Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GRR/Section 5-FD-b - Drilling Pre-Application Process NV only | Open Energy  

Open Energy Info (EERE)

5-FD-b - Drilling Pre-Application Process NV only 5-FD-b - Drilling Pre-Application Process NV only < GRR(Redirected from GRR/Section 5-FD-b - Drilling Application Process) Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-FD-b - Drilling Pre-Application Process NV only 05-FD-b - DrillingApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies Energy Policy Act of 2005 Geothermal Steam Act of 1970 43 CFR 3261: Drilling Operations, Getting A Permit Triggers None specified Click "Edit With Form" above to add content 05-FD-b - DrillingApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

2

GRR/Section 5-FD-b - Drilling Pre-Application Process NV only | Open Energy  

Open Energy Info (EERE)

5-FD-b - Drilling Pre-Application Process NV only 5-FD-b - Drilling Pre-Application Process NV only < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-FD-b - Drilling Pre-Application Process NV only 05-FD-b - DrillingApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies Energy Policy Act of 2005 Geothermal Steam Act of 1970 43 CFR 3261: Drilling Operations, Getting A Permit Triggers None specified Click "Edit With Form" above to add content 05-FD-b - DrillingApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

3

File:05-FD-a - DrillingPreApplicationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

FD-a - DrillingPreApplicationProcess.pdf FD-a - DrillingPreApplicationProcess.pdf Jump to: navigation, search File File history File usage File:05-FD-a - DrillingPreApplicationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 60 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:47, 29 October 2012 Thumbnail for version as of 14:47, 29 October 2012 1,275 × 1,650 (60 KB) Dklein2012 (Talk | contribs) 14:41, 29 October 2012 Thumbnail for version as of 14:41, 29 October 2012 1,275 × 1,650 (60 KB) Dklein2012 (Talk | contribs) 16:40, 25 October 2012 Thumbnail for version as of 16:40, 25 October 2012 1,275 × 1,650 (60 KB) Dklein2012 (Talk | contribs)

4

GRR/Section 4-FD-b - Exploration Pre-Application Process (NV only) | Open  

Open Energy Info (EERE)

GRR/Section 4-FD-b - Exploration Pre-Application Process (NV only) GRR/Section 4-FD-b - Exploration Pre-Application Process (NV only) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-FD-b - Exploration Pre-Application Process (NV only) 04FDBExplorationPreApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies 43 CFR 3251 Exploration Operations: Getting BLM Approval 43 CFR 3261 Drilling Operations: Getting a Permit Triggers None specified Click "Edit With Form" above to add content 04FDBExplorationPreApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

5

GRR/Section 5-FD-a - Drilling Application Process | Open Energy Information  

Open Energy Info (EERE)

5-FD-a - Drilling Application Process 5-FD-a - Drilling Application Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-FD-a - Drilling Application Process 05-FD-a - DrillingPreApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies Energy Policy Act of 2005 Geothermal Steam Act of 1970 43 CFR 3261: Drilling Operations, Getting A Permit Triggers None specified Click "Edit With Form" above to add content 05-FD-a - DrillingPreApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

6

File:04FDBExplorationPreApplicationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:04FDBExplorationPreApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04FDBExplorationPreApplicationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 36 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:47, 1 August 2013 Thumbnail for version as of 14:47, 1 August 2013 1,275 × 1,650 (36 KB) Apalazzo (Talk | contribs)

7

A H-infinity Control Approach for Oil Drilling Processes  

Science Journals Connector (OSTI)

Abstract This paper presents a robust optimization framework to improve the Managed Pressure Drilling (MPD) process for safer and superior economical and environmental operations while removing risk-prone conventional drilling limitations such as a need for constant monitoring of the system parameters. The nonlinear MPD process considers the mud pump flow rate and the differential flow rate of the backpressure pump and the choke as the two inputs while the process downhole pressure rate as the output. The MPD process unmodeled disturbances, uncertain geological parameters and related model nonlinearities are considered to be the corresponding system uncertainties in a closed loop robust control and optimization framework for real-time operations. Moreover, the MPD process inputs are formulated to remain within practical bounds by introducing performance weighting functions. The proposed framework numerical results demonstrate the efficiency of the closed loop robust control implementations for efficient drilling operations in operator guidance systems and provide a low-computational complexity design algorithm for safer drilling operations in regions with a-priori unknown geological properties.

Muhittin Yilmaz; Salman Mujeeb; Naren Reddy Dhansri

2013-01-01T23:59:59.000Z

8

Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions  

E-Print Network (OSTI)

! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted to the Office of Graduate Studies of Texas A&M University... Temperature and High Pressure Conditions Copyright 2012 Brandon Scott Zigmond ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted...

Zigmond, Brandon

2012-10-19T23:59:59.000Z

9

Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE  

E-Print Network (OSTI)

BUSINESS Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE Advocate staff process to make wood-plastic composites has found a new application in the oil and gas business to turn used plastic motor oil containers and wood waste into a strong composite material that can be used

10

DOE Releases Information on Loan Guarantee Pre-Applications ...  

Energy Savers (EERE)

Information on Loan Guarantee Pre-Applications DOE Releases Information on Loan Guarantee Pre-Applications March 6, 2007 - 10:28am Addthis WASHINGTON, DC - The Department of Energy...

11

Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby  

SciTech Connect

Brittle materials such as ceramics, glasses and oxide single crystals find increasing applications in advanced micro-engineering products. Machining small features in such materials represents a manufacturing challenge. Ultrasonic drilling constitutes a promising technique for realizing simple micro-holes of high diameter-to-depth ratio. The process involves impacting abrasive particles in suspension in a liquid slurry between tool and work piece. Among the process performance criteria, the drilling time (productivity) is one of the most important quantities to evaluate the suitability of the process for industrial applications.This paper summarizes recent results pertaining to the ultrasonic micro-drilling process obtained with a semi-industrial 3-axis machine. The workpiece is vibrated at 40 kHz frequency with an amplitude of several micrometers. A voice-coil actuator and a control loop based on the drilling force impose the tool feed. In addition, the tool is rotated at a prescribed speed to improve the drilling speed as well as the hole geometry. Typically, a WC wire serves as tool to bore 200 {mu}m diameter micro-holes of 300 to 1,000 {mu}m depth in glass and ruby. The abrasive slurry contains B4C particles of 1 {mu}m to 5 {mu}m diameter in various concentrations.This paper discusses, on the basis of the experimental results, the influence of several parameters on the drilling time. First, the results show that the control strategy based on the drilling force allows to reach higher feed rates (avoiding tool breakage). Typically, a 8 um/s feed rate is achieved with glass and 0.9 {mu}m/s with ruby. Tool rotation, even for values as low as 50 rpm, increases productivity and improves holes geometry. Drilling with 1 {mu}m and 5 {mu}m B4C particles yields similar productivity results. Our future research will focus on using the presented results to develop a model that can serve to optimize the process for different applications.

Schorderet, Alain; Deghilage, Emmanuel; Agbeviade, Kossi [Ecole Polytechnique Federale de Lausanne (EPFL), School of Engineering (STI), Mechanical Systems Design Laboratory - LCSM, Station No. 9, CH-1015 Lausanne (Switzerland)

2011-05-04T23:59:59.000Z

12

DOE Seeks Public Input on an Integrated, Interagency Pre-Application  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Public Input on an Integrated, Interagency Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations DOE Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations August 29, 2013 - 9:09am Addthis A Request for Information (RFI) seeking public input for a draft Integrated, Interagency Pre-application (IIP) Process was published in the Federal Register on August 29, 2013. The Federal Register Notice is available now for downloading. Comments must be received on or before September 30, 2013. As comments are received, they will be posted online. The proposed IIP Process is intended to improve interagency and intergovernmental coordination focused on ensuring that project proponents develop and submit accurate and complete information early in the project

13

DOE Seeks Public Input on an Integrated, Interagency Pre-Application  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Public Input on an Integrated, Interagency DOE Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations DOE Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations August 29, 2013 - 9:09am Addthis A Request for Information (RFI) seeking public input for a draft Integrated, Interagency Pre-application (IIP) Process was published in the Federal Register on August 29, 2013. The Federal Register Notice is available now for downloading. Comments must be received on or before September 30, 2013. As comments are received, they will be posted online. The proposed IIP Process is intended to improve interagency and intergovernmental coordination focused on ensuring that project proponents develop and submit accurate and complete information early in the project

14

File:05-FD-b - DrillingApplicationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

b - DrillingApplicationProcess.pdf b - DrillingApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:05-FD-b - DrillingApplicationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 32 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:00, 2 August 2013 Thumbnail for version as of 14:00, 2 August 2013 1,275 × 1,650 (32 KB) Apalazzo (Talk | contribs) 15:51, 1 August 2013 Thumbnail for version as of 15:51, 1 August 2013 1,275 × 1,650 (33 KB) Apalazzo (Talk | contribs) 17:00, 25 October 2012 Thumbnail for version as of 17:00, 25 October 2012 1,275 × 1,650 (49 KB) Dklein2012 (Talk | contribs)

15

A Novel Approach to Modeling and Simulating of Underbalanced Drilling Process in Oil and Gas Wells  

Science Journals Connector (OSTI)

This paper presents an advanced dynamic model and computer simulator for underbalanced drilling. The model is formulated based on the ... theory of multiphase transient flow referring to the drilling mud, water,

Jun Fan; Xi-an Wang; Song Han; Zhong-shen Yu

2009-01-01T23:59:59.000Z

16

BLM - Solar and Wind Energy Applications - Pre-Application and...  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: BLM - Solar and Wind Energy Applications - Pre-Application and ScreeningLegal Abstract This BLM instruction...

17

Washington State Department of Ecology - Water Right Pre-Application...  

Open Energy Info (EERE)

LibraryAdd to library Legal Document- OtherOther: Washington State Department of Ecology - Water Right Pre-Application Consultation FormLegal Published NA Year Signed or...

18

Study on the general layout of semi-submersible offshore drilling platforms based on process flow  

Science Journals Connector (OSTI)

The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency ... a reference for implementation of domestic designs of semi-submersible rigs.

Ji-xiang Yue ???; Yao-guang Qi ???

2009-06-01T23:59:59.000Z

19

Drilling Waste Management Fact Sheet: Drilling Practices That Minimize  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Practices Drilling Practices Fact Sheet - Drilling Practices That Minimize Generation of Drilling Wastes How Are Wells Typically Drilled? The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or muds. As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drill cuttings. This section of the Drilling Waste Management Information System website discusses several alternative drilling practices that result in a lower volume of waste being generated. Oil and gas wells are constructed with multiple layers of pipe known as casing. Traditional wells are not drilled from top to bottom at the same diameter but rather in a series of progressively smaller-diameter intervals. The top interval is drilled starting at the surface and has the largest diameter hole. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters. Some of the common hole diameters are: 17.5", 14.75", 12.25", 8.5", 7.875", and 6.5".

20

Department of Energy Issues Request for Pre-Applications to U...  

Office of Environmental Management (EM)

Request for Pre-Applications to U.S. Universities for Nuclear Energy Research and Development Proposals Department of Energy Issues Request for Pre-Applications to U.S....

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1994  

SciTech Connect

Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: define a rational approach for inhibitor design, using the most probable molecular mechanism; improve the performance of inhibitors; test inhibitors on Colorado School of Mines apparatuses and the Exxon flow loop; and promote sharing field and flow loop results. This report presents the results of the progress on these four goals.

NONE

1994-12-31T23:59:59.000Z

22

Drilling optimization using drilling simulator software  

E-Print Network (OSTI)

equipment is being used on some rigs, adding more overall costs to the drilling operation. Other industries facing a similar dilemma-aerospace, airlines, utilities, and the military- have all resorted to sophisticated training and technology... and Gaebler3). Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs ROP,m/h 10 20 7 Fig. 3 shows the five basic processes encountered during the drilling of a well that account for more...

Salas Safe, Jose Gregorio

2004-09-30T23:59:59.000Z

23

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1993  

SciTech Connect

Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: continue both screening and high pressure experiments to determine optimum inhibitors; investigate molecular mechanisms of hydrate formation/inhibition, through microscopic and macroscopic experiments; begin controlled tests on the Exxon pilot plant loop at their Houston facility; and continue to act as a forum for the sharing of field test results. Progress on these objectives are described in this report.

NONE

1993-12-31T23:59:59.000Z

24

A CT scan aided core-flood study of the leak-off process in oil-based drilling fluids :.  

E-Print Network (OSTI)

??An experimental study on the leak-off of oil based drilling fluid sandstone cores is reported. First we revised the theoretical models for the rheology of (more)

Van Overveldt, A.S.

2011-01-01T23:59:59.000Z

25

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network (OSTI)

on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

Verma, Ankit

2010-07-14T23:59:59.000Z

26

Department of Energy Issues FY 2012 Request for Pre-Applications from U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Pre-Applications Request for Pre-Applications from U.S. Universities for Nuclear Energy Research and Development Proposals Department of Energy Issues FY 2012 Request for Pre-Applications from U.S. Universities for Nuclear Energy Research and Development Proposals September 28, 2011 - 2:09pm Addthis The U.S. Department of Energy today announced that its Nuclear Energy University Programs (NEUP) is now accepting pre-applications from universities interested in conducting nuclear energy research and development (R&D) projects to be funded in fiscal year (FY) 2012. Through NEUP, the Department is working to leverage the research and development capabilities of American universities and colleges to enhance U.S. leadership in the global nuclear energy industry and to ensure that

27

Department of Energy Issues Request for Pre-Applications to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Pre-Applications to U.S. Request for Pre-Applications to U.S. Universities for Nuclear Energy Research and Development Proposals Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy Research and Development Proposals October 9, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a new Request for Pre-Applications for universities interested in conducting cutting-edge nuclear energy research and development (R&D). "Nuclear energy is our largest source of carbon free energy and must play a major role as we face the threat of climate change and transition to a thriving clean energy economy," said Secretary Chu. "This announcement reflects a strong partnership with our great research institutions to

28

Centers for Alternative Fuels and Advanced Vehicle Technology Pre-Application Workshop Attendee List  

E-Print Network (OSTI)

PON-13-605 Centers for Alternative Fuels and Advanced Vehicle Technology Pre-Application Workshop. Clements Clean Air / Alternative Fuel / School Transportation Experience 559-356-1334 johndclements56@gmail

29

Right-of-Way Pre-Application Checklist | Open Energy Information  

Open Energy Info (EERE)

Checklist Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Right-of-Way Pre-Application ChecklistLegal Published NA Year Signed or...

30

OM300 Direction Drilling Module  

SciTech Connect

OM300 Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1 Inclination and Tool Face, 0.5 Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

MacGugan, Doug

2013-08-22T23:59:59.000Z

31

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

32

Influence of the Drilling Mud Formulation Process on the Bacterial Communities in Thermogenic Natural Gas Wells of the Barnett Shale  

Science Journals Connector (OSTI)

...number of problems that lead to significant costs for the oil and natural gas industries...acceptor and as a source of carbon and energy for microbial populations in drilling...Polyphasic analysis of Thermus isolates from geothermal areas in Iceland. Extremophiles 10...

Christopher G. Struchtemeyer; James P. Davis; Mostafa S. Elshahed

2011-05-20T23:59:59.000Z

33

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

34

Optimizing drilling performance using a selected drilling fluid  

DOE Patents (OSTI)

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

35

petroleum-cut (drilling) mud  

Science Journals Connector (OSTI)

petroleum-cut (drilling) mud, oil cut (drilling) mud [Drilling mud unintentionally admixed with crude oil, may result from oil entering the mud while drilling or from a drill-stem test of an oil rese...

2014-08-01T23:59:59.000Z

36

Rotary blasthole drilling update  

SciTech Connect

Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

Fiscor, S.

2008-02-15T23:59:59.000Z

37

Geothermal drilling technology update  

SciTech Connect

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

38

Tool Wear in Friction Drilling  

SciTech Connect

This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

2007-01-01T23:59:59.000Z

39

Vibratory Drilling of Oil Wells  

Science Journals Connector (OSTI)

Vibratory drilling refers to the process of drilling into rock by vibrating the drilling tool at audio?frequencies. The basic mechanism of vibratory drilling was ascertained by preliminary laboratory experimentation to consist of a series of impacts on the rock at the frequency of vibration. A fundamental study of this basic mechanism made by dropping weighted chisels on rock showed that the primary parameter which determined the rate of penetration was the mechanical power input to the rock per unit cross section of hole; the values of the vibration frequency and of other variables were of minor consequence over wide ranges. A theoretical analysis was made of the vibration of an elongated magnetostrictiontransducer capable of generating the required power level taking into account the distributed nature of the generation of vibrations. Intermediate power transducers have been built and tested and a high?power transducer for down?hole operation is under construction. [The material for this presentation is based on work carried out at the Battelle Memorial Institute under the sponsorship of Drilling Research Inc. an organization formed by a group of major companies engaged in various phases of oil production for the purpose of investigating novel methods of rock drilling.

Ralph Simon

1956-01-01T23:59:59.000Z

40

Department of Energy Issues Request for Pre-Applications to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Proposals Research and Development Proposals Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy Research and Development Proposals October 9, 2009 - 1:20pm Addthis The U.S. Department of Energy (DOE) today announced a new Request for Pre-Applications for universities interested in conducting cutting-edge nuclear energy research and development (R&D). "Nuclear energy is our largest source of carbon free energy and must play a major role as we face the threat of climate change and transition to a thriving clean energy economy," said Secretary Chu. "This announcement reflects a strong partnership with our great research institutions to ensure that America remains on the cutting edge of nuclear energy research

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Core Drilling Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

42

Well drilling apparatus  

SciTech Connect

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

43

Foam drilling simulator  

E-Print Network (OSTI)

Although the use of compressible drilling fluids is experiencing growth, the flow behavior and stability properties of drilling foams are more complicated than those of conventional fluids. In contrast with conventional mud, the physical properties...

Paknejad, Amir Saman

2007-04-25T23:59:59.000Z

44

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices.  

E-Print Network (OSTI)

??This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an (more)

Lacewell, Jason Lawrence

2012-01-01T23:59:59.000Z

45

DRILLING MACHINES GENERAL INFORMATION  

E-Print Network (OSTI)

or quill assembly. The head of the drill press is composed of the sleeve, spindle, electric motor, and feed

Gellman, Andrew J.

46

HydroPulse Drilling  

SciTech Connect

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

47

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING  

E-Print Network (OSTI)

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING Combining general and case-specific knowledge of Computer and Information Science. agnar.aamodt@idi.ntnu.no Abstract: Oil well drilling is a complex process. This is followed, in section 3, by an oil well drilling scenario and an example from a problem solving session

Aamodt, Agnar

48

Blind shaft drilling: The state of the art  

SciTech Connect

This report discusses the ``Art`` of blind shaft drilling which has been in a continual state of evolution at the Nevada Test Site (NTS) since the start of underground testing in 1957. Emplacement holes for nuclear devices are still being drilled by the rotary drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. Blind shaft drilling and tunnel construction technologies received increased emphasis with the signing of the LTBT in 1963.

Rowe, P.A.

1993-04-20T23:59:59.000Z

49

Handbook of Best Practices for Geothermal Drilling  

Energy.gov (U.S. Department of Energy (DOE))

This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

50

Hydraulic Pulse Drilling  

NLE Websites -- All DOE Office Websites (Extended Search)

REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE 0 4/13/2004 Final Report Author: J. Kolle Hunter/Theimer 4/13/2004 Document No.: TR- 053 HydroPulse(tm) Drilling Final Report Prepared by J.J. Kolle April 2004 U.S. Department of Energy Cooperative Development Agreement No. DE-FC26-FT34367 Tempress Technologies, Inc. 18858 - 72 ND Ave S. Kent, WA 98032 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

51

Method of deep drilling  

DOE Patents (OSTI)

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

52

Geothermal Drilling Organization  

SciTech Connect

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

53

Gel Evolution in Oil Based Drilling Fluids.  

E-Print Network (OSTI)

?? Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of (more)

Sandvold, Ida

2012-01-01T23:59:59.000Z

54

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices  

E-Print Network (OSTI)

This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an unconsolidated sand. In particular, this thesis presents a detailed case history analysis...

Lacewell, Jason Lawrence

2012-06-07T23:59:59.000Z

55

Training and Drills  

Directives, Delegations, and Requirements

The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

56

Remote drill bit loader  

DOE Patents (OSTI)

A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

Dokos, James A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

57

Remote drill bit loader  

DOE Patents (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

Dokos, J.A.

1997-12-30T23:59:59.000Z

58

Earth drill rig  

SciTech Connect

This patent describes an earth drill rig wherein an upwardly and downwardly moving drill-string-turning rotary table is rotated by a kelly bar connected at its lower end to a vertical drive shaft, the kelly bar being journalled for rotation in and fixed against axial movement with respect to a drill frame assembly and the rotary table being mounted for axial movement on and along the drill frame assembly. The drill frame assembly is pivotally mounted on a vehicle on a substantially horizontal axis for pivoting between an upright position and a substantially horizontal position for transportation. The improvement described here comprises the drill frame assembly pivot axis positioned below the lower end of the kelly bar and above the upper end of the vertical drive shaft, and a universal coupling connecting the lower end of the kelly bar and the vertical drive shaft the universal coupling comprising universal joints at opposite ends of an elongated slip joint connector and connected there-by for relative axial movement but driving coupling between the universal joints. The universal joints lie generally on a circle of which the drill frame assembly pivot axis is the center. The drill frame assembly can be moved between the upright and the substantially horizontal positions without disconnecting the kelly bar from the vertical drive shaft, the kelly bar being revolvable by the drive shaft through substantially the entire range of movement of the drill frame assembly.

Rassieur, C.L.

1987-01-27T23:59:59.000Z

59

An Advisory System For Selecting Drilling Technologies and Methods in Tight Gas Reservoirs  

E-Print Network (OSTI)

). 13 Fig. 6? Rotary drilling process (Bourgoyne et al. 1986). Two main systems are currently used to rotate the drill bit. As of 2007, for onshore drilling, 55% of the drilling rigs are equipped with a rotary table and Kelly- bushing while 45... ................................................................................................ 11 2.2.2. Discussion .................................................................................................. 12 2.3 Fit For Purpose Land Rig ................................................................................. 16 2.4 Slim...

Pilisi, Nicolas

2010-01-16T23:59:59.000Z

60

A new type of whole oil-based drilling fluid  

Science Journals Connector (OSTI)

Abstract To meet the demand of ultra-deep well drilling and shale gas well drilling, organic clay and a oil-based filtrate reducer were developed and a whole oil-based drilling fluid formula was optimized. The performance of organic clay, oil-based filtrate reducer and the whole oil-based drilling fluid were evaluated in laboratory, and the whole oil-based drilling fluid was applied in drilling process for further test of its performance. Long carbon chain quaternary ammonium salt was used as modifying agents when synthesizing organobentonites. Oil-based filtrate reducer was synthesized with monomers of lignite and amine class. The laboratory tests show that the organic clay can effectively increase the viscosity of oil-based drilling fluid and the oil-based filtrate reducer can reduce the fluid loss. Their performances were better than additives of the same kind at home and abroad. The organic clay and oil-based filtrate reducer had great compatibility with the other additives in oil-based drilling fluid. Based on the optimal additives addition amount tests, the whole oil-based drilling fluid formula was determined and the test results show that the performances of the whole oil-based drilling fluids with various densities were great. The laboratory tests show that the oil-based drilling fluid developed was high temperature resistant, even at 200 C, as density varies from 0.90 to 2.0 g/cm3, it still held good performance with only a little fluid loss, good inhibition, great anti-pollution, and good reservoir protection performance. Field application result shows that the performance of the oil-based drilling fluid is stable with great ability to maintain wellbore stability and lower density than the water-based drilling fluid; drilling bits can be used much longer and the average penetration rate is increased; the oil-based drilling fluid can satisfy the drilling requirements.

Jiancheng LI; Peng YANG; Jian GUAN; Yande SUN; Xubing KUANG; Shasha CHEN

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Drilling continues upward momentum  

SciTech Connect

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24T23:59:59.000Z

62

Mobility for Offshore Drilling  

Science Journals Connector (OSTI)

Mobility for Offshore Drilling ... New type unit designed by Humble Oil to operate in Gulf of Mexico in 30 to 70 feet deep water ... HUMBLE OIL & REFINING is inviting bids on construction of a new type of mobile drilling platform to be used in offshore operations. ...

1956-03-26T23:59:59.000Z

63

OFFSHORE DRILLING REVISITED  

Science Journals Connector (OSTI)

OFFSHORE DRILLING REVISITED ... Congress and the Obama Administration weigh the benefits and risks of expanded OIL AND GAS PRODUCTION ... ENERGY INDUSTRY OFFICIALS, coastal states, and environmental activists are clashing over whether Congress and the Obama Administration should allow offshore drilling for oil and natural gas in federal waters that until last year were off limits to development. ...

