilization.

Not Available

2011-10-01T23:59:59.000Z

111

Electrochemical Capacitors for Utility Applications  

Science Conference Proceedings (OSTI)

Electrochemical capacitors have over 100 times the energy density of conventional electrolytic capacitors, while retaining the high-power, high-life-cycle properties of conventional capacitors. This report presents a summary of the technical trends, commercialization status, and feasibility of electrochemical capacitor (ECC) technology in utility applications.

2005-08-31T23:59:59.000Z

112

Gas Mileage Tips - Driving More Efficiently  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving More Efficiently Drive Sensibly frustrated driver Aggressive driving (speeding, rapid acceleration and braking) wastes gas. It can lower your gas mileage by 33 percent at...

113

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

114

Application of ion implantation to electrochemical studies  

DOE Green Energy (OSTI)

The application of ion implantation to electrochemical studies is illustrated with a study of electrocatalysis of the chlorine evolution reaction at RuO{sub 2}, IrO{sub 2}, TiO{sub 2} mixed oxide anodes in chloride solutions. Electrode/solution interfaces of well defined catalyst composition are generated in a reproducible manner by implantation of Ru (or Ir) into Ti followed by in situ oxidation of the near surface titanium alloys. Ion implantation enables the tailoring on an atomic scale of an electrochemical interface. Analysis by Rutherford backscattering adds the ability of quantitative mechanistic study in terms of actual ion concentration at the interface. In addition, ion implantation, as a processing technique, creates new materials with improved properties which may have future practical use in catalytic materials.

Vallet, C.E.; White, C.W.

1990-01-01T23:59:59.000Z

115

Electrochemical sensor for monitoring electrochemical potentials of fuel cell components  

DOE Patents (OSTI)

An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

Kunz, Harold R. (Vernon, CT); Breault, Richard D. (Coventry, CT)

1993-01-01T23:59:59.000Z

116

Electrochemical oxidation of organic materials  

DOE Patents (OSTI)

This invention is a method and apparatus for the direct oxidation of organic materials, especially organic wastes, in an electrochemical cell. It fulfills the need for a simple, cost-effective way for generators of small quantities of waste to deal with that waste. It does not use an electron transfer agent, which may be a source of additional hazardous waste. The anode is made of carbon felt; the cathode is platinum; and the electrolyte is a strong oxidizer, preferably nitric acid. The potential difference is 2 to 3 volts; the current density is 0.15 to 0.25 A/cm{sup 2}. The porous barrier is a medium grade alumina frit or an ion exchange membrane. The organic materials are fed to the anode compartment; the resulting oxygen bubbling circumvents the need for stirring or circulating the waste. Many different types of waste (e.g. rubber gloves, TBP, process solutions, etc.) can be fed to the anode compartment without the need to process or store it. 3 figs. (DLC)

Almon, A.C.

1991-01-01T23:59:59.000Z

117

NREL: Vehicles and Fuels Research - DRIVE: Drive-Cycle Rapid...  

NLE Websites -- All DOE Office Websites (Extended Search)

representative drive cycles from raw data, the tool is capable of comparing vehicle operation to industry standard test cycles and can even select a representative...

118

Ferroelectric and Piezoelectric Properties of Sol-Gel-Processed ...  

Science Conference Proceedings (OSTI)

Piezoelectric Films for High Density Switching Arrays for Logic ... Processing and Their Electrochemical Performance for Energy Storage Applications · Synthesis ...

119

Renewable-reagent electrochemical sensor  

DOE Patents (OSTI)

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

1999-01-01T23:59:59.000Z

120

Renewable-reagent electrochemical sensor  

DOE Patents (OSTI)

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

Wang, J.; Olsen, K.B.

1999-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electrochemical catalyst recovery method  

DOE Patents (OSTI)

A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

Silva, Laura J. (Richland, WA); Bray, Lane A. (Richland, WA)

1995-01-01T23:59:59.000Z

122

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

123

Electrochemical catalyst recovery method  

DOE Patents (OSTI)

A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

Silva, L.J.; Bray, L.A.

1995-05-30T23:59:59.000Z

124

Rotary drive mechanism  

Science Conference Proceedings (OSTI)

This patent describes a rotary drive mechanism which includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de- energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti- overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

Kenderdine, E.W.

1991-10-08T23:59:59.000Z

125

Rotary drive mechanism  

Science Conference Proceedings (OSTI)

A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

Kenderdine, Eugene W. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

126

QUICK RELEASABLE DRIVE  

DOE Patents (OSTI)

A quick releasable mechanical drive system suitable for use in a nuclear reactor is described. A small reversible motor positions a control rod by means of a worm and gear speed reducer, a magnetic torque clutch, and a bell crank. As the control rod is raised to the operating position, a heavy coil spring is compressed. In the event of an emergency indicated by either a''scram'' signal or a power failure, the current to the magnetic clutch is cut off, thereby freeing the coil spring and the bell crank positioner from the motor and speed reduction gearing. The coil spring will immediately act upon the bell crank to cause the insertion of the control rod. This arrangement will allow the slow, accurate positioning of the control rod during reactor operation, while providing an independent force to rapidly insert the rod in the event of an emergency.

Dickson, J.J.

1958-07-01T23:59:59.000Z

127

Hydrogen--electric power drives  

SciTech Connect

Hydrogen--electric power drives would consist of most or all of these: chilled hydrogen gas tank, liquid oxygen tank, a bank of fuel cells, dc/ac inverter, ac drive motors, solid state ac speed control, dc sputter-ion vacuum pumps, steam turbine generator set and steam condenser. Each component is described. Optional uses of low pressure extraction steam and warm condensate are listed. Power drive applications are listed. Impact on public utilities, fuel suppliers, and users is discussed.

Hall, F.F.

1978-10-01T23:59:59.000Z

128

Smoothed Boundary Simulation of Electrochemical Processes in ...  

Science Conference Proceedings (OSTI)

Planar Sodium Metal Halide Battery for Renewable Integration and Grid ... Progress on Technology of Redox Flow Battery and Its Application in China.

129

Electrochemical device and process of making - Energy ...  

Jacobson; Craig P. (Lafayette, CA), Visco; Steven J. (Berkeley, CA), De Jonghe; Lutgard C. (Lafayette, CA) Assignee: The Regents of the University of ...

130

electrochemical measurements and processing of materials  

Science Conference Proceedings (OSTI)

247-259] A.E. Ares, R. Caram and C.E. Schvezov. Microstructure Analysis of ZA Alloy Rod Directionally Solidified by HeatMold Continuous Casting [pp. 261-268

131

Supported liquid membrane electrochemical separators  

DOE Patents (OSTI)

Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

1986-01-01T23:59:59.000Z

132

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

133

Zelenay wins Electrochemical Society's Research Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Society's Research Award Electrochemical Society's Research Award Zelenay wins Electrochemical Society's Research Award The award includes a monetary prize and membership in the Electrochemical Society's Energy Technology Division. December 11, 2012 Piotr Zelenay Piotr Zelenay The award recognizes Zelenay's "outstanding and original contributions to the science and technology of energy-related research areas that include scientific and technological aspects of fossil fuels and alternative energy sources, energy management and environmental consequences of energy utilization." Piotr Zelenay of LANL's Sensors and Electrochemical Devices group has won the 2012 Research Award presented by the Energy Technology Division of The Electrochemical Society. The award recognizes Zelenay's "outstanding

134

Electrochemical polishing of notches  

DOE Patents (OSTI)

An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip. 4 figs.

Kephart, A.R.; Alberts, A.H.

1989-02-21T23:59:59.000Z

135

Electrochemical cell for in-situ x-ray characterization  

DOE Green Energy (OSTI)

An electrochemical cell suitable for in-situ XRD analysis is presented. Qualitative information such as phase formation and phase stability can be easily monitored using the in-situ cell design. Quantitative information such as lattice parameters and kinetic behavior is also straightforward. Analysis of the LiMn&sub2;O&sub4; spinel using this cell design shows that the lattice undergoes two major structural shrinkages at approx. 4.0 V and approx. 4.07 V during charging. These shrinkages correlate well with the two electrochemical waves observed and indicate the likelihood of two separate redox processes which charging and discharging.

Doughty, D.H.; Ingersoll, D.; Rodriguez, M.A.

1998-08-04T23:59:59.000Z

136

Equipment specifications for an electrochemical fuel reprocessing plant  

Science Conference Proceedings (OSTI)

Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

Hemphill, Kevin P [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

137

Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits  

E-Print Network (OSTI)

We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency ...

Winkler, Mark Thomas

138

High efficiency compressor uses direct drive  

Science Conference Proceedings (OSTI)

This article focuses on the high efficiency of a compressor which uses only direct drive. This compressor was evaluated by judges and won Top Honors in the 1982 Chemical Processing magazine Vaaler Awards category of compressors, blowers and fans. Applications for the compressor include combustion air, process air and gas booster, incineration, fermentation, and vacuum filtration systems. In addition to a 50% reduction in power comsumption, the use of the compressor eliminated the need for a water seal, thus saving 200 gpm of water. And, since the elimination of the water seal reduced the necessary downtime for seal maintenance, on stream time was increased by 5%.

Not Available

1982-11-01T23:59:59.000Z

139

Argonne Chemical Sciences & Engineering -Electrochemical Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Battery Testing * Members * Contact * Publications * Overview * EADL EES Home Electrochemical...

140

Electrochemical Shock of Lithium Battery Materials - Programmaster ...  

Science Conference Proceedings (OSTI)

Symposium, Mesoscale Computational Materials Science of Energy Materials. Presentation Title, Electrochemical Shock of Lithium Battery Materials. Author(s) ...

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Argonne Chemical Sciences & Engineering - People - Electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical...

142

Results from Combined NMR and Electrochemical Impedance ...  

Science Conference Proceedings (OSTI)

Presentation Title, Oxygen-vacancy Transport in Heavily Doped Cubic Zirconia: Results from Combined NMR and Electrochemical Impedance Spectroscopies.

143

Electrochem Inc | Open Energy Information  

Open Energy Info (EERE)

Electrochem Inc Electrochem Inc Jump to: navigation, search Name Electrochem Inc Address 400 W. Cummings Park Place Woburn, Massachusetts Zip 01801 Sector Hydrogen Product Fuel cell hardware and testing equipment Website http://fuelcell.com/ Coordinates 42.4964246°, -71.1263367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4964246,"lon":-71.1263367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Progressive Dynamical Drive Train Modeling as Part of NREL Gearbox Reliability Collaborative: Preprint  

DOE Green Energy (OSTI)

The Gearbox Reliabiity Collaborative seeks to integrate several numerical models into the wind turbine drive train design process. This paper describes these models.

Oyague, F.

2008-07-01T23:59:59.000Z

145

Progressive Dynamical Drive Train Modeling as Part of NREL Gearbox Reliability Collaborative (Poster)  

DOE Green Energy (OSTI)

The Gearbox Reliabiity Collaborative seeks to integrate several numerical models into the wind turbine drive train design process. This paper decribes these models.

Oyague, F.

2008-06-01T23:59:59.000Z

146

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

147

Upgrading coal plant damper drives  

Science Conference Proceedings (OSTI)

The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

Hood, N.R.; Simmons, K. [Alamaba Power (United States)

2009-11-15T23:59:59.000Z

148

Direct drive field actuator motors  

DOE Patents (OSTI)

A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

Grahn, A.R.

1998-03-10T23:59:59.000Z

149

Mechanical drive for blood pump  

DOE Patents (OSTI)

This patent relates to a highly efficient blood pump to be used as a replacement for a ventricle of the human heart to restore people disabled by heart disease. The mechanical drive of the present invention is designed to operate in conjunction with a thermoelectric converter power source. The mechanical drive system essentially converts the output of a rotary power into pulsatile motion so that the power demand from the thermoelectric converter remains essentially constant while the blood pump output is pulsed. (auth)

Bifano, N.J.; Pouchot, W.D.

1975-07-29T23:59:59.000Z

150

Low backlash direct drive actuator  

DOE Patents (OSTI)

A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

Kuklo, Thomas C. (Oakland, CA)

1994-01-01T23:59:59.000Z

151

Cone Drive Operations Inc | Open Energy Information  

Open Energy Info (EERE)

worm gear technology. The company supplies azimuth and elevation drives for solar tracking applications. References Cone Drive Operations Inc1 LinkedIn Connections CrunchBase...

152

Electric vehicle drive train with contactor protection ...  

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the ...

153

Driving Green com | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Driving Green com Jump to: navigation, search Name Driving Green.com Place Melbourne, Florida Zip...

154

Tribo-electrochemical Characterization of Tantalum during Electrochemical-Mechanical Polishing (ECMP)  

E-Print Network (OSTI)

Electrochemical Mechanical Polishing (ECMP) has become increasingly important due to the continuous decrease of the device size in integrated circuit (IC) fabrication. Tantalum (Ta) is a promising material as a substitute for copper in ICs. This dissertation studies the tribology and electrochemistry of Ta ECMP. The present research uses experimental combined analysis approaches. A specially designed experimental setup assembling a tribometer and a potentiostat was used to carry out Ta ECMP. The friction force and electrochemical reactions were measured simultaneously. Using this setup, we found the factors which affected the frictional behaviors of Ta during ECMP. The technique of single frequency electrochemical impedance spectroscopy (EIS) was employed to investigate the material removal mechanisms in Ta ECMP. The results presented the competing mechanisms of removal and formation of a surface oxide layer of Ta. In order to further the investigation in a nanoscale, the atomic force microscope (AFM) was used to measure the material removal rate. The Preston equation for the Ta ECMP was established. A new methodology was developed to study the oxidation state and process of Ta during ECMP. Through comparing the material removal rate measured by using the AFM and the calculated one via the Faraday’s law, the distribution of the Ta suboxides and pentoxide, as well as the oxidation process, was revealed. The oxidation process was strongly dependent of the applied anodic potential, thickness of the oxide layer, mechanical forces, and surface orientation. A polymer environmental cell was designed and produced. Using this cell and AFM, it was found that the material removal in the nanometer scale was a function of the surface orientations. This research is beneficial for optimization of the Ta ECMP process. This dissertation includes six chapters. After Introduction and Motivation and Objectives, the material, setup, and testing conditions are discussed in Chapter III. Chapter IV discusses the tribology and material removal mechanisms in Ta ECMP, while Chapter V the oxidation of Ta during ECMP, followed by Conclusions and Future Work.

Gao, Feng

2010-12-01T23:59:59.000Z

155

Advanced Electrochemical Waste Forms  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

156

Sheet electrode for electrochemical systems  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Tsien, Hsue C. (Chatham Township, Morris County, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Grimes, Patrick G. (Westfield, NJ); Bellows, Richard J. (Westfield, NJ)

1983-04-12T23:59:59.000Z

157

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

Cieslak, W.R.; Storz, L.J.

1991-03-26T23:59:59.000Z

158

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant. 1 tab.

Cieslak, W.R.; Storz, L.J.

1989-06-12T23:59:59.000Z

159

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

Cieslak, Wendy R. (1166 Laurel Loop NE., Albuquerque, NM 87122); Storz, Leonard J. (2215 Ambassador NE., Albuquerque, NM 87112)

1991-01-01T23:59:59.000Z

160

Chemical Sciences & Engineering - Nuclear and Environmental Processes...  