GLENN HESS

2009-03-23T23:59:59.000Z

64

International guide: blasthole drills  

SciTech Connect

This survey is a comprehensive quick reference guide for surface mine operators. It details rotary blasthole drill rigs that are available around the world. More than 60 drills, each with a pulldown of about 125 kN, are included in the survey.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

65

Drilling operations change gear  

SciTech Connect

Predicts that several technological developments (e.g. measurement-while-drilling tools, computer data-gathering systems, improved drill bits, muds, downhole mud motors, and more efficient rigs) will have a major effect on drilling operations in the not-too-distant future. While several companies manufacture MWD systems and most can boast of successful runs, the major problem with the MWD system is cost. Manufacturers continue to make advances in both turbine and positive displacement mud motors. As the life span of downhole mud motors improves, these motors can economically compete with a rotary rig in drilling certain straight-hole intervals. Prototype bit designs include the use of lasers, electronic beams, flames, sparks, explosives, rocket exhaust, chains, projectiles, abrasive jets, and high-pressure erosion. Because drilling fluids are taking a large share of the drilling budget, mud engineers are trying to optimize costs, while maintaining well bore stability and increasing penetration rates. Many companies are taking the strategy of designing the simplest mud program possible and increasing additives only as needed. Air and foam drilling techniques are gaining attention. Concludes that as crude oil prices increase and the rig count begins to rebound, attention will once again turn to drilling technology and methodology.

Moore, S.D.

1982-08-01T23:59:59.000Z

66

Chapter 4 Drilling Engineering  

Science Journals Connector (OSTI)

Publisher Summary Drilling operations are essentially carried out during all stages of the project life cycle (PLC) and in all types of environments. The main objectives of these operations includes: the acquisition of information and the safeguarding of production. Since the expenditure for drilling represents a large fraction of the total project's capital expenditure, an understanding of the techniques, equipment, and cost of drilling is very significant. This chapter focuses on the drilling activities. The chapter also explores the interactions between the drilling team and the other exploration and production (E&P) functions. Specifically, an initial successful exploration well can establish the presence of a working petroleum system. Following this, the data gathered in the first well is evaluated and the results are documented. The next step includes the appraisal of the accumulation requiring more wells. Finally, if the project is subsequently moved forward, development wells then needs to be engineered.

F. Jahn; M. Cook; M. Grahm

2008-01-01T23:59:59.000Z

67

Advanced drilling systems study.  

SciTech Connect

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

68

Titanium for Offshore Oil Drilling  

Science Journals Connector (OSTI)

Current and future applications for titanium and its alloys for offshore drilling have been examined. Successful applications were shown ... chlorination systems. Future applications especially for deepwater drilling

Dennis F. Hasson; C. Robert Crowe

1982-01-01T23:59:59.000Z

69

Focus on rotary drill rigs  

SciTech Connect

This article discusses the drill rig, focusing on the rotary drill rigs. There are two principal drilling methods - rotary and percussion. In certain situations, percussion drilling is the most practical method, but for most applications, rotary drilling using the rotary-tricone bit with either steel-toothed cones or carbide inserts, is the common and accepted drilling technique. There are four principal reasons for a rotary drill rig: to provide power to the rotary-tricone bit; to provide air to clean the hole; to provide a life-support system for the rotary-tricone bits; and, to provide a stable and efficient platform from which to drill the hole.

Schivley, G.P. Jr.

1987-06-01T23:59:59.000Z

70

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

SciTech Connect

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

71

Blast furnace taphole drill  

SciTech Connect

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

72

Microhole Drilling Tractor Technology Development  

SciTech Connect

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

73

Drilling and production technology symposium  

SciTech Connect

This book presents the papers given at a conference on well drilling. Topics considered at the conference included ice island drilling structures, artificial intelligence, electric motors, mud pumps, bottom hole assembly failures, oil spills, corrosion, wear characteristics of drill bits, two-phase flow in marine risers, the training of drilling personnel, and MWD systems.

Welch, R.

1986-01-01T23:59:59.000Z

74

Conoco cuts North Sea drilling time by 40%  

SciTech Connect

The record-breaking Murchison platform has slashed development drilling time by an average of 20 days and in the process has attracted the interest of oil men over the world. This article details each aspect of the operation how the rig was modified for speed, mud and casing programs and how they were changed, computer-aided MWD directional program, special conductor pipe and the way straight-hole turbo drilling complemented conventional rotary drilling.

Shute, J.; Alldredge, G.

1982-07-01T23:59:59.000Z

75

Drill pipe with helical ridge for drilling highly angulated wells  

SciTech Connect

This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

Finnegan, J.E.; Williams, J.G.

1991-08-27T23:59:59.000Z

76

HYDRATE CORE DRILLING TESTS  

SciTech Connect

The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

2002-11-01T23:59:59.000Z

77

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

78

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

79

Advances in Drilling Technology -E-proceedings of the First International Conference on Drilling Technology (ICDT -2010) and National Workshop on Manpower Development in Petroleum Engineering (NWMDPE -2010), November 18-21, 2010.  

E-Print Network (OSTI)

of Technology Madras, Chennai (TN) - 600 036, India. Transfer of experience for improved oil well drilling Pål The drilling process is getting increasingly more complex as oil fields mature and technology evolves actions. KEYWORDS: Oil well drilling, experience transfer, ontology, drilling failure, downtime, case

Aamodt, Agnar

80

Proper planning improves flow drilling  

SciTech Connect

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

82

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network (OSTI)

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

83

Penetration rate prediction for percussive drilling via dry friction model  

E-Print Network (OSTI)

Penetration rate prediction for percussive drilling via dry friction model Anton M. Krivtsov a. Similarly, an increased weight on bit in downhole drilling does not improve the penetration rates when hard- tration rate is presented. The inherent nonlinearity of the discontinuous impact process is modelled

Krivtsov, Anton M.

84

Water's Journey Through the Shale Gas Drilling and  

E-Print Network (OSTI)

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

Lee, Dongwon

85

Managed Pressure Drilling Candidate Selection  

E-Print Network (OSTI)

. Rodolphe Leschot invented and patented the earliest form of diamond core drills. T. F. Rowland patented an ?offshore rotary drilling rig?. Captain Lucas, with his Spindletop field wells, Earle Halliburton with his cementing service company, inventors... is the ancient water and brine wells drilled from the prehistoric eras to not so modern times. The second stage is the drilling of the earliest oil wells, and development of basic derricks, rigs, and cable tool rigs. The third stage is the development of rotary...

Nauduri, Anantha S.

2010-07-14T23:59:59.000Z

86

Naming chemical compounds: Calculator drill  

Science Journals Connector (OSTI)

36. Bits and pieces, 13. A calculator can be programmed to drill students on chemical compound naming rules.

David Holdsworth; Evelyn Lacanienta

1983-01-01T23:59:59.000Z

87

Proposed Drill Sites  

SciTech Connect

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

88

Proposed Drill Sites  

DOE Data Explorer (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

89

invert(ed) (oil) emulsion (drilling) mud  

Science Journals Connector (OSTI)

invert(ed) (oil) emulsion (drilling) mud, water-in-oil (drilling) mud ? Wasser-in-l-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

90

water-in-oil (drilling) mud  

Science Journals Connector (OSTI)

water-in-oil (drilling) mud, invert(ed) (oil) emulsion (drilling) mud ? Wasser-in-l-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

91

Drilling subsurface wellbores with cutting structures  

DOE Patents (OSTI)

A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

2010-11-30T23:59:59.000Z

92

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

93

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

94

Cost effectiveness of sonic drilling  

SciTech Connect

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

95

Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy- Related Research and Development Proposals  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Nuclear Energy University Programs (NEUP) is now accepting pre-applications from universities interested in conducting nuclear energy- related research and development (R&D) projects.

96

Measurement-while-drilling (MWD) development for air drilling  

SciTech Connect

The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

Rubin, L.A.; Harrison, W.H.

1992-06-01T23:59:59.000Z

97

Evaluation of Emerging Technology for Geothermal Drilling and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F weight-on-bit (WOB) A area N bit rotation rate (RPM) T torque-on bit (TOB) u rate-of-penetration (ROP) MSE is a measure of the efficiency of the drilling process,...

98

Use of Clays as Drilling Fluids and Filters  

Science Journals Connector (OSTI)

In geotechnical engineering, drilling fluid is a fluid used to drill boreholes into the earth. In drilling rigs, drilling fluids help to do drill for exploration of oil and natural gas. Liquid drilling fluid is o...

Swapna Mukherjee

2013-01-01T23:59:59.000Z

99

Big-hole drilling - the state of the art  

SciTech Connect

The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete.

Lackey, M.D.

1983-01-01T23:59:59.000Z

100

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Drill Program Ensures Emergency Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

underground event. Drill scenarios have included a full evacuation of the WIPP underground facility and responding to radiological incidents and a variety of emergencies on the...

102

Portable drilling mud system  

SciTech Connect

A portable well drilling mud storage and recirculation unit includes a mud storage tank mounted on an over-the-road semi-trailer having an engine driven circulating pump mounted onboard and adapted to withdraw mud from the tank for circulation to the well and for recirculation through a set of mud agitating nozzles disposed in the bottom of the tank. A mud degassing vessel, a solids separator unit and an additive blending unit are all mounted above the tank. The degassing vessel is supported by hydraulic cylinder actuators for movement between a retracted transport position and a vertically elevated working position.

Etter, R. W.; Briggs, J. M.

1984-10-02T23:59:59.000Z

103

Laser Drilling - Drilling with the Power of Light  

SciTech Connect

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

104

Sound Coiled-Tubing Drilling Practices  

SciTech Connect

This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

2001-09-30T23:59:59.000Z

105

Oil and Gas Drilling Bit Tribology  

Science Journals Connector (OSTI)

A drilling bit is used in petroleum exploration to drill a wellbore through various layers of rock formations to access oil or natural gas resources. It is engineered...1). A roller cone drill bit is categorized ...

Dr. Chih Lin Ph.D.

2013-01-01T23:59:59.000Z

106

oil-emulsion (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-emulsion (rotary) drilling fluid, oil-emulsion fluid [Used where low fluid-loss, very thin cake, and good lubrication of the drill pipe are of primary importance, such as in directional drilling ...

2014-08-01T23:59:59.000Z

107

oil-base(d) (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-base(d) (rotary) drilling fluid, oil-base(d) fluid [Used primarily for drilling-in or recomputing wells in formations subject ... with low formation pressures. See remark under drilling fluid] ...

2014-08-01T23:59:59.000Z

108

Managed pressure drilling techniques and tools  

E-Print Network (OSTI)

these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures...

Martin, Matthew Daniel

2006-08-16T23:59:59.000Z

109

Relating horsepower to drilling productivity  

SciTech Connect

Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

Givens, R.; Williams, G.; Wingfield, B.

1996-12-31T23:59:59.000Z

110

February 2002 OCEAN DRILLING PROGRAM  

E-Print Network (OSTI)

February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. Carl Drive College Station TX 77845-9547 USA #12;PUBLISHER'S NOTES Material in this publication may be copied

111

Handbook of Best Practices for Geothermal Drilling | Open Energy  

Open Energy Info (EERE)

Handbook of Best Practices for Geothermal Drilling Handbook of Best Practices for Geothermal Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Handbook of Best Practices for Geothermal Drilling Abstract This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the Geothermal Implementing Agreement (GIA) web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven. Authors John Finger and Doug Blankenship

112

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

113

low-solids oil emulsion (drilling) mud  

Science Journals Connector (OSTI)

low-solids oil emulsion (drilling) mud, low-solids oil-in-water (drilling) mud ? l-in-Wasser-(Bohr)...m, (f) mit geringem Feststoffanteil

2014-08-01T23:59:59.000Z

114

1982 geothermal well drilling summary  

SciTech Connect

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

115

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

116

The objectives for deep scientific drilling in Yellowstone National Park  

SciTech Connect

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

117

Thermal stress on bottom hole rock of gas drilling  

Science Journals Connector (OSTI)

Gas drilling has higher penetration than mud drilling. The greatest reason for this phenomenon with gas is that the gas is greatly cooled by expansion as it passes through the bit and thereby cools the bottom of the hole. The thermal stress at bottom-hole occurs during this process. The concept of thermal crushing of rocks is analysed in this study. The theoretical methods are developed to analyse thermal stresses and fragmentation induced by cooling of rock. Then, the numerical computation is conducted for the thermal stress equations with the numerical result simulated for the temperature field at the bottom hole to explain the reason of high drilling rates in gas drilling. Furthermore, an experiment was conducted to verify the theory. Therefore, the theories and simulated results in this paper have a guiding signification for best understand the technique and possibly to extend its economic advantage still further. [Received: September 23, 2011; Accepted: November 20, 2011

Shunji Yang; Gonghui Liu; Jun Li

2012-01-01T23:59:59.000Z

118

Advanced Mud System for Microhole Coiled Tubing Drilling  

SciTech Connect

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

119

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN  

E-Print Network (OSTI)

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY;PREFACE Attached is the "REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN" that will be used for ODP coring and drilling operations on legs where hydrogen sulfide is likely to be encountered. Prior

120

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto  

E-Print Network (OSTI)

;1. INTRODUCTION A drill-string is a slender structure used in oil wells to penetrate the soil in search of oilDRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill

Boyer, Edmond

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

122

Forecast of geothermal drilling activity  

SciTech Connect

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

123

Drill bit having a failure indicator  

SciTech Connect

A lubrication system is described to indicate a decrease in lubricant volume below a predetermined level in a rotary drill bit having a bit body adapted to receive drilling fluid at a high first pressure from a suspended drill string, and adapted to discharge the drilling fluid therefrom in a void space between the bit body and an associated well bore with the drilling fluid in the space being at a low second pressure.

Daly, J.E.; Pastusek, P.E.

1986-09-09T23:59:59.000Z

124

Four rigs refurbished for West Africa drilling  

SciTech Connect

In April and May 1990, Shell Petroleum Development Co. of Nigeria Ltd. awarded Noble Drilling West Africa Inc. four separate contracts to drill oil and gas wells in the inland waterways of Nigeria. The contracted rigs included a shallow water jack up, the NN-1, and three posted barges, the Gene Rosser, the Chuck Syring, and the Lewis Dugger. The jack up was built in 1978, and the three posted barges are 1980s vintage. Three of the rigs have been idle for a number of years. The Shell Nigeria contracts required major modifications to the rigs before putting them into international service. Noble replaced or refurbished all major pieces of equipment in the drilling, power, and service systems on the rigs. Rig crews serviced all other equipment. A significant amount of general service piping and electrical wiring was replaced. Each rig also required additional motor control centers to support the new drilling and mud processing equipment. Alfa-Laval waste-heat water desalination plants and new sewage treatment units were installed on all four rigs. Because of the tidal variances and high silt conditions expected in the African waterways, all engine cooling systems were converted from heat exchangers to radiators. Rotary tables were made common on all rigs at 37 1/2 in. Noble had all traveling equipment completely inspected and modified as necessary. Strict attention was paid to certification and documentation of all equipment. Safety upgrades conformed to both Shell and Noble standards. Fire and gas detection systems were installed throughout each rig. Water and foam deluge systems were installed in the wellhead areas, and new foam systems and monitors were installed on the helldecks.

Not Available

1991-06-10T23:59:59.000Z

125

Calculating limits for torsion and tensile loads on drill pipe  

SciTech Connect

Drill pipe used for drilling horizontal and extended reach holes experiences much higher torsional and tensile loads than normally seen while drilling vertical holes. This is particularly true for rigs with top drives vs. rigs with rotary tables. When pipe is rotated while pulling out of the hole, which is commonly done on top drive rigs, the drill pipe can experience high tensile and torsional loading simultaneously. These conditions increase the probability of overload on tool joints and require that the drill pipe and tool joint selection process include consideration of combined loading. Calculating the required drill pipe strength for vertical holes is straightforward and spelled out in Section 5 of API RP7G. In vertical hole applications, pipe is almost always selected for its tensile capacity and the torsional strength of the pipe generally does not require special consideration. In Section 4 of API Sec 7, API recommends that the tool joints have a torsional strength of 80% of the pipe`s torsional strength; this is usually adequate. The torsional strength and tensile strength of commonly used drill pipe and tool joint combinations are tabulated in Tables 2 through 10 of API RP7G. Appendix A.8.3 in API RP7G shows a method for plotting a graphical representation of the combined torsional and tensile operational limits of tool joints. How to calculate the limits of the drill pipe tube is shown in Appendix A.9.2. This paper defines terms and limits, and discusses building and using a diagram to determine safe loads.

Bailey, E.I. [Stress Engineering Service Inc., Houston, TX (United States); Smith, J.E. [Grant Prideco, Houston, TX (United States)

1998-02-01T23:59:59.000Z

126

JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study  

E-Print Network (OSTI)

The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

Lindanger, Catharina

2014-05-03T23:59:59.000Z

127

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

128

Drill wear: its effect on the diameter of drilled holes  

E-Print Network (OSTI)

drills are made of oae of two differeat materials. The most common material in use today 1s aa 18-4-1 type of high speed steel. This steel contains about O. VS per cent carboa, 18. 00 per eeet tungstea, 4. 00 per cent chromium, and 1. 10 per eeet... vanadium. The primary advaatage of steel of this type is its ability to maintain its cutt1ng edge and haxdaess at high tempexatures. Besides beiag used for drills, this steel finds applicntioa in waay other tools such as willing cutters, taps, reamers...

Reichert, William Frederick

2012-06-07T23:59:59.000Z

129

Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions  

SciTech Connect

This study builds upon earlier research conducted by Southeastern Louisiana University concerning the efficacy of utilizing processed drill cuttings as an alternative substrate source for wetland rehabilitation (wetland creation and restoration). Previous research has indicated that processed drill cuttings exhibit a low degree of contaminant migration from the process drill cuttings to interstitial water and low toxicity, as tested by seven-day mysid shrimp chronic toxicity trials.

Hester, Mark W.; Shaffer, Gary P.; Willis Jonathan M.; DesRoches, Dennis J.

2001-02-21T23:59:59.000Z

130

April 25, 1997: Yucca Mountain exploratory drilling | Department...  

Office of Environmental Management (EM)

April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997 Workers...

131

Near-Term Developments in Geothermal Drilling  

SciTech Connect

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

132

Smaller Footprint Drilling System for  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-03NT15401 Final Report Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling Submitted by: TerraTek, A Schlumberger Company 1935 Fremont Drive Salt Lake City, UT 84104 Prepared for: United States Department of Energy National Energy Technology Laboratory 2 February 2010 Office of Fossil Energy Feasibility of Ultra-High Speed Diamond Drilling DE-FC26-03NT15401 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

133

RECIPIENT:Potter Drilling Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potter Drilling Inc Potter Drilling Inc u.s. DEPARTUEN T OF ENERG¥ EERE PROJECT MANAGEMENT CENT ER NEPA DEIERl\IINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS Page 1 0[2 STATE: CA Funding Opportunity Announ<:ement Number Procurement Instrument Number NEPA Control Number CID Number OE·PS36-09G099016 OE· EE0002746 ~FO . 10 - [r,,~ G02746 Based on my review of the information concerning the proposed action, as NEPA ComplianC:f Offkrr (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited 10, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

134

GRR/Section 5-CA-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

5-CA-a - Drilling and Well Development 5-CA-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-CA-a - Drilling and Well Development 05CAADrillingApplicationProcess (1).pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 05CAADrillingApplicationProcess (1).pdf 05CAADrillingApplicationProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The California Department of Conservation, Division of Oil and Gas (DOGGR) administers geothermal well drilling activities (permitting, drilling,

135

Acoustic data transmission through a drill string  

DOE Patents (OSTI)

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

136

Downhole drilling network using burst modulation techniques  

DOE Patents (OSTI)

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

137

Advanced Drilling Systems for EGS  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Apply Novateks Stinger and JackBit technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

138

Optimization of Performance Qualifiers during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract An optimization analysis of the drilling process constitutes a powerful tool for operating under desired pressure levels (inside operational window) and, simultaneously, maximizing the rate of penetration, which must be harmonized with the conflicting objective of minimizing the specific energy. The drilling efficiency is improved as the rate of penetration is increased, however, there are conflicts with performance qualifiers, such as down hole tool life, footage, vibrations control, directional effectiveness and hydraulic scenarios. Concerning hydraulic effects, the minimization of the specific energy must be constrained by annulus bottom hole pressure safe region, using the operational window, placed above porous pressure and below fracture pressure. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. The objective being tracked is operating under desired pressure levels, which assures process safety, also reducing costs. In this scenario, optimization techniques are important tools for narrow operational windows, commonly observed at deepwater and pre-salt layer environments. The major objective of this paper is developing an optimization methodology for minimizing the specific energy, also assuring safe operation (inside operational window), despite the inherent process disturbances, under a scenario that maximization of ROP (rate of penetration) is a target.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

139

Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site  

SciTech Connect

Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

Dekin, W D

2011-04-14T23:59:59.000Z

140

Laser Drilling - Drilling with the Power of Light  

SciTech Connect

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Brian C. Gahan; Samih Batarseh

2005-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optical coherence tomography guided dental drill  

DOE Patents (OSTI)

A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

2002-01-01T23:59:59.000Z

142

Chemical Speciation of Chromium in Drilling Muds  

SciTech Connect

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

143

Drilling of wells with top drive unit  

SciTech Connect

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

144

Drilling Waste Management Technology Identification Module  

NLE Websites -- All DOE Office Websites (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

145

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

146

Research on Application of Steering Drilling Technologies in Shale Gas Development  

Science Journals Connector (OSTI)

Abstract HF-1 well of Pengye is a sidetracking horizontal well for shale gas development, the directional segment of the well is long, high requirements for well trajectory control of the directional segment in construction process. In allusion to the features and challenges of this well drilling, this paper introduces the application of slide steering drilling system and rotary steerable drilling system in this well, including analyzing all these tool basic principle, the characteristics and field application. The analysis shows that using different angel screw drill tool can meet the needs of increasing hole angle, steadying hole angle and adjusting the orientation; Adoption of EZ-Pilot steerable rotary system solves the problem of remarkable resistance and low degree of hole cleanness in long horizontal section, and satisfies the requirement of drilling and completion of the well. The system also shows the desirable performance in improving ROP and hole quality.

Guang Xinjun; Li Jing

2014-01-01T23:59:59.000Z

147

A model for self-defocusing in laser drilling of polymeric materials  

SciTech Connect

A numerical thermal model is presented for laser microvias drilling in multilayer electronic substrates with Nd:YAG (YAG denotes yttrium aluminum garnet) and CO{sub 2} lasers. Such substrates have different optical properties such as the refractive index and absorption coefficient at these two laser wavelengths, resulting in different drilling mechanisms. Since the skin depth of the polymer is large for both the lasers, volumetric heating is considered in the model. As soon as a small cavity is formed during the drilling process, the concave curvature of the drilling front acts as a concave lens that diverges the incident laser beam. This self-defocusing effect can greatly reduce the drilling speed as predicted by the model. This effect makes the refractive index of the substrate at different wavelengths an important parameter for laser drilling. The model was used to calculate the laser ablation thresholds which were found to be 8 and 56 J/cm{sup 2} for the CO{sub 2} and Nd:YAG lasers respectively. Due to the expulsion of materials because of high internal pressures in the case of Nd:YAG laser microvia drilling, the ablation threshold may be far below the calculated value. A particular laser beam shape, such as pitch fork, was found to drill better holes than the Gaussian beam.

Zhang Chong; Quick, Nathaniel R.; Kar, Aravinda [Department of Mechanical, Materials and Aerospace Engineering, College of Optics and Photonics, Center for Research and Education in Optics and Lasers (CREOL), University of Central Florida, Orlando, Florida 32816-2700 (United States); AppliCote Associates, LLC, 1445 Dolgner Place, Suite 23, Sanford, Florida 32771 (United States); College of Optics and Photonics, Center for Research and Education in Optics and Lasers (CREOL), University of Central Florida, Orlando, Florida 32816-2700 (United States)

2008-01-01T23:59:59.000Z

148

Drilling Waste Management Fact Sheet: Land Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Land Application Land Application Fact Sheet - Land Application The objective of applying drilling wastes to the land is to allow the soil's naturally occurring microbial population to metabolize, transform, and assimilate waste constituents in place. Land application is a form of bioremediation, and is important enough to be described in its own fact sheet; other forms of bioremediation are described in a separate fact sheet. Several terms are used to describe this waste management approach, which can be considered both treatment and disposal. In general, land farming refers to the repeated application of wastes to the soil surface, whereas land spreading and land treatment are often used interchangeably to describe the one-time application of wastes to the soil surface. Some practitioners do not follow the same terminology convention, and may interchange all three terms. Readers should focus on the technologies rather than on the specific names given to each process.