NLE Websites -- All DOE Office Websites (Extended Search)

commercially viable electrochemical processes for the back end of the nuclear fuel cycle. This work covers the full scope of the nuclear fuel cycle for metal, oxide,...

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution  

Science Conference Proceedings (OSTI)

A well-defined microstructure with microchannels and a microchamber was fabricated on an aluminum plate by four steps of a new aluminum bulk micromachining process: anodizing, laser irradiation, electrochemical etching, and ultrasonication. An aluminum ... Keywords: Aluminum, Anodizing, Bulk micromachining, Electrochemical etching, Laser irradiation

Tatsuya Kikuchi, Yuhta Wachi, Masatoshi Sakairi, Ryosuke O. Suzuki

2013-11-01T23:59:59.000Z

162

Corrosion and Electrochemical Cells  

Science Conference Proceedings (OSTI)

Table 1   Cell conditions for commercial and industrial electrode processes...fuel cells Electrolytic e cell > e cell,rev I � 0 (impressed current

163

Distribution Drive | Open Energy Information  

Open Energy Info (EERE)

Drive Drive Jump to: navigation, search Name Distribution Drive Place Dallas, Texas Zip 75205 Product Biodiesel fuel distributor. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Drive reconfiguration mechanism for tracked robotic vehicle  

SciTech Connect

Drive reconfiguration apparatus for changing the configuration of a drive unit with respect to a vehicle body may comprise a guide system associated with the vehicle body and the drive unit which allows the drive unit to rotate about a center of rotation that is located at about a point where the drive unit contacts the surface being traversed. An actuator mounted to the vehicle body and connected to the drive unit rotates the drive unit about the center of rotation between a first position and a second position.

Willis, W. David (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

165

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

electrochemical energy storage Electric propulsion systems (e.g., power electronics, electric motors) Fuel cell power systems Lightweight materials Vehicle systems and...

166

Morphological, rheological and electrochemical studies of Poly(ethylene  

NLE Websites -- All DOE Office Websites (Extended Search)

Morphological, rheological and electrochemical studies of Poly(ethylene Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles Title Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles Publication Type Journal Article Year of Publication 2004 Authors Xie, Jiangbing, Robert G. Duan, Yong Bong Han, and John B. Kerr Journal Solid State Ionics Volume 175 Pagination 755-758 Keywords composite polymer electrolytes, nanoparticles, poly(ethylene oxide), rheology Abstract In this paper, the rheology and crystallization of composite Poly(ethylene oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting points were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

167

Hydromechanical transmission with hydrodynamic drive  

DOE Patents (OSTI)

This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.

Orshansky, Jr., deceased, Elias (LATE OF San Francisco, CA); Weseloh, William E. (San Diego, CA)

1979-01-01T23:59:59.000Z

168

Water drives peptide conformational transitions  

E-Print Network (OSTI)

Transitions between metastable conformations of a dipeptide are investigated using classical molecular dynamics simulation with explicit water molecules. The distribution of the surrounding water at different moments before the transitions and the dynamical correlations of water with the peptide's configurational motions indicate that water is the main driving force of the conformational changes.

Nerukh, Dmitry

2011-01-01T23:59:59.000Z

169

Anomalous-viscosity current drive  

DOE Patents (OSTI)

The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

Stix, T.H.; Ono, M.

1986-04-25T23:59:59.000Z

170

Electrochemical removal of material from metallic work  

DOE Patents (OSTI)

Deburring, polishing, surface forming and the like are carried out by electrochemical machining with conformable electrode means including an electrically conducting and an insulating web. The surface of the work to be processed is covered by a deformable electrically insulating web or cloth which is perforated and conforms with the work. The web is covered by a deformable perforated electrically conducting screen electrode which also conforms with, and is insulated from, the work by the insulating web. An electrolyte is conducted through the electrode and insulating web and along the work through a perforated elastic member which engages the electrode under pressure pressing the electrode and web against the work. High current under low voltage is conducted betwen the electrode and work through the insulator, removing material from the work. Under the pressure of the elastic member, the electrode and insulator continue to conform with the work and the spacing between the electrode and work is maintained constant.

Csakvary, Tibor (Wilkens Township, Allegheny County, PA); Fromson, Robert E. (Wilkens Township, Allegheny County, PA)

1980-05-13T23:59:59.000Z

171

Cogeneration with Thermionics and Electrochemical Cells  

E-Print Network (OSTI)

Thermionic energy converters convert high-temperature heat into high-current low-voltage direct current, rejecting heat at a temperature that is high enough to generate process steam. Electrochemical cells are high-current low-voltage devices, which are ideally suited for coupling to the output of the thermionic converters. A test is under way in which an array of thermionic converters is coupled to a industrial heater. The array will be tested to yield thermionic performance data. These data will be used in the design of a thermionic cogeneration system specifically applied to the chlorine caustic soda industry. A full-scale cogeneration installation of this type is expected to produce about 12 kilowatts of direct current power for each million Btu fired.

Miskolczy, G.; Goodale, D.; Huffman, F.; Morgan, D.

1984-01-01T23:59:59.000Z

172

Electrochemical synthesis of multisegmented nanowires  

Science Conference Proceedings (OSTI)

Electrochemical deposition has emerged as a promising route for nanostructure fabrication in recent years due to the many inherent advantages it possesses. This study focuses on the synthesis of high-aspect-ratio multisegmented Au/Ni nanowires using template-directed sequential electrochemical deposition techniques. By selectively removing the Ni segments in the nanowires, high-yield of pure gold nanorods of predetermined lengths was obtained. Alternatively, the sacrificial Ni segments in the nanowires can be galvanically displaced with Bi and Te to form barbells structures with Bi{sub x}Te{sub y} nanotubes attached to neighbouring gold segments. Detailed studies on the nanostructures obtained were carried out using various microscopy, diffraction and probebased techniques for structural, morphological and chemical characterizations.

Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah [Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

2012-11-27T23:59:59.000Z

173

Solid state electrochemical current source  

DOE Patents (OSTI)

A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

2002-04-30T23:59:59.000Z

174

Cathode composition for electrochemical cell  

DOE Patents (OSTI)

A high-temperature, secondary electrochemical cell includes a negative electrode containing an alkali metal such as lithium, an electrolyte of molten salt containing ions of that alkali metal and a positive electrode containing a mixture of metallic sulfides. The positive electrode composition is contained within a porous structure that permits permeation of molten electrolyte and includes a mixture of about 5% to 30% by weight Cu.sub.2 S in FeS.

Steunenberg, Robert K. (Naperville, IL); Martin, Allan E. (Woodridge, IL); Tomczuk, Zygmunt (Palos Hills, IL)

1976-01-01T23:59:59.000Z

175

Development of an Electrochemical Separator and Compressor  

DOE Green Energy (OSTI)

Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

Trent Molter

2011-04-28T23:59:59.000Z

176

Compacted carbon for electrochemical cells  

DOE Patents (OSTI)

This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

Greinke, Ronald Alfred (Medina, OH); Lewis, Irwin Charles (Strongsville, OH)

1997-01-01T23:59:59.000Z

177

Compacted carbon for electrochemical cells  

DOE Patents (OSTI)

This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

Greinke, R.A.; Lewis, I.C.

1997-10-14T23:59:59.000Z

178

Procession  

E-Print Network (OSTI)

UEE 2008 Ziermann, Martin 2004 Macht und Architektur: ZweiP ROCESSION Martin Stadler EDITORS W ILLEKE W ENDRICHFull Citation: Stadler, Martin, 2008, Procession. In Jacco

Stadler, Martin

2008-01-01T23:59:59.000Z

179

Processing  

Science Conference Proceedings (OSTI)

...are processed to complex final shapes by investment casting. Iron-nickel-base superalloys are not customarily investment cast. Investment casting permits intricate internal cooling

180

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Plan Partnership Plan March 2013 U.S. DRIVE Partnership Plan Table of Contents Foreword ....................................................................................................................................................... 2 Definition ...................................................................................................................................................... 3 Partners ......................................................................................................................................................... 3 U.S. DRIVE Vision ........................................................................................................................................... 3 U.S. DRIVE Mission ........................................................................................................................................ 4

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1988-11-08T23:59:59.000Z

182

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

Benedick, William B. (Albuquerque, NM); Graham, Robert A. (Los Lunas, NM); Morosin, Bruno (Albuquerque, NM)

1988-01-01T23:59:59.000Z

183

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1987-04-20T23:59:59.000Z

184

Structures and fabrication techniques for solid state electrochemical devices  

SciTech Connect

Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2008-04-01T23:59:59.000Z

185

Structures and fabrication techniques for solid state electrochemical devices  

DOE Patents (OSTI)

Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

2012-10-09T23:59:59.000Z

186

Magnetically Coupled Adjustable Speed Drive Systems  

DOE Green Energy (OSTI)

Adjustable speed drive (ASD) technologies have the ability to precisely control motor sytems output and produce a numbr of benefits including energy and demand savings. This report examines the performance and cost effectiveness of a specific class of ASDs called magnetically-coupled adjustable speed drives (MC-ASD) which use the strength of a magnetic field to control the amount of torque transferred between motor and drive shaft. The MagnaDrive Adjustable Speed Coupling System uses fixed rare-earth magnets and varies the distance between rotating plates in the assembly. the PAYBACK Variable Speed Drive uses an electromagnet to control the speed of the drive

Chvala, William D.; Winiarski, David W.

2002-08-18T23:59:59.000Z

187

Electrochemical Arsenic Remediation for Rural Bangladesh  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Arsenic Remediation for Rural Bangladesh NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until...

188

Wide Electrochemical Window Solvents - Energy Innovation Portal  

Biomass and Biofuels; ... This solvent has such a wide electrochemical window and such powerful solvating properties that it is an excellent target solvent ...

189

Nanomaterial-Based Electrochemical Biosensors and Bioassays  

Science Conference Proceedings (OSTI)

This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

2010-08-31T23:59:59.000Z

190

Fundamentals of Electrochemical Deposition, Second Edition - TMS  

Science Conference Proceedings (OSTI)

Jul 25, 2007 ... Fundamentals of Electrochemical Deposition, 2nd Edition by Milan Paunovic and Mordechay Schlesinger provides a ... This is not a handbook.

191

Electrochemical Behavior of CIGS Electrodeposition for the ...  

Science Conference Proceedings (OSTI)

Presentation Title, Electrochemical Behavior of CIGS Electrodeposition for the Application of Photovoltaic Cell. Author(s), Hyunju Lee, Jae-Ho Lee, Yangdo Kim.

192

Performance of AC Motor Drives During Voltage Sags and Momentary Interruptions  

Science Conference Proceedings (OSTI)

Adjustable-speed drives (ASDs) are quickly replacing mechanical means of controlling process parameters. This PQ Commentary discusses the causes of ASD system shutdowns and suggests ways to improve ride-through of processes controlled by ASDs.

2003-12-31T23:59:59.000Z

193

HybriDrive Propulsion System  

NLE Websites -- All DOE Office Websites (Extended Search)

HybriDrive HybriDrive ® Propulsion System Cleaner, smarter power for transit DOE/FTA Fuel Cell Research Priorities Workshop Washington, DC 7 June 2010 Bart W. Mancini Sr. Principal Systems Engineer BAE Systems Ph: 607-770-4103 bart.mancini@baesystems.com 2 Overview 3 * BAE Systems FC Experience / Deployments * Technology gaps/barriers to full commercialization of fuel cell buses * Well-to-wheels energy efficiency and emissions * Cost metrics * Bus integration issues * Fuel cell bus R&D needs * Future plans BAE Systems FC Experience / Deployments 4 * 1998 - Georgetown/FTA/DOE Fuel Cell Bus #1 (still serviceable) * UTC 100 kW Phosphoric Acid FC using on-board Methanol Reformate, Hybrid propulsion & Electric accessories * 2000 - Georgetown/FTA/DOE Fuel Cell Bus #2 (retired) *

194

Granular gases under extreme driving  

E-Print Network (OSTI)

We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady-state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

W. Kang; J. Machta; E. Ben-Naim

2010-02-04T23:59:59.000Z

195

BNL Blood Drives: Iron-rich foods  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL Blood Drives: Iron-Rich Foods Blood Drive Home Seafood: Fish (cod, sardines, tuna, clams, oysters, shrimp) Poultry: Chicken, eggs, yolk Lean Red Meats: Beef, lamb, veal, pork,...

196

Nanoelectrode array for electrochemical analysis  

DOE Patents (OSTI)

A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

Yelton, William G. (Sandia Park, NM); Siegal, Michael P. (Albuquerque, NM)

2009-12-01T23:59:59.000Z

197

Electrochemical behavior of carbon aerogels derived from different precursors  

DOE Green Energy (OSTI)

The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D. [Lawrence Livermore National Lab., CA (United States); Reynolds, G.M.; Dresshaus, M.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

1995-04-01T23:59:59.000Z

198

Structures And Fabrication Techniques For Solid State Electrochemical Devices  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2005-12-27T23:59:59.000Z

199

Structures and fabrication techniques for solid state electrochemical devices  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2003-08-12T23:59:59.000Z

200

Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the...

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solid oxide electrochemical reactor science.  

DOE Green Energy (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

202

Adjustable Speed Drive (ASD) System Design Specifications Guide Book  

Science Conference Proceedings (OSTI)

This report presents a comprehensive assessment of the applications of adjustable speed drives (ASDs) in motor-driven systems in commercial and industrial environments. The power electronics-type ASD is continuously improving process control. An ASD controls fluid, gas, material, or parts flow by controlling motor speed.BackgroundIn the past, conventional process flow control for liquids and gases used valves, vanes, dampers, or registers. In these systems, ...

2012-11-28T23:59:59.000Z

203

Steel refining with an electrochemical cell  

DOE Patents (OSTI)

Apparatus is described for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom. 2 figs.

Blander, M.; Cook, G.M.

1988-05-17T23:59:59.000Z

204

Nanostructured Metal Electrodes for Wool Processing and Electroanalysis.  

E-Print Network (OSTI)

??The research presented in this thesis firstly concerns the use of electrochemical techniques to develop approaches to wool processing which have a lower impact on… (more)

Cruickshank, Amy Clare

2007-01-01T23:59:59.000Z

205

Electrolyte for an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.

1997-01-28T23:59:59.000Z

206

Electrolyte for an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1997-01-01T23:59:59.000Z

207

Cathode for an electrochemical cell  

SciTech Connect

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

2001-01-01T23:59:59.000Z

208

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

DOE Green Energy (OSTI)

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL)

2010-10-19T23:59:59.000Z

209

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DRIVE U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). Specifically, the Partnership is a forum for pre-competitive technical information exchange among partners to discuss R&D needs, develop joint goals and technology roadmaps, and evaluate R&D progress for a broad range of technical areas. By providing a framework for frequent and regular interaction among technical experts in a common area of expertise, the Partnership -

210

Electric vehicle drive train with contactor protection  

DOE Patents (OSTI)

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

Konrad, C.E.; Benson, R.A.

1994-11-29T23:59:59.000Z

211

Electric vehicle drive train with contactor protection  

SciTech Connect

A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

1994-01-01T23:59:59.000Z

212

DOE Drives Big Data Push  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Volume 9 Issue 2 2 Volume 9 Issue 2 From YAGS to Planetary Biology . . . . . . . . . . . . . . . 2 DOE Drives Big Data Push . . . . . . . . . . . . . . . . . . . . 3 Sweating Small Scale Genomics . . . . . . . . . . . . . . . 6 The Future of the DOE JGI . . . . . . . . . . . . . . . . . . . . 7 Save the Date for Meeting 8 . . . . . . . . . . . . . . . . . . . 8 also in this issue With a record 488 genomics researchers and bioinformaticians sitting in the Marriott Walnut Creek ballroom, New York Times science writer Carl Zimmer opened the DOE Joint Genome Institute's 7th Annual Genomics of Energy & Environment Meeting on March 20, 2012. Sharing his thoughts about being "On the Genome Beat," he informed the audience that he was worn down by seeing news about scientists successfully sequencing yet another genome sequence, and that "maybe some genomes shouldn't be written about." Zimmer's words engaged the audience in a discussion that

213

Current Drive in Recombining Plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

P.F. Schmit and N.J. Fisch

2012-05-15T23:59:59.000Z

214

Current drive in recombining plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the influence of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero ''residual'' current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

Schmit, P. F.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

2011-10-15T23:59:59.000Z

215

Aluminum Production Paths in the New Millennium  

Science Conference Proceedings (OSTI)

Electrochemical technologies face the same problems and challenges as present ... The driving force for developing new processes for aluminum smelting ...

216

Rechargeable thin-film electrochemical generator  

DOE Patents (OSTI)

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2000-09-15T23:59:59.000Z

217

Marketing & Driving Demand: Social Media Tools & Strategies ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing & Driving Demand: Social Media Tools & Strategies January 16, 2011 Maryanne Fuller (MF): Hi there. This is Maryanne Fuller from Lawrence Berkeley National Laboratory....

218

Electric Drive Vehicles and Their Infrastructure Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Webinar - Electric Drive Vehicles and Their Infrastructure Issues (March 2010) Jim Francfort and Don Karner Advanced Vehicle Testing Activity March 24, 2010 This...

219

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

220

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

222

Wind Turbine Design Innovations Drive Industry Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Innovations Drive Industry Transformation For more than 20 years, the National Renewable Energy Laboratory (NREL) has helped GE and its predecessors achieve...

223

High-megawatt Electric Drive Motors  

Science Conference Proceedings (OSTI)

... Page 2. © ABB BU Machines April 10, 2009 | Slide 2 High-megawatt Electric Drive Motors ... motor concept ... A selection of compressor motors >30MW. ...

2012-10-21T23:59:59.000Z

224

OFFICE OF HUMAN RESOURCES AND RISK MANAGEMENT 800 SOUTH TUCKER DRIVE  

E-Print Network (OSTI)

OFFICE OF HUMAN RESOURCES AND RISK MANAGEMENT 800 SOUTH TUCKER DRIVE TULSA, OKLAHOMA 74104 918 Receptionist Shorthand Technical Word-processing Teller List Others ___________________________ SERVICE/MAINTENANCE SKILLS Custodial Service: Food Service: Maintenance: TOOLS/EQUIPMENT Power (please list

Reynolds, Albert C.

225

Low-temperature thermally regenerative electrochemical system  

DOE Patents (OSTI)

A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, R.O.; Brown, A.P.; Yao, N.P.

1982-04-21T23:59:59.000Z

226

An Assessment of High Performance AC Motor Drives Versus DC Motor Drives  

Science Conference Proceedings (OSTI)

In today's rapidly changing market place, drive users are applying AC and DC drives in applications that require more demanding speed and torque performance. Properly matching a drive's rating and unit characteristics to an application are two very effective ways of managing unit cost and cost reduction.

1998-12-29T23:59:59.000Z

227

DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

Not Available

2013-04-01T23:59:59.000Z

228

UCDavis University of California Learning By Driving  

E-Print Network (OSTI)

% 29% 0% 2% 10% 37% 39% 71% Solar Wind Hydro Nuclear Natural Gas Coal The electricity for charging fun with it. "I love the regenerative braking. In fact, I miss it when I drive my other cars." ­ Household 8 "It is like driving a slot car. It is exciting; it is as much fun as accelerating" ­ Survey

California at Davis, University of

229

Electric top drives gain wide industry acceptance  

Science Conference Proceedings (OSTI)

Since its introduction, the top drive drilling system has gained acceptance as a productive and safe method for drilling oil and gas wells. Originally, the system was used mostly for offshore and higher cost land drilling, and it had to be installed as a permanent installation because of its enormous weight and size. Essentially, a top drive replaces the kelly and rotary table as the means of rotating drillpipe on oil, gas and geothermal rigs and is considered to be 15% to 40% more efficient than a kelly drive. Top drive systems allow the operator to drill and maintain directional orientation for triple stands and provide tripping efficiency because of the ability to ream and circulate with triple stands, to reduce the risk of stuck pipe or lost wells, and to improve well control and pipe handling safety. The paper describes electric top drives with DC motors, top drives with AC motors, top drives with permanent magnet motors, and top drives with permanent magnet brushless synchronous motors.

Riahi, M.L.

1998-05-01T23:59:59.000Z

230

Control rod drive hydraulic system  

DOE Patents (OSTI)

A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

Ose, Richard A. (San Jose, CA)

1992-01-01T23:59:59.000Z

231

Gas Mileage Tips - Driving More Efficiently  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving More Efficiently Driving More Efficiently Personalize Fuel Prices Select the fuel type and enter your fuel price to personalize savings estimates. Regular Midgrade Premium Diesel E85 CNG LPG $ 3.33 /gal Save My Prices Use Default Prices Click "Save My Prices" to apply your prices to other pages, or click "Use Default Prices" use national average prices. Drive Sensibly frustrated driver Aggressive driving (speeding, rapid acceleration and braking) wastes gas. It can lower your gas mileage by 33% at highway speeds and by 5% around town. Sensible driving is also safer for you and others, so you may save more than gas money. Fuel Economy Benefit: 5%-33% Equivalent Gasoline Savings: $0.17-$1.10/gallon Observe the Speed Limit (New Information) Graph showing MPG decreases rapidly at speeds above 50 mph

232

Electrifying Your Drive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrifying Your Drive Electrifying Your Drive Electrifying Your Drive April 27, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For anyone who grew up watching The Jetsons (or Back to the Future, depending on your generation), the "Car of the Future!" flew through the skies with the greatest of ease. Although most of us have given up on our hopes of a flying car, anything beyond the internal combustion engine has seemed hopelessly out of reach until recently. However, with several manufacturers planning on producing plug-in and all-electric vehicles, the Car of the Future will be available soon! But before you put down a deposit, it's helpful to understand the different types of electric drive technologies. The most basic form of electric drive

233

Electrifying Your Drive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrifying Your Drive Electrifying Your Drive Electrifying Your Drive April 27, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For anyone who grew up watching The Jetsons (or Back to the Future, depending on your generation), the "Car of the Future!" flew through the skies with the greatest of ease. Although most of us have given up on our hopes of a flying car, anything beyond the internal combustion engine has seemed hopelessly out of reach until recently. However, with several manufacturers planning on producing plug-in and all-electric vehicles, the Car of the Future will be available soon! But before you put down a deposit, it's helpful to understand the different types of electric drive technologies. The most basic form of electric drive

234

Experimental electrochemical capacitor test results  

DOE Green Energy (OSTI)

Various electrochemical capacitors (ultracapacitors) are being developed for hybrid vehicles as candidate power assist devices for the fast response engine. The primary functions of the ultracapacitor are to level the dynamic power loads on the primary propulsion device and recover available energy from regenerative breaking during off-peak power periods. Ultracapacitors show promise toward being able to accept high regenerative pulses while exhibiting very high cycle life. This paper will present test data from selected US Department of Energy (DOE) supported ultracapacitor projects designed to meet the fast response engine requirements. Devices containing carbon, conducting polymers, and metal oxide electrode materials in combination with aqueous or organic electrolytes are being supported by the DOE. This paper will present and discuss testing data obtained from recent prototype capacitors supplied by Maxwell Energy Products, Inc., SAFT America, Inc., Federal Fabrics-Fibers and the University of Wisconsin-Madison. Constant-current, constant-power, leakage-current, and self-discharge testing of these various capacitors have been conducted. All devices were cycled between the rated charged voltage and zero volts for the constant-current tests and between the rated charged voltage and half that value for the constant-power tests.

Wright, R.B.; Murphy, T.C.; Kramer, W.E. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Satula, R.A.; Rogers, S.A. [Dept. of Energy, Washington, DC (United States)

1997-11-01T23:59:59.000Z

235

GPS Data Filtration Method for Drive Cycle Analysis Applications  

SciTech Connect

When employing GPS data acquisition systems to capture vehicle drive-cycle information, a number of errors often appear in the raw data samples, such as sudden signal loss, extraneous or outlying data points, speed drifting, and signal white noise, all of which limit the quality of field data for use in downstream applications. Unaddressed, these errors significantly impact the reliability of source data and limit the effectiveness of traditional drive-cycle analysis approaches and vehicle simulation software. Without reliable speed and time information, the validity of derived metrics for drive cycles, such as acceleration, power, and distance, become questionable. This study explores some of the common sources of error present in raw onboard GPS data and presents a detailed filtering process designed to correct for these issues. Test data from both light and medium/heavy duty applications are examined to illustrate the effectiveness of the proposed filtration process across the range of vehicle vocations. Graphical comparisons of raw and filtered cycles are presented, and statistical analyses are performed to determine the effects of the proposed filtration process on raw data. Finally, an evaluation of the overall benefits of data filtration on raw GPS data and present potential areas for continued research is presented.

Duran, A.; Earleywine, M.

2013-02-01T23:59:59.000Z

236

Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results  

Science Conference Proceedings (OSTI)

This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

2011-12-01T23:59:59.000Z

237

JV Task-121 Electrochemical Synthesis of Nitrogen Fertilizers  

SciTech Connect

An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly depends upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.

Junhua Jiang; Ted Aulich

2008-11-30T23:59:59.000Z

238

JV Task-121 Electrochemical Synthesis of Nitrogen Fertilizers  

DOE Green Energy (OSTI)

An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly depends upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.

Junhua Jiang; Ted Aulich

2008-11-30T23:59:59.000Z

239

Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Efficient Driving Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Management Strategies

240

Spectroscopic ellipsometry of electrochemical precipitation and oxidation  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopic ellipsometry of electrochemical precipitation and oxidation Spectroscopic ellipsometry of electrochemical precipitation and oxidation of nickel hydroxide films Title Spectroscopic ellipsometry of electrochemical precipitation and oxidation of nickel hydroxide films Publication Type Journal Article Year of Publication 1998 Authors Kong, Fanping, Robert Kostecki, Frank R. McLarnon, and Rolf H. Muller Journal Thin Solid Films Volume 313-314 Pagination 775-780 Keywords effective medium approximation, electrochemical precipitation, inhomogeneous films, nickel hydroxide, spectroscopic ellipsometry Abstract In situ spectroscopic ellipsometry was used to investigate the electrochemical precipitation of nickel hydroxide films. By use of optical models for inhomogeneous films it was found that a specific precipitation current density produced the most compact and homogeneous film structures. The density of nickel hydroxide films was derived to be 1.25-1.50 g/cm3. The redox behavior of precipitated nickel hydroxide films was studied with an effective-medium optical model. Incomplete conversion to nickel oxyhydroxide and a reduction in film thickness were found during the oxidation cycle.

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Control rod drive for reactor shutdown  

DOE Patents (OSTI)

A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

McKeehan, Ernest R. (Los Gatos, CA); Shawver, Bruce M. (San Jose, CA); Schiro, Donald J. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1976-01-20T23:59:59.000Z

242

Electrochemical detector integrated on microfabricated capillary electrophoresis chips  

DOE Patents (OSTI)

A microfabricated capillary electrophoresis chip which includes an integral thin film electrochemical detector for detecting molecules separated in the capillary.

Mathies, Richard A. (Moraga, CA); Glazer, Alexander N. (Orinda, CA); Lao, Kaiqin (San Francisco, CA); Woolley, Adam T. (Albany, CA)

1999-01-01T23:59:59.000Z

243

Electrochemical detector integrated on microfabricated capilliary electrophoresis chips  

DOE Patents (OSTI)

A microfabricated capillary electrophoresis chip which includes an integral thin film electrochemical detector for detecting molecules separated in the capillary.

Mathies, Richard A. (Moraga, CA); Glazer, Alexander N. (Orinda, CA); Woolley, Adam T. (Albany, CA); Lao, Kaigin (San Francisco, CA)

2000-01-01T23:59:59.000Z

244

Electrochemical deposition of high purity silicon from molten fluoride ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Solar Cell Silicon. Presentation Title, Electrochemical deposition of high purity ...

245

Lithium based electrochemical cell systems having a degassing agent  

SciTech Connect

A lithium based electrochemical cell system includes a positive electrode; a negative electrode; an electrolyte; and a degassing agent.

Hyung, Yoo-Eup (Naperville, IL); Vissers, Donald R. (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2012-05-01T23:59:59.000Z

246

A27: Electrochemical Study of Ag Ionization in Molten Lead ...  

Science Conference Proceedings (OSTI)

The concentration of Ag+ in the molten glass significantly increased with ... Electrochemical Deposition of High Purity Silicon in Molten Salts.

247

Giner Electrochemicals Inc | Open Energy Information  

Open Energy Info (EERE)

Giner Electrochemicals Inc Giner Electrochemicals Inc Jump to: navigation, search Name Giner Electrochemicals Inc Place Newton, Massachusetts Zip 2466 Product Specializes in the development of fuel cell technologies and products. Coordinates 43.996685°, -87.803724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996685,"lon":-87.803724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

MIT- Electrochemical Energy Laboratory | Open Energy Information  

Open Energy Info (EERE)

MIT- Electrochemical Energy Laboratory MIT- Electrochemical Energy Laboratory Jump to: navigation, search Name MIT- Electrochemical Energy Laboratory Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Analysis and Diagnostics Laboratory Electrochemical Analysis and Diagnostics Laboratory Panagiotis Prezas Argonne researcher Panagiotis Prezas prepares lithium-ion cells for evaluation. At the EADL, researchers can test everything from a quarter-sized coin cell to an 800-kilogram automotive battery pack. The Electrochemical Analysis and Diagnostics Laboratory (EADL) provides battery and fuel cell developers with reliable, independent, and unbiased performance evaluations of their cells, modules, and battery packs. These evaluations have been performed for the U.S. Department of Energy (DOE), government and industry consortia, and industrial developers to provide insight into the factors that limit the performance and life of advanced battery systems. Such evaluations help battery developers and DOE

250

Graphene to Graphane: Novel Electrochemical Conversion  

E-Print Network (OSTI)

A novel electrochemical means to generate atomic hydrogen, simplifying the synthesis and controllability of graphane formation on graphene is presented. High quality, vacuum grown epitaxial graphene (EG) was used as starting material for graphane conversion. A home-built electrochemical cell with Pt wire and exposed graphene as the anode and cathode, respectively, was used to attract H+ ions to react with the exposed graphene. Cyclic voltammetry of the cell revealed the potential of the conversion reaction as well as oxidation and reduction peaks, suggesting the possibility of electrochemically reversible hydrogenation. A sharp increase in D peak in the Raman spectra of EG, increase of D/G ratio, introduction of a peak at ~2930 cm-1 and respective peak shifts as well as a sharp increase in resistance showed the successful hydrogenation of EG. This conversion was distinguished from lattice damage by thermal reversal back to graphene at 1000{\\deg}C.