149

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program  

E-Print Network (OSTI)

the earlier successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs for either the riserless or riser vessel, such as near the shoreline in shallow-water areas

150

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

151

drilling-tools | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

drilling-tools Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Tally II: Pipe Tally Sheet for Pocket PC allows...

152

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

153

High Temperature 300C Directional Drilling System  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

154

Offshore Drilling and Production: A Short History  

Science Journals Connector (OSTI)

Drilling in Louisianas marshes and shallow waters ... or worse the expanding presence of the oil and gas industry has changed everyones...

Joseph A. Tainter; Tadeusz W. Patzek

2012-01-01T23:59:59.000Z

155

International guide: blasthole drills. [For blastholes  

SciTech Connect

This survey is a comprehensive, quick reference guide for surface mine operators. It details what rotary blasthole drill rigs are available around the world. The survey covers over 60 drills, each with a pulldown of about 125 kilonewtons (27,500 pounds). They are manufactured by companies in eight different countries. Drill rigs continue to grow in size and power as larger diameter blastholes increase drilling economy. With a range of units costing from approximately $200,000 to over $1,000,000 each, careful selection based on the requirements of specific mines is essential.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

156

Analysis of drill stem test data  

E-Print Network (OSTI)

constructed to illustrate the effects of changes in Kh/p, , well bore damage, and pro duction rate on the geometry of the drill stem test pressure buildup curve. To formulate the hypothetical drill stem test, certain reser- voir rock and fluid properties... constructed to illustrate the effects of changes in Kh/p, , well bore damage, and pro duction rate on the geometry of the drill stem test pressure buildup curve. To formulate the hypothetical drill stem test, certain reser- voir rock and fluid properties...

Zak, Albin Joseph

2012-06-07T23:59:59.000Z

157

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents (OSTI)

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

158

High Temperature 300C Directional Drilling System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

159

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

160

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation  

E-Print Network (OSTI)

known that drill pipe fatigue in oil-gas drilling operations represents more than 30% of the drill pipeStress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

162

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

163

ESF Consortium for Ocean Drilling White Paper  

E-Print Network (OSTI)

ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The Scotia in 1978 and had previously sailed the world as a top-class oil-exploration vessel. JOIDES, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven

Purkis, Sam

164

Status Report A Review of Slimhole Drilling  

SciTech Connect

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

165

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

166

OCEAN DRILLING PROGRAM LEG 157 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

." The source area, Gran Canaria, one of the best studied volcanic islands, has a 15-m.y.-long record the Miocene, Pliocene, and Quaternary compositionally evolved volcanic phases on Gran Canaria and neighboringOCEAN DRILLING PROGRAM LEG 157 SCIENTIFIC PROSPECTUS DRILLING INTO THE CLASTIC APRON OF GRAN

167

OCEAN DRILLING PROGRAM LEG 164 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

OCEAN DRILLING PROGRAM LEG 164 SCIENTIFIC PROSPECTUS GAS HYDRATE SAMPLING ON THE BLAKE RIDGE Drive College Station, Texas 77845-9547 U.S.A. Timothy J.G. Francis Acting Director ODP/TAMU Jack Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station, Texas, 77845

168

Borehole breakdown pressure with drilling fluidsI. Empirical results  

Science Journals Connector (OSTI)

Mining and civil engineering industries sometimes use drilling muds for stabilizing a borehole during drilling wells for methane drainage, geothermal energy and radioactive waste disposal. Standard theories predicting borehole breakdown pressure assume breakdown occurs when a small fracture initiates at a location where the largest tangential stress at the borehole reaches the tensile strength of formation. Fracturing tests conducted in this study, however, showed that when drilling fluid was used as an injection fluid, borehole breakdown did not occur even if a fracture initiated at a borehole wall. Borehole breakdown occurred when the initiated fracture became unstable after significant growth [with 0.76 cm (0.3 in.) to 7.62 cm (3 in.) in length]. The test results showed that all drilling muds had a tendency to seal narrow natural fractures or fractures induced by high borehole pressure. The sealing effect of the mud stabilized fractures and prevented fracture propagation. This effect is one of the primary factors for controlling wellbore stability. In this work [1], more than 40 large rock samples [76.2 76.2 76.2 cm (30 30 30 in.)] were fractured to test the drilling fluid effect on fracture initiation and fracture propagation around a borehole. The results show that borehole breakdown pressure is highly dependent on the Young's modulus of the formation, wellbore size and type of the drilling fluids. Note that the conventional linear wellbore stability theory has ignored all these facts. The results of this experiment are intended to apply to the lost circulation problems from an induced fracture or to the interpretation of the in situ stress measurements with gelled fluids where drilling or fracturing fluids contain significant amount of solid components. Similar phenomena occur for the standard hydraulic fracturing fluids; however, the process zone and the high flow friction at the narrow fracture tip become as important as the gel and solid plugging effect shown in this paper. Hence, the results should be modified before being applied to standard fracturing fluids.

N. Morita; A.D. Black; G.-F. Fuh

1996-01-01T23:59:59.000Z

169

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

170

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

Geothermal Drilling Geothermal Drilling Jump to: navigation, search Logo: Alpine Geothermal Drilling Name Alpine Geothermal Drilling Address PO Box 141 Place Kittredge, Colorado Zip 80457 Sector Geothermal energy Product Geothermal drilling solutions, subsidiary of Rocky Mountain GeoExploration Inc Website http://www.alpinegeothermal.co Coordinates 39.64888°, -105.2984842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.64888,"lon":-105.2984842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

172

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

173

Innovative technology summary report: Cryogenic drilling  

SciTech Connect

Environmental drilling is used to conduct site investigations and to install monitoring and remediation wells. Employing conventional drilling techniques to conduct environmental investigations in unconsolidated soils can result in borehole collapse and may also lead to cross-contamination of aquifers and soil formations. For investigations in certain geologic conditions, there are currently no viable conventional drilling techniques available. Cryogenic drilling improves upon conventional air rotary drilling by replacing ambient air with cold nitrogen (either liquid or gas) as the circulating medium. The cold nitrogen gas stream freezes moisture in the ground surrounding the hole. The frozen zone prevents the collapse of the hole and prevents the movement of groundwater or contaminants through and along the hole. The technology, its performance, uses, cost, and regulatory issues are discussed.

NONE

1998-10-01T23:59:59.000Z

174

Bureau of Land Management - Geothermal Drilling Permit | Open...  

Open Energy Info (EERE)

Bureau of Land Management - Geothermal Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Geothermal Drilling...

175

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

176

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network (OSTI)

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

177

Laser Drills Could Relight Geothermal Energy Dreams | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laser Drills Could Relight Geothermal Energy Dreams Laser Drills Could Relight Geothermal Energy Dreams December 14, 2012 - 12:26pm Addthis Commercial-grade laser technology is...

178

Evaluation of Emerging Technology for Geothermal Drilling and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology for Geothermal Drilling and Logging Applications Technology Development and Field Trials of EGS Drilling Systems GEA Geothermal Summit Presentation Lauren Boyd...

179

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

180

Attenuation of sound waves in drill strings  

Science Journals Connector (OSTI)

During drilling of deep wells digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used transmission of these data by elastic carrier waves traveling within the drill pipe is possible but the potential communication range is uncertain. The problem is complicated by the presence of heavy?threaded tool joints every 10 m which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location width and attenuation of the passbands. Mode conversion between extensional and bending waves and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length.

Douglas S. Drumheller

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Drilling Waste Management Fact Sheet: Disposal in Salt Caverns  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Caverns Salt Caverns Fact Sheet - Disposal in Salt Caverns Introduction to Salt Caverns Underground salt deposits are found in the continental United States and worldwide. Salt domes are large, fingerlike projections of nearly pure salt that have risen to near the surface. Bedded salt formations typically contain multiple layers of salt separated by layers of other rocks. Salt beds occur at depths of 500 to more than 6,000 feet below the surface. Schematic Drawing click to view larger image Schematic Drawing of a Cavern in Domal Salt Schematic Drawing click to view larger image Schematic Drawing of a Cavern in Bedded Salt Salt caverns used for oil field waste disposal are created by a process called solution mining. Well drilling equipment is used to drill a hole

182

Development and Testing of Insulated Drill Pipe  

SciTech Connect

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

183

Bakken shale typifies horizontal drilling success  

SciTech Connect

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

184

GRR/Section 5-WA-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-WA-a - Drilling and Well Development GRR/Section 5-WA-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-WA-a - Drilling and Well Development 5-WA-a.pdf Click to View Fullscreen Contact Agencies Washington State Department of Natural Resources Regulations & Policies Geothermal Act 78.60 RCW Geothermal Rules 332-17 WAC Triggers None specified In Washington geothermal drilling and well development are regulated by the Washington State Department of Natural Resources (WSDNR). Geothermal production wells and core holes deeper than 750ft require the developer go through the whole WSDNR permitting process (which requires a public hearing) and require that the developer complete the State Environmental

185

Better practices and synthetic fluid improve drilling rates  

SciTech Connect

Improved drilling practices, combined with the use of olefin-based synthetic drilling fluids, have dramatically reduced drilling time and costs in a difficult drilling area in the Gulf of Mexico. In the South Pass area, Marathon Oil Co. and other operators have had wells with long drilling times and high costs. In addition to the two wells with record penetration rates, routine drilling rates have also increased from the use of synthetic mud and careful drilling practices. Through application of these improved drilling practices, 2,000--3,000 ft/day can be drilled routinely. Marathon achieves this goal by applying the experience gained on previous wells, properly training and involving the crews, and using innovative drilling systems. Improved drilling practices and systems are just one part of successful, efficient drilling. Rig site personnel are major contributors to safely and successfully drilling at high penetration rates for extended periods. The on site personnel must act as a team and have the confidence and proper mental attitude about what is going on downhole. The paper describes the drilling history in the South Pass area, the synthetic drilling fluid used, cuttings handling, hole cleaning, drilling practices, bottom hole assemblies, and lost circulation.

White, W. (Marathon Oil Co., Lafayette, LA (United States)); McLean, A.; Park, S. (M-I Drilling Fluids, Houston, TX (United States))

1995-02-20T23:59:59.000Z

186

Measuring while drilling apparatus mud pressure signal valve  

SciTech Connect

This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

Peppers, J.M.; Shaikh, F.A.

1986-12-09T23:59:59.000Z

187

Limitations of extended reach drilling in deepwater  

E-Print Network (OSTI)

As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

Akinfenwa, Akinwunmi Adebayo

2012-06-07T23:59:59.000Z

188

Marine bearing for a downhole drilling apparatus  

SciTech Connect

A bearing supports a rotatable shaft in a fluid environment. The bearing can be utilized to support a drive shaft connected to a drill bit in a downhole drilling apparatus. The drive shaft extends through a housing in which drilling fluid is flowing. Preferably, the bearing includes an inner elastomeric sleeve and an outer rigid sleeve attached to the interior side wall of the housing. The drive shaft has a wear sleeve attached for rotation therewith. The wear sleeve is rotatably received in the bearing inner sleeve. The inner sleeve is relatively short as compared with the drive shaft and absorbs radial loads imposed on the drive shaft. The bearing is lubricated by a portion of the drilling fluid in the housing which flows between the exterior side wall of the wear sleeve and the interior side wall of the inner sleeve.

Beimgraben, H.W.

1984-07-31T23:59:59.000Z

189

Formation damage in underbalanced drilling operations  

E-Print Network (OSTI)

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

Reyes Serpa, Carlos Alberto

2012-06-07T23:59:59.000Z

190

Fort Bliss exploratory slimholes: Drilling and testing  

SciTech Connect

During November/96 to April/97 Sandia National Laboratories provided consulation, data collection, analysis and project documentation to the U.S. Army for a series of four geothermal exploratory slimholes drilled on the McGregor Range approximately 25 miles north of El Paso, Texas. This drilling was directed toward evaluating a potential reservoir for geothermal power generation in this area, with a secondary objective of assessing the potential for direct use applications such as space heating or water de-salinization. This report includes: representative temperature logs from the wells; daily drilling reports; a narrative account of the drilling and testing; a description of equipment used; a summary and preliminary interpretation of the data; and recommendations for future work.

Finger, J.T.; Jacobson, R.D.

1997-12-01T23:59:59.000Z

191

HP-41CV applied drilling engineering manual  

SciTech Connect

Contents of this manual are as follows: average diameter of an open hole; pump cycle, pump factor, and annulus capacity; drilling-time and penetration rate predictions; nozzle selection; direction well survey; viscosity of drilling fluids; barite requirements with solids dilution; solids analysis and recommended flow properties; evaluation of hydrocyclones; frictional pressure loss; surge and swab pressures; pressure and average density of a gas column; cement additive requirements; kick tolerance, severity, length and density; and pump pressure schedule for well control operations.

Chenevert, M.; Williams, F.; Hekimian, H.

1983-01-01T23:59:59.000Z

192

Experience transfer for process improvement Pl Skalle a,n  

E-Print Network (OSTI)

Accepted 23 June 2013 Available online 6 August 2013 Keywords: Oil well drilling Ontology Case-based reasoning Symptoms a b s t r a c t The oil well drilling process is the selected representative of a challenging industrial process. The drilling process is becoming more complex as oil fields mature

Aamodt, Agnar

193

Cutting and drilling studies using high power visible lasers  

SciTech Connect

High power and radiance laser technologies developed at Lawrence Livermore National Laboratory such as copper-vapor and dye lasers show great promise for material processing tasks. Evaluation of models suggests significant increases in welding, cutting, and drilling capabilities, as well as applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper lasers currently operate at 1.8 kW output at approximately three times the diffraction limit and achieve mean time between failures of more than 1,000 hours. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratios (> 60:1) and features with micron scale (5-50 {mu}m) sizes. The paper gives a description of the equipment; discusses cutting theory; and gives experimental results of cutting and drilling studies on Ti-6Al-4V and 304 stainless steel.

Kautz, D.D.; Dragon, E.P.; Werve, M.E.; Hargrove, R.S.; Warner, B.E.

1993-05-27T23:59:59.000Z

194

Chapter 2 - Offshore Oil and Gas Drilling Engineering and Equipment  

Science Journals Connector (OSTI)

Abstract This chapter introduces the drilling engineering and equipment in the field of offshore oil and gas.It starts by introducing the drilling platform used in the offshore oil and gas. Then it presents the wellhead and wellhead devices used in the offshore oil and gas. After these two, it begins to introduce the drilling engineer including preparation, working procedure, well completion and so on. Finally, it roughly introduces the new technology in drilling and new drilling rig nowadays.

Huacan Fang; Menglan Duan

2014-01-01T23:59:59.000Z

195

ENOC 2014, July 6-11, 2014, Vienna, Austria Numerical study of the nonlinear dynamics of horizontal drillings  

E-Print Network (OSTI)

as a first effort to solve a robust optimization problem, which seeks to maximize the rate of penetration to maximize the rate of penetration of the column into the soil (to reduce the drilling process costs) [3

Paris-Sud XI, Université de

196

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents (OSTI)

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

197

Dual, rotating stripper rubber drilling head  

SciTech Connect

In a drilling head for a well bore through which a tool string of varying outside diameter is run, the drilling head sealing against fluid flow past the tool string to divert such fluid through a side outlet port, said drilling head including a housing having an axial passageway through which the tool string is run and a bearing assembly to facilitate rotation of the tool string within the axial passageway, the improved drilling head comprising: first and second stripper rubbers rotatably mounted within the drilling head housing in seating contact with the tool string, said stripper rubbers having substantially identical inner diameters through which the tool string extends, said first stripper rubber formed of an abrasive resistant material to divert fluid flow from the axial passageway of the housing to the side outlet port and said second stripper rubber formed on a sealingly resilient material which maintains sealing contact with the tool string extending there through preventing fluid flow past said tool string; said first stripper rubber being corrected to clamping means associated with the bearing assembly through a first drive ring such that said first stripper rubber rotates with the tool string; and said second stripper rubber is rotatably connected to said clamping means associated with the bearing assembly through a second drive ring, said first and second drive rings coaxially mounted within the housing whereby said first stripper rubber is positioned axially below said second stripper rubber in sealing contact with the tool string.

Bailey, T.F.; Campbell, J.E.

1993-05-25T23:59:59.000Z

198

Innovative approach for restoring coastal wetlands using treated drill cuttings  

SciTech Connect

The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and field demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled.

Veil, J. A.; Hocking, E. K.

1999-11-02T23:59:59.000Z

199

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network (OSTI)

of support for offshore oil drilling that accompanied thein Support for Offshore Oil Drilling The earliest FieldPoll question about offshore oil drilling was asked in 1977.

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

200

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network (OSTI)

Abstract: Offshore oil drilling has been controversial inCalifornia for decades. Oil drilling in national forests hasopinion regarding oil drilling in California's forests. We

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE  

SciTech Connect

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2003 through September 30, 2004 and contains the following discussions: (1) Direct Electrical Connection for Rotary Shoulder Tool Joints; (2) Conductors for inclusion in the pipe wall (ER/DW-CDP); (3) Qualify fibers from Zoltek; (4) Qualify resin from Bakelite; (5) First commercial order for SR-CDP from Integrated Directional Resources (SR-CDP); and (6) Preparation of papers for publication and conference presentations.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Peter Manekas

2005-03-18T23:59:59.000Z

202

Precision micro drilling with copper vapor lasers  

SciTech Connect

The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

1994-09-02T23:59:59.000Z

203

Drop pressure optimization in oil well drilling  

Science Journals Connector (OSTI)

In this research work we are interested in minimizing losses existing when drilling an oil well. This would essentially improve the load losses by acting on the rheological parameters of the hydraulic and drilling mud. For this rheological tests were performed using a six-speed rotary viscometer (FANN 35). We used several rheological models to accurately describe the actual rheological behavior of drilling mud oil-based according to the Pearson's coefficient and to the standard deviation. To model the problem we established a system of equations that describe the essential to highlight purpose and various constraints that allow for achieving this goal. To solve the problem we developed a computer program that solves the obtained equations in Visual Basic language system. Hydraulic and rheological calculation was made for in situ application. This allowed us to estimate the distribution of losses in the well.

2014-01-01T23:59:59.000Z

204

Data transmission element for downhole drilling components  

DOE Patents (OSTI)

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

205

Directional Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

Directional Drilling Systems Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

206

Independent Statistics & Analysis Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis Independent Statistics & Analysis Drilling Productivity Report The six regions analyzed in this report accounted for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth during 2011-12. December 2013 For key tight oil and shale gas regions U.S. Energy Information Administration Contents Year-over-year summary 2 Bakken 3 Eagle Ford 4 Haynesville 5 Marcellus 6 Niobrara 7 Permian 8 Explanatory notes 9 Sources 10 Bakken Marcellus Niobrara Haynesville Eagle Ford Permian U. S. Energy Information Administration | Drilling Productivity Report 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville

207

Delaware-Val Verde gas drilling busy  

SciTech Connect

Deep and not so deep exploration is under way in the southeastern Delaware and northwestern Val Verde basins in West Texas. Northern Terrell County is seeing a good agenda of Permian Wolfcamp development drilling in spite of testy gas prices. This paper reports that none of the drilling appears to be targeted to Ouachita facies along the Marathon portion of the Ouachita Overthrust, although oil production from several of those fields has been respectable. And a number of exploratory tests to 20,000 ft and deeper are under way or on tap in eastern Pecos County and Terrell County.

Petzet, G.A.

1992-01-13T23:59:59.000Z

208

Oil and gas drilling despoils Alaska environment  

Science Journals Connector (OSTI)

Oil and gas drilling despoils Alaska environment ... Oil and gas development on Alaska's North Slope is causing "alarming environmental problems," accompanied by "a disturbing record of industry compliance with environmental laws and regulations," charges a report just released jointly by Trustees for Alaska, the Natural Resources Defense Council, and the National Wildlife Federation. ... Further oil development in the Arctic should be frozen until the environment is safeguarded, NRDC says, rather than yielding to lobbying in Congress to open the Arctic National Wildlife Refuge to drilling. ...

1988-02-01T23:59:59.000Z

209

Dictionary of petroleum exploration, drilling, and production  

SciTech Connect

This book contains more than 20,000 definitions of oil exploration, drilling, and production terms, making this dictionary mandatory for both the experienced industry professional and the nontechnical person. Completing this comprehensive reference are more than 500 detailed illustrations. Appendices include a rotary rig diagram, a cable tool drilling rig, a beam pumping unit, giant oil fields of the world, giant oil, and gas fields of the United States and Canada, a geological time chart, geological map symbols, conversion factors, the Greek alphabet atomic weights and numbers, charts of the geological features of the United States and Canada, plus much, much more.

Hyne, N.J.

1991-01-01T23:59:59.000Z

210

Drilling slated to resume in Honduras  

SciTech Connect

Considered to have major oil reserve potential, yet sparsely explored, the onshore Mosquitia basin and its offshore sector are attracting operators back to Honduras who may drill on a level not seen since the mid-1970s. Exploratory drilling is scheduled to resume after a five-hear hiatus. After concluding seismic shooting on its Brus Laguna concession is eastern Honduras, Houston-based Bonavista Oil and Mining Corporation plans to spud the first of three wildcats to test the Mosquitia by next summer.

Kaya, W.; Abraham, K.S.

1989-01-01T23:59:59.000Z

211

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

SciTech Connect

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

212

Oil-Based Drilling Fluids: Are they an Environmental Risk?  

Science Journals Connector (OSTI)

The use of oil-based drilling fluids has been discouraged in hydrocarbon exploration ... and production in the marine environment but these drilling fluids are presently being used to a ... Sea have demonstrated ...

F. Payne Jerry; L. Fancey; J. Kiceniuk

1987-01-01T23:59:59.000Z

213

Potential use of hollow spheres in dual gradient drilling  

E-Print Network (OSTI)

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper...

Vera Vera, Liliana

2012-06-07T23:59:59.000Z

214

RECENT DEVELOPMkNTS 1N GEOTHERMAC DRILLING FLUIDS  

Office of Scientific and Technical Information (OSTI)

logging Trouble-free drilling was experience 7,916 feet where a twist-off occurred. The fish was recovered without difficulty and drilling resumed. Mud circul ed from the bottom of...

215

DOE and Navy Collaborate on Geothermal Drilling Technology |...  

Energy Savers (EERE)

PDC drill bit is being re-evaluated and improved to reduce the cost of drilling for geothermal energy. To read the Sandia Labs news release, click on the link below:...

216

Geotechnical Drilling in New-Zealand | Open Energy Information  

Open Energy Info (EERE)

Zealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geotechnical Drilling in New-Zealand Author SonicSampDrill Published Publisher Not Provided,...

217

NNSA Small Business Week Day 2: United Drilling, Inc. | National...  

National Nuclear Security Administration (NNSA)

Inc., a small minority-owned business based in Roswell, N.M. United Drilling drills oil, gas, water, geothermal, and environmental wells throughout the southwestern U.S. The...

218

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oil and Gas Well Drilling Citation Jeff Tester. 2011. Oil and Gas Well Drilling. NA. NA....

219

Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions  

SciTech Connect

Both interstitial water and plant tissue associated with the DC-A substrate exhibited low metal concentrations. Also in agreement with the previous study, plant performance in the DC-A substrate was found to be comparable to plant performance in the dredge spoil and topsoil substrates. This was extremely important because it indicated that the drill cuttings themselves served as an excellent substrate for wetland plant growth, but that the processing and stabilization techniques and drilling fluid formulations required further refinement.

Hester, Mark W.; Shaffer, Gary P.; Willis, Jonathan M.; DesRoches, Dennis J.

2002-06-03T23:59:59.000Z

220

Evaluation of high rotary speed drill bit performance  

E-Print Network (OSTI)

of this research was to develop a drilling model which would more accurately predict penetration rates with standard drilling parameters. An accurate model was developed using laboratory drilling performance. A secondary result of this research was a qualitative... analysis showed that the model may be used to qualita- tivelyy match drilled formations to offset well logs. The ratio of actual to predicted penetration rate was used in conjunction with the gamma ray log to correlate the location of formations. iv...