Daniels, Kevin M; Zhang, R; Chowdhury, I; Obe, A; Weidner, J; Williams, C; Sudarshan, T S; Chandrashekhar, MVS

2010-01-01T23:59:59.000Z

251

Variable Frequency Drives: Energy Savings and Impact on Motor Performance  

E-Print Network (OSTI)

Variable frequency drives (VFDs) have found widespread application in recent years. VFDs are valued for their potential to save energy and improve processes. Reliability has improved significantly, but there are still pitfalls to be addressed in properly applying VFDs. The benefits and pitfalls in applying VFDs that will be addressed by this paper include- Benefits: Energy Savings, Improved Process Control, “Soft Start” Reduced Mechanical Stress, Improved Electrical System Power Factor, and Pitfalls: Motor Acoustic Noise, Motor Heating. This paper is intended for plant engineers and maintenance personnel who have some practical experience with electrical and mechanical equipment, but are not VFD experts.

Petro, D.

1993-03-01T23:59:59.000Z

252

Measured Savings of DC to AC Drive Retrofit in Plastic Extrusion  

E-Print Network (OSTI)

This paper presents the potential electrical energy efficiency improvements for utilizing alternating current (AC) motors controlled by variable frequency drives (VFD) in place of direct current (DC) motors to drive plastic extrusion machines. A brief background on the extrusion process is presented along with typical extrusion machine electrical drive performance requirements. Motor performance characteristics and control strategies are described for both AC and DC machines. A case study is presented, where detailed electrical measurements were performed on two similar extrusion machines driven by a DC motor and an AC motor respectively. Electrical energy, demand, and cost savings are analyzed

Sfeir, R. A.

2008-01-01T23:59:59.000Z

253

Current-Drive Efficiency in a Degenerate Plasma  

DOE Green Energy (OSTI)

a degenerate plasma, the rates of electron processes are much smaller than the classical model would predict, affecting the efficiencies of current generation by external non-inductive means, such as by electromagnetic radiation or intense ion beams. For electron-based mechanisms, the current-drive efficiency is higher than the classical prediction by more than a factor of 6 in a degenerate hydrogen plasma, mainly because the electron-electron collisions do not quickly slow down fast electrons. Moreover, electrons much faster than thermal speeds are more readily excited without exciting thermal electrons. In ion-based mechanisms of current drive, the efficiency is likewise enhanced due to the degeneracy effects, since the electron stopping power on slow ion beams is significantly reduced.

S. Son and N.J. Fisch

2005-11-01T23:59:59.000Z

254

Heteroatom incorporated coke for electrochemical cell electrode  

DOE Patents (OSTI)

This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (i) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (ii) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns. (b) a binder This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode.

Lewis, Irwin Charles (Strongsville, OH); Greinke, Ronald Alfred (Medina, OH)

1997-01-01T23:59:59.000Z

255

Heteroatom incorporated coke for electrochemical cell electrode  

DOE Patents (OSTI)

This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (1) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (2) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns and (b) a binder. This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode. 5 figs.

Lewis, I.C.; Greinke, R.A.

1997-06-17T23:59:59.000Z

256

Image fusion for a nighttime driving display  

E-Print Network (OSTI)

An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

Herrington, William Frederick

2005-01-01T23:59:59.000Z

257

Driving Efficiencies Track | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Efficiencies Track Driving Efficiencies Track Driving Efficiencies Track Driving Efficiencies Track Tuesday April 17, 2012 From E-Mail to "The Stream" by Don Burke Taking Records Inventory Into the 21st Century by Lorie A. Robb Engineering and Operations Control: Embrace the Culture by Cheryl Bolen IT Project Management Framework by Denise Hill Wednesday April 18, 2012 Records Warehouse Operations and Records Storage for External Customers by Karen Hatch Preservation of Long-Term Temporary Records by Jeanie Gueretta Mobile Initiatives Effecting Change at Hanford by Don Stewart DOE's CIO's EWA by Sarah Gamage, Don Schade and Alan Andon Green IT 2012: Sustainable Electronics by Edwin Luevanos and Jeff Eagan Thursday April 19, 2012 Document Management and Control System by Melissa Ruth

258

Direct drive wind turbine - Energy Innovation Portal  

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The ...

259

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

260

Better Buildings Neighborhood Program: Driving Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

even know they have. This section explains how you can use effective marketing to drive demand for energy upgrades in your community. Following the lead of many Better Buildings...

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Frequency modulation drive for a piezoelectric motor  

DOE Patents (OSTI)

A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

Mittas, Anthony (Albuquerque, NM)

2001-01-01T23:59:59.000Z

262

Discriminating Between the Physical Processes that Drive Spheroid Size Evolution  

E-Print Network (OSTI)

Massive galaxies at high-z have smaller effective radii than those today, but similar central densities. Their size growth therefore relates primarily to the evolving abundance of low-density material. Various models have been proposed to explain this evolution, which have different implications for galaxy, star, and BH formation. We compile observations of spheroid properties as a function of redshift and use them to test proposed models. Evolution in progenitor gas-richness with redshift gives rise to initial formation of smaller spheroids at high-z. These systems can then evolve in apparent or physical size via several channels: (1) equal-density 'dry' mergers, (2) later major or minor 'dry' mergers with less-dense galaxies, (3) adiabatic expansion, (4) evolution in stellar populations & mass-to-light-ratio gradients, (5) age-dependent bias in stellar mass estimators, (6) observational fitting/selection effects. If any one of these is tuned to explain observed size evolution, they make distinct predict...

Hopkins, Philip F; Hernquist, Lars; Wuyts, Stijn; Cox, Thomas J

2009-01-01T23:59:59.000Z

263

Heating hydrocarbon containing formations in a line drive staged process  

DOE Patents (OSTI)

Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

Miller, David Scott (Katy, TX)

2009-07-21T23:59:59.000Z

264

PHEV and Other Electric Drive Testing Results and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity PHEV and Other Electric Drive Testing Results and Resources Jim Francfort Electric Drive Session Alternative Fuels & Vehicles Las Vegas, Nevada -...

265

Microsoft Word - Compare Driving Styles_ ETEC Hymotion Prius...  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving intensity is the energy at the wheels used for propulsion. Recaptured energy through regenerative braking is not considered when calculating driving intensity....

266

Energy Department Announces $60 Million to Drive Affordable,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Million to Drive Affordable, Efficient Solar Power Energy Department Announces 60 Million to Drive Affordable, Efficient Solar Power October 22, 2013 - 11:45am Addthis News...

267

Energy Department Announces $60 Million to Drive Affordable,...  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Million to Drive Affordable, Efficient Solar Power Energy Department Announces 60 Million to Drive Affordable, Efficient Solar Power October 22, 2013 - 11:45am Addthis News...

268

The Transportation Leapfrog: Using Smart Phones to Collect Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Leapfrog: Using Smart Phones to Collect Driving Data and Model Fuel Economy in India Title The Transportation Leapfrog: Using Smart Phones to Collect Driving Data...

269

Secretary Moniz Announces New Biofuels Projects to Drive Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological...

270

Energy Department Invests to Drive Down Costs of Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in...

271

Rechargeable Batteries, Photochromics, Electrochemical Lithography...  

NLE Websites -- All DOE Office Websites (Extended Search)

employed to explore in detail fundamental interfacial processes. Using current-sensing atomic forcemicroscopy (CSAFM), small variations in the electronic conductance of battery...

272

Hybridization of multi-objective evolutionary algorithms and artificial neural networks for optimizing the performance of electrical drives  

Science Conference Proceedings (OSTI)

Performance optimization of electrical drives implies a lot of degrees of freedom in the variation of design parameters, which in turn makes the process overly complex and sometimes impossible to handle for classical analytical optimization approaches. ... Keywords: Electrical drives, Feed-forward artificial neural networks, Hybridization, Multi-objective evolutionary algorithms, Performance optimization, Surrogate fitness evaluation

Alexandru-Ciprian Zvoianu, Gerd Bramerdorfer, Edwin Lughofer, Siegfried Silber, Wolfgang Amrhein, Erich Peter Klement

2013-09-01T23:59:59.000Z

273

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

274

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

275

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Research Basic Research * Members * Contact * Publications * Overview * CEES EES Home Electrochemical Energy Storage - Basic Research Electrochemical Energy Storage Chemistry co-op student Sara Busking loads a lithium-ion battery cell in a pouch into a test oven to evaluate its electrochemical performance. EES conducts basic research to support its applied electrochemical energy storage R&D initiatives. EES also leads an Energy Frontier Research Center (EFRC), recently awarded by DOE's Office of Science, with partners at Northwestern University and the University of Illinois (Urbana Champaign). The EFRC, the Center for Electrical Energy Storage: Tailored Interfaces (CEES), focuses on understanding electrochemical phenomena at electrode/electrolyte interfaces

276

Argonne Chemical Sciences & Engineering - Publications - Electrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Basic Research S.-H. Kang and M. M. Thackeray, "Stabilization of xLi2MnO3·(1-x)LiMO2 Electrode Surfaces (M=Mn, Ni, Co) with Mildly Acidic, Fluorinated Solutions," Journal of the Electrochemical Society, 155, A269 (2008) C. S. Johnson, N. Li, C. Lefief, J. T. Vaughey and M. M. Thackeray, "Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3*(1-x)LiMn0.333Ni0.333Co0.333O2 (0Electrochemical Society 155, A448 (2008)

277

Separator-spacer for electrochemical systems  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Bellows, Richard J. (Westfield, NJ)

1983-08-02T23:59:59.000Z

278

Method of constructing an improved electrochemical cell  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ)

1984-10-09T23:59:59.000Z

279

Improved magnesium/manganese dioxide electrochemical cell  

SciTech Connect

A magnesium/manganese dioxide electrochemical cell, stored following partial usage, is improved by increasing the cathode moisture content at the time of making the cell to reduce the self-discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1988-11-10T23:59:59.000Z

280

Gas recombination assembly for electrochemical cells  

DOE Patents (OSTI)

An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

Levy, Isaac (New Fairfield, CT); Charkey, Allen (Brookfield, CT)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

282

Objective methods of assessment of influence of alcohol on driving safety: study performed driving simulators  

Science Conference Proceedings (OSTI)

The paper is focused on an introduction of a set of experiments focused on objective methods used for detection of driving impairment caused by influence of different level of alcohol in blood. It introduces the initial experiments which were performed ... Keywords: alcohol, driver's impairment, driving simulation

Roman Piekník; Stanislav Novotny; Petr Bouchner

2007-09-01T23:59:59.000Z

283

The Zinagizado Processes as New Electrochemical Alternative to ...  

Science Conference Proceedings (OSTI)

A Quantitative Crystallographic Model for Fatigue Crack Propagation through ... Effect of Temperature on The Loss of Ductility of S-135 Grade Drill Pipe Steel ...

284

Electrochemical process for the preparation of nitrogen fertilizers  

DOE Patents (OSTI)

The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

2013-03-19T23:59:59.000Z

285

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests to Drive Down Costs of Carbon Capture, Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

286

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests to Drive Down Costs of Carbon Capture, Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

287

Electrochemical arsenic remediation for rural Bangladesh  

Science Conference Proceedings (OSTI)

Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

Addy, Susan Amrose

2009-01-01T23:59:59.000Z

288

Drive Less, Save More | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive Less, Save More Drive Less, Save More Drive Less, Save More May 24, 2011 - 12:31pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For someone who works in the Vehicle Technologies Program, I actually don't spend that much time in my automobile. I usually get around using a combination of public transit, my bike, and my own two feet. But I'm an exception. In the U.S., the vehicle miles travelled per person is actually twice as high as it is in Western Europe and three times higher than in Japan. However, alternatives to using your car have a wealth of benefits. In addition to reducing petroleum consumption, they can lower greenhouse gas emissions, improve air quality, decrease stress, and bring communities together. Fortunately, there are a variety of ways to minimize the distance

289

DistributionDrive | Open Energy Information  

Open Energy Info (EERE)

DistributionDrive DistributionDrive Jump to: navigation, search Name DistributionDrive Place Addison, Texas Zip 75001 Product Supplier of Biodiesel, Straight Vegetable Oil (SVO), Recycled Vegetable Oil (WVO) and Engine Conversion Kits to use this fuels. Coordinates 38.477365°, -80.412149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.477365,"lon":-80.412149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Drive Less, Save More | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive Less, Save More Drive Less, Save More Drive Less, Save More May 24, 2011 - 12:31pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program For someone who works in the Vehicle Technologies Program, I actually don't spend that much time in my automobile. I usually get around using a combination of public transit, my bike, and my own two feet. But I'm an exception. In the U.S., the vehicle miles travelled per person is actually twice as high as it is in Western Europe and three times higher than in Japan. However, alternatives to using your car have a wealth of benefits. In addition to reducing petroleum consumption, they can lower greenhouse gas emissions, improve air quality, decrease stress, and bring communities together. Fortunately, there are a variety of ways to minimize the distance

291

Microsoft Word - ORNL Hard Drives Final 08132010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspections and Special Inquires Inspections and Special Inquires Inspection Report Internal Controls over Computer Hard Drives at the Oak Ridge National Laboratory INS-O-10-03 August 2010 Department of Energy Washington, DC 20585 August 16, 2010 MEMORANDUM FOR THE DIRECTOR, OFFICE OF SCIENCE FROM: Sandra D. Bruce Assistant Inspector General for Inspections and Special Inquiries SUBJECT: INFORMATION: Inspection Report on "Internal Controls over Computer Hard Drives at the Oak Ridge National Laboratory" BACKGROUND The Department of Energy's (Department) Oak Ridge National Laboratory (ORNL) in Oak

292

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinyl sulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness. 2 figs.

Olson, J.B.

1999-02-16T23:59:59.000Z

293

Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes  

Science Conference Proceedings (OSTI)

Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

Gan Y. X.; Zhang L.; Gan B.J.

2011-10-01T23:59:59.000Z

294

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

295

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

Olson, John B. (Boulder, CO)

1999-02-16T23:59:59.000Z

296

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

Olson, John B. (Boulder, CO)

1999-12-07T23:59:59.000Z

297

Electrochemically controlled charging circuit for storage batteries  

DOE Patents (OSTI)

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

298

Electrochemical sensor/detector system and method  

DOE Patents (OSTI)

An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

Glass, R.S.; Perone, S.P.; Ciarlo, D.R.; Kimmons, J.F.

1992-12-31T23:59:59.000Z

299

PCTS Local Driving Directions Princeton University  

E-Print Network (OSTI)

PCTS Local Driving Directions Princeton University Princeton Center for Theoretical Science Jadwin to Jadwin Hall, there are several parking options. a) There are limited visitors' parking spots directly, in the first aisle, after you turn into the parking lot, which is located on Ivy Lane. (Use the directions

300

Conditions driving chemical freeze-out  

E-Print Network (OSTI)

We propose the entropy density as the thermodynamic condition driving best the chemical freeze-out in heavy-ion collisions. Taking its value from lattice calculations at zero chemical potential, we find that it is excellent in reproducing the experimentally estimated freeze-out parameters. The two characteristic endpoints in the freeze-out diagram are reproduced as well.

A. Tawfik

2004-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

Slicker, J.M.; Sereshteh, A.

1988-08-30T23:59:59.000Z

302

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

1988-01-01T23:59:59.000Z

303

Multilevel converters for large electric drives  

SciTech Connect

Traditional two-level high frequency pulse width modulation (PWM) inverters for motor drives have several problems associated with their high frequency switching which produces common-mode voltage and high voltage change (dV/dt) rates to the motor windings. Multilevel inverters solve these problems because their devices can switch at a much lower frequency. Two different multilevel topologies are identified for use as a converter for electric drives, a cascade inverter with separate dc sources and a back-to-back diode clamped converter. The cascade inverter is a natural fit for large automotive all electric drives because of the high VA ratings possible and because it uses several levels of dc voltage sources which would be available from batteries or fuel cells. The back to back diode damped converter is ideal where a source of ac voltage is available such as a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over PWM based drives.

Tolbert, L.M.; Peng, F.Z.

1997-11-01T23:59:59.000Z

304

Sealed joint structure for electrochemical device  

DOE Patents (OSTI)

Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

2013-05-21T23:59:59.000Z

305

Evaluation of SAFT America, Inc. electrochemical capacitors  

DOE Green Energy (OSTI)

The electrochemical capacitor devices described in this report were deliverables from Lawrence Berkeley National Laboratory (LBNL), Contract No. 4606510 with SAFT America, Inc., as part of LBNL`s exploratory research program. Dr. Kimio Kinoshita is the Program Manager at LBNL. The contract was in support of the US Department of Energy`s (DOE) exploratory electrochemical energy storage program which includes development projects for a wide variety of advanced high-energy/high-power energy storage systems for electric and hybrid vehicle programs. The DOE is currently developing various electrochemical capacitors as candidate power assist devices for the Partnership for a New Generation of Vehicles (PNGV) fast-response engine requirements. The LBNL contract with SAFT America, Inc., was intended to evaluate various activated carbon-based electrode formulations and develop an electrical model of the double-layer capacitor. The goal is to design and deliver prototypes meeting the DOE requirement of > 1,000 W/kg, 16 Wh/kg. Deliverables were sent to the INEEL EST laboratory for independent testing and evaluation. The following report describes performance testing on ten devices received September 2, 1996. Due to the initial performance of these early devices, life-cycle testing was not conducted. Additional devices, with improved performance, are expected to be tested. Future results will be reported in a follow-on report.

Wright, R.B.; Murphy, T.C.

1997-12-01T23:59:59.000Z

306

Electrochemical cell operation and system  

DOE Patents (OSTI)

Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.

Maru, Hansraj C. (Brookfield Center, CT)

1980-03-11T23:59:59.000Z

307

Method of determining methane and electrochemical sensor therefor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, Solomon (Hinsdale, IL); Otagawa, Takaaki (Westmont, IL); Stetter, Joseph R. (Naperville, IL)

1986-01-01T23:59:59.000Z

308

Alternative Fuels Data Center: Indiana Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Driving / Idling

309

Alternative Fuels Data Center: Delaware Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Driving / Idling

310

Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Driving / Idling

311

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Driving / Idling

312

Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Driving / Idling

313

Alternative Fuels Data Center: Virginia Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Driving / Idling

314

Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Driving / Idling

315

Alternative Fuels Data Center: Oregon Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Driving / Idling

316

Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Driving / Idling

317

Alternative Fuels Data Center: Missouri Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Driving / Idling

318

Alternative Fuels Data Center: Utah Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Driving / Idling

319

Alternative Fuels Data Center: Idaho Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Driving / Idling

320

Alternative Fuels Data Center: Illinois Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Driving / Idling

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Driving / Idling

322

Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Driving / Idling

323

Alternative Fuels Data Center: Arizona Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Driving / Idling

324

Alternative Fuels Data Center: Nevada Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Driving / Idling

325

Alternative Fuels Data Center: Montana Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Driving / Idling

326

Alternative Fuels Data Center: Colorado Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Driving / Idling

327

Alternative Fuels Data Center: Kansas Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Driving / Idling

328

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Driving / Idling

329

Alternative Fuels Data Center: Texas Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Driving / Idling

330

Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Driving / Idling

331

Alternative Fuels Data Center: Maine Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Driving / Idling

332

Alternative Fuels Data Center: Federal Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Driving / Idling

333

Alternative Fuels Data Center: Florida Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Driving / Idling

334

Alternative Fuels Data Center: Iowa Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Driving / Idling

335

Alternative Fuels Data Center: Maryland Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Driving / Idling

336

Alternative Fuels Data Center: Alaska Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Driving / Idling

337

Alternative Fuels Data Center: Vermont Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Driving / Idling

338

Vehicle Technologies Office: Fact #452: January 15, 2007 Driving  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 15, 2: January 15, 2007 Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on AddThis.com... Fact #452: January 15, 2007 Driving Differences Those living in the center city drive fewer miles in a day than those in

339

Drive piston assembly for a valve actuator assembly  

DOE Patents (OSTI)

A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

Sun, Zongxuan (Troy, MI)

2010-02-23T23:59:59.000Z

340

Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions  

DOE Green Energy (OSTI)

The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

Geronov, Y.; Schwager, F.; Muller, R.H.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electrochemical Performance of LiFeMnPO4  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage: Materials, Systems, and Applications. Presentation Title, Electrochemical Performance of LiFeMnPO4: A Comparison of Synthesis ...

342

Electrochemical Behavior of Calcium-Bismuth Alloys in Molten Salt ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The electrochemical properties of calcium-bismuth alloys were investigated to ... Behavior of Silicon Electrodepositing in Fluoride Molten Salts.

343

ELECTROCHEMICAL CORROSION STUDY FOR TANK 241-AY-102 SLUDGE  

SciTech Connect

The report describes the analyses performed on core samples from the sludge region of the waste in Tank 241-AY-102 to determine the electrochemical corrosion potential.

DUNCAN JB

2002-09-24T23:59:59.000Z

344

Real Space Mapping of Oxygen Vacancy Diffusion and Electrochemical ...  

The electrochemical energy storage and conversion systems based on solid-gas and solid-liquid ... high energy and power density materials necessitates understanding ...

345

Real Space Mapping of Oxygen Vacancy Diffusion and Electrochemical ...  

Electrochemical energy storage and conversion systems based on solid–gas ... energy and power-density materials necessitates understanding the nanoscale

346

Proceedings of the 35th conference on Winter simulation: driving innovation: driving innovation  

Science Conference Proceedings (OSTI)

The 2003 Winter Simulation Conference (WSC) continues a thirty-six year tradition as the premier event in discrete-event and combined discrete-continuous simulation. The conference theme, Driving Innovation, invites you to push the boundaries and find ...

David Ferrin; Douglas J. Morrice

2003-12-01T23:59:59.000Z

347

Electrochemical polishing of hydrogen sulfide from coal synthesis gas  

DOE Green Energy (OSTI)

An advanced process has been developed for the separation of H{sub 2}S from coal gasification product streams through an electrochemical membrane. This technology is developed for use in coal gasification facilities providing fuel for cogeneration coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. H{sub 2}S is removed from the syn-gas by reduction to the sulfide ion and H at the cathode. The sulfide ion migrates to the anode through a molten salt electrolyte suspended in an inert ceramic matrix. Once at the anode it is oxidized to elemental sulfur and swept away for condensation in an inert gas stream. The syn-gas is enriched with the H{sub 2}. Order-of-magnitude reductions in H{sub 2}S have been repeatably recorded (100 ppm to 10 ppm H{sub 2}S) on a single pass through the cell. This process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. Since there are no absorbents used, there is no absorption/regeneration step as with conventional technology. Elemental sulfur is produced as a by-product directly, so there is no need for a Claus process for sulfur recovery. This makes the process economically attractive since it is much less equipment intensive than conventional technology.

Gleason, E.F.; Winnick, J.

1995-11-01T23:59:59.000Z

348

Microsoft Word - Lin_flow_drive_v2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Yijun Lin Yijun Lin ylin@psfc.mit.edu 617-253-8706 New Method for Driving Flows in Plasmas Demonstrated Plasma flows, driven by mode-converted waves in the ion-cyclotron range of frequencies, have been demonstrated for the first time. In the latest experimental campaign of the Alcator C-Mod tokamak, we have demonstrated, for the first time, that significant toroidal and poloidal plasma flow can be driven by rf waves. The experiments launched waves with a frequency of 50 MHz into plasmas consisting of deuterium and helium-3 (the isotope of helium with atomic mass of 3) and a magnetic field around 5.1 Tesla. The rf wave undergoes a process called "mode conversion" inside the plasma. During the mode conversion process, the launched rf wave slows down, its wavelength becomes shorter, and the wave is converted from the

349

Characterization and Modeling of Electrochemical Energy Conversion Systems by Impedance Techniques.  

E-Print Network (OSTI)

??This thesis introduces (i) amendments to basic electrochemical measurement techniques in the time and frequency domain suitable for electrochemical energy conversion systems like fuel cells… (more)

Klotz, Dino

2012-01-01T23:59:59.000Z

350

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

351

Argonne's GREET Model - Driving Transportation Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Driving Transportation Solutions Model Argonne's GREET D r i v i n g Tr a n s p o r t a t i o n S o l u t i o n s ARGONNE'S GREET Argonne's GREET model is widely recognized as the "gold standard" for evaluating and comparing the energy and environmental impacts of transportation fuels and advanced vehicles. The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model is a one-of-a-kind analytical tool that simulates the energy use and emissions output of various vehicle and fuel combinations. Sponsored by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, the free software program gives researchers the unique ability to analyze technologies over an entire life cycle - from well to wheels and from raw material mining to vehicle disposal.

352

Enhancing cavity cooling with cavity driving  

E-Print Network (OSTI)

Cavity-mediated cooling has the potential to become one of the most efficient techniques to cool molecular species down to very low temperatures. However, theoretical schemes with single-laser driving require relatively strong trapping potentials and relatively long cavity photon life times which are hard to realise experimentally. In this paper we therefore consider an alternative cavity cooling scenario with double-laser driving. It is shown that the second laser can enhance the phonon-photon coherence which governs the time evolution of the mean phonon number, thereby resulting in higher cooling rates and a lower final temperature, when the cavity decay rate kappa is four or more times larger than the phonon frequency nu of the trapped particle.

Blake, Tony; Beige, Almut

2010-01-01T23:59:59.000Z

353

Integrated Inverter For Driving Multiple Electric Machines  

DOE Patents (OSTI)

An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

2006-04-04T23:59:59.000Z

354

Heating and current drive systems for TPX  

SciTech Connect

The heating and current drive (H and CD) system proposed for the TPX tokamak will consist of ion cyclotron, neutral beam, and lower hybrid systems. It will have 17.5 MW of installed H and CD power initially, and can be upgraded to 45 MW. It will be used to explore advanced confinement and fully current-driven plasma regimes with pulse lengths of up to 1,000 s.

Swain, D.; Goranson, P. [Oak Ridge National Lab., TN (United States); Halle, A. von; Bernabei, S.; Greenough, N. [Princeton Univ., NJ (United States). Plasma Physics Lab.

1994-05-24T23:59:59.000Z

355

NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS  

DOE Patents (OSTI)

ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

Oakes, L.C.; Walker, C.S.

1959-12-15T23:59:59.000Z

356

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

357

GenDrive Limited | Open Energy Information  

Open Energy Info (EERE)

GenDrive Limited GenDrive Limited Jump to: navigation, search Name GenDrive Limited Place Cambridge, United Kingdom Zip CB23 3GY Sector Renewable Energy, Solar, Wind energy Product Developing a range of grid-connected inverters, 'Plug & Play', for renewable energy (mostly solar and wind) systems. These are intended to improve ease of installation. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Energetic Drives LLC | Open Energy Information  

Open Energy Info (EERE)

Energetic Drives LLC Energetic Drives LLC Jump to: navigation, search Name Energetic Drives LLC Place Gresham, Oregon Zip 97030 Sector Efficiency, Wind energy Product Oregon-based engineering firm that conducts industrial efficiency improvements, as well as repair and maintenance work for grid-tie inverters and wind turbines ranging from 10kW to 1.2MW. Coordinates 44.84866°, -88.786959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.84866,"lon":-88.786959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Quasi-spherical direct drive fusion.  

SciTech Connect

The authors present designs of quasi-spherical direction drive z-pinch loads for machines such as ZR at 28 MA load current with a 150 ns implosion time (QSDDI). A double shell system for ZR has produced a 2D simulated yield of 12 MJ, but the drive for this system on ZR has essentially no margin. A double shell system for a 56 MA driver at 150 ns implosion has produced a simulated yield of 130 MJ with considerable margin in attaining the necessary temperature and density-radius product for ignition. They also represent designs for a magnetically insulated current amplifier, (MICA), that modify the attainable ZR load current to 36 MA with a 28 ns rise time. The faster pulse provided by a MICA makes it possible to drive quasi-spherical single shell implosions (QSDD2). They present results from 1D LASNEX and 2D MACH2 simulations of promising low-adiabat cryogenic QSDD2 capsules and 1D LASNEX results of high-adiabat cryogenic QSDD2 capsules.

VanDevender, J. Pace; Abbott, Lucas M.; Langston, William L.; McDaniel, Dillon Heirman; Nash, Thomas J.; Roderick, Norman Frederick; Silva, M.

2007-01-01T23:59:59.000Z

360

Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Secrets of the Motor That Drives Archaea Revealed  

NLE Websites -- All DOE Office Websites (Extended Search)

Secrets of the Motor That Drives Archaea Revealed Secrets of the Motor That Drives Archaea Revealed Print Thursday, 14 February 2013 00:00 An international team led by John Tainer...

362

Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

363

Alternative Fuels Data Center: Washington Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

364

Alternative Fuels Data Center: California Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

365

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

366

DIRECT-DRIVE AND EDDY-CURRENT SEPTUM MAGNETS  

NLE Websites -- All DOE Office Websites (Extended Search)

laminations and leakage fields are summarized in Appendices A and B, respectively. 2. Direct-Drive Septum For the upper half of the 2-D direct-drive septum magnet in Fig. 1 the...

367

Vehicle Technologies Office: Fact #420: April 17, 2006 Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: April 17, 2006 Driving Less Due to Gasoline Prices to someone by E-mail Share Vehicle Technologies Office: Fact 420: April 17, 2006 Driving Less Due to Gasoline Prices on...