Ray, Randy Wayne

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Technology Development and Field Trials of EGS Drilling Systems  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

222

OCEAN DRILLING PROGRAM LEG 178 PRELIMINARY REPORT  

E-Print Network (OSTI)

A I M E R This publication was prepared by the Ocean Drilling Program, Texas A&M University, USA, Internet: cowanea@appstate.edu) James Daniels, Sedimentologist (School of Earth Sciences, California 94025, USA, Internet: carlota@octopus.wr.usgs.gov) Andrew J. Evans, Physical Properties Specialist

223

Drill pipe management extends drillstring life  

SciTech Connect

Better handling procedures and frequent drill pipe inspections prolong the life of a drillstring. Crews taught to make quick visual inspections during rig moves and tripping can spot problem pipe early, thus preventing downtime or extensive repairs. Because of escalating costs of drillstring repair and replacement, Global Marine Drilling Co. organized a task force in March 1989 to define problem areas and establish new handling and maintenance procedures. The task force estimated that one 20,000-ft drillstring costs abut $600,000 and has a 7-year life span. Assuming the average rig life is 21 years, each rig will wear out three strings, totaling $1.8 million. The addition of $30,000/year for full rack inspections, repairs and downhole loss brings the total to approximately $2.4 million/rig over the 21 years. A contractor with a fleet of 25 rigs could expend $60 million on drill pipe-the construction cost of a well-equipped, 300-ft jack up rig. The task force reported on in this paper identifies four basic caused of drill pipe failures: Tool joint and tube OD wear, Internal corrosion, Fatigue cracking in the slip and internal upset areas, Physical damage to the tool joint threads and shoulders, and the tube.

Shepard, J.S. (Global Marine Drilling Co., Houston, TX (US))

1991-10-28T23:59:59.000Z

224

OCEAN DRILLING PROGRAM LEG 162 PRELIMINARY REPORT  

E-Print Network (OSTI)

Jansen Co-Chief Scientist, Leg 162 Department of Geology, Section B University of Bergen Allegaten 41 N Drilling Program: Eystein Jansen, Co-Chief Scientist (Department of Geology, University of Bergen, Allegaten 41, N-5007 Bergen, Norway; E-mail: eystein.jansen@geol.uib.no) Maureen Raymo, Co-Chief Scientist

225

Optimising the reward of appraisal drilling  

SciTech Connect

Management of the uncertainties associated with the development of a hydrocarbon resource is essential to minimize economic risk. In many instances these uncertainties can only be reduced by appraisal drilling. This presentation illustrates the efforts being made to manage uncertainty by determining its impact on overall project profitability. The Value of Information (VOI) approach is described. VOI aims at quantifying the benefits of appraisal by determining its economic reward in terms of its contribution to a development plan which is economically robust over the uncertainty range. Appraisal drilling costs can be reduced by combining appraisal and development objectives in one well. The growing use of horizontal drilling technology has resulted in novel approaches to appraisal. As examples, in the Osprey and Brent Fields (UK North Sea) wells were designed to satisfy both appraisal and development objectives. In Osprey, a well was drilled from a central production platform to provide water injection support in a satellite structure while at the same time appraising the saddle area between the two structures. In Brent, horizontal wells are used to appraise and develop the so called slump blocks, characterized by being highly faulted and compartmentalized. Another increasingly common application of horizontal wells is for the flank appraisal of hydrocarbon bearing structure. Examples from the Rabi Field (Gabon) and Batan Field (Nigeria) show how appraisal was achieved by extending the reach of horizontal development wells from the central core of the structures.

Gdula, J.

1996-12-31T23:59:59.000Z

226

Optimising the reward of appraisal drilling  

SciTech Connect

Management of the uncertainties associated with the development of a hydrocarbon resource is essential to minimize economic risk. In many instances these uncertainties can only be reduced by appraisal drilling. This presentation illustrates the efforts being made to manage uncertainty by determining its impact on overall project profitability. The Value of Information (VOI) approach is described. VOI aims at quantifying the benefits of appraisal by determining its economic reward in terms of its contribution to a development plan which is economically robust over the uncertainty range. Appraisal drilling costs can be reduced by combining appraisal and development objectives in one well. The growing use of horizontal drilling technology has resulted in novel approaches to appraisal. As examples, in the Osprey and Brent Fields (UK North Sea) wells were designed to satisfy both appraisal and development objectives. In Osprey, a well was drilled from a central production platform to provide water injection support in a satellite structure while at the same time appraising the saddle area between the two structures. In Brent, horizontal wells are used to appraise and develop the so called slump blocks, characterized by being highly faulted and compartmentalized. Another increasingly common application of horizontal wells is for the flank appraisal of hydrocarbon bearing structure. Examples from the Rabi Field (Gabon) and Batan Field (Nigeria) show how appraisal was achieved by extending the reach of horizontal development wells from the central core of the structures.

Gdula, J.

1996-01-01T23:59:59.000Z

227

Method of drilling and casing a well  

SciTech Connect

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

228

Russian techniques for more productive core drilling  

SciTech Connect

This is a short discussion of the trends and technology being used in Russia to increase the production of core drilling. The currently used rigs are given with the plans for improvement in drive methods and to reduce trip time in the recovery of cores. The recommendations by the Russians to improve the core recovery quality and quantity are also given.

Not Available

1984-09-01T23:59:59.000Z

229

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network (OSTI)

of this report can be found on the ODP Publications Home Page on the World Wide Web at http Consortium for the Ocean Drilling Program (Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Budapestlaan 4, 3584 CD Utrecht, The Netherlands; E-mail: gdelange@earth.ruu.nl) Enrico Di Stefano (De

230

Impedance-matched drilling telemetry system  

DOE Patents (OSTI)

A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

231

Surface control bent sub for directional drilling of petroleum wells  

DOE Patents (OSTI)

Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

1986-01-01T23:59:59.000Z

232

Applications of CBR in oil well drilling "A general overview"  

E-Print Network (OSTI)

Applications of CBR in oil well drilling "A general overview" Samad Valipour Shokouhi1,3 , Agnar successfully. Keywords: Case-based reasoning, oil well drilling 1 Introduction Case-based reasoning (CBR provide to the oil and gas drilling industry. The number of publications on the application of CBR

Aamodt, Agnar

233

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network (OSTI)

successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs the shoreline in shallow- water areas and in climatically sensitive or ice-covered regions. Three implementing the riserless drilling vessel JOIDES Resolution, Japan's Center for Deep Earth Exploration (CDEX) for the riser

234

RESEARCH PAPER Compaction bands induced by borehole drilling  

E-Print Network (OSTI)

: boreholes are often drilled deep into weak porous sandstone formations for the purpose of extracting oil Introduction Boreholes drilled into the Earth's crust for facilitating the extraction of water, oil, naturalRESEARCH PAPER Compaction bands induced by borehole drilling R. Katsman ? E. Aharonov ? B. C

Einat, Aharonov

235

Los Alamos Drills to Record-breaking Depths  

Energy.gov (U.S. Department of Energy (DOE))

LOS ALAMOS, N.M. The EM-supported Environmental Programs at Los Alamos National Laboratory is pushing the limits of drilling technology with the use of a sonic drill rig to drill coreholes more than 1,100 feet deep in support of a chromium remediation project.

236

A New Method for Calculating the Equivalent Circulating Density of Drilling Fluid in Deepwater Drilling for Oil and Gas  

Science Journals Connector (OSTI)

We have developed a simple and accurate method for calculating the equivalent circulating density for drilling fluid which can be used for deepwater drilling calculations. The calculation takes into account de...

Hui Zhang; Tengfei Sun; Deli Gao

2013-11-01T23:59:59.000Z

237

Liability issues surrounding oil drilling mud sumps  

SciTech Connect

This presentation examines liability issues surrounding oil drilling mud sumps and discusses them in relation to two recent cases that arose in Ventura County, California. Following a brief history of regulatory interest in oil drilling mud and its common hazardous substances, various cause of action arising from oil drilling mud deposits are enumerated, followed by defenses to these causes of action. Section 8002 (m) of the Resource Conservation and Recovery Act is mentioned, as are constituents of oil and gas waste not inherent in petroleum and therefore not exempt from regulation under the petroleum exclusion in the Comprehensive Environmental Response, Compensation and Recovery Act. Key legal words such as hazardous substance, release, public and private nuisance, trespass, responsible parties, joint and several liability, negligence, and strict liability are explained. The effects on liability of knowledge of the deposits, duty to restore land to its original condition, consent to the deposit of oil drilling mud, and noncompliance and compliance with permit conditions are analyzed. The state-of-the-art defense and research to establish this defense are mentioned. The newly created cause of action for fear of increased risk of cancer is discussed. Issues on transfer of property where oil drilling mud has been deposited are explored, such as knowledge of prior owners being imputed to later owners, claims of fraudulent concealment, and as is' clauses. The effects on the oil and gas industry of the California Court of Appeals for the Second District rulings in Dolan v. Humacid-MacLeod and Stevens v. McQueen are speculated.

Dillon, J.J.

1994-04-01T23:59:59.000Z

238

Recent Developments in Geothermal Drilling Fluids  

SciTech Connect

In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

1981-01-01T23:59:59.000Z

239

Toward a Domain-Specific Modeling Technique for Oil-Drilling Engineering Applications  

Science Journals Connector (OSTI)

Applications for oil-drilling engineering simulation are characterized with heterogeneous data and resources, complicated business processes and changing business requirements from users. It is of practical significance and great value to find out a ... Keywords: Domain Modeling, Service Component Architecture, Domain Engineering

Feng Jiao; Liping Wang; Chuanzhi Liu

2008-12-01T23:59:59.000Z

240

GRR/Section 5-ID-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

ID-a - Drilling and Well Development ID-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-ID-a - Drilling and Well Development 05IDADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Regulations & Policies IC §42-233: Appropriation of Water, Geothermal IC §42-4003: Permits IC §42-4004: Processing Applications IC §42-4011: Name of Owner Triggers None specified Click "Edit With Form" above to add content Best Practices Community outreach Talk to the local county Potential Roadblocks Incomplete applications result in longer approval times by IDWR 05IDADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network (OSTI)

large volumes of borehole fluids, and initiate a cross-hole hydrogeologic experiment usingNUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.13,April2012 ScientificDrilling ISSN: 1816-8957 Exp. 327: Juan de Fuca Ridge

Fisher, Andrew

242

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

243

GRR/Section 5 - Drilling Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 5 - Drilling Overview GRR/Section 5 - Drilling Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5 - Drilling Overview 05DrillingPermittingOverview.pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 30 USC § 1001 Triggers None specified On top of acquiring the correct drilling permits a developer needs to consider issues such as land and mineral ownership and right of way access. 05DrillingPermittingOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 5.1 - Review Potential Construction Permits In addition to drilling permits, the developer may require other

244

NEPA COMPLIANCE SURVEY Project Information Project Title: Liner Drilling Date:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liner Drilling Date: Liner Drilling Date: 4-5-10 DOE Code: 71092 Cont ractor Code: 8067-766 Project Lead: Frank Ingham Project Overview Nothing out of the ordinary for drilling an existing location 1. What are the environmental impacts? NE SW Sec 21 , T39N, R78W (45-3-X-21 well) 2. What is the legal location? 3. What is the duration of the project? Approximately a week 4 . What major equipment will be used if any (work over rig, drilling rig, Drilling Rig etc.)? Will Drill out of 9 5/8 caslng with liner drillng assembly. After drilling approximately 750 to 1000 ft, will test liner hanging assembly set and retrieve multiple times. The table b elow is to be completed by the Project Lead and reviewed by the Environmental Specialis t and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey a

245

Systems study of drilling for installation of geothermal heat pumps  

SciTech Connect

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

1997-09-01T23:59:59.000Z

246

Drilling deep in South Pole Ice  

E-Print Network (OSTI)

To detect the tiny flux of ultra-high energy neutrinos from active galactic nuclei or from interactions of highest energy cosmic rays with the microwave background photons needs target masses of the order of several hundred cubic kilometers. Clear Antarctic ice has been discussed as a favorable material for hybrid detection of optical, radio and acoustic signals from ultra-high energy neutrino interactions. To apply these technologies at the adequate scale hundreds of holes have to be drilled in the ice down to depths of about 2500 m to deploy the corresponding sensors. To do this on a reasonable time scale is impossible with presently available tools. Remote drilling and deployment schemes have to be developed to make such a detector design reality. After a short discussion of the status of modern hot water drilling we present here a design of an autonomous melting probe, tested 50 years ago to reach a depth of about 1000 m in Greenland ice. A scenario how to build such a probe today with modern technologies...

Karg, Timo

2014-01-01T23:59:59.000Z

247

Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition  

SciTech Connect

This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

John H. Cohen; Greg Deskins

2006-02-01T23:59:59.000Z

248

NETL: News Release - New Projects to Investigate Smart Drilling Options  

NLE Websites -- All DOE Office Websites (Extended Search)

February 20, 2004 February 20, 2004 New Projects to Investigate "Smart Drilling" Options Promise Lower Cost, More Reliable Gas Drilling Two additional projects have been selected under a Department of Energy solicitation designed to advance performance when drilling for natural gas. The projects are a key component of the Department's gas exploration and production research program, and support the President's National Energy Policy, which calls for boosting domestic production of natural gas to ensure an adequate future supply at reasonable prices. With shallow and conventional natural gas resources in the United States being depleted, drillers must reach for gas miles below the earth's surface, where temperatures run up to 450 EF and pressures are hundreds of times greater than atmospheric pressure. "Smart drilling" options can increase productivity, improve drilling safety, and lower costs when drilling for these hard-to-reach deep gas supplies.

249

Noise removal from measurements while drilling an oil well  

Science Journals Connector (OSTI)

Systems to acquire borehole data during the drilling of oil and gas wells make use of measurement while drilling (MWD). One feature of this system is that it is able to do real?time measuring from a borehole; therefore there has been a lot of MWD use on drilling sites in recent years. There are a few types of MWD. Mud pulse?type MWD which uses a drilling circuit fluid is superior to the rest because of its reliability accuracy of data and less disturbance of the drilling schedule. The drilling circuit fluid is raised to a high pressure by a mud pump; borehole data which are recorded by the surface measuring system are contaminated by the pumping noise. Therefore it is necessary to remove the pumping noise to get objective data. This report describes the pumping noise removal system and the method used for the telemetry system from 2000 m depth.

Kazuho Hosono; Haruki Moriyama

1996-01-01T23:59:59.000Z

250

Drop in drilling hurts oil-field chemicals market  

Science Journals Connector (OSTI)

Drop in drilling hurts oil-field chemicals market ... But events in the past few years have proven that notion faulty, and oil-field chemicals have fallen on hard times as drilling activity declines. ... The consumption of oil-field chemicals is directly related to drilling activity, and two new studies point out how far that market has declined and where opportunities still exist. ...

1985-11-18T23:59:59.000Z

251

Evaluation of potential kick scenarios in riserless drilling  

E-Print Network (OSTI)

when drilling conventionally is somewhat different from the procedures when drilling riserless. The two most common methods of kick killing utilized in conventional drilling, are the "Driller's Method" and the "Wait and Weight Method" (also referred... to as the "Engineers Method" )' . The basic procedure utilized by the Driller's Method is to shut in the well, measure stabilized shut-in drillpipe pressure (SIDPP), shut-in casing pressure (SICP), and pit gain. Circulate the kick up the annulus and out...

Seland, Stig

1999-01-01T23:59:59.000Z

252

Stress analysis of a hybrid composite drilling riser  

E-Print Network (OSTI)

. Validation and Verification of the Model. . . 33 35 38 RESULTS AND DISCUSSION . . 43 SUMMARY 49 Current Analysis . Future Work 49 50 REFERENCES . 52 APPENDIX A TABLES. 56 APPENDIX B FIGURES . . 68 APPENDIX C TENSOR TRANSFORMATIONS. . 107 VITA... serves as a conduit between the drilling platform and the subsea well- head. It provides a protected path for the tools being inserted into the well, and for the drilling mud that circulates from the drilling platform to the wefl bottom. The marine...

Sundstrom, Keith Andrew

1996-01-01T23:59:59.000Z

253

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

December 2013 December 2013 Explanatory notes Drilling Productivity Report The Drilling Productivity Report uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells do that. Monthly additions from one average rig Monthly additions from one average rig represent EIA's estimate of an average rig's

254

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

255

Semantic technology in the oil and gas drilling domain.  

E-Print Network (OSTI)

??Data integration and knowledge representation in the oil and gas drilling domain are two challenges much work is focused upon. They are important real-world challenges (more)

Over, Lars

2010-01-01T23:59:59.000Z

256

A Telerobotic Drilling Control System with Haptic Feedback.  

E-Print Network (OSTI)

??Drilling a borehole is a common method for extracting oil, gas, and natural resources from beneath the surface of the earth. The main topic of (more)

Shah, Faraz

2012-01-01T23:59:59.000Z

257

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

258

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

259

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd to...

260

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Costs of Crude Oil and Natural Gas Wells Drilled  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

262

Idaho Well Construction and Drilling Forms Webpage | Open Energy...  

Open Energy Info (EERE)

Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Well Construction and Drilling Forms Webpage Author Idaho Department of...

263

Technology Development and Field Trials of EGS Drilling Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bauer Sandia National Laboratories High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

264

Evaluation of an air drilling cuttings containment system  

SciTech Connect

Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

Westmoreland, J.

1994-04-01T23:59:59.000Z

265

Hydrates represent gas source, drilling hazard  

SciTech Connect

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

266

Modeling Drilled Shafts in MSE Block Walls  

E-Print Network (OSTI)

ACKNOWLEDGEMENTS xii ABSTRACT xiii 1 INTRODUCTION 1 2 LITERATURE REVIEW 3 2.1 Physical Testing 3 2.1.1 MSE Wall Design (FHWA) 3 2.1.2 Design of Laterally Loaded Shafts 6 2.1.3 Design of Drilled Shafts Supporting Sound Walls 7 2.1.4 Topics Related to MSE... Wall Interaction with Bridges 8 2.1.5 Lateral Loading of Facing and Retained Soil 9 2.1.6 Physical Test Results 11 2.1.6.1 Construction and Instrumentation of Test Wall 12 2.1.6.2 Physical Testing and Results 17 2.2 Numerical Approaches 22 2...

Pierson, Matthew Charles

2010-09-01T23:59:59.000Z

267

Performance-Oriented Drilling Fluids Design System with a Neural Network Approach  

Science Journals Connector (OSTI)

Drilling fluids play a key role in the minimization of well bore problems when drilling oil or gas wells, usually the design of drilling fluids is depended on many experiments with experience. Rule-based and case-based reasoning drilling fluid system ... Keywords: artificial neural network, drilling fluid, performance-oriented

Yongbin Zhang; Yeli Li; Peng Cao

2009-11-01T23:59:59.000Z

268

Restored drill cuttings for wetlands creation: Results of a two year mesocosm approach to emulate field conditions under varying hydrologic regimes  

SciTech Connect

It is well documented that Louisiana has the highest rate of wetland loss in the United States. Deep-water channel dredging and leveeing of the Mississippi River since the 1930s have interrupted the natural delta cycle that builds new marshes through sediment deposition. Many of the areas that are subsiding and deteriorating are isolated from riverine sediment sources; therefore alternative methods to deposit sediment and build marshes must be implemented. This project demonstrates that the earthen materials produced when drilling oil and gas wells can be used as a suitable substrate for growing wetland plants. Drilling fluids (muds) are used to lubricate drill bits and stabilize the earth around drill holes and become commingled with the earthen cuttings. Two processes have been reported to restore drill cuttings to acceptable levels by removal of any toxic components found in drilling muds. The main objective of this project was to assess the potential of drill cuttings processed by these two methods in terms of their ability to support wetland vegetation and potential toxicity.

Shaffer, G.P.; Hester, M.W.; Miller, S.; DesRoches, D.J.; Souther, R.F.; Childers, G.W.; Campo, F.M.

1998-11-01T23:59:59.000Z

269

Rotating head for rotary drilling rigs  

SciTech Connect

A rotating head is claimed for a rotary drilling rig which is to be secured to the top of a well pipe having an inner rotating portion with an opening therethrough which permits passage of drill pipe, pipe joints, and Kelly tools; the rotating portion has an annular drive rubber formed integrally with the top portion thereof. A rotating head drive bushing having an opening with a cross-sectional shape generally conforming to the cross-section of the Kelly tool to permit only sliding motion therebetween is provided with helical external ridges which produce a disengagable gripping action with the opening in the drive rubber at the top of the rotating portion of the rotating head. The rotating portion has a conventional stripper rubber at the bottom thereof and is mounted with a double roller bearing to provide low friction motion with respect to the fixed portion of the head. The double roller bearing is lubricated with a viscous lubricating material and paddles are provided between the sets of rollers of the double roller bearing for distributing the viscous lubricating material and in particular propel it onto the upper set of bearings; the upper body portion of the rotating head is readily detachable from the lower sleeve portion which is normally welded to the well conductor pipe.

Adams, J.R.

1983-09-27T23:59:59.000Z

270

Wayne field: A horizontal drilling case study  

SciTech Connect

Beginning in the spring of 1994, studies of Wayne field located on the northeastern flank of the Williston Basin were initiated to determine the feasibility of using horizontal drilling to increase recoverable reserves in the field. The Wayne subinterval is one of several shoaling-upwards cycles within the Mission Canyon Formation of the Mississippian Madison Group. The reservoir pay averages 24% porosity, 100 millidarcys permeability, and 50% water saturation. Vertical wells, since field discovery in 1957, typically IP for 70 bopd and 20% water with a rapid decline within a few months to 10 bopd and 90% water. This type of well performance is characteristic of severe water coning for which horizontal development can help to minimize. In late 1994 and early 1995 the Ballantyne Hedges No.7H and GeoResources O. Fossum No.H1 were drilled. The wells recorded IP`s of 280 bopd/5 bwpd and 390 bopd/80 bwpd respectively. After six months of production both wells stabilized at approximately 110 bopd with a 35% water cut. Projections indicate that each horizontal well will recover 250,000 bbls of oil as compared to 115,000 bbls for an average vertical well and will do so in half the time. These early results provide a significant improvement over the vertical production and would seem to be reducing water coning. Three more horizontal wells are planned for the fourth quarter of 1995.

Jennings, J.B. [GeoResources, Inc., Williston, ND (United States); Johnson, R.P. [Harris, Brown, & Kiemer, Inc., Bismarck, ND (United States)

1996-06-01T23:59:59.000Z

271

Herzig, P.M., Humphris, S.E., Miller, D.J., and Zierenberg, R.A. (Eds.), 1998 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 158  

E-Print Network (OSTI)

and related hydrothermal processes (RIDGE, 1992; Ocean Drilling Program [ODP], 1996). Conduction through of the Ocean Drilling Program, Scientific Results, Vol. 158 329 24. THERMAL PROPERTIES OF TAG HYDROTHERMAL hydrothermal field, located in the rift valley of the Mid-Atlantic Ridge near 26°N, 45°W. Thermal conductivity

272

Biodegradation of Fuel Oil Hydrocarbons in Soil Contaminated by Oily Wastes Produced During Onshore Drilling Operations  

Science Journals Connector (OSTI)

The petroleum industry generates high amount of oily wastes during drilling, storage and refining operations. Onshore drilling operations produce oil based wastes, typically 100150m-3 well. The drilling cuttings...

Qaude-Henri Chaneau; Jean-Louis Morel; Jean Oudot

1995-01-01T23:59:59.000Z

273

Multi-objective optimization of oil well drilling using elitist non-dominated sorting genetic algorithm  

Science Journals Connector (OSTI)

A multi-objective optimization of oil well drilling has been carried out using a binary ... functions were formulated and solved to fix optimal drilling variables. The important objectives are: (i) maximizing drilling

Chandan Guria; Kiran K. Goli; Akhilendra K. Pathak

2014-03-01T23:59:59.000Z

274

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network (OSTI)

frequency data from oil and gas drilling. I find that thean examination of the oil and gas drilling industry. I findintegration. The oil and gas drilling industry is well-

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

275

The Importance of Rheology in the Determination of the Carrying Capacity of Oil-Drilling Fluids  

Science Journals Connector (OSTI)

The ability of a drilling fluid to convey drill cuttings from a well is not fully ... cuttings travel with a lower velocity than the drilling fluid and they can accumulate in the ... lead to degradation of the cu...

M. A. Lockyer; J. M. Davies; T. E. R. Jones

1980-01-01T23:59:59.000Z

276

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network (OSTI)

005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

277

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network (OSTI)

009 "Public Support for Oil and Gas Drilling in CaliforniasPublic Support for Oil and Gas Drilling in CaliforniasPublic Support for Oil and Gas Drilling in Californias

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

278

Deep-water drilling remains a risky business  

Science Journals Connector (OSTI)

... Two years after the blowout of the BP oil well drilled by the Deepwater Horizon rig in the Gulf of Mexico, the United States is largely failing to act on ... commission that produced the report Deep Water: The Gulf Oil Disaster and the Future of Offshore Drilling the other was Cherry Murray of Harvard University. The commission concluded that ...