368

Driving Battery Production in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Battery Production in Ohio Driving Battery Production in Ohio November 1, 2010 - 6:19pm Addthis Randy Turk, Elyria Site Manager; Rep. Betty Sutton (OH); Frank Bozich,...

369

Driving Home to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy...

370

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities...

371

NREL: News Feature - NREL Drives Toward the Future with Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drives Toward the Future with Fuel Cell EVs June 21, 2013 A hydrogen fuel cell powered Toyota sport utility vehicle emblazoned with an NREL logo drives past a building on the NREL...

372

Personalized driving behavior monitoring and analysis for emerging hybrid vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles, such as hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs), hold the potential for substantial reduction of fuel consumption and greenhouse gas emissions. User driving behavior, which varies from person ...

Kun Li; Man Lu; Fenglong Lu; Qin Lv; Li Shang; Dragan Maksimovic

2012-06-01T23:59:59.000Z

373

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL; Aguilar, Juan P. [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

374

Alternative Fuels Data Center: Fuel-Efficient Driving Training  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Driving Training to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Driving Training on Facebook Tweet about Alternative Fuels Data Center:...

375

Electrochemical Decontamination of Painted and Heavily Corroded Metals  

SciTech Connect

The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

Marczak, S.; Anderson, J.; Dziewinski, J.

1998-09-08T23:59:59.000Z

376

Electricity use by machine drives varies significantly by ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Fossil fuels may be used to drive turbines, reciprocating engines, ...

377

Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Vehicle Technologies Program Vehicle Technologies Program - Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles and Charging Infrastructure...

378

Electrical Motor Drive Apparatus and Method - Energy Innovation Portal  

Vehicles and Fuels Industrial Technologies Electrical ... Auto manufacturers ; Industrial motor drive manufacturers; Patents and Patent Applications. ID Number.

379

PHEV Energy Storage and Drive Cycle Impacts (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts, presented at the 7th Advanced Automotive Battery Conference.

Markel, T.; Pesaran, A.

2007-05-17T23:59:59.000Z

380

New aggregation programs drive consumer participation in Illinois ...  

U.S. Energy Information Administration (EIA)

New aggregation programs drive consumer participation ... Ameren Energy Marketing, Direct Energy ... (buying their electricity from renewable generators) ...

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrochemical mercerization, souring, and bleaching of textiles  

DOE Patents (OSTI)

Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.

Cooper, J.F.

1995-10-10T23:59:59.000Z

382

Magnesium/manganese dioxide electrochemical cell  

SciTech Connect

This patent describes an improvement in a magnesium/manganese dioxide electrochemical cell that has been stored following partial usage and including an alloy of magnesium as the anode, a moist cathode mix of carbon black, manganese dioxide, magnesium hydroxide, barium chromate and lithium chromate as the cathode, and 3.5 to 4.0 normal magnesium perchlorate as the electrolyte. The improvement involves increasing the moisture content of the cathode mix from 34 to 38 percent at the time of making the cell to reduce the self discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1989-09-26T23:59:59.000Z

383

Electrochemical cell with high conductivity glass electrolyte  

DOE Patents (OSTI)

A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

Nelson, P.A.; Bloom, I.D.; Roche, M.F.

1987-04-21T23:59:59.000Z

384

Electrochemical cell with high conductivity glass electrolyte  

DOE Patents (OSTI)

A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

Nelson, P.A.; Bloom, I.D.; Roche, M.F.

1986-04-17T23:59:59.000Z

385

Morphology in electrochemically grown conducting polymer films  

DOE Patents (OSTI)

A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

1992-04-28T23:59:59.000Z

386

Electrochemical cell assembled in discharged state  

DOE Patents (OSTI)

A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

Yao, Neng-Ping (Hinsdale, IL); Walsh, William J. (Naperville, IL)

1976-01-01T23:59:59.000Z

387

Gerald S. Frankel1 Electrochemical Techniques in Corrosion: Status,  

E-Print Network (OSTI)

of electrochemical methods. Interested readers are referred to other works. Instead, the focus tank holding liquid radio- active waste at the Hanford Site 30 . A probe made from a thick. For a system such as Fe in sulfuric acid, all of the electrochemical techniques work quite well

388

Separation system with a sheath-flow supported electrochemical detector  

DOE Patents (OSTI)

An electrochemical detector including side channels associated with a separation channel of a sample component separation apparatus is provided. The side channels of the detector, in one configuration, provide a sheath-flow for an analyte exiting the separation channel which directs the analyte to the electrically developed electrochemical detector.

Mathies, Richard A. (Moraga, CA); Emrich, Charles A. (Berkeley, CA); Singhal, Pankaj (Pasadena, CA); Ertl, Peter (Styria, AT)

2008-10-21T23:59:59.000Z

389

W-36: Electrochemical Capacitance of Polyaniline, Evaluated in ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Electrochemical capacitors (EC) are novel energy storage devices ... in the supercapacitors due to its high capacitive characteristics, low cost and ease ... In this work we present a comparative study of charge storage in acid and ... W-101: Synthesis and Electrochemical Performance of LiMnBO3 as a Novel ...

390

Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT  

SciTech Connect

Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

1985-03-01T23:59:59.000Z

391

CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)

Hawke, B.C.; Liederbach, F.J.; Lones, W.

1963-05-14T23:59:59.000Z

392

Reduced Building-Vat-Size-Design for Process Parameter ...  

Science Conference Proceedings (OSTI)

To minimize total powder usage of costly powders as well as processing time and ... Comparison between HDPE/Clay and HDPE/Piassava Fiber/Clay Treated by ... Pr on the Mechanical and Electrochemical Properties of Pb-based Alloys.

393

Development of an electrochemical hydrogen separator  

DOE Green Energy (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

394

Oscillatory nonhmic current drive for maintaining a plasma current  

DOE Patents (OSTI)

Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

Fisch, Nathaniel J. (Princeton, NJ)

1986-01-01T23:59:59.000Z

395

Oscillatory nonohomic current drive for maintaining a plasma current  

DOE Patents (OSTI)

Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

Fisch, N.J.

1984-01-01T23:59:59.000Z

396

Students Drive Home Innovative Engineering in the EcoCAR2 Competition |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Students Drive Home Innovative Engineering in the EcoCAR2 Students Drive Home Innovative Engineering in the EcoCAR2 Competition Students Drive Home Innovative Engineering in the EcoCAR2 Competition April 18, 2011 - 1:52pm Addthis Participants in the EcoCar2 challenge gather for the spring workshop in Ann Arbor, Michigan. Participants in the EcoCar2 challenge gather for the spring workshop in Ann Arbor, Michigan. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Engineering students work to re-engineer a standard vehicle, minimizing fuel consumption and emissions while retaining its original level of performance, safety and consumer appeal. The wait is over. After enduring a rigorous selection process, 16 teams have been chosen to compete in EcoCAR2: Plugging into the Future- a

397

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

398

Vehicle Technologies Office: Materials for Hybrid and Electric Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

for Hybrid and for Hybrid and Electric Drive Systems to someone by E-mail Share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Facebook Tweet about Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Twitter Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Google Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Delicious Rank Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Digg Find More places to share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

399

Better Buildings Neighborhood Program: Energy Upgrade California Drives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Upgrade Energy Upgrade California Drives Demand From Behind the Wheel to someone by E-mail Share Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Facebook Tweet about Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Twitter Bookmark Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Google Bookmark Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Delicious Rank Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Digg Find More places to share Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on

400

Standard guide for online monitoring of corrosion in plant equipment (electrical and electrochemical methods)  

E-Print Network (OSTI)

Standard guide for online monitoring of corrosion in plant equipment (electrical and electrochemical methods)

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

OMEGA polar-drive target designs  

SciTech Connect

Low-adiabat polar-drive (PD) [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] implosion designs for the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. These designs for cryogenic deuterium-tritium and warm plastic shells use a temporal laser pulse shape with three pickets followed by a main pulse [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)]. The designs are at two different on-target laser intensities, with different in-flight aspect ratios (IFARs). These designs permit studies of implosion energetics and target performance closer to ignition-relevant intensities ({approx}7 Multiplication-Sign 10{sup 14} W/cm{sup 2} at the quarter-critical surface, where nonlocal heat conduction and laser-plasma interactions can play an important role) but at lower values of IFAR {approx} 22 or at lower intensity ({approx}3 Multiplication-Sign 10{sup 14} W/cm{sup 2}) but at a higher IFAR (IFAR {approx} 32, where shell instability can play an important role). PD geometry requires repointing of laser beams to improve shell symmetry. The higher-intensity designs optimize target performance by repointing beams to a lesser extent, compensating for the reduced equatorial drive by increasing the energies of the repointed beams. They also use custom beam profiles that improve equatorial illumination at the expense of irradiation at higher latitudes. These latter designs will be studied when new phase plates for the OMEGA Laser System, corresponding to the custom beam profiles, are obtained.

Radha, P. B.; Marozas, J. A.; Marshall, F. J.; Shvydky, A.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Sangster, T. C.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States); McCrory, R. L.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)

2012-08-15T23:59:59.000Z

402

Selectively-etched nanochannel electrophoretic and electrochemical devices  

DOE Patents (OSTI)

Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

Surh, Michael P. (Livermore, CA); Wilson, William D. (Pleasanton, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lane, Stephen M. (Oakland, CA)

2006-06-27T23:59:59.000Z

403

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Engineering Electrochemical Energy Storage Argonne researcher Panagiotis Prezas examines a lithium-ion battery cell at the Battery Test Facility. Capabilities In support of and as part of the applied research and development (R&D) area, the Argonne's Electrochemical Energy Storage department (EES) has established and employs a variety of engineering R&D capabilities. These capabilities include electrode modeling, engineering, & fabrication; electrode/electrolyte interface modeling; cell modeling & engineering; cell, module, and battery design modeling; and cell, module, and battery cost modeling. Additionally, EES is developing new capabilities in the

404

Method for making an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same, having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.

1996-10-22T23:59:59.000Z

405

Thermal regeneration of an electrochemical concentration cell  

DOE Patents (OSTI)

A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

Krumpelt, M.; Bates, J.K.

1980-05-09T23:59:59.000Z

406

Electrochemical cell having cyclindircal electrode elements  

DOE Patents (OSTI)

A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a pluraity of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric atubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current cllector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

Nelson, P.A.; Shimotake, H.

1981-03-05T23:59:59.000Z

407

Electrochemical cell having cylindrical electrode elements  

DOE Patents (OSTI)

A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

Nelson, Paul A. (Wheaton, IL); Shimotake, Hiroshi (Hinsdale, IL)

1982-01-01T23:59:59.000Z

408

Composite electrode for use in electrochemical cells  

DOE Patents (OSTI)

A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode.

Vanderborgh, Nicholas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM); Leddy, Johna (Flushing, NY)

1989-01-01T23:59:59.000Z

409

Electrochemical Approaches to PV Busbar Application  

DOE Green Energy (OSTI)

Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

Pankow, J. W.

2005-01-01T23:59:59.000Z

410

Method for making an electrochemical cell  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

411

Composite electrode for use in electrochemical cells  

DOE Patents (OSTI)

A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.

Vanderborgh, N.E.; Huff, J.R.; Leddy, J.

1987-10-16T23:59:59.000Z

412

Electrochemical cell and method of assembly  

DOE Patents (OSTI)

A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.

Shimotake, Hiroshi (Hinsdale, IL); Voss, Ernst C. H. (Liederbach, DE); Bartholme, Louis G. (Joliet, IL)

1979-01-01T23:59:59.000Z

413

Electrochemical studies of perovskite mixed conductors  

DOE Green Energy (OSTI)

Research into the growth of high-quality single crystal thin films of high transition temperature {Tc} superconductors have stimulated interest in other perovskite metal oxides with a variety of physical properties. Thin films of perovskite materials are among the major focal research areas for optical, sensor, electronic, and superconducting applications. Two lanthanum-based oxygen/electronic conducting perovskite oxides of particular interest for high temperature fuel cell electrodes and interconnects and for other electrochemical applications such as oxygen separation devices are La{sub 1{minus}x}Sr{sub x}MnO{sub 3{minus}y} and La{sub 1{minus}x}Sr{sub x}CoO{sub 3{minus}y}. The La-based perovskites are valuable for these technologies because they reduce interfacial resistances by eliminating the need for a three phase contact area (gas, metal electrode, electrolyte). In addition, these oxides may also serve a valuable role as novel catalysts or catalytic supports; however, little is known about what catalytic properties they may possess. Fundamental study of the electrochemical, diffusional oxygen transport, and surface catalytic properties of these materials can be greatly simplified if the complications associated with the presence of grain boundaries and multiple crystallite orientations can be avoided. Therefore, single crystals of these La-based perovskites become highly desirable. In this work, the authors report the structural and electrical properties of highly oriented thin films of La{sub 0.84}Sr{sub 0.16}MnO{sub 3} and La{sub 0.8}Sr{sub 0.2}CoO{sub 3} grown on single crystal Y-ZrO{sub 2} substrates. An addition, the authors have demonstrated growing, in situ, epitaxial multilayer perovskite/fluorite/perovskite configurations for fundamental fuel cell modeling.

Brosha, E.L.; Chung, B.W.; Garzon, F.H. [Los Alamos National Lab., NM (United States). Electronic and Electrochemical Materials and Devices Group

1994-12-01T23:59:59.000Z

414

ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR SAFEGUARDS MEASUREMENTS  

Science Conference Proceedings (OSTI)

A critical objective of materials accountability in safeguards is the accurate and timely analysis of fuel reprocessing streams to detect both abrupt and prolonged diversions of nuclear materials. For this reason both on-line nondestructive (NDA) and destructive analysis (DA) approaches are sought-after. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. While direct on-line gamma measurements of Pu are desirable, they are not possible due to contributions from other actinides and fission products. Researchers at Pacific Northwest National Laboratory are currently investigating electrochemically-modulated separation (EMS) as a straightforward, cost-effective technology for selective separation of Pu or U from aqueous reprocessing streams. The EMS selectivity is electrochemically controlled and results from the sorption of Pu4+ and U4+ redox states onto the anodized target electrode, allowing for selective accumulation of U or Pu from nitric acid streams to be turned “on” or “off.” It is envisioned that this technology can be utilized to isolate Pu for both NDA and DA analysis. For the NDA approach, rapid Pu analysis by gamma-ray spectroscopy could be performed after chemical clean-up of activation and fission products by EMS. Likewise, in the DA approach, EMS could be used to retain and concentrate the Pu in nanogram quantities on the electrode surface to be transported to the lab for analysis using high precision mass spectrometry. Due to the challenges associated with complex matrices, a systematic investigation of the redox-dependent accumulation of Pu using EMS was necessary, and results will be presented. Approaches to mitigate interelement effects using large surface area cells will also be discussed. The EMS chemistry and spectroscopy for Pu isolation and measurement will be presented, proof-of-principle measurements will be described, and the application of this approach for materials accountability will be discussed.

Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Hazelton, Sandra G.; Duckworth, Douglas C.

2010-08-11T23:59:59.000Z

415

Process for removal of hydrogen halides or halogens from incinerator gas  

DOE Patents (OSTI)

A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

Huang, Hann S. (Darien, IL); Sather, Norman F. (Naperville, IL)

1988-01-01T23:59:59.000Z

416

Process for removal of hydrogen halides or halogens from incinerator gas  

DOE Patents (OSTI)

A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

Huang, H.S.; Sather, N.F.