Donald Boesch

2012-04-17T23:59:59.000Z

279

a microsoft white paper Drilling for new Business Value  

E-Print Network (OSTI)

a microsoft white paper Drilling for new Business Value How innovative oil and gas companies Technical Strategist, Oil & Gas and Mining, Microsoft Adil Soofi, Enterprise Architect, Microsoft Ernie Perez, Enterprise Architect, Microsoft #12;a microsoft white paper Drilling for new B usiness Value 2

Bernstein, Phil

280

Evaluation of liquid lift approach to dual gradient drilling  

E-Print Network (OSTI)

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

US deep geothermal drilling for 1973-1980  

SciTech Connect

The number of deep geothermal wells drilled in 1973 through 1980 are analyzed. The rate of drilling was constant from 1973 through 1978, but appears to have increased starting in 1979. The increase has occurred mainly at The Geysers and at exploratory locations outside of California.

Gerstein, R.E.; Entingh, D.J.

1981-10-01T23:59:59.000Z

282

INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION  

E-Print Network (OSTI)

and to monitor subseafloor environments. IODP builds upon the earlier successes of the Deep Sea Drilling Project in shallow-water areas and in climatically sensitive or ice-covered regions. Three implementing organizations the riserless drilling vessel JOIDES Resolution, Japan's Center for Deep Earth Exploration (CDEX) for the riser

283

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network (OSTI)

in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling Project (DSDP by Japan's Center for Deep Earth Exploration (CDEX), allows IODP to drill for months to a year or more Resolution or the Chikyu, such as locations near the shoreline in shallow-water areas and in climatically

284

Theoretical simulation of the multipole seismoelectric logging while drilling  

Science Journals Connector (OSTI)

......wave can travel through the drilling collar from the transmitter...collar, which occupies a large portion of the borehole. It does not allow a large number of deep grooves to...stiffness and strength during drilling. On the steel collar......

Wei Guan; Hengshan Hu; Xiaobo Zheng

2013-01-01T23:59:59.000Z

285

Thermal and hydraulic aspects of the KTB drill site  

Science Journals Connector (OSTI)

......Continental Deep Drilling (KTB)project...accompanied by large-scale data...sections and borehole data show eastwards...submitted to borehole convection...fractured zones near large fluid reservoirs...preferential uptake of drilling mud these zones...demonstrated that the borehole profile is completelyunaffected......

T. Kohl; L. Rybach

1996-03-01T23:59:59.000Z

286

Using Bayesian Network to Develop Drilling Expert Systems  

E-Print Network (OSTI)

in foam UBD ............................................ 82 67 Overall air and gas UBD ........................................................................... 83 68 Rotary and hammer drilling options... .......................................................... 84 69 A list of limits and challenges for air and gas UBD .................................. 85 70 A list of possible gas drilling operations ................................................... 86 71 A list of possible rig equipment...

Alyami, Abdullah

2012-10-19T23:59:59.000Z

287

Drilling Through Gas Hydrates Formations: Managing Wellbore Stability Risks  

E-Print Network (OSTI)

in this workflow were based on a real field case. The results provide an understanding of the effects of drilling through hydratebearing sediments and of the impact of drilling fluid temperature and BHP on changes in temperature and pore pressure within...

Khabibullin, Tagir R.

2010-10-12T23:59:59.000Z

288

Calculator program optimizes bit weight, rotary speed, reducing drilling cost  

SciTech Connect

Bit selection, bit weight, and rotary speed have repeatedly proven to be the most important and commonly overlooked alterable factors which control penetration rate, footage, and overall drilling cost. This is particularly true in offshore operations where drilling costs are highest and the greatest cost savings stand to be achieved through implementation of proven optimization techniques. The myth that bit weights and rotary speeds cannot be optimized in directional holes has hindered the industry from using this virtually cost-free method for reducing drilling cost. The use of optimized bit weights and rotary speeds in conjunction with minimum cost bit programs based on cost per foot analysis of previous bit runs in the area was implemented on a five-well platform in the Grand Isle Block 20 field, offshore Louisiana. Each of the directional wells was drilled substantially faster and cheaper than the discovery well, which was a straight hole. Average reductions in footage cost of 31.3%, based on daily operating cost of $30,000/day, and increase in average daily footage drilled of 45.2% were effected by ''collectively optimizing'' drilling performance. The ''Optimizer'' program is an HP-41CV adaptation of the Bourgoyne and Young drilling model. It was used to calculate the optimum bit weights and rotary speeds based on field drilling tests; historical bit and bearing wear data; and current operating conditions, cost, and constraints.

Simpson, M.A.

1984-04-23T23:59:59.000Z

289

Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling  

SciTech Connect

Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

Hamrick, Todd

2011-05-25T23:59:59.000Z

290

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

291

Slimhole Drilling, Logging, and Completion Technology - An Update  

SciTech Connect

Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

FINGER,JOHN T.; JACOBSON,RONALD D.

1999-10-07T23:59:59.000Z

292

Drilling, instrumentation and sampling consideration for geoscience studies of magma-hydrothermal regimes  

SciTech Connect

Drilling, diagnostic, and sampling technologies are reviewed and a strawman drill hole is used for identifying scientific and technological limitations. (MHR)

Traeger, R.K.; Varnado, S.G.; Veneruso, A.F.; Behr, V.L.; Ortega, A.

1981-05-01T23:59:59.000Z

293

Research on Error Compensation for Oil Drilling Angle Based on ANFIS  

Science Journals Connector (OSTI)

Gyro survey technique has applied and played an important role in many areas, such as offshore oil drilling, directional drilling and so on. Considering the influence of...

Fan Li; Liyan Wang; Jianhui Zhao

2007-01-01T23:59:59.000Z

294

E-Print Network 3.0 - autolifting floating drilling Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

7. Spar... that by one-third. o By producing more oil domestically though offshore drilling o Reducing our dependence... Ocean Explorer 12;Types of offshore drilling...

295

Behavior of oil muds during drilling operations  

SciTech Connect

This paper presents an analysis of the behavior of diesel-oil-based muds with an advanced thermal and hydraulic wellbore mathematical simulator. Recent diesel-oil-mud rheological correlations have been incorporated into the model to account for viscosity and density variations of oil mud with temperature and pressure. As rheological correlations are developed for other oil-based muds, such as mineral-oil based muds, they can also be incorporated into the model. A specific deep-well application of the model illustrates the behavior of the oil-based muds and shows the differences between water-based mud and oil-mud for local fluid densities during drilling, circulating, and static conditions. Temperature and density profiles are presented for various operating conditions to show that modeling improves the understanding of oil-mud behavior downhole.

Galate, J.W.; Mitchell, R.F.

1986-04-01T23:59:59.000Z

296

Drill-bit with full offset cutter bodies  

SciTech Connect

A rotary drag drill bit is seen wherein cutter bodies are rotatively connected to a main body structure at a fully offset position. The fully offset position is defined by a rotational axis of each cutter body, a longitudinal axis of the drill bit and end support points or positions of the cutter bodies. The rotational axes of the cutter bodies are perpendicular to the longitudinal axis of the drill bit. The end supports of the cutter body are each equal distance from any point on the longitudinal axis of the drill bit. The cutter bodies of essentially ellipsoidal configuration, being slightly thicker at a mid-portion thereof. Cutting elements are connected to flutes projecting above an outer surface of each cutter body. In a primary rotational direction of the drill string and drill bit, the rows abrade the bottom and side walls of a well bore as the cutter body attacks the earth formation as the drill bit is rotated. The impingement of the cutting elements of the cutter body on the earth formation imparts a secondary rotation to the cutter bodies, which secondary rotation is induced by the primary rotation. The secondary rotation allows the rows of cutting elements to engage the side wall of the bore and gauge the hole as well as abrading away material from the bottom of the well bore. A roller bearing assembly is provided for the cutter body to permit the secondary rotation, while a thrust bearing assembly assists the primary abrasive action imparted by the primary rotational movement of the rotary drill bit. A lubrication system is included in the main body structure of the drill bit wherein both the roller bearing assembly and thrust bearing assembly are lubricated.

Frear, L.

1985-11-12T23:59:59.000Z

297

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 19762009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

298

DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS  

SciTech Connect

The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

Johnson, F.; Fox, K.

2013-10-02T23:59:59.000Z

299

Optimization Models for Optimal Investment, Drilling, and Water Management in Shale Gas Supply Chains  

Science Journals Connector (OSTI)

Abstract This paper provides an overview of recent optimization models for shale gas production. We first describe a new mixed-integer optimization model for the design of shale gas infrastructures. It is aimed at optimizing the number of wells to drill, size and location of new gas processing plants, section and length of pipelines for gathering raw gas, delivering dry gas and natural gas liquids, power of gas compressors, and planning of freshwater consumption for well drilling and fracturing. We also describe a detailed operational mixed-integer linear model to optimize life cycle water use for well pads. The objective of the model is to determine the fracturing schedule that minimizes costs for freshwater consumption, transportation, treatment, storage, and disposal.

Ignacio E. Grossmann; Diego C. Cafaro; Linlin Yang

2014-01-01T23:59:59.000Z

300

A leading index of drilling activity: Update and improvements  

SciTech Connect

A five-component composite leading index of United States rotary rig drilling activity is updated. The index is presented for 1949 through April 1986 and is shown to consistently lead turning points in drilling activity. Seven new leading indices based on some new components are also presented. A forecast of drilling activity is made for the remainder of 1986 based on the leading index and the current economic condition of the petroleum industry. The methods used to prepare time series and construct indices are reviewed.

Buell, R.S.; Maurer, R.A.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

302

Determining root causes of drilling problems by combining cases and general knowledge  

E-Print Network (OSTI)

-based, knowledge intensive, oil well drilling 1 Introduction Drilling of oil wells is an expensive offshore based reasoning to improve efficiency of oil well drilling. Their focus was on lost circulation, whichDetermining root causes of drilling problems by combining cases and general knowledge Samad

Aamodt, Agnar

303

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS  

E-Print Network (OSTI)

Louisiana State University Abstract In oil well drilling, the efficient transport of drilled cuttings from pipe and excessive frictional pressure losses while drilling directional and horizontal oil wellsPREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL

Ullmer, Brygg

304

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

305

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

306

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat  

SciTech Connect

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

Ezra Zemach

2010-01-01T23:59:59.000Z

307

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

308

Field Investigations And Temperature-Gradient Drilling At Marine Corps  

Open Energy Info (EERE)

Investigations And Temperature-Gradient Drilling At Marine Corps Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Field Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Details Activities (4) Areas (1) Regions (0) Abstract: The U.S. Navy's Geothermal Program Office (GPO) has been conducting geothermal exploration activities in the Camp Wilson area of Marine Corps Air-Ground Combat Center (MCAGCC), Twenty-nine Palms, CA, for almost two years. Work has included self-potential (SP) surveys, fault structure analyses using LiDAR surveys, and drilling and assessment of five (5) temperature-gradient holes. For several decades the GPO has worked

309

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

310

Offshore Drilling Safety and Response Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies April 6, 2011 - 2:33pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Science, Space, and Technology Committee, Subcommittee on Energy and Environment. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Department of Energy's (DOE) perspective on research and development (R&D) to improve oil and gas drilling in ever-deeper waters with greater margins of safety, reduced risk of spills, and better mitigation approaches should there be a spill. As you know, the Office of Fossil Energy (FE) leads DOE's efforts to

311

Historical Exploration And Drilling Data From Geothermal Prospects And  

Open Energy Info (EERE)

Exploration And Drilling Data From Geothermal Prospects And Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Details Activities (20) Areas (7) Regions (0) Abstract: In 2005, Idaho National Laboratory was conducting a study of historical exploration practices and success rates for geothermal resources identification. Geo Hills Associates (GHA) was contracted to review and accumulate copies of published literature, Internet information, and unpublished geothermal exploration data to determine the level of exploration and drilling activities that occurred for all of the currently

312

Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and  

Open Energy Info (EERE)

Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Abstract No abstract prepared. Authors Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen and Gene Polik Organization Sandia National Laboratories Published Geothermal Technologies Legacy Collection, 1999 Report Number SAND99-1976 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Citation

313

NEPA COMPLIANCE SURVEY Project Information Project Title: Casing Drilling Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Casing Drilling Test Casing Drilling Test Date: 5-17-201 1 DOE Code: 6730-020-72000 Contractor Code: 8067-806 Project Lead: Marl< Duletsky Project Overview 1, Brief project description ~nclude The existing 13-1-SX-23 location and entry road will be reworldrilling rig (SST anything that could impact the rig #3). The two existing wells on the location will be capped at ground level, and a new well will be drilled environment] using water based mud. The existing rat I mouse hole on the site will be backfilled. A new 6700 ft3 reserve pit [80' long by 30' wide by 4' deep allowing for 2' of freeboard] will be constructed on location. and a 12 mm 2. Legal location liner will be installed. 3. Duration of the project 4. Major equipment to be used

314

Toxicity testing of oil-contaminated drilling cuttings  

Science Journals Connector (OSTI)

The luminescent bacterium Photobacterium phosphoreum...has been used to examine samples of oily drilling cuttings from the sea bottom in the vicinity of a North Sea oil production platform. Because the presence o...

B. Neustadt; I. L. Marr; H. W. Zwanziger

315

Improved Efficiency of Oil Well Drilling through Case Based Reasoning  

Science Journals Connector (OSTI)

A system that applies a method of knowledge-intensive case-based reasoning, for repair and prevention of unwanted events in the domain of offshore oil well drilling, has been developed in cooperation with an oil ...

Paal Skalle; Jostein Sveen; Agnar Aamodt

2000-01-01T23:59:59.000Z

316

Studying rheological behavior of nanoclay as oil well drilling fluid  

Science Journals Connector (OSTI)

Bentonite is commonly used to control the rheology and filtrate loss required for water-based drilling fluids. In this study, the effect ... modification on fluid viscosity and its dispersion in oil-wet fluids we...

M. Mohammadi; M. Kouhi; A. Sarrafi; M. Schaffie

2013-09-01T23:59:59.000Z

317

Optimal Choice of Coordinates for Oil Well Drilling  

Science Journals Connector (OSTI)

Methods and algorithms for determining coordinates for drilling new wells on an admissible set are ... cases in which (1) time-changes in oil saturation can be neglected and (2) pressure and oil saturation distri...

A. V. Akhmetzyanov; V. N. Akhmetzyanov

2002-11-01T23:59:59.000Z

318

NNSA participates in cloud-based radiation data collection drill...  

National Nuclear Security Administration (NNSA)

were collected and validated during this one-day drill . The RadResponder Network is a mobile, cloud-based radiation data collection system that provides federal and state, local,...

319

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network (OSTI)

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

Amodu, Afolabi Ayoola

2009-05-15T23:59:59.000Z

320

Development of a High-Temperature Diagnostics-While-Drilling...  

Office of Environmental Management (EM)

HT tool are provided. htdwdtools.pdf More Documents & Publications A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 DOE-HDBK-1017...

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Water Wells and Drilled or Mined Shafts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The drilling, excavation, and construction of a water well or mine shaft requires a permit from the Texas Commission on Environmental Quality (previously known as the Texas Natural Resource...

322

Lowering Drilling Cost, Improving Operational Safety, and Reducing  

NLE Websites -- All DOE Office Websites (Extended Search)

via stress cycling. This can occur due to post cementing operations such as drilling and hydraulic fracturing, or thermal stresses. The testing method used a 3" PVC pipe to...

323

Small-scale drilling operations for research purposes  

Science Journals Connector (OSTI)

...Transmission: Throttle: Fuel: Fuel consumption: Drill rods: Core barrels...comment on starting the engine and an apparent deficiency...cease, otherwise the engine will receive damage...Two-stroke and four-stroke fuel 8 0 0 Depreciation...

Noah Farmer; John Michael Jones; Duncan George Murchison

324

Borehole Stability Analysis of Horizontal Drilling in Shale Gas Reservoirs  

Science Journals Connector (OSTI)

Serious wellbore instability occurs frequently during horizontal drilling in shale gas reservoirs. The conventional forecast model of in ... not suitable for wellbore stability analysis in laminated shale gas for...

Jun-Liang Yuan; Jin-Gen Deng; Qiang Tan; Bao-Hua Yu

2013-09-01T23:59:59.000Z

325

Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico...  

Open Energy Info (EERE)

Hole VC-2A Abstract A scientific core hole has been drilled into the western ring fracture zone of the Valles Caldera, N.Mex. Hole VC-2A, the second scientific core hole in the...

326

Odessa fabricator builds rig specifically for geothermal drilling  

Energy.gov (U.S. Department of Energy (DOE))

For 35 years, MD Cowan has built drilling rigs, developing a market for its Super Single rig for use in the nation's oil and gas fields. Now the Odessa-based company is branching out into alternative energy.

327

Investigation of the feasibility of deep microborehole drilling  

SciTech Connect

Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

1997-01-01T23:59:59.000Z

328

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

329

Offshore Drilling Safety and Response Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies April 6, 2011 - 2:33pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Science, Space, and Technology Committee, Subcommittee on Energy and Environment. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Department of Energy's (DOE) perspective on research and development (R&D) to improve oil and gas drilling in ever-deeper waters with greater margins of safety, reduced risk of spills, and better mitigation approaches should there be a spill. As you know, the Office of Fossil Energy (FE) leads DOE's efforts to

330

Research and Development Activities in Geothermal Drilling, Completion, and Logging  

Science Journals Connector (OSTI)

Sandia National Laboratories manages the Geothermal Drilling and Completion Program for the US Department of Energy. The primary purpose of this program is to expand access to the geothermal resource by reduci...

John Finger

1985-01-01T23:59:59.000Z

331

Recent developments in geothermal drilling fluids  

SciTech Connect

Three recent development efforts are described, aimed at solving some of these drilling fluid problems. The Sandia aqueous foam studies are still in the laboratory phase; NL Baroid's polymeric deflocculant is being field tested; and the Mudtech high temperature mud was field tested several months ago. The aqueous foam studies are aimed at screening available surfactants for temperture and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260/sup 0/C and 310/sup 0/C and several of these candidates appear very promising. A polymeric deflocculant was developed for water-based muds which shows promise in laboratory tests of retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 500/sup 0/F. A high temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May of last year. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test. (MHR)

Kelsey, J.R.; Rand, P.B.; Nevins, M.J.; Clements, W.R.; Hilscher, L.W.; Remont, L.J.; Matula, G.W.; Bailey, D.N.

1981-01-01T23:59:59.000Z

332

Williston Basin: An analysis of salt drilling techniques for brine-based drilling-fluid systems  

SciTech Connect

Williston Basin salt intervals, ranging in depth from 5,000 to 12,500 ft (1525 to 3810 m), have been responsible for widespread casing collapse because of the plastic movement of evaporites and the subsequent point loading of casing. This phenomenon is attributable to poor cement jobs across excessively eroded salt sections. A 2-year study led to the realization that this erosion is a function of not only salt dissolution but also the mechanical action of turbulent flow in the wellbore. A laminar flow regime can be realized and salt enlargement limited by careful control of annular flow rate, jet velocity, and drilling-fluid rheology.

Stash, S.M.; Jones, M.E.

1988-03-01T23:59:59.000Z

333

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

SciTech Connect

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

334

Simulation of air and mist drilling for geothermal wells  

SciTech Connect

An improved method for calculating downhole temperatures, pressures, fluid densities and velocities during air drilling has been developed. The basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressures in typical air and mist drilling situations. 8 refs.

Mitchell, R.F.

1981-01-01T23:59:59.000Z

335

Residual strain measurements on drill cores from Reydarfjordur, Iceland  

E-Print Network (OSTI)

RESIDUAL STRAIN MEASUREMENTS ON DRILL CORES FROM REYDARFJORDUR, ICELAND A Thesis BESIM BASLANGIC Submitted to the Office oi' Graduate Studies of Texas A&M University in partial fulfillment of the requirements I' or the degree of MAST...'ER OF SCIENCE May 1989 Major Subject: Geophysics RESIDUAL STRAIN MEASLREMENTS ON DRILL CORES FROM REYDARFJORDUR, ICELAVD A Thesis BESIM BASLANGIC Approved as to style and content by: Earl R. Hoskins (Chair of Committee) Richard L. Carlson (Member...

Baslangic, Besim

2012-06-07T23:59:59.000Z

336

Economic analysis of waterflood infill drilling in Texas  

E-Print Network (OSTI)

IN MID 1980 DOLLARS 3 COST ESCALATION FACTORS FOR INFILL WELL COSTS 4 ANNUAL OPERATING COSTS AND INDEXES FOR WEST TEXAS SECONDARY RECOVERY PROJECTS WITH 10 PRODUCERS AND 11 INJECTION WELLS 5 HISTORICAL AVERAGE OIL AND GAS PRICES 6 INFILL DRILLING... IN MID 1980 DOLLARS 3 COST ESCALATION FACTORS FOR INFILL WELL COSTS 4 ANNUAL OPERATING COSTS AND INDEXES FOR WEST TEXAS SECONDARY RECOVERY PROJECTS WITH 10 PRODUCERS AND 11 INJECTION WELLS 5 HISTORICAL AVERAGE OIL AND GAS PRICES 6 INFILL DRILLING...

Reviere, Randall Hooge

2012-06-07T23:59:59.000Z

337

Development of a Low-Cost Rotary Steerable Drilling System  

SciTech Connect

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

338

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To  

Open Energy Info (EERE)

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description This project proposes to develop a cost-effective microhole drilling and completion technology with the Flash Abrasive Slurry Jet (ASJ) system and optimize it to maximize the efficiency of fluid circulation and heat removal for Enhanced Geothermal Systems (EGS). The proposed approach is expected to address the key obstacles that currently prevent EGS from becoming a technically feasible, commercially viable major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted.

339

Rotary torque and rpm indicator for oil well drilling rigs  

SciTech Connect

Monitoring the torque applied by the rotary table to the drill string and the rpm of the drill string is provided. An intermediate adapter is positioned between the drill kelly and the rotary table. A strain gauge is attached to the intermediate adapter to measure torsional deformation and provide an indication of rotary torque. Transmission of torque data is accomplished by radio frequency transmission utilizing a transmitter on the intermediate adapter. A receiver is mounted to the side of the drill rig floor to receive and demodulate the torque signal. The intermediate adapter is rotating at the same rate as the drill string. Detection of the revolutions utilizing the changing R.F. Field strength is accomplished at the edge of the drill rig platform or elsewhere with a stationary sensor which doubles as the torque receiver. A highly directional torque transmitter antenna mounted on the adapter is used with the major lobe lying parallel to the rig floor and perpendicular to the pipe. By detecting the envelope of the radio frequency field strength, each rotation is marked by a peak. This enables continuous torque and rpm monitoring.

Chien, L.C.

1981-08-25T23:59:59.000Z

340

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evaluation of drill cuttings in prediction of penetration rate by using coarseness index and mean particle size in percussive drilling  

Science Journals Connector (OSTI)

Penetration rate of rocks is influenced by geological parameters,...CI) and mean particle size (d) to evaluate the penetration rate (PR) in percussive drilling in a limestone and in a marl quarry. The coarseness ...

Ra??t Altindag

342

The development and utilization of a high-speed laboratory rock drilling apparatus  

E-Print Network (OSTI)

Operations Data Analysis Techniques Effect of Drilling Parameters on Drilling Rate Observed Drilling Trends Page vi vi 1 ix 14 20 21 28 34 35 39 39 45 45 47 55 59 TABLE OF CONTENTS (continued) Comparison of Actual Penetration Rate... to Calculated Penetration Rate Problems Encountered With the Drilling Apparatus Future Application of the Drilling Apparatus CONCLUSIONS REFERENCES APPENDIX A: DATA ANALYSIS PROGRAM APPENDIX B: DIMENSIONLESS ANALYSIS PROGRAM VITA Page 90 97 98 100...

Day, Jeffrey Dale

2012-06-07T23:59:59.000Z

343

Experimental study on the model of the correlation between the movement of the drilling string with big diameter of drill and effects on the oil rigs  

Science Journals Connector (OSTI)

In the authors view, an important contribution is to clarify the interaction of a drill string and unconventional hoisting system, we find the influence of the constructive peculiarities oil installations (drilling

Marius Stan; Lazar Avram

2014-08-01T23:59:59.000Z

344

Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes  

SciTech Connect

This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

Kolstad, George A.; Rowley, John C.

1987-01-16T23:59:59.000Z

345

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

SciTech Connect

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

346

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer (OSTI)

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

347

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

348

Development of a high-temperature diagnostics-while-drilling tool.  

SciTech Connect

The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picture of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.