1987-08-21T23:59:59.000Z

417

Optimizing Energy Use in the Process Industries: Volumes 1-4  

Science Conference Proceedings (OSTI)

Large process industry plants may meet shaft power requirements through use of electric motor drives, steam turbine drives, or combustion engines. Current research on optimizing energy use in process industries provides a methodology for evaluating the electric drive option and available techniques for reducing total energy consumption.

1990-01-01T23:59:59.000Z

418

Using Electronic Adjustable Speed Drives for Efficiency Improvement and Cost Reduction  

E-Print Network (OSTI)

U.S. industry and utilities have been using ac adjustable speed drives (ASDs) for more than 50 years. ASDs utilize power electronics technology to control the flow of power to an ac motor, thereby controlling the motor’s speed and rate of energy consumption while modulating process flow through the fan or pump driven by the motor. Industrial ASD applications have typically been those requiring extremely precise speed control, such as in fiber spinning operations with multiple motors. However, controlling process flow by varying the speed in many systems does not require the fast-responding, precise wide speed range regenerative drives frequently needed for “traditional” variable speed applications. Often the required speed range is small and there is limited or no requirement for speed of response and speed control precision. Electronic ASDs have come a long way since their introduction some ten years ago. These drives, which match motor speed to the job with the help of semiconductor devices and switching circuits, have become progressively more efficient and versatile. The cost of electronic ASDs has declined rapidly over the last three years. Pending technology advances promise to make the drives even more attractive in the future, both from a performance as well as a cost standpoint.

Friedman, N. R.

1989-09-01T23:59:59.000Z

419

DRIVE(tm) Mobile App | Open Energy Information  

Open Energy Info (EERE)

DRIVE(tm) Mobile App DRIVE(tm) Mobile App Jump to: navigation, search Tool Summary LAUNCH TOOL Name: DRIVE(tm) Mobile App Agency/Company /Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website, Mobile Device Website: ikehu.cloudapp.net/Drive OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy[1] The DRIVE(tm) System is a patent-pending solution that provides incentives to residential customers to reduce power consumption during peak and critical peak times. It rewards desired consumer behavior with points or airline miles. The DRIVE(tm) System is a patent-pending solution that provides incentives to residential customers to reduce power consumption during peak and

420

Traction drive automatic transmission for gas turbine engine driveline  

SciTech Connect

A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

Carriere, Donald L. (Livonia, MI)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Direct Drive Systems DDS | Open Energy Information  

Open Energy Info (EERE)

Systems DDS Systems DDS Jump to: navigation, search Name Direct Drive Systems (DDS) Place Cerritos, California Zip CA 90703 Product Manufactures high speed, permanent magnet (PM), high-power motors, generators and power electronics. Coordinates 33.868545°, -118.063704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.868545,"lon":-118.063704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Driving Membrane Curvature | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Unlocking the Nanoscale Secrets of Bird-Feather Colors Unlocking the Nanoscale Secrets of Bird-Feather Colors An Unlikely Route to Ferroelectricity How to Make a Splash Pressure-Tuning the Quantum Phase Transition in a Model 2-D Magnet Reappearing Superconductivity Surprises Scientists Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Driving Membrane Curvature JUNE 14, 2012 Bookmark and Share Model of conformational change in the HIV gp41 fusion protein induced by cholesterol composition of lipid monolayers. In biological systems, membranes are as important as water. They form the barrier between the inner world, within our cells, where we perform the chemical reactions of life, and the outside environment.

423

Kinetics driving high-density chlorine plasmas  

Science Conference Proceedings (OSTI)

A simple fluid model was developed in order to investigate the driving kinetics of neutral and charged species in high-density chlorine plasmas. It was found that the dissociation degree of Cl{sub 2} molecules is directly linked to the power balance of the discharge which controls the electron density. The model was also used to identify those reactions that could be neglected in the particle balance of charged species and those that must be included. Our results further indicate that diffusion losses need to be considered up to a pressure that depends on magnetic-field intensity and reactor aspect ratio. Finally, it is shown that the dominant charged carriers are linked to the dissociation level of Cl{sub 2} molecules.

Stafford, L.; Margot, J.; Vidal, F.; Chaker, M.; Giroux, K.; Poirier, J.-S.; Quintal-Leonard, A.; Saussac, J. [Department de physique, Universite de Montreal, Montreal, Quebec (Canada); INRS-Energie, Materiaux et Telecommunications, Varennes, Quebec (Canada); Department de physique, Universite de Montreal, Montreal, Quebec (Canada)

2005-09-15T23:59:59.000Z

424

Argonne Chemical Sciences & Engineering - Electrochemical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage * Basic Research * Applied R&D * Engineering * Battery Testing Electrochemical Energy Storage The Energy Storage Theme The electrochemical Energy Storage (EES) Theme is internationally recognized as a world-class center for lithium battery R&D. It effectively integrates basic research, applied R&D, engineering, and battery testing, as shown in the diagram below. ees chart Its current focus is on developing improved materials and cell chemistries that will enable lithium-ion (Li-Ion) batteries for commercial light-duty vehicle applications, e.g. hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and electric vehicle (EV) applications. Basic Research EES recently won a new Office of Science Energy Frontier Research Center (EFRC) denoted the "Center for Electrical Energy Storage: Tailored Interfaces." This new EFRC will focus on the science of stabilizing electrode/electrolyte interfaces in lithium batteries to achieve longer life and enhanced abuse tolerance.

425

Electrochemical development of hydrogen silsesquioxane by applying an electrical potential  

E-Print Network (OSTI)

We present a new method for developing hydrogen silsesquioxane (HSQ) by using electrical potentials and deionized water. Nested-L test structures with a pitch as small as 9 nm were developed using this electrochemical ...

Strobel, Sebastian

426

Development of a morphing helicopter blade with electrochemical actuators  

E-Print Network (OSTI)

The use of the expansion of electrochemical cells, upon ion intercalation, for the development of a morphing helicopter blade is explored. Using commercially available lithium-ion batteries as demostrators of the technology, ...

Tubilla Kuri, Fernando

2007-01-01T23:59:59.000Z

427

High Temperature Corrosion and Electrochemical Behavior of Weld ...  

Science Conference Proceedings (OSTI)

Cathodic Behavior of Silicon (?) in BaF2-CaF2 –SiO2 Melts ... Electrochemical Impedance Spectroscopy of Uranium Chloride in Molten LiCl-KCl Eutectic.

428

Transition from supercapacitor to battery behavior in electrochemical energy storage  

Science Conference Proceedings (OSTI)

In this paper the storage of electrochemical energy in battery, supercapacitor, and double-layer capacitor devices is considered. A comparison of the mechanisms and performance of such systems enables their essential features to be recognized and distinguished, and the conditions for transition between supercapacitor and battery behavior to be characterized. Supercapacitor systems based on two-dimensional underpotential deposition reactions are highly reversible and their behavior arises from the pseudocapaccitance associated with potential-dependence of two-dimensional coverage of electroactive adatoms on an electrode substrate surface. Such capacitance can be 10-100 times the double-layer capacitance of the same electrode area. An essential fundamental difference from battery behavior arises because, in such systems, the chemical and associated electrode potentials are a continuous function of degree of charge, unlike the thermodynamic behavior of single-phase battery reactants. Quai-two-dimensional systems, such as hyperextended hydrous RuP{sub 2}, also exhibit large pseudocapacitance which, in this case, is associated with a sequence of redox redox processes that are highly reversible.

Conway, B.E. (Ottawa Univ., ON (Canada). Dept. of Chemistry)

1991-06-01T23:59:59.000Z

429

Status of the DOE Battery and Electrochemical Technology Program V  

SciTech Connect

The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

Roberts, R.

1985-06-01T23:59:59.000Z

430

Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results  

SciTech Connect

In FY2009, PNNL performed scoping studies to qualify two waste form candidates, tellurite (TeO2-based) glasses and halide minerals, for the electrochemical waste stream for further investigation. Both candidates showed promise with acceptable PCT release rates and effective incorporation of the 10% fission product waste stream. Both candidates received reprisal for FY2010 and were further investigated. At the beginning of FY2010, an in-depth literature review kicked off the tellurite glasses study. The review was aimed at ascertaining the state-of-the-art for chemical durability testing and mixed chloride incorporation for tellurite glasses. The literature review led the authors to 4 unique binary and 1 unique ternary systems for further investigation which include TeO2 plus the following: PbO, Al2O3-B2O3, WO3, P2O5, and ZnO. Each system was studied with and without a mixed chloride simulated electrochemical waste stream and the literature review provided the starting points for the baseline compositions as well as starting points for melting temperature, compatible crucible types, etc. The most promising glasses in each system were scaled up in production and were analyzed with the Product Consistency Test, a chemical durability test. Baseline and PCT glasses were analyzed to determine their state, i.e., amorphous, crystalline, phase separated, had undissolved material within the bulk, etc. Conclusions were made as well as the proposed direction for FY2011 plans. Sodalite was successfully synthesized by the sol-gel method. The vast majority of the dried sol-gel consisted of sodalite with small amounts of alumino-silicates and unreacted salt. Upon firing the powders made by sol-gel, the primary phase observed was sodalite with the addition of varying amounts of nepheline, carnegieite, lithium silicate, and lanthanide oxide. The amount of sodalite, nepheline, and carnegieite as well as the bulk density of the fired pellets varied with firing temperature, sol-gel process chemistry, and the amount of glass sintering aid added to the batch. As the firing temperature was increased from 850 C to 950 C, chloride volatility increased, the fraction of sodalite decreased, and the fractions nepheline and carnegieite increased. This indicates that the sodalite structure is not stable and begins to convert to nepheline and carnegieite under these conditions at 950 C. Density has opposite relationship with relation to firing temperature. The addition of a NBS-1, a glass sintering aid, had a positive effect on bulk density and increased the stability of the sodalite structure in a minimal way.

Riley, Brian J.; Rieck, Bennett T.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Sundaram, S. K.; Vienna, John D.

2010-08-01T23:59:59.000Z

431

Surface electrochemical control for fine coal and pyrite separation  

SciTech Connect

The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, Transpassive Oxidation of Pyrite,'' Flotation and Electrochemical Pretreatment,'' and Flotation Kinetics of Coal and Coal Pyrite.''

Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

1991-01-01T23:59:59.000Z

432

Irreversibility analysis of hydrogen separation schemes in thermochemical cycles. [Condensation, physical absorption, diffusion, physical adsorption, thermal adsorption, and electrochemical separation  

SciTech Connect

Six processes have been evaluated as regards irreversibility generation for hydrogen separation from binary gas mixtures. The results are presented as a series of plots of separation efficiency against the mol fraction hydrogen in the feed gas. Three processes, condensation, physical absorption and electrochemical separation indicate increasing efficiency with hydrogen content. The other processes, physical and thermal adsorption, and diffusion show maxima in efficiency at a hydrogen content of 50 mol percent. Choice of separation process will also depend on such parameters as condition of feed, impurity content and capital investment. For thermochemical cycles, schemes based on low temperature heat availability are preferable to those requiring a work input.

Cox, K.E.

1978-01-01T23:59:59.000Z

433

Wind turbine ring/shroud drive system - Energy Innovation Portal  

A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener ...

434

Combined Electric Machine and Current Source Inverter Drive System  

This integration of these two ORNL ... elimination of several components reduces drive system cost, weight, and volume. ... Energy and Transportation Science Division

435

Electrical motor/generator drive apparatus and method - Energy ...  

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and ...

436

Battery Electric Vehicle Driving and Charging Behavior Observed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America...

437

Combination spindle-drive system for high precision machining  

DOE Patents (OSTI)

A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

Gerth, Howard L. (Knoxville, TN)

1977-07-26T23:59:59.000Z

438

Combined Electric Machine and Current Source Inverter Drive System ...  

Wind power generators ; Industrial power generators; More Information John S. Hsu. Combined Electric Machine and Current Source Invertor Drive System, U.S ...

439

Electric vehicle drive train with direct coupling transmission ...  

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode ...

440

Direct drive field actuator motors - Energy Innovation Portal  

A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field ...

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric...

442

Design of Electric Drive Vehicle Batteries for Long Life and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kandler Smith, NREL EDV Battery Robust Design - 1 Design of Electric Drive Vehicle Batteries for Long Life and Low Cost Robustness to Geographic and Consumer-Usage Variation...

443

EA-1722: Toxco, Inc. Electric Drive Vehicle Battery and Component...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EA-1722: Toxco, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative, Lancaster, OH EA-1722: Toxco, Inc. Electric...

444

Electrical motor/generator drive apparatus and method  

SciTech Connect

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

Su, Gui Jia

2013-02-12T23:59:59.000Z

445

High Temperature Universal Silicon on Insulator (SOI) Gate Drive  

higher current drive, on-chip regulation capacitors, and more space efficient and robust on-chip layout. ... •Development of high temperature galvanic isolation

446

Gasoline product supplied may reflect snowstorm effects on driving ...  

U.S. Energy Information Administration (EIA)

... driving that does not take place due to poor road conditions is ... which may have contributed to the large weekly gasoline stock builds seen in January ...

447

ELECTRICAL MOTOR/GENERATOR DRIVE APPARATUS AND METHOD - Energy ...  

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple ...

448

Factors driving wind power development in the United States  

E-Print Network (OSTI)

s Largest Purchase of Wind Power,” September 17, 2001.FACTORS DRIVING WIND POWER DEVELOPMENT IN THE UNITED STATESthe United States third in wind power capacity globally,

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

449

Thermal conductor for high-energy electrochemical cells  

DOE Patents (OSTI)

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

450

Electrochemical oxygen pumps. Final CRADA report.  

SciTech Connect

All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

Carter, J. D. Noble, J.

2009-10-01T23:59:59.000Z

451

Analysis of national pay-as-you-drive insurance systems and other variable driving charges  

SciTech Connect

Under Pay as You Drive insurance (PAYD), drivers would pay part of their automobile insurance premium as a per-gallon surcharge every time they filled their gas tank. By transfering a portion of the cost of owning a vehicle from a fixed cost to a variable cost, PAYD would discourage driving. PAYD has been proposed recently in California as a means of reforming how auto insurance is provided. PAYD proponents claim that, by forcing drivers to purchase at least part of their insurance every time they refuel their car, PAYD would reduce or eliminate the need for uninsured motorist coverage. Some versions of PAYD proposed in California have been combined with a no-fault insurance system, with the intention of further reducing premiums for the average driver. Other states have proposed PAYD systems that would base insurance premiums on annual miles driven. In this report we discuss some of the qualitative issues surrounding adoption of PAYD and other policies that would convert other fixed costs of driving (vehicle registration, safety/emission control system inspection, and driver license renewal) to variable costs. We examine the effects of these policies on two sets of objectives: objectives related to auto insurance reform, and those related to reducing fuel consumption, CO{sub 2} emissions, and vehicle miles traveled. We pay particular attention to the first objective, insurance reform, since this has generated the most interest in PAYD to date, at least at the state level.