Chavira, David J.; Huey, David (Stress Engineering Services, Inc.); Hetmaniak, Chris (Stress Engineering Services, Inc.); Polsky, Yarom; King, Dennis K.; Jacobson, Ronald David; Blankenship, Douglas Alan; Knudsen, Steven Dell; Henfling, Joseph Anthony; Mansure, Arthur James

2009-01-01T23:59:59.000Z

349

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

350

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

351

Microhole High-Pressure Jet Drill for Coiled Tubing  

SciTech Connect

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

Ken Theimer; Jack Kolle

2007-06-30T23:59:59.000Z

352

Simulation of air and mist drilling for geothermal wells  

SciTech Connect

An air drilling model has been developed that accounts for cuttings and mist. Comparison of the model results with previous work shows this model to be more conservative. The equations developed are simple enough to be used in hand calculations, but the full capability of the model is more easily obtained with a computer program. Studies with the model show that volume requirements and standpipe pressures are significantly different for mist drilling compared with air drilling. An improved method for calculating downhole temperatures, pressures, fluid densities, and velocities during air drilling has been developed. Improvements on previous methods include the following. A fully transient thermal analysis of the wellbore and formation is used to determine the flowing temperatures. The effects of flow acceleration are included explicitly in the calculation. The slip velocity between the gas and the cuttings is determined by the use of a separate momentum equation for the cuttings. The possibility of critical flow in the wellbore is tested and appropriate changes in the volume flow rate and standpipe pressure are made automatically. The standpipe and flowing pressures are predicted. The analysis is conservative. The effect of the cuttings on the wellbore flow will tend to overpredict the required volume flow rates. In this paper, the basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressure in typical air and mist drilling situations.

Mitchell, R.F.

1983-11-01T23:59:59.000Z

353

Slim hole drilling proven in remote exploration project  

SciTech Connect

This paper reports on a helicopter-supported slim hole exploration project in a remote tropical forest which cost 15% less than a conventional drilling operation. The potential savings after improvements in rig equipment, bits, and drilling and coring methods may approach 30%. Because of the small size of the slim hole equipment, the impact on the rain forest was small. The areas cleared for locations and access during the operation were 75% less than that required for similar operations with conventional road-transported rigs. During the second half of 1991, Total Exploration Gabon, a subsidiary of Total Exploration Production, conducted a slim hole drilling project in the Gabonese tropical rain forest in a joint venture with Chevron Corp., Exxon Corp., and Austria's OMV AG. During this helicopter-supported operation, two wells were drilled: one to 2,747 m (9,010 ft) ending with a 3 in. hole and one to 418 m (1,371 ft) ending with a 5-7/8 in. hole. Continuous coring operations recovered 1,868 m (6,127 ft), or 59% of the total length drilled.

Dachary, J. (Total Exploration Production, Libreville (GA)); Vighetto, R. (Total Exploration Production, Paris (FR))

1992-06-22T23:59:59.000Z

354

Crude Injustice in the Gulf: Why Categorical Exclusions for Deepwater Drilling in the Gulf of Mexico are Inconsistent with U.S. International Ocean Law and Policy  

E-Print Network (OSTI)

torium on Deepwater Oil Drilling, Demands Environmentaland Offshore Oil Drilling .. Deepwater Horizon-D. NEPA and Offshore Oil Drilling NEPA and the Outer

Hull, Eric V.

2011-01-01T23:59:59.000Z

355

Microsoft Word - PS-MST-DRILL-PRESS-2012-05-21.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

51.doc 1 (03/2012) 51.doc 1 (03/2012) BROOKHAVEN NATIONAL LABORATORY MACHINE SHOP SAFE WORK PRACTICES EVALUATION FORM Dept./Div.: PS______ Machine: PhoSci MSJPM Drill Press (PS-MST-DRILLPRESS) Machine Shop Supervisor's Name(s): Employee Name: _________________________________ Life Number: Competencies Date Completed Evaluated By (Initials) Comments 1. State BNL policy for use of eye protection in machine shops. 2. Identify main disconnect for tool and explain the requirement for access to it. 3. Identify all controls and describe their functions. 4. Identify all machine guards and describe their functions. 5. Explain the process when defects are found.

356

Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And  

Open Energy Info (EERE)

Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Details Activities (27) Areas (8) Regions (0) Abstract: No abstract prepared. Author(s): Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik Published: Geothermal Technologies Legacy Collection, 1999 Document Number: Unavailable DOI: Unavailable Source: View Original Report Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Acoustic Logs At Steamboat Springs Area (Combs, Et Al., 1999) Core Analysis At Fort Bliss Area (Combs, Et Al., 1999)

357

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

358

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Richard Parker,. Parker Geoscience Consulting, LLC, Arvada, Colorado, USA; Zhiyue Xu and Claude Reed, Argonne National Laboratory, Argonne, Illinois, USA; Ramona Graves, Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado, USA; Brian Gahan and Samih Batarseh, Gas Technology Institute, Des Plaines, Illinois, USA ABSTRACT Studies on drilling petroleum reservoir rocks with lasers show that modern infrared lasers have the capability to spall (thermally fragment), melt and vaporize natural earth materials with the thermal spallation being the most efficient rock removal mechanism. Although laser irradiance as low as 1000 W/cm 2 is sufficient to spall rock, firing the

359

Recent Drilling Activities At The Earth Power Resources Tuscarora  

Open Energy Info (EERE)

Recent Drilling Activities At The Earth Power Resources Tuscarora Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Details Activities (3) Areas (1) Regions (0) Abstract: Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by

360

Improved practices, synthetic mud drive record 24-hr drilling  

SciTech Connect

Revised and improved drilling practices resulted in increased rate of penetration (ROP), improved hole cleaning, decreased circulating time, fewer instances of stuck pipe and reduced total drilling days. Rig equipment modifications and optimized techniques, combined with olefin-based synthetic fluid, produced significant efficiency improvements and cost reductions. Total-project strategy allows best technologies to be used, even if they are not low bid. In the Gulf of Mexico, a total-project concept helped Marathon drill back-to-back record 24-hr footages. Methods and philosophy described in this article allow drillers to choose optimum technologies, tools, materials and service performance for achieving optimum or lowest cost per foot rather than always using low bid.

Collins, G.J. [Marathon Oil Co., Houston, TX (United States); White, W.W. [Marathon Oil Co., Lafayette, LA (United States)

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alphine 1/Federal: Drilling report. Final report, Part 1  

SciTech Connect

Regional geologic and geophysical surveys, shallow temperature-gradient drilling, and published reconnaissance geothermal studies infer possible hot dry rock (HDR) geothermal resources in the Alpine-Springerville area. This report discusses the results of a State of Arizona and US Department of Energy funded drilling project designed to gather the deep temperature and stratigraphic data necessary to determine if near-term HDR geothermal potential actually exists in this portion of the White Mountains region of Arizona. A 4505 feet deep slim-hole exploratory well, Alpiner/Federal, was drilled within the Apache-Sitgreaves National Forest at Alpine Divide near the Alpine Divide Camp Ground about 5 miles north of Alpine, Arizona in Apache County (Figure 1).

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; Pisto, L. [Tonto Drilling Services, Inc., Salt Lake City, UT (United States); Hahman, W.R. [Hahman (W. Richard), Las Cruces, NM (United States); Swanberg, C.A. [Swanberg (Chandler A.), Phoenix, AZ (United States)

1994-06-01T23:59:59.000Z

362

Drilling/producing depths; Two records and a revision  

SciTech Connect

This paper reports that record depths for natural gas or oil well drilling or producing continue to be rare occurrences, although one or two still come in each year. Records fell in Texas Railroad Commission (RRC) District 9 and in the California area of the Minerals Management Service (MMS) Pacific Outer Continental Shelf (OCS) in 1990. Deep drilling and production has traditionally been defined as well depths greater than 15,000 ft. Smith Tool reported that 9.4% of all active rotary rigs were dedicated to targets below 15,000 ft at the beginning of 1991. Deep rigs had dropped to 8.1% by year-end 1991, but remained above the 1989 and 1990 levels of 8.4 and 7.6%, respectively. In 1988 about 11% of active rigs were drilling deep at any given time.

Not Available

1992-02-01T23:59:59.000Z

363

Drilling problems don't slow Williston basin operators  

SciTech Connect

In spite of the Williston basin's tough drilling environment, exploration activity has continued to increase, especially around northwestern North Dakota's Nesson anticline. The foremost drilling problem is the Charles slat section, which lies 8000-9000 ft deep; this section requires a salt-saturated mud system with additives, a heavyweight pipe, and a careful cementing job. Nevertheless, big discoveries - such as Texaco Inc.'s gas well in McKenzie Co., which tested at 9.9 million CF/day and 179 bbl/day of condensate - will spur exploration for some time since most of the basin remains untouched. Moreover, drilling engineers will soon be able to mitigate, if not eliminate, the typical difficulties encountered.

Moore, S.D.

1982-01-01T23:59:59.000Z

364

Stability analysis of a borehole wall during horizontal directional drilling  

Science Journals Connector (OSTI)

In this paper, numerical simulation strategies are proposed and numerical analyses are performed to investigate the stability of a borehole wall during horizontal directional drilling in loose sand with an emphasis on the role of the filter cake in borehole stability. Two computational scenarios, one in the absence of a filter cake and one with the presence of a filter cake in a borehole wall, are investigated by considering both deep and shallow borehole situations. In the case where no filter cake is formed, the soildrilling fluid interaction analysis shows that the effective pressure on soil particles will quickly decrease to zero even at a low drilling fluid pressure because of the rapid drainage of the drilling fluids into the loose sands. This conforms to the classical liquefaction criterion, indicating that static (flow) liquefaction-based soil crumbling and sloughing will occur even at a very low drilling fluid pressure if an effective filter cake is not formed. Soils permeability effect on pore pressure and the transition to a steady flow are also studied. In the second scenario in which a filter cake is formed, the hydraulic fracture failures around the bores are investigated, which are caused by the expansion of the yielding zones. The yield zone sizes and critical drilling fluid pressures at the moment of hydraulic fracturing failure are calculated from the finite element analyses and the closed-form solution, which is based on classical plasticity theories. The critical fluid pressures from the finite element analyses and the closed-form solutions are very close, but there is a large discrepancy between the yield zone sizes.

X. Wang; R.L. Sterling

2007-01-01T23:59:59.000Z

365

Two wells drilled from one surface bore with downhole splitter  

SciTech Connect

A downhole multiwell drilling template, called a downhole splitter, allows two wells to be drilled, cased, and completed from one well bore. After completion, each well can be produced, serviced, and worked over independently of the other. The downhole splitter was successfully field tested in Wyoming. The downhole splitter is suitable for use on offshore platforms, subsea completions, offshore exploitation and delineation wells, inland waters, and onshore in environmentally sensitive areas. It is also ideal for planned multilateral or multivertical completions. The paper describes the downholds splitter and its development, then discusses the field test: casing program, directional procedure, and results.

Collins, G. (Marathon Oil Co., Houston, TX (United States)); Bennett, R. (Baker Oil Tools, Houston, TX (United States))

1994-10-03T23:59:59.000Z

366

System and method for damping vibration in a drill string  

DOE Patents (OSTI)

A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison

2014-03-04T23:59:59.000Z

367

System and method for damping vibration in a drill string  

DOE Patents (OSTI)

A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

Wassell, Mark Ellsworth (Kingwood, TX); Turner, William Evans (Durham, CT); Burgess, Daniel E. (Middletown, CT); Perry, Carl Allison (Middletown, CT)

2008-05-27T23:59:59.000Z

368

Lateral load test of a drilled shaft in clay  

E-Print Network (OSTI)

LATERAL LOAD TEST OF A DRILLED SHAFT IN CLAY A Thesis by VERNON RAY KASCH Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1977 Major Subject...: Civil Engineering LATERAL LOAD TEST OF A DRILLED SHAFT IN CLAY A Thesis by VERNON RAY KASCH Approved as to style and content by: Harry M. Coyle - Ch irman of Committee Charles H. Samson, Jr. Head of Department Wayne . Dunlap - Ne er Christop er C...

Kasch, Vernon R

1977-01-01T23:59:59.000Z

369

Invasion of drilling mud into gas-hydrate-bearing sediments. Part II: Effects of geophysical properties of sediments  

Science Journals Connector (OSTI)

......GHBS under overbalanced drilling conditions. This invasion...Although logging-while-drilling (LWD) relative to wireline...reduce the influences of large borehole washouts (Lee et-al. 2012) and drilling fluid invasion in the Gulf......

Fulong Ning; Nengyou Wu; Yibing Yu; Keni Zhang; Guosheng Jiang; Ling Zhang; Jiaxin Sun; Mingming Zheng

2013-01-01T23:59:59.000Z

370

Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpu deep drill core samples, eastern Finland  

Science Journals Connector (OSTI)

......serpentinitic rocks. Large variations in...years, scientific drilling has become a successful...soundings and the borehole loggings integrate...international continental drilling program Outokumpu borehole, Finland: Preliminary...Outokumpu Deep Drilling Project, pp......

Tiiu Elbra; Ronnie Karlqvist; Ilkka Lassila; Edward Hggstrm; Lauri J. Pesonen

2011-01-01T23:59:59.000Z

371

Mineral Chemistry of Basalts Recovered from Hotspot Snake River Scientific Drilling Project, Idaho: Source and Crystallization Characteristics  

E-Print Network (OSTI)

Mineral Chemistry of Basalts Recovered from Hotspot Snake River Scientific Drilling Project, Idaho recovered by Hotspot: Snake River Scientific Drilling Project, Idaho establish crystallization conditions;ABSTRACT Mineral Chemistry of Basalts Recovered from Hotspot: Snake River Scientific Drilling Project

Seamons, Kent E.

372

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 28  

SciTech Connect

Highlights of progress during the quarter ending September 30, 1981 are summarized. Field projects and supporting research in the following areas are reported: chemical flooding; carbon dioxide injection; thermal processes/heavy oil (steam and in-situ combustion); resource assessment technology; extraction technology; environmental; petroleum technology; microbial enhanced oil recovery; and improved drilling technology. A list of BETC publications with abstracts, published during the quarter is included. (DMC)

Linville, B.

1982-01-01T23:59:59.000Z

373

Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells  

SciTech Connect

This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

Huttrer, G.W. [Geothermal Management Company, Inc., Frisco, CO (United States)

1997-11-01T23:59:59.000Z

374

DOE Lab Receives Award for Work on Drilling Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Lab Receives Award for Work on Drilling Technology DOE Lab Receives Award for Work on Drilling Technology DOE Lab Receives Award for Work on Drilling Technology June 13, 2013 - 11:52am Addthis DOE Lab Receives Award for Work on Drilling Technology Directional drilling - the drilling of non-vertical wells that helped make the development of shale gas possible -- will continue to play a key role in energy development, and so will the technologies that make it possible. The benefits of directional drilling are tremendous. Think cleaner, cheaper electricity; local economy booms; and decreased dependence on foreign energy. The unconventional oil and gas resources that can be tapped through directional drilling benefit consumers, businesses, and even the transportation sector. So being recognized as an innovator in this area is

375

U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per...  

Annual Energy Outlook 2012 (EIA)

Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

376

U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

377

U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Annual Energy Outlook 2012 (EIA)

Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

378

U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

379

U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars...  

Annual Energy Outlook 2012 (EIA)

Oil Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

380

U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars...  

Annual Energy Outlook 2012 (EIA)

Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Gasoline and Diesel Fuel Update (EIA)

Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

382

Development and applications of solids-free oil-in-water drilling fluids  

Science Journals Connector (OSTI)

The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solids-free oil-in-wate...

Qiansheng Yue; Baoguo Ma

2008-05-01T23:59:59.000Z

383

Motor Drives of Modern Drilling and Servicing Rigs for Oil and Gas Wells  

Science Journals Connector (OSTI)

This paper provides a synthetic view on the most recent achievements in the field of drilling and servicing rig drives for oil and gas wells. This field is featuring ... kilowatts and speeds of 150250rpm for drilling

Aurelian Iamandei; Gheorghe Miloiu

2013-01-01T23:59:59.000Z

384

A predictive model of enhanced oil recovery by infill drilling and its application  

Science Journals Connector (OSTI)

Infill drilling is now recognized as a viable improved ... the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by ... calculates the geometries of stream...

Jianhong Xu; Linsong Cheng; Lili Ma

2007-08-01T23:59:59.000Z

385

The joint effect of oil and drilling agents on some invertebrate species of the Caspian Sea  

Science Journals Connector (OSTI)

The toxic effect of some chemical reagents in drilling muds has been studied for shrimp (Palaemon ... .). The toxicity has been studied for drilling agents and/or water-soluble oil fractions. The survival, growth...

A. G. Kasymov; E. E. Velikhanov

1992-03-01T23:59:59.000Z

386

Rheological properties of oil-based drilling fluids at high temperature and high pressure  

Science Journals Connector (OSTI)

The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at ... The major factor influencing the rheological properties of oil-based drilling fluids is temperat...

Sheng-ying Zhao ???; Jie-nian Yan ???

2008-09-01T23:59:59.000Z

387

Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas  

E-Print Network (OSTI)

This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units...

Jagoe, Bryan Keith

2012-06-07T23:59:59.000Z

388

The Removal of Crude Oil in Waste Drilling Muds by a Constructed Microbial Consortium  

Science Journals Connector (OSTI)

Waste drilling muds (WDMs) contain serious pollutants produced by crude oil and gas well drilling. Bioremediation has been known as a useful ... enrichment of indigenous microorganisms, which can remove oil conta...

Yunkang Chang; Xingbiao Wang; Yifan Han

2014-01-01T23:59:59.000Z

389

Correct conditions for heat treatment of butt welded oil drilling pipes  

Science Journals Connector (OSTI)

The application of optimum normalization conditions decreases the hardness and increases the impact strength of drilling pipes used in geological survey work by 100% and that of oil drilling pipes by 2530%, the ...

F. N. Tavadze; Z. G. Napetvaridze

1965-10-01T23:59:59.000Z

390

Comparative Experiments with GRASP and Constraint Programming for the Oil Well Drilling Problem  

Science Journals Connector (OSTI)

Before promising locations become productive oil wells, it is often necessary to complete drilling activities at these locations. The scheduling of ... Search Procedure (GRASP) for the scheduling of oil well drilling

Romulo A. Pereira; Arnaldo V. Moura

2005-01-01T23:59:59.000Z

391

Principal stress pore pressure prediction: utilizing drilling measurements to predict pore pressure  

E-Print Network (OSTI)

A novel method of predicting pore pressure has been invented. The method utilizes currently recorded drilling measurements to predict the pore pressure of the formation through which the bit is drilling. The method applies Mohrs Theory to describe...

Richardson, Kyle Wade

2009-05-15T23:59:59.000Z

392

Instruments and Methods New technique for access-borehole drilling in shelf glaciers using  

E-Print Network (OSTI)

is penetration through hours for penetration through 200 m of ice, (2) installation of sensors up to 120 mm in diameter and (3 require lightweight, rapid-rate drilling equipment and a low logistical burden. A small drilling team

Howat, Ian M.

393

U.S. Average Depth of Natural Gas Developmental Wells Drilled...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

394

U.S. Average Depth of Natural Gas Exploratory Wells Drilled ...  

Annual Energy Outlook 2012 (EIA)

Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

395

Leg 191 Preliminary Report West Pacific ION Project/Hammer Drill Engineering  

E-Print Network (OSTI)

Leg 191 Preliminary Report West Pacific ION Project/Hammer Drill Engineering Shipboard Scientific Pacific ION project/hammer drill engineering. ODP Prelim. Rpt., 191 [Online]. Available from World Wide

396

Thermoporoelastic Effects of Drilling Fluid Temperature on Rock Drillability at Bit/Formation Interface  

E-Print Network (OSTI)

effects of the drilling fluid temperature on near-wellbore stresses. At the bottomhole area, a cool drilling fluid reduces the radial and tangential effective stresses in formation, whereas the vertical effective stress increases. The outcome is a possible...

Thepchatri, Kritatee 1984-

2012-10-26T23:59:59.000Z

397

Evaluation of polymer free drill-in fluids for use in high productivity, horizontal well completions  

E-Print Network (OSTI)

Advancements in deepwater drilling have necessitated the use of more specialized reservoir drill-in fluids (RDIF). These RDIFs must exhibit unique rheological properties while minimizing formation damage. Xanthan gum biopolymer is generally used...

Falla Ramirez, Jorge H

2012-06-07T23:59:59.000Z

398

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

SciTech Connect

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

399

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

400

The Snake River Geothermal Drilling Project - Innovative Approaches to  

Open Energy Info (EERE)

Snake River Geothermal Drilling Project - Innovative Approaches to Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies will comprise surface mapping, shallow seismic surveys, potential field surveys (gravity and magnetics), compilation of existing well data, and the construction of three dimension structure sections. Phase 2 will comprise two intermediate depth (1.5-1.6 km) slim-hole exploration wells with a full suite of geophysical borehole logs and a vertical seismic profile to extrapolate stratigraphy encountered in the well into the surrounding terrain. Both of the exploration wells will be fully cored to preserve a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental scientific drilling project that focuses on the origin and evolution of the Yellowstone hotspot.

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Method and apparatus for jet-assisted drilling or cutting  

DOE Patents (OSTI)

An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

2013-07-02T23:59:59.000Z

402

Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling  

Energy.gov (U.S. Department of Energy (DOE))

A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energys National Energy Technology Laboratory and the National Institute for Occupational Safety and Health.

403

Toolkit and drillstring valve for subsea mudlift drilling  

E-Print Network (OSTI)

to be introduced if exploration is to be continued into even deeper water. One proposed method is subsea mudlift drilling (SMD), which is a joint industry project. The method uses a seafloor pump, which pumps the mud from the annulus at seafloor, through a...

Oskarsen, Ray Tommy

2001-01-01T23:59:59.000Z

404

Solubilization of wellbore filtercakes formed from drill-in fluids  

E-Print Network (OSTI)

Research was performed to study the degradation of filtercakes formed by water-based drill-in fluids (DIF), primarily sized-salt (SS) and sized-calcium carbonate (SCC) DIFs. The experiments to degrade DIF filtercakes varied temperature (43?C to 71?...

Jepson, Richard Kendall

2000-01-01T23:59:59.000Z

405

DOE Lab Receives Award for Work on Drilling Technology  

Energy.gov (U.S. Department of Energy (DOE))

On May 3, 2013 the Department of Energys National Energy Technology Laboratory (NETL) received an award for its role in a joint project that helped develop what is now Schlumbergers Slider product line. The Lab was recognized for the project's contributions to directional drilling.

406

DIRECTIONAL PROPAGATION CANCELLATION FOR ACOUSTIC COMMUNICATION ALONG THE DRILL STRING  

E-Print Network (OSTI)

The success in finding the oil reserves depends, in part, on real-time (while-drilling) information acquired of oil reserves in the formation. Cur- rently, two telemetry methods are used: wireline telemetry and mud.gardner@halliburton.com ABSTRACT A new telemetry method in oil well services uses compres- sional acoustic waves to transmit data

407

Pelaut: A purpose-built semisubmersible drilling tender  

SciTech Connect

In 1987, the Petrodril Co. recognized the need for a drilling tender having better wave-response characteristics than the barge-type derrick vessels used previously. This drilling tender should be able to remain operational during all expected weather conditions. Experience, theoretical studies, and model test results show that a semisubmersible has superior motion response compared with a conventional barge hull. Conventional drilling tenders must moor alongside a platform to lift the derrick equipment set (DES) on or off, then shift position to conduct normal operations with the bow or stern facing the platform. This requires rerunning the anchors before and after each operation at the platform, which contributes substantially to the time the vessel is needed and cost of the operation. Petrodril originally considered creating a new drilling tender by extensively modifying an existing twin-hull semisubmersible. Design studies demonstrated that the proposed conversion would be workable, but it was a compromise in terms of long-term operating objectives and criteria. Instead, the company decided to design and build a new twin-hull, six-column semisubmersible vessel with the crane mounted at the bow.

NONE

1997-04-01T23:59:59.000Z

408

An advanced geothermal drilling system: Component options and limitations  

SciTech Connect

The historical developments of drilling technology for geothermal resources have followed traditional incremental trends. The local expertise and rigs were adapted from existing drill rigs used for mining, civil, and water well projects. In areas with hydrocarbon resources, petroleum drilling hardware has been adapted; and in other countries, these units were imported as depth requirements increased and more robust derricks and downhole tools were needed. This ad hoc approach has provided adequate exploration and production wells. In contrast to the incremental improvements in petroleum rotary drilling system components this paper reviews a new, purpose-developed system that would solve the known major problems by design. Performance goals of 4 km (12,000 ft.) depth, 400 C, (750 F) and penetration rates greater than 8 m/h (25 ft/h) were selected. This advanced system was reviewed extensively and estimates of perhaps 30 to 60% cost savings were projected, depending on the assumed effectiveness and performance improvements provided. This paper continues the design and feasibility study and presents some of the component and sub-system details developed thus far.

Rowley, J. [Pajarito Enterprises, Los Alamos, NM (United States); Saito, Seiji [JMC Geothermal Division, Tokyo (Japan); Long, R.C. [Department of Energy, Las Vegas, NV (United States). Yucca Mountain Site Characterization Project

1995-12-31T23:59:59.000Z

409

Tight gas sands study breaks down drilling and completion costs  

SciTech Connect

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

410

Billiards Digest October, 2012 "VEPP Part VII: 9-Ball Pattern Drills" ILLUSTRATED PRINCIPLES  

E-Print Network (OSTI)

Billiards Digest October, 2012 "VEPP ­ Part VII: 9-Ball Pattern Drills" ILLUSTRATED PRINCIPLES at some 9-ball pattern drills from Disc III: "VEPP III ­ Patterns and Safety Play." You can work on cut, stop, follow, draw, wagon wheel, and target drills all day long and become fairly proficient with them

Alciatore, David G.

411

Billiards Digest November, 2012 "VEPP Part VIII: 8-Ball Pattern Drills" ILLUSTRATED PRINCIPLES  

E-Print Network (OSTI)

Billiards Digest November, 2012 "VEPP ­ Part VIII: 8-Ball Pattern Drills" ILLUSTRATED PRINCIPLES-dave-billiards.com/vepp. Last month, we looked at some useful 9-ball pattern drills from Disc III: "VEPP III ­ Patterns and Safety Play." This month, we look at some 8-ball pattern drills, also from the 3 rd DVD. You can work

Alciatore, David G.

412

Non-parametric regression and neural-network inll drilling recovery models for carbonate reservoirs  

E-Print Network (OSTI)

in®ll drilling recovery model is capable of forecasting the oil recovery with less error variance®ll drilling recovery eciency. The approach we take here is stat- istical. It is based on an oil recoveryNon-parametric regression and neural-network in®ll drilling recovery models for carbonate

Valkó, Peter

413

Effect of Synthetic Drilling Fluid Base Oils on Asphaltene Stability and Wetting in Sandstone Cores  

Science Journals Connector (OSTI)

Effect of Synthetic Drilling Fluid Base Oils on Asphaltene Stability and Wetting in Sandstone Cores ... In synthetic oil-based drilling fluids, diesel has been replaced, for environmental reasons, by base oils that are very low in aromatic hydrocarbons. ... Paraffinic and olefinic base oils used to make up some synthetic oil-based drilling muds can destabilize asphaltenes. ...

Yongsheng Zhang; Jianxin Wang; Norman R. Morrow; Jill S. Buckley

2005-03-18T23:59:59.000Z

414

Adaptive Observer Design under Low Data Rate Transmission with Applications to Oil Well Drill-string  

E-Print Network (OSTI)

Adaptive Observer Design under Low Data Rate Transmission with Applications to Oil Well Drill system. Index Terms-- Stick-Slip, Oil Well drill string, D-OSKIL, unknown parameter adaptive observer, time-variant, delay, stability. I. INTRODUCTION Oil well drilling operations present a particular

Paris-Sud XI, Université de

415

Recurrent Oil Sheens at the Deepwater Horizon Disaster Site Fingerprinted with Synthetic Hydrocarbon Drilling Fluids  

Science Journals Connector (OSTI)

We developed and patented a method using comprehensive two-dimensional gas chromatography (GC GC) for accurate identification and quantification of drilling fluid olefins in crude oils. ... This scenario also explains the detection of drilling mud on oiled-DWH buoyancy module pieces, which would have been oiled from oil and drilling mud on the platform. ...

Christoph Aeppli; Christopher M. Reddy; Robert K. Nelson; Matthias Y. Kellermann; David L. Valentine

2013-06-25T23:59:59.000Z

416

A SEMI-AUTOMATIC METHOD FOR CASE ACQUISITION IN CBR A STUDY IN OIL WELL DRILLING  

E-Print Network (OSTI)

A SEMI-AUTOMATIC METHOD FOR CASE ACQUISITION IN CBR A STUDY IN OIL WELL DRILLING Samad Valipour, Norway valipour@ntnu.no, agnar.aamodt@idi.ntnu.no, pal.skalle@ntnu.no ABSTRACT Oil well drilling and re-using previous experiences. KEY WORDS Case-based reasoning, oil well drilling, knowledge discovery

Aamodt, Agnar

417

A Real-Time Decision Support System for High Cost Oil-Well Drilling Operations  

E-Print Network (OSTI)

A Real-Time Decision Support System for High Cost Oil-Well Drilling Operations Odd Erik Gundersen In this paper we present DrillEdge - a commercial and award winning software system that monitors oil that provides real-time deci- sion support when drilling oil wells. Decisions are supported through analyzing

Aamodt, Agnar

418

Core-log integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project  

Science Journals Connector (OSTI)

......Chelungpu-fault Drilling Project Yun-Hao...Chelungpu-fault Drilling Project (TCDP...involved in the large displacements...electrical borehole images and dipole-shear...energetics of a large earthquake from...Chelungpu-fault Drilling Project, Nature...Stress-induced borehole elongation......

Yun-Hao Wu; En-Chao Yeh; Jia-Jyun Dong; Li-Wei Kuo; Jui-Yu Hsu; Jih-Hao Hung

2008-09-01T23:59:59.000Z

419

2014 Ocean Drilling Cita on Report Covering Cita ons Related to the  

E-Print Network (OSTI)

records include books, reports, serial conference proceedings, monographs, maps, and abstracts of the Deep Sea Drilling Project, Proceedings of the Ocean Drilling Program, Proceedings of the Integrated Ocean Drilling Program, Proceedings of the Interna onal Ocean Discovery Program, and the report

420

U.S. drilling: Solid reasons for optimism  

SciTech Connect

One year ago, it was apparent that 1996 would be a better year for drilling in the US, primarily because 1995 performance was lower than expected due to low oil and natural gas prices in mid-year during the peak drilling season. Improving energy prices last year did spur more drilling, and a 2.9% increase to a total 23,560 wells is estimated for 1996. This year should show an even stronger increase, as the US gas market remains attractive and industry`s perception is that crude prices are stabilizing at higher levels, i.e., $20--25, instead of $15--20. The US rotary rig count followed the price up, from a low near 700 in January/February to slightly over 850 in December. To drill the expected wells this year will require an average number at the 850 level. Operators are investing more in their established oil producing areas to take advantage of improved cast flows. This will generate higher activity nearly everywhere. Gas drilling activity will be more geographical, depending on transport availability to surging winter markets and Canadian competition. The US, and world, hot spot is the Gulf of Mexico led by renewed activity on the shelf and an exciting new deepwater play. The expected activity surge has already taxed a service industry that has not yet upgraded its capacity from the long downturn. And spot shortages will temper the activity rise, particularly offshore. The following discussion and six statistical presentations detail these basic concepts and other key factors.

NONE

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results. Final report  

SciTech Connect

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California`s Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. [eds.

1992-04-01T23:59:59.000Z

422

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

423

Research and Application of Auger-air Drilling and Sieve Tube Borehole Protection in Soft Outburst-prone Coal Seams  

Science Journals Connector (OSTI)

Abstract Hole accidents during drilling and borehole collapse during extracting are bottlenecks restricting gas drainage efficiency in soft outburst-prone coal seams in China. The auger-air combined drilling technique and sieve tube mounting method are an alternative solution to these technology bottlenecks. The auger-air drilling technique combines the advantages of dry style auger drilling and air drilling. Specially designed blade in drill rod can stir up large particles of coal so that large particles can be brought to ground smoothly using compressed air and is efficient to prevent borehole accidents. After drilling is completed, the sieve tube is tripped in through the inner hole of drilling pipes, and then lifting up drilling pipes, the tube sieve will provide a complete tunnel for gas extraction. Field application proves that with proper drilling parameter selection and appropriate tube install control, it is more promising to double drilling depth and raise gas drainage efficiency.

Ji Qianhui

2014-01-01T23:59:59.000Z

424

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).

Arnis Judzis; Homer Robertson; Alan Black

2006-06-22T23:59:59.000Z

425

Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report  

SciTech Connect

The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

Zoback, M.D.

1998-08-30T23:59:59.000Z

426

Artificial neural network modelling and multi objective optimisation of hole drilling electro discharge micro machining of invar  

Science Journals Connector (OSTI)

Hole drilling electro discharge micro machining (HD-EDMM) is one of the potential method for creation of micro-holes in difficult to machine electrically conductive workpiece materials. Maintaining quality and accuracy of the drilled micro-holes along with better performance characteristics have always been a challenge for the researchers and manufacturers. Keeping cost and time of manufacturing into consideration, modelling and optimisation of EDMM is required. In this paper, attempts have been made to model the HD-EDMM process using feed forward back propagation neural network (BPNN) and further combined with GRA-based PCA for its optimisation. The developed ANN model and finally optimised results are validated with our own experimentally obtained results. The approach used in the present paper would be extendable to other configuration of EDMM such as milling-EDMM, wire-EDMM and grinding-EDMM.

Rajesh Kumar Porwal; Vinod Yadava; J. Ramkumar

2012-01-01T23:59:59.000Z

427

Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling  

SciTech Connect

The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand-prone sedimentary section that rises stratigraphically across the base of the gas hydrate stability zone and that has seismic indicators of gas hydrate. Copyright 2008, Offshore Technology Conference

Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

2008-05-01T23:59:59.000Z

428

Drilling Waste Management Fact Sheet: Bioremediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioremediation Bioremediation Fact Sheet - Bioremediation Bioremediation (also known as biological treatment or biotreatment) uses microorganisms (bacteria and fungi) to biologically degrade hydrocarbon-contaminated waste into nontoxic residues. The objective of biotreatment is to accelerate the natural decomposition process by controlling oxygen, temperature, moisture, and nutrient parameters. Land application is a form of bioremediation that is described in greater detail in a separate fact sheet. This fact sheet focuses on forms of bioremediation technology that take place in more intensively managed programs, such as composting, vermiculture, and bioreactors. McMillen et al. (2004) summarizes over ten years of experience in biotreating exploration and production wastes and offers ten lessons learned.

429

An energy-saving oil drilling rig for recovering potential energy and decreasing motor power  

Science Journals Connector (OSTI)

An energy-saving oil drilling rig is researched. A large accumulator is adopted in this rig to store the energy of the motor during the auxiliary time of lifting the drill stem and the potential energy of the drill stem when lowered. The equipped power of this rig decreases remarkably compared with the conventional drilling rig, and this rig can also recover and reuse the potential energy of the drill stem. Therefore, this rig owns remarkable energy-saving effect compared with the conventional drilling rig, and the energy-saving effect of the energy-saving oil drilling rig is also verified by the field tests. The mathematical model of the energy-saving oil drilling rig lowering the drill stem was derived and simulation analysis was conducted. Through simulation the curves of the drill stem lowering velocity and lowering displacement with time were obtained, and some conclusions were reached: (1) the heavier the drill stem lowered, the higher the lowering velocity is, and the shorter the lowering time is; (2) the smaller the displacement of the variable pump-motor, the higher the lowering velocity is, and the shorter the lowering time is.

Lujun Zhang

2011-01-01T23:59:59.000Z

430

Clay-based geothermal drilling fluids  

SciTech Connect

The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

1982-11-01T23:59:59.000Z

431

June2004TopicalReportANS-Drilling.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling and Data Acquisition Planning Drilling and Data Acquisition Planning Topical Report Cooperative Agreement Award Number DE-FC-01NT41332 Submitted to the United States Department of Energy National Energy Technology Laboratory ADD Document Control by BP Exploration (Alaska), Inc. Robert Hunter (Principal Investigator) P.O. Box 196612 Anchorage, Alaska 99519-6612 Email: hunterrb@bp.com robert.hunter@asrcenergy.com Tel: (907)-339-6377 with University of Alaska Fairbanks Shirish Patil (Principal Investigator) 425 Duckering Building P.O. Box 755880 Fairbanks, Alaska 99775-5880 and Arizona Board of Regents University of Arizona, Tucson Robert Casavant (Principal Investigator) Dept. Mining and Geological Engineering Rm. 245, Mines and Metallurgy Bldg. #12 1235 E. North Campus Dr., POB 210012

432

NETL: News Release - New Carbon Drill Pipe Signals Technical Achievement  

NLE Websites -- All DOE Office Websites (Extended Search)

May 17, 2004 May 17, 2004 New Carbon Drill Pipe Signals Technical Achievement Technology May Benefit American Energy Production WASHINGTON, DC -- The Department of Energy (DOE) announced today the development of a new "composite" drill pipe that is lighter, stronger and more flexible than steel, which could significantly alter the ability to drain substantially more oil and gas from rock than traditional vertical wells. MORE INFO Read about January, 2003 field test Read about October, 2003 field test - "This is another example of the technology breakthroughs in the arena of domestic energy production being carried out by our Office of Fossil Energy," said Secretary of Energy Spencer Abraham. "To reach and recover untapped domestic oil and gas reserves, we must have the ability to

433

Geothermal Drilling of New England | Open Energy Information  

Open Energy Info (EERE)

England England Jump to: navigation, search Name Geothermal Drilling of New England Address 358 Boylston Street Place Lowell, Massachusetts Zip 01852 Sector Geothermal energy Product Geothermal heat-exchange drilling and installers Website http://www.geodrillingofne.com Coordinates 42.6225853°, -71.2840943° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6225853,"lon":-71.2840943,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

NETL: News Release - Regional Partner Launches Drilling Test in DOE's  

NLE Websites -- All DOE Office Websites (Extended Search)

August 30, 2007 August 30, 2007 Regional Partner Launches Drilling Test in DOE's Carbon Sequestration Program Project Focuses on Greenhouse Gas Storage in Lignite Seam, Methane Gas Recovery MORGANTOWN, WV - As an integral part of the U.S. Department of Energy's effort to develop carbon sequestration technologies to capture and permanently store greenhouse gases, the Plains CO2 Reduction (PCOR) Partnership has begun drilling operations to determine the suitability of a North Dakota lignite coal seam to simultaneously sequester the greenhouse gas carbon dioxide and produce valuable coalbed methane. The PCOR Partnership-one of seven partnerships in the Department of Energy's Regional Carbon Sequestration Partnership Program, which is managed by the National Energy Technology Laboratory-plans to inject at least 400 tons of CO2 to a depth of approximately 1,200 feet into an unminable lignite seam in Burke County, ND.

435

Composite drill pipe and method for forming same  

DOE Patents (OSTI)

A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

2012-10-16T23:59:59.000Z

436

Focused shock spark discharge drill using multiple electrodes  

DOE Patents (OSTI)

A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

437

Rotating mousehole improves top drive/conventional drilling  

SciTech Connect

Top drive speed and efficiency are limited and have not reached full potential because of operation ``bottlenecks`` during makeup or breakout of triple pipe stands and bottomhole assembly (BHA) change out. Operators and contractors analyzed tools to overcome these limitations and found a potential solution from International Tool Co., a supplier of kelly spinners, in a tool that has improved make/break efficiency and rig floor safety. The Phantom Mouse rotating mousehole assembly was developed to improve drilling efficiency on top-drive-equipped rigs. This new device tightens connections so pipe stands can be set back in derricks. Using the system, crews can quickly and efficiently make up and set back DP stands while drilling ahead with top drives. It can also be used to break out and lay down excess DP from the derrick.

NONE

1995-08-01T23:59:59.000Z

438

VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK  

SciTech Connect

Testing of recent upgrades to the drill pipe telemetry system in a 1000-ft vertical well has shown that the new system can achieve at least 1,000 ft passive transmission distance with sufficient bandwidth to accommodate a digital transmission rate of 2 Mbit/sec. Digitized data from a module at the bottom of the well has been successfully transmitted through the transmission line to the top of the well for a period of approximately one month. Manufacture of 30 prototype range 2 drill pipes has demonstrated greater simplicity of manufacturing and greater consistency of electrical characteristics from part to part, as compared to the first production run previously reported. Further work is needed to improve the high pressure capability of the system and to improve the robustness of the system in a high-vibration environment.

David S. Pixton

2002-08-01T23:59:59.000Z

439

TWO-DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS  

NLE Websites -- All DOE Office Websites (Extended Search)

DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS P532 Zhiyue Xu, Yuichiro Yamashita 1 , and Claude B. Reed Argonne National Laboratory, Argonne, IL 60439, USA 1 Now with Kyushu University, Japan Abstract High power lasers can weaken, spall, melt and vaporize natural earth materials with thermal spallation being the most energy efficient rock removal mechanism. Laser rock spallation is a very complex phenomenon that depends on many factors. Computer numerical modeling would provides great tool to understand the fundamental of this complex phenomenon, which is crucial to the success of its applications. Complexity of modeling laser rock spallation is due to: 1) rock is a porous media, to which traditional theories of heat transfer and rock mechanics can not be directly

440

Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012  

DOE Data Explorer (OSTI)

Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

Jaffe, Todd

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Drilling Waste Management Fact Sheet: Discharge to Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge to Ocean Discharge to Ocean Fact Sheet - Discharge to Ocean Past Practices In early offshore oil and gas development, drilling wastes were generally discharged from the platforms directly to the ocean. Until several decades ago, the oceans were perceived to be limitless dumping grounds. During the 1970s and 1980s, however, evidence mounted that some types of drilling waste discharges could have undesirable effects on local ecology, particularly in shallow water. When water-based muds (WBMs) were used, only limited environmental harm was likely to occur, but when operators employed oil-based muds (OBMs) on deeper sections of wells, the resulting cuttings piles created impaired zones beneath and adjacent to the platforms. At some North Sea locations, large piles of oil-based cuttings remain on the sea floor near the platforms. Piles of oil-based cuttings can affect the local ecosystem in three ways: by smothering organisms, by direct toxic effect of the drilling waste, and by anoxic conditions caused by microbial degradation of the organic components in the waste. Current regulatory controls minimize the impacts of permitted discharges of cuttings.

442

Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations  

SciTech Connect

Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

Carroll, Herbert B.; Johnson, William I.

1999-04-27T23:59:59.000Z

443

Status of water jet drilling R and D. Final report  

SciTech Connect

Several computerized data bases were searched, and telephone interviews were conducted with nearly 100 experts in drilling R and D. The following information was obtained for each organization engaged in water jet drilling (WJD) R and D: program descriptions, program status, future plans, level of effort, source of funds, and problems encountered in WJD programs. WJD programs were classified in terms of surface pressure requirements. A total of 18 downhole-WJD programs were identified, with 9 using high surface pressures (5000 psi or higher) and 9 requiring only conventional or low surface pressures (generally below 3500 psi). The high-pressure approach to WJD has been investigated much more intensively than the low-pressure approach. Most drilling experts consider the lack of reliable surface equipment such as mud pumps and swivels to be the most critical problem associated with high-pressure WJD. Several programs to develop improved surface equipment for high-pressure operation were also identified. In addition, 28 organizations investigating non-downhole uses of water jets, such as mining or excavation, were also identified. Several large WJD programs were terminated during the 1970's because of a variety of problems. Two significant field programs are planned for 1980.

Breitstein, L.

1980-09-01T23:59:59.000Z

444

Nozzle assembly for an earth boring drill bit  

SciTech Connect

A nozzle assembly for an earth boring drill bit of the type adapted to receive drilling fluid under pressure and having a nozzle bore in the bottom thereof positioned closely adjacent the well bore bottom when the bit is in engagement therewith with the bore having inner and outer portions. The nozzle assembly comprises a generally cylindrical nozzle member of abrasion and erosion resistant material, selected from a plurality of such members, each being of the same outer diameter but having passaging therein of different cross-sectional area. The nozzle member is adapted to be fitted in the inner portion of the nozzle bore in sealing relationship therewith for forming a first seal for the nozzle assembly. The nozzle assembly further comprises a locknut, separate from the nozzle member, for detachbably securing the nozzle member in the nozzle bore, formed at least in part of an abrasion and erosion resistant material. The locknut has a threaded side wall engageable with the outer portion of the nozzle bore, and an aperture therethrough for enabling a stream of drilling fluid from the nozzle member to flow therethrough and being so configured in section as to receive a tool for turning the lockout to install it in and remove it from the nozzle bore.

Madigan, J. A.

1985-09-24T23:59:59.000Z

445

File:05DrillingPermittingOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

DrillingPermittingOverview.pdf DrillingPermittingOverview.pdf Jump to: navigation, search File File history File usage File:05DrillingPermittingOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 54 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:27, 30 October 2012 Thumbnail for version as of 14:27, 30 October 2012 1,275 × 1,650 (54 KB) Dklein2012 (Talk | contribs) 15:59, 25 October 2012 Thumbnail for version as of 15:59, 25 October 2012 1,275 × 1,650 (54 KB) Dklein2012 (Talk | contribs) 15:21, 11 September 2012 Thumbnail for version as of 15:21, 11 September 2012 1,275 × 1,650 (33 KB) Djenne (Talk | contribs) Reverted to version as of 19:08, 11 July 2012

446

W. Canada boom to outshine second half U. S. drilling rise  

SciTech Connect

Drilling in the US will pick up slightly during second half 1994, but the first half to second half increase proportionally will not be as large as in Canada. Operators appear likely to drill nearly half as many wells this year in western Canada as they will drill in the US. Oil and Gas Journal estimates that drilling and completion spending will total $9.511 billion in the US this year, up about one third of 1% from spending in 1993. This steady investment is forecast despite a 2.3% drop in expected wellhead revenue to $72.53 billion. Highlights to OGJ's midyear drilling forecast for 1994 include: operators will drill 24,705 wells, compared with the 26,840 OGJ estimated in its early year forecast before the slump in crude oil prices; the active rotary rig count will average 810 rigs, 7% higher than in 1993; operators will drill about 3,684 wildcats, down from the 4,170 that OGJ predicted in January; the surveyed group of major operators will drill 3,091 wells in the US, including 246 exploratory wells; and drilling in western Canada will total a year record 11,531 wells, dwarfing the 4,654 wells drilled in 1992.

Petzet, G.A.; Beck, R.J.

1994-07-25T23:59:59.000Z

447

Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990  

SciTech Connect

The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a revolutionary modification in recent history was the complete displacement of cable tool rigs by rotary drilling rigs in the late 1920s.

Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

1990-06-01T23:59:59.000Z

448

NETL: News Release - Carbon Fiber Drill Pipe Performs Flawlessly in First  

NLE Websites -- All DOE Office Websites (Extended Search)

January 9, 2003 January 9, 2003 Carbon Fiber Drill Pipe Performs Flawlessly in First Field Test Private Company to Use DOE-Sponsored Technology To Help Restore Domestic Production from Older Oil Wells TULSA COUNTY, OK - A new lightweight, flexible drill pipe engineered from space-age composites rather than steel has passed an important field test in a U.S. Department of Energy project and is now being readied for its first commercial use. - Photo - Composite Drill Pipe Being Bent - The advanced composite drill pipe could enable drillers in the future to bore sharply-curved "short radius" horizontal wells without creating fatigue stress on the drill pipe. The Energy Department's National Energy Technology Laboratory announced that the drill pipe, made from carbon fiber resins by Advanced Composite

449

DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Pushes the Limits of Seismic-While-Drilling Project Pushes the Limits of Seismic-While-Drilling Technology DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling Technology August 12, 2009 - 1:00pm Addthis Washington, DC - In a project sponsored by the U.S. Department of Energy, Technology International Inc. has developed a breakthrough borehole imaging system that stands on the cusp of commercialization. By pushing the limits of seismic-while-drilling technology, the patent-pending SeismicPULSER system provides more accurate geo-steering for the discovery of new oil and natural gas reserves, facilitating new field development and improving well economics. Drill-bit seismic-while-drilling techniques use a downhole acoustic source and receivers at the surface to create real-time images that allow

450

A review of light amplification by stimulated emission of radiation in oil and gas well drilling  

Science Journals Connector (OSTI)

Abstract The prospect of employing Light Amplification by Stimulated Emission of Radiation (LASER) for well drilling in oil and gas industry was examined. In this work, the experimental works carried out on various oil well drilling operations was discussed. The results show that, LASER or LASER-aided oil and gas well drilling has many potential advantages over conventional rotary drilling, including high penetration rate, reduction or elimination of tripping, casing, bit costs, enhanced well control, as well as perforating and side-tracking capabilities. The investigation also reveals that modern infrared \\{LASERs\\} have a higher rate of rock cuttings removal than that of conventional rotary drilling and flame-jet spallation. It also reveals that LASER can destroy rock without damaging formation permeability but rather, it enhances or improves permeability and that permeability and porosity increases in all rock types. The paper has therefore provided more knowledge on the potential value to drilling operations and techniques using LASER.