Wenzel, T.

1995-07-01T23:59:59.000Z

452

Origin of photovoltage and photocurrent in the nanoporous dye-sensitized electrochemical solar cell  

Science Conference Proceedings (OSTI)

The essential role of the dark equilibrium potential is discussed for charge separation and the photovoltaic functioning of the title cell. A quantitative model is presented for the potential distribution in the sponge-type title cell. The unique screening process for the photogenerated electrons is discussed that facilitates their extremely long lifetime since the screening ions cannot function as recombination centers. A general analogy is pointed out for the photovoltaic functioning of the sponge-type electrochemical solar cell and of a conventional single-crystal solid-state solar cell.

Schwarzburg, K.; Willig, F. [Hahn-Meitner-Institut, Berlin (Germany)

1999-07-15T23:59:59.000Z

453

Robust Generator System Using PM Assisted Synchronous Reluctance Generator with Current-fed Drive  

E-Print Network (OSTI)

The growth of embedded generation and portable electrical installations has led to an increased demand for low cost, flexible and reliable generator systems for military and commercial applications. An interior permanent magnet (IPM) machine has high power density due to its reluctance torque and magnetic torque components so it can produce a large constant power-speed range. However, an IPM machine needs demagnetizing current at high-speed during the flux-weakening region and thus develops an inverter shutdown problem in an uncontrolled generator mode operation. In order to overcome the disadvantages of the IPM machine, the permanent magnet assisted synchronous reluctance generator (PMa-SynRG) can be a good solution for low cost, high efficiency reliable generator systems. A PMa-SynRG can produce a high efficiency drive by utilizing the proper amount of magnet and reluctance torque. This work proposes a PMa-SynRG with two flux barriers and permanent magnets embedded in the second layer of the rotor. A neodymium magnet (NdFeB) was used as permanent magnets in the rotor to prevent demagnetization. Finding the minimum amount of magnet is one of the goals of the optimization process. The objectives of this work are to build an optimal design for the 3kW generator and an advanced power electronics converter for the PMa-SynRG drive system. In order to find the optimized 3kW machine, a Lumped Parameter Model (LPM) was used to achieve fast computation, and Differential Evolution Strategy (DES) was used to embed the LPM in an efficient numerical optimization routine to identify optimum designs. Finite Element Analysis (FEA) was used for test performance of optimum designs. On the basis of differences between LPM and FEA, model predictions were used to fine tune the LPM model. For new optimum design converges, numerical optimizations and iterations were performed to produce LPM and FEA predictions. For the drive system, the thyristor based, current-fed drive is much simpler and has lower power losses compared to the pulse width modulation (PWM) drive. Eliminating the requirement for self-controlled switches is a distinct advantage for lower cost. Another feature of the developed current-fed drive is its inherent capability to provide generating action by making the PMa-SynRG operates as a generator, rectifying the phase voltages by means of the three-phase rectifier and feeding the power into the load. These features make the current-fed drive a good candidate for driving any type of synchronous generators including the proposed PMa-SynRG.

Baek, Jeihoon

2009-12-01T23:59:59.000Z

454

Driving Demand for Home Energy Improvements  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Demand for Home Energy Improvements Driving Demand for Home Energy Improvements Title Driving Demand for Home Energy Improvements Publication Type Report Year of Publication 2010 Authors Fuller, Merrian C., Cathy Kunkel, Mark Zimring, Ian M. Hoffman, Katie L. Soroye, and Charles A. Goldman Tertiary Authors Borgeson, Merrian Pagination 136 Date Published 09/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency-they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars1 flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements2, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula-and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs-there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers-especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

455

Conceptual Design - Polar Drive Ignition Campaign  

SciTech Connect

The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

Hansen, R

2012-04-05T23:59:59.000Z

456

Conceptual Design - Polar Drive Ignition Campaign  

SciTech Connect

The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

Hansen, R

2012-04-05T23:59:59.000Z

457

Modeling of Alfven wave heating and current drive in Phaedrus-T  

Science Conference Proceedings (OSTI)

Theoretical analysis and numerical modeling of Alfven wave plasma heating and current drive experiments on the Phaedrus-T tokamak is presented. The full-wave hot-plasma code, ALFA, is used in these calculations. The code features toroidal geometry and poloidal magnetic field effects. It is essentially a 2D full-wave code, but can obtain a 3D picture of RF wave fields and absorbed power via Fourier composition of solutions for many toroidal modes. The stand-alone current diffusion code, DIFF, is intergrated with ALFA to model the transient processes of current drive in the Phaedrus-T tokamak. Comparison of numerical calculations to experimental data is given thus permitting a deeper understanding of AWCD processes. {copyright} {ital 1996 American Institute of Physics.}

Moroz, P.; Kishinevsky, M.; Wukitch, S.; Vukovic, M. [University of Wisconsin, Madison, Wisconsin 53706 (United States)

1996-02-01T23:59:59.000Z

458

Method of doping interconnections for electrochemical cells  

DOE Patents (OSTI)

A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

Pal, Uday B. (Monroeville, PA); Singhal, Subhash C. (Murrysville, PA); Moon, David M. (Pittsburgh, PA); Folser, George R. (Lower Burrell, PA)

1990-01-01T23:59:59.000Z

459

Joint with application in electrochemical devices  

DOE Patents (OSTI)

A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

2010-09-14T23:59:59.000Z

460

Electrochemical cell having improved pressure vent  

DOE Patents (OSTI)

The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

Dean, Kevin (Pontiac, MI); Holland, Arthur (Troy, MI); Fillmore, Donn (Waterford, MI)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nonaqueous Electrolyte Development for Electrochemical Capacitors  

DOE Green Energy (OSTI)

The objectives of this project were to demonstrate and develop new nonaqueous electrolytes that enable the development of high power (in excess of 2 kW/kg) and high energy (in excess of 8 Wh/kg) capacitors. Electrochemical capacitors are attractive to use because of their long cycle life and inherent high-power (or fast charge/discharge) capabilities. To realize the inherent high-power nature of the capacitor, the resistance of the capacitor needs to be low. The main focus of this project is on the ionic part of capacitor resistance, which is largely determined by the electrolyte, especially the electrolyte's conductivity. To achieve the objectives of this project, two approaches were used. The first was to search for the proper solvent mixtures within the commercially available quaternary ammonium salts such as tetraethyl ammonium tetrafluoroborate (Et4NBF4) or tetraethyl ammonium hexafluorophosphate (Et4NPF6). The second approach was to use the commonly available solvent system s but develop new salts. Substantial advances were made in quaternary ammonium salts and solvent systems were identified that can withstand high voltage operations. However, improvement in the salt alone is not sufficient. Improvements in the low-temperature stability of a capacitor rely not only on the salts but also on the solvents. Likewise, the high-temperature stability of the capacitor will depend not only on the salts but also on the solvents and carbon electrode materials.

K. Xu; S. P. Ding; T. R. Jow

1999-09-01T23:59:59.000Z

462

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor DO NOT 16 0 REMOVE 16 Small recuperated gas turbine engine, design rated at 13 hp and 27% efficiency of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

463

Computer Hard Drive Geolocation by HTTP Feature Extraction  

E-Print Network (OSTI)

files of a set of computers acquired in China, part of a larger research data set of real user data [10Computer Hard Drive Geolocation by HTTP Feature Extraction Technical Report UCSC-SSRC-12-04 May://www.ssrc.ucsc.edu/ #12;Computer Hard Drive Geolocation by HTTP Feature Extraction Ziqian Wan Sichuan University Alex J

Miller, Ethan L.

464

Minimizing Change Aversion for the Google Drive Launch  

E-Print Network (OSTI)

Minimizing Change Aversion for the Google Drive Launch Abstract Change aversion is a natural of the Google Docs List to Google Drive, a product for file storage in the cloud. We describe actions­May 2, 2013, Paris, France. ACM 978-1-4503-1952-2/13/04. Aaron Sedley Google, Inc. 1600 Amphitheatre

Cortes, Corinna

465

Electromechanical coupling model for cutterhead driving system of shield machines  

Science Conference Proceedings (OSTI)

The synchronization of the cutterhead driving system of shield machines is affected by not only the nonlinearity of mechanical transmission mechanism and the characteristics of driving motors, but also their interaction. In this paper, dynamics of the ... Keywords: cutterhead, electromechanical coupling, synchronization

Jianzhong Sun; Ran Liu; Yaqin Luo; Wei Sun

2010-11-01T23:59:59.000Z

466

Guide to the Industrial Application of Motors and Variable-Speed Drives  

Science Conference Proceedings (OSTI)

This application guide is intended to aid in screening, selecting, and procuring specification processes for variable frequency drive (VFD) installations. It also is intended to provide a comprehensive up-to-date assessment of opportunities to save energy and improve power quality performance with state-of-the-art VFD technologies. The document supplies background information on electric motors and applications, describes VFD topologies, and details procurement specifications and application consideratio...

2001-09-27T23:59:59.000Z

467

Base drive and overlap protection circuit  

DOE Patents (OSTI)

An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

Gritter, David J. (Southfield, MI)

1983-01-01T23:59:59.000Z

468

Test Drive: Honda FCX Clarity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Stepping into the driver's seat of the hydrogen powered Honda FCX Clarity is like stepping into the future. A glowing blue 3-D dashboard displays hydrogen and battery levels and a power button fires up fuel cells that provide electricity. An advanced braking system warns the driver about

469

Gift tag drive benefits local children and seniors  

NLE Websites -- All DOE Office Websites (Extended Search)

Gift Tag Drive Gift Tag Drive Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Gift tag drive benefits local children and seniors Each year, Lab employees and contractors work to make the holidays brighter for local children and seniors through its Holiday Gift Tag drive. January 1, 2013 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Individuals identified through regional nonprofit social-welfare organizations indicate what presents might make their holidays happier, and that information is transcribed onto gift tags. Each year, Lab employees and contractors work to make the holidays brighter for local children and seniors through its Holiday Gift Tag drive.

470

Driving Transformation to Energy Efficient Buildings:Policies and Actions |  

Open Energy Info (EERE)

Driving Transformation to Energy Efficient Buildings:Policies and Actions Driving Transformation to Energy Efficient Buildings:Policies and Actions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Driving Transformation to Energy Efficient Buildings:Policies and Actions Agency/Company /Organization: Johnson Controls Sector: Climate, Energy Focus Area: Energy Efficiency Topics: Implementation, Policies/deployment programs Resource Type: Publications Website: www.institutebe.com/ Cost: Free Driving Transformation to Energy Efficient Buildings:Policies and Actions Screenshot References: Driving Transformation to Energy Efficient Buildings:Policies and Actions[1] "The aim of this paper is to review policy options available for policymakers in developing countries that can accelerate energy efficiency improvements in the built environment and track results over time. It

471

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need November 26, 2013 - 12:00pm Addthis Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteer John Schelble helps unload a delivery truck at a food pantry. Volunteer John Schelble helps unload a delivery truck at a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry.

472

Test Drive: Honda FCX Clarity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Stepping into the driver's seat of the hydrogen powered Honda FCX Clarity is like stepping into the future. A glowing blue 3-D dashboard displays hydrogen and battery levels and a power button fires up fuel cells that provide electricity. An advanced braking system warns the driver about

473

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

474

The role of heating and current drive in ITER  

SciTech Connect

This report discusses and summarize the role of heating and non-inductive current drive in ITER as: (1) ITER must have heating power sufficient for ignition. (2) The heating system must be capable of current drive. (3) Steady-state operation is an ``ultimate goal.`` It is recognized that additional heating and current drive power (beyond what is initially installed on ITER) may be required. (4) The ``Ultimate goal of steady-state operation`` means steady-state with Q{sub CD} {ge} 5. Unlike the ``Terms of Reference`` for the ITER CDA, the ``ITER Technical Objectives and Approaches`` for the EDA sets no goal for the neutron wall load during steady-state operation. (5) In addition to bulk current drive, the ITER heating and current drive system should be used for current profile control and for burn control.

Nevins, W.M.; Haney, S.

1993-10-18T23:59:59.000Z

475

Application of photothermal deflection spectroscopy to electrochemical interfaces  

DOE Green Energy (OSTI)

This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A secondary gradient technique'' is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

1992-03-01T23:59:59.000Z

476

Application of photothermal deflection spectroscopy to electrochemical interfaces  

DOE Green Energy (OSTI)

This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A ``secondary gradient technique`` is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

1992-03-01T23:59:59.000Z

477

Technology Base Research Project for electrochemical energy storage  

DOE Green Energy (OSTI)

The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

Kinoshita, Kim (ed.)

1991-06-01T23:59:59.000Z

478

Technology Base Research Project for electrochemical energy storage  

SciTech Connect

The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

Kinoshita, Kim (ed.)

1991-06-01T23:59:59.000Z

479

Dynamical Processes of Equatorial Atmospheric Angular Momentum  

Science Conference Proceedings (OSTI)

The dynamical processes that drive intraseasonal equatorial atmospheric angular momentum (EAAM) fluctuations are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. ...

Steven B. Feldstein

2006-02-01T23:59:59.000Z

480

First-Principles Prediction of the Equilibrium Shape of Nanoparticles Under Realistic Electrochemical Conditions  

E-Print Network (OSTI)

A first-principles model of the electrochemical double layer is applied to study surface energies and surface coverage under realistic electrochemical conditions and to determine the equilibrium shape of metal nanoparticles ...

Bonnet, Nicephore

Note: This page contains sample records for the topic "drive electrochemical processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices  

SciTech Connect

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

Gering, Kevin L

2013-08-27T23:59:59.000Z

482

Net primary energy balance of a solar-driven photo-electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Net primary energy balance of a solar-driven photo-electrochemical water-splitting device Title Net primary energy balance of a solar-driven photo-electrochemical water-splitting...

483

Design of an electrochemical cell making syngas (CO+H-2) from...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design of an electrochemical cell making syngas (CO+H-2) from C02 and H20 reduction at room temperature Title Design of an electrochemical cell making syngas (CO+H-2) from C02 and...

484

Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide  

Science Conference Proceedings (OSTI)

Ruthenium oxide (RuO{sub 2}), formed as a thin film on a Ru or Ti metal substrate, exhibits a large specific (cm{sup {minus}2}) and almost constant, electrochemical capacitance over a 1.35 V range in aqueous H{sub 2}SO{sub 4}. This behavior has led to its investigation and use as a material for fabrication of supercapacitor devices. However, its cost has encouraged search for other materials exhibiting similar behavior. Work reported in the present paper evaluates two nitrides of Mo, Mo{sub 2}N and MoN, as substitutes for RuO{sub 2}. It is shown that very similar capacitance behavior to that of RuO{sub 2} films arises, e.g., in cyclic voltammetry and dc charging curves; in the former, almost mirror-image anodic and cathodic current-response profiles, characteristic of a capacitor, arise. However, the nitride materials have a substantially smaller voltage operating range of only some 0.7 V due to electrochemical decomposition above ca. 0.7 V vs. RHE. This limits their usefulness as a substitute for RuO{sub 2}. Of interest is that the nitride films exhibit potential-decay and potential-recovery on open circuit after respective cha