M OLALEYE B

2010-01-01T23:59:59.000Z

451

A chemostratigraphic investigation of the prehistoric Vavalaci lava sequence on Mount Etna: Simulating borehole drilling  

Science Journals Connector (OSTI)

Scientific drilling of volcanic successions has been suggested as a way of establishing stratigraphic sequences of unexposed lava flows on large complex volcanoes, with the aim of in-depth study of magmatic processes and source geochemistry of otherwise inaccessible lava sequences. To simulate the core drilling of such sequences, lava flows from the prehistoric Vavalaci Centre exposed in the south wall of the Valle del Bove, Mount Etna, Sicily, were sampled in four stratigraphic sections. The fresh, generally strongly porphyritic Na-alkaline trachybasalts and trachyandesites show diverging sub-parallel trends of high- and low-alkali concentrations in total alkali versus silica (TAS) diagrams, whilst variations of other major and trace elements reveal two further distinct chemical groups enriched in K, REE and Ti which follow separate fractionation paths. A set of control samples was used to establish geochemical variations within a single lava flow. Primitive mantle normalised incompatible element patterns demonstrate that the lavas have highly enriched OIB signatures with a clear division in LREE, Ba, Th, Nb and Zr concentrations between the four different chemical groups. Comparison of data for the Vavalaci lavas with the compositions of other prehistoric, historic and recent eruptions of Mt. Etna indicates a temporal trend towards more basic magma compositions. The chemostratigraphy of the lavas was statistically analysed to give correlations between flows from different sections. Whilst a good number of geologically meaningful correlations were revealed, we can demonstrate that only one set of lavas was actually sampled in all four sections, whilst a number of unique lavas remain uncorrelated. Thus no individual section, or simulated borehole core, provided samples of the complete lava flow sequence without significant gaps in the stratigraphy. The trends in lava compositions are also defined in the stratigraphy, showing their evolution from low- to high-alkali lavas through the series, which may be related to temporal decrease in degree of partial melting of the mantle rather than through simple fractionation processes or mixing of magmas.

Ann Spence; Hilary Downes

2011-01-01T23:59:59.000Z

452

The Feasibility of Natural Gas as a Fuel Source for Modern Land-Based Drilling Rigs  

E-Print Network (OSTI)

rigs are still in use today, most modern drilling rigs are electrically powered. Electric drilling rig engines are coupled to electric generators, in what is called a generator set, or genset, which creates electricity that powers electric motors... drilling rigs can be categorized into either direct current (DC) or alternating current (AC), depending on the type of electricity the rig generators produce. Electric motors power the draw-works, top drive, mud pumps, and other systems with electricity...

Nunn, Andrew Howard

2012-02-14T23:59:59.000Z

453

Microbial Degradation in Soil Microcosms of Fuel Oil Hydrocarbons from Drilling Cuttings  

Science Journals Connector (OSTI)

Microbial Degradation in Soil Microcosms of Fuel Oil Hydrocarbons from Drilling Cuttings ... Relation between Bioavailability and Fuel Oil Hydrocarbon Composition in Contaminated Soils ...

Claude-Henri. ChaIneau; Jean-Louis. Morel; Jean. Oudot

1995-06-01T23:59:59.000Z

454

Rapid deployment of oil-drilling tools utilizing distribution network and inventory strategies .  

E-Print Network (OSTI)

??DTS is an oil and gas services company that delivers drilling tools to six major customer districts in the continental U.S. After the tools are (more)

Rahim, Ryan

2010-01-01T23:59:59.000Z

455

Marcellus Shale Natural Gas Drilling Operators' Choice of Wastewater Disposal Method.  

E-Print Network (OSTI)

??As natural gas drilling in the Marcellus Shale region moves forward, the issue of wastewater disposal has risen to the forefront. In 2010, the Pennsylvania (more)

Edmundson, Caitlyn

2012-01-01T23:59:59.000Z

456

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network (OSTI)

drilling problem Oil and gas reserves are found in distinctreserves are typically buried under many layers of rock that do not contain oil or gas.

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

457

Welding Hot Cracking of Side Shell of Drilling-Well Oil Storage Ship  

Science Journals Connector (OSTI)

...Cracks were found in the weld metal (WM) of weld-section of side shell of drilling-well oil storage ship when performing post weld radiographic...

Zhi-wei Yu; Xiao-lei Xu

2014-11-01T23:59:59.000Z

458

E-Print Network 3.0 - air drilling system Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems, Warren, MI. 6 Gray, V., 1969 "The Rotating Heat Pipe... of Thermosyphon Cooling for Drilling Operation: An Experimental ... Source: Jen, Tien-Chien - Department of...

459

McGinness Hills Well 27A-10 Daily Drilling Report Data  

SciTech Connect

This data should be used with the daily drilling record and other data which can be obtained from the contact listed below

Knudsen, Steven

2014-03-25T23:59:59.000Z

460

McGinness Hills Well 27A-10 Daily Drilling Report Data  

DOE Data Explorer (OSTI)

This data should be used with the daily drilling record and other data which can be obtained from the contact listed below

Knudsen, Steven

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

rillEdge is a software system that provides real-time deci-sion support when drilling oil wells. Decisions are sup-  

E-Print Network (OSTI)

D rillEdge is a software system that provides real-time deci- sion support when drilling oil wells developed DrillEdge to reduce the cost and decrease the probability of fail- ures in oil well drilling. Currently, DrillEdge continuously mon- itors around 30 oil well drilling operations in parallel for sever

Aamodt, Agnar

462

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Footage Drilled for Crude Oil and Natural Gas Wells Footage Drilled for Crude Oil and Natural Gas Wells (Thousand Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 176,867 203,997 240,969 285,398 308,210 331,740 1949-2008 Crude Oil 38,495 42,032 51,511 63,649 66,527 88,382 1949-2008 Natural Gas 115,833 138,503 164,353 193,595 212,753 212,079 1949-2008 Dry Holes 22,539 23,462 25,104 28,154 28,931 31,280 1949-2008 Exploratory Wells 17,785 22,382 25,955 29,630 36,534 35,585 1949-2008 Crude Oil 2,453 3,141 4,262 4,998 6,271 7,389 1949-2008 Natural Gas 6,569 9,998 12,347 14,945 19,982 17,066 1949-2008 Dry Holes

463

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

Costs of Crude Oil and Natural Gas Wells Drilled Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003 2004 2005 2006 2007 View History Thousand Dollars per Well All (Real*) 1,011.9 1,127.4 1,528.5 1,522.3 1,801.3 3,481.8 1960-2007 All (Nominal) 1,054.2 1,199.5 1,673.1 1,720.7 2,101.7 4,171.7 1960-2007 Crude Oil (Nominal) 882.8 1,037.3 1,441.8 1,920.4 2,238.6 4,000.4 1960-2007 Natural Gas (Nominal) 991.9 1,106.0 1,716.4 1,497.6 1,936.2 3,906.9 1960-2007 Dry Holes (Nominal) 1,673.4 2,065.1 1,977.3 2,392.9 2,664.6 6,131.2 1960-2007 Dollars per Foot All (Real*) 187.46 203.25 267.28 271.16 324.00 574.46 1960-2007 All (Nominal) 195.31 216.27 292.57 306.50 378.03 688.30 1960-2007

464

Using LWD to drill horizontally above oil/water contacts  

SciTech Connect

This paper reports on the first successful horizontal oil well in the state of Arkansas which helped increase production from one Smackover field. This completion utilized resistivity logging during drilling and improved drainage patterns in the thin oil column, resulting in more effective reserve depletion. Midway Field Unit is located in Lafayette County of southwestern Arkansas. In addition to being the first successful horizontal well in Arkansas, Midway Field Units well 2-15 was also American Exploration's first horizontal well. The well was brought on line February 28, 1991 flowing 380 bopd and no water, and is currently producing oil on rod pump at about 200 bpd. This completion increased field production by 27%. A second horizontal well was drilled and the third completion of this type is now under way. Additional horizontal wells are planned for Midway field based on the success of the first two wells. This approach to depleting reserves in fields with by-passed reserves and thin oil columns like the Midway Unit has proven to be cost effective and efficient.

Trusty, J.E.; Emmet, L.R. (American Exploration Co., Houston, TX (US))

1992-03-01T23:59:59.000Z

465

Design of a novel drilled-and-grouted pile in sand for offshore oil&gas structures  

Science Journals Connector (OSTI)

Abstract New offshore oil and gas exploration has placed renewed emphasis on developing structures in relatively complex geological conditions. Due to the damaging nature of impact driving, traditional steel piles used to support jacket structures, are not ideally suited to specific soil types, such as carbonate sands. Drilled and grouted piles are commonly used to support structures in these soil conditions. This paper describes a novel drilled pile, which has been developed specifically to provide a cost effective installation process while maintaining the benefits of grouted piles. The installation process negates the need for temporary casing in weak soils and minimizes the number of offshore operations. In this paper, the installation methodology and post-installation performance of a large scale onshore field trial is described. The installation process was successfully demonstrated with a 1.9m diameter test pile installed in fine sand to 17.7m depth in under 3h. The performance of the pile, as measured in a tension static load test, was shown to compare favorably with existing pile design methods.

David Igoe; Giovanni Spagnoli; Paul Doherty; Leonhard Weixler

2014-01-01T23:59:59.000Z

466

Effect of non-aqueous drilling fluid and its synthetic base oil on soil health as indicated by its dehydrogenase activity  

Science Journals Connector (OSTI)

Drilling fluids are used for drilling natural gas, oil and water wells. These spill over into the surrounding soil at the point of drilling, which may impair soil health. A ... out to determine the effect of non ...

Kanchan Wakadikar; Avik Sil; Niranjan Kolekar

2011-09-01T23:59:59.000Z

467

Program plan for the development of advanced synthetic-diamond drill bits for hard-rock drilling  

SciTech Connect

Eight companys have teamed with Sandia Labs to work on five projects as part of a cooperative effort to advance the state of the ar in synthetic-diamond drill bit design and manufacture. DBS (a Baroid Company), Dennis Tool Company, Hughes Christensen Company, Maurer Engineering, Megadiamond, Security Diamond Products, Slimdril International, and Smith International. Objective of each project is to develop advanced bit technology that results in new commercial products with longer bit life and higher penetration rates in hard formations. Each project explores a different approach to synthetic-diamond cutter and bit design and, consequently, uses different approaches to developing the technology. Each of these approaches builds or the respective companies` capabilities and current product interests. Sandia`s role is to assure integration of the individual projects into a coherent program and tc provide unique testing and analytical capabilities where needed. One additional company, Amoco Production Research, will provide synthetic-diamond drill bit research expertise and field testing services for each project in the program.

Glowka, D.A.; Schafer, D.M.

1993-09-01T23:59:59.000Z

468

Case study of the Wendel-Amedee Exploration Drilling Project, Lassen County, California, User Coupled Confirmation Drilling Program  

SciTech Connect

The Wendel-Amedee KGRA is located in Honey Lake basin in Lassen County, California, on the boundary between the Modoc Plateau and the Basin and Range geologic provinces. A variety of geophysical surveys was performed over the project property. Geophysical data helped in establishing the regional structural framework, however, none of the geophysical data is sufficiently refined to be considered suitable for the purpose of siting an exploration drill hole. Drilling of reservoir confirmation well WEN-1 took place from August 1 to September 22, 1981. Pulse and long-term flow testing subjected the reservoir to a maximum flow of 680 gpm for 75 hours. At that rate, the well exhibited a productivity index of 21.6 gpm/psi; the reservoir transmissivity was 3.5 x 10/sup 6/ md-ft/cp. The maximum bottom-hole temperature recorded during testing was 251/sup 0/F. The conceptual model of the geothermal resource at Wendel Hot Springs calls on ground water, originating in the neighboring volcanic highlands, descending through jointed and otherwise permeable rocks into the granitic basement. Once in the basement, the fluid is heated as it continues its descent, and lateral movement as dictated by the hydrologic gradient. It then rises to the discharge point along transmissive faults. 45 refs., 28 figs., 3 tabs.

Zeisloft, J.; Sibbett, B.S.; Adams, M.C.

1984-09-01T23:59:59.000Z

469

U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

470

Laser zona drilling does not induce hsp70i transcription in blastomeres of eight-cell  

E-Print Network (OSTI)

Laser zona drilling does not induce hsp70i transcription in blastomeres of eight-cell mouse embryos To assess whether zona drilling with a 1,480-nm laser induces heat shock in eight-cell embryos, we measured hsp70i RNA levels in sets of single blastomeres isolated after laser treatment of mouse embryos

Wangh, Lawrence J.

471

Billiards Digest June, 2012 "VEPP Part III: Wagon Wheel Drills" ILLUSTRATED PRINCIPLES  

E-Print Network (OSTI)

Control and English." "Wagon wheel" drills are very useful to help you practice and develop cue ball (CB angle slightly for each ball. There is actually a system you can use to help decide where to placeBilliards Digest June, 2012 "VEPP ­ Part III: Wagon Wheel Drills" ILLUSTRATED PRINCIPLES David

Alciatore, David G.

472

Petroleum Drilling and Production in the United States: Yield per Effort and Net Energy Analysis  

Science Journals Connector (OSTI)

...RESERVES CRUDE OIL N 1 :. WALL...ENERGY COSTS GOODS S...drilling and production in the United...petroleum (both oil and oil plus gas) found per...of energy costs and gains...drilling for domestic petroleum...reliability index R for all...symme-try operations, only a center...

CHARLES A. S. HALL; CUTLER J. CLEVELAND

1981-02-06T23:59:59.000Z

473

Fiscal Year 2007 Annual Report Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network (OSTI)

upon the earlier successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP Preparing for IODP Phase 2 SODV project 5 Expedition planning 8 Operational support 11 Engineering unsuitable for either the riserless or riser vessel, such as near the shoreline in shallow-water areas

474

A simulation study of a Subsea Mudlift Drilling system during tripping operations  

E-Print Network (OSTI)

To face the new challenges that the petroleum industry has in deepwaters, a Subsea Mudlift Drilling Joint Industry Project, SMDJIP, was formed. The main task for this project is to develop the technology needed to drill in water depths beyond 7500...

Escobar Parada, Alvaro Hernando

1999-01-01T23:59:59.000Z

475

Dynamic Positioning System of Semisubmersible Drilling Platform with a T-S Fuzzy Neural Network Controller  

Science Journals Connector (OSTI)

Position-keeping of a semi submersible drilling platform is an important matter in a production system in the deep sea. It is a key problem how to keep platform stationary in this study. In the paper a kind of T-S fuzzy neural network controller is used ... Keywords: Dynamic positioning, Semisubmersible drilling platform, T-S fuzzy neural network

Yan Li; Yu Gu

2012-10-01T23:59:59.000Z

476

Comparison of field and laboratory-simulated drill-off tests  

SciTech Connect

In this paper, field drill-off test results are compared with data from laboratory simulations. A simple theory for analyzing drill-off tests is developed. The weight-on bit (WOB) decay with time is close to exponential, but large threshold WOB's, resulting from poor weight transmission downhole, are sometimes observed in field tests.

Bourdon, J.C.; Peltier, B. (Sedco-Forex Technical Centre (USA)); Cooper, G.A. (Univ. of California, Berkley, CA (USA)); Curry, D.A. (International Drilling and Downhole Technology Centre in Aberdeen (Great Britian)); McCann, D. (Sedco-Forex Technical Centre (USA))

1989-12-01T23:59:59.000Z

477

Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project  

E-Print Network (OSTI)

LETTERS Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling) at or near the surface2 , which is accessible to borehole drilling and provides a rare opportunity to sample . The actual thickness of the zone that slips dur- ing the rupture of a large earthquake is not known

Ma, Kuo-Fong

478

Horizontal Directional Drilling: A Green and Sustainable Technology for Site Remediation  

Science Journals Connector (OSTI)

Horizontal Directional Drilling: A Green and Sustainable Technology for Site Remediation ... Although a host of innovative technologies exist to treat contaminated soil and groundwater, constructing them in the field continues to rely on age-old, conventional methods: vertical drilling or excavation. ...

Michael D. Lubrecht; LG

2012-01-24T23:59:59.000Z

479

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 29, quarter ending December 31, 1981  

SciTech Connect

Highlights of progress accomplished during the quarter ending December, 1981, are summarized in this report. Discussion is presented under the following headings: chemical flooding - field projects; chemical flooding - supporting research; carbon dioxide injection - field projects; carbon dioxide injection - supporting research; thermal/heavy oil - field projects and supporting research; resource assessment technology; extraction technology; environmental aspects; petroleum processing technology; microbial enhanced oil recovery; and improved drilling technology. (DMC)

Linville, B. (ed.)

1982-05-01T23:59:59.000Z

480

GRR/Section 5-TX-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-TX-a - Drilling and Well Development GRR/Section 5-TX-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-TX-a - Drilling and Well Development 05TXADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Water Development Board Regulations & Policies 16 TAC 3.5: Application To Drill, Deepen, Reenter, or Plug Back 16 TAC 3.78: Fees and Financial Security Requirements 16 TAC 3.37: Statewide Spacing Rule 16 TAC 3.38: Well Densities 16 TAC 3.39: Proration and Drilling Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Triggers None specified Click "Edit With Form" above to add content

Note: This page contains sample records for the topic "drilling pre-application process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes  

Open Energy Info (EERE)

Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Citation U.S. Geothermal Inc.. 2010. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project. Boise Idaho: (!) . Report No.: N/A.

482

Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and  

Open Energy Info (EERE)

Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Abstract N/A Author U.S. Geological Survey Published Publisher Not Provided, 2009 Report Number 2009-1022 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Citation U.S. Geological Survey. 2009. Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect,

483

GRR/Section 5-NV-a - Drilling Well Development | Open Energy Information  

Open Energy Info (EERE)

5-NV-a - Drilling Well Development 5-NV-a - Drilling Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-NV-a - Drilling Well Development 05NVADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Nevada Division of Minerals Nevada Division of Water Resources Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 05NVADrillingWellDevelopment.pdf 05NVADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A person may not drill or operate a geothermal well or drill an exploratory well without obtaining a permit from the Administrator of the Nevada

484

Step-Out Drilling Results at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Step-Out Drilling Results at Blue Mountain, Nevada Step-Out Drilling Results at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Step-Out Drilling Results at Blue Mountain, Nevada Abstract Step-out drilling targets based on a detailed structural model at Blue Mt. Nevada have led to high permeability entries in a well offset 1.2 km west of the developing field at Blue Mountain,Nevada. This well, 58-15, targeted shallow and deep entries based on a model with faults in the hanging wall and in the underlying range front fault zone. Drilling results showed that both zones were permeable. The deep target showed up in several productive fractures at relatively high temperatures. This result supports the general conceptual model of upflow from depth on Piedmont faults. The purpose of

485

Steerable BHAs drill storage wells with difficult trajectories. [Bottom Hole Assembly  

SciTech Connect

The use of steerable downhole motor assemblies allows greater variation in well bore trajectory for drilling gas and oil storage wells in salt domes in areas with surface site restrictions. With modern directional drilling tools, the cavern wells are drilled vertically, kicked off in an S turn, and then finished with a vertical section. The last 100 m of a cavern well above the last cemented casing shoe must be vertical because of the technical demands of brining and completion. To date, Kavernen Bauund Betriebs-GmbH has successfully drilled and completed three directional cavern boreholes in Germany. These directional drilling techniques have also been used successfully for vertical boreholes with strict deviation limits. The paper describes this technology.

Gomm, H.; Peters, L. (Kavernen Bau- und Betriebs-GmbH, Hannover (Germany))

1993-07-19T23:59:59.000Z

486

Evaluation of target reservoirs for horizontal drilling: Lower Glen Rose Formation, South Texas  

SciTech Connect

The primary objective of this project is to test the hypothesis that a horizontally drilled borehole can increase gas production sufficiently from the Lower Glen Rose Formation to provide an economic advantage over conventional vertical drilling. Additional objectives are to conduct detailed investigations of reservoir properties and completion methods. This paper presents preliminary results of a project, co-funded by PrimeEnergy and the United States Department of Energy (DOE), to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing DOE investigation of directional drilling in the development of tight gas resources within the United States. This paper builds on data presented in Muncey (1992) with data from two vertical tests of the Lower Glen Rose Formation, both drilled in 1993, and the analysis of approximately 20 line-miles of high-resolution seismic data recorded in 1992 and 1993.

Muncey, G.; Drimal, C.E. Jr.

1993-12-31T23:59:59.000Z

487

Relationship between formation water rate, equivalent penetration rate and volume flow rate of air in air drilling  

Science Journals Connector (OSTI)

Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation dur...

Wang Kexiong; Zhang Laibin; Jiang Hongwei

2007-12-01T23:59:59.000Z

488

Comparative toxicity of offshore and oil-added drilling muds to larvae of the grass shrimpPalaemonetes intermedius  

Science Journals Connector (OSTI)

Offshore drilling fluids (muds) varied widely in their...Palaemonetes intermedius) larvae. The 96-hr LC50s for the eleven drilling muds tested ranged from 142 to >100 ... L). There was a significant correlation b...

Philip J. Conklin; K. Ranga Rao

1984-11-01T23:59:59.000Z

489

Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes  

Science Journals Connector (OSTI)

In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid col...

Hua Wang; Guo Tao; Xue-Feng Shang; Xin-Ding Fang; Daniel R. Burns

2013-12-01T23:59:59.000Z

490

Trace element mobility during sub-seafloor alteration of basaltic glass from Ocean Drilling Program site 953 (off Gran Canaria)  

Science Journals Connector (OSTI)

Trace element concentrations of altered basaltic glass shards (layer silicates) and zeolites in volcaniclastic sediments drilled in the volcanic apron northeast of Gran Canaria during Ocean Drilling Program (ODP)...

A. Utzmann; T. Hansteen; H.-U. Schmincke

2002-08-01T23:59:59.000Z

491

Phase distribution and intrapore salt exchange during drilling mud invasion of an oil- and gas-bearing formation  

Science Journals Connector (OSTI)

As a result of drilling mud filtrate invasion of a formation saturated with oil, gas and natural water, the distribution...

N. K. Korsakova; V. I. Penkovskii

2009-04-01T23:59:59.000Z

492

Bailer for top head drive rotary well drills  

SciTech Connect

A bailer mounted to the derrick of a top head drive well drilling rig is described. The bailer includes a winch line drum mounted by a bracket to the derrick. A positive displacement hydraulic motor mounts one end of the drum and receives fluid under pressure from the existing hydraulic pressure supply. Valving is provided to allow reverse operation of the motor so equipment can either be raised or lowered relative to the derrick. The hydraulic delivery line to the motor includes a one way restrictor that will allow relatively free passage of fluid to the motor in a driving or lifting mode but will reverse flow of fluid from the motor, thereby affording a braking effect for lowering a load at a selected rate.

Bartholomew, L.

1980-09-23T23:59:59.000Z

493

EUROPEAN GEOTHERMAL DRILLING EXPERIENCE- PROBLEM AREAS AND CASE STUDIES  

Office of Scientific and Technical Information (OSTI)

EUROPEAN GEOTHERMAL DRILLING EXPERIENCE- EUROPEAN GEOTHERMAL DRILLING EXPERIENCE- PROBLEM AREAS AND CASE STUDIES 0. Baron and P. Ungemach Commisslon of The European Communities Belglum ABSTRACT Geothermal d r i l l i n g h a s long been restricted i n Western Europe t o t h e sole d r y s t e a m f i e l d of L a r d e r e l l o i n I t a l y . I n t h e l a s t f e w y e a r s , a wider e x p e r i e n c e i s b u i l d i n g up a s a consequence of i n t e n s i f i e d explo- r a t i o n and development programs c a r r i e d o u t for e v a l u a t i o n and produc- t i o n of both l o w - and high-enthalpy geothermal resources. A sample Of some 40 boreholes i n d i c a t e s the following problem areas. 1. Low-Enthalpy D r i l l i n 9 Due t o s i m i l a r s e t t i n g s - - h o t water system flowing i n sedimentary u n i t s a t t e m p e r a t u r e s and d e p t h s r a n g i n g f r o m 40" t o 140°C (104" t o 284°F) and from 1,000 t

494

Horizontal drilling the Bakken Formation, Williston basin: A new approach  

SciTech Connect

Horizontal drilling is an attractive new approach to exploration and development of the Mississippian/Devonian Bakken Formation in the southwestern part of North Dakota. This drilling technique increases the probability of success, the profit potential, the effective drainage area maximizing recoverable reserves, and the productivity by encountering more natural occurring fractures. The target formatio