Sample records for drilling improved rock

  1. Technical Note Improved Optimization and Visualization of Drilling Directions for Rock

    E-Print Network [OSTI]

    Haneberg, William C.

    INTRODUCTION Characterization of planar discontinuities such as bedding, joints, and faults is an essential control in situ block sizes that can be important when assessing the adequacy of potential riprap or armor-stone sources, the susceptibility of bridge foundations to scour during floods, and the sizes of rock blocks

  2. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  3. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  4. Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling

    SciTech Connect (OSTI)

    Robert Lee Cardenas

    2000-10-31T23:59:59.000Z

    Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

  5. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

  6. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

  7. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

  8. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect (OSTI)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23T23:59:59.000Z

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  9. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30T23:59:59.000Z

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  10. New oilfield air bit improves drilling economics in Appalachian Basin

    SciTech Connect (OSTI)

    Brannon, K.C.; Grimes, R.E. [Hughes Christensen Co., Houston, TX (United States); Vietmeier, W.R. [Hughes Christensen Co., Imperial, PA (United States)

    1994-12-31T23:59:59.000Z

    Petroleum exploration in the Appalachian Basin of the northeastern United States has traditionally relied on compressed air, rather than drilling fluid, for its circulating medium. When compared to drilling mud, compressed air provides such advantages as increased rates of penetration, longer bit life, decreased formation damage, no lost circulation and saves the expense associated with mud handling equipment. Throughout the 1970s and early 1980s, roller cone mining bits and surplus oilfield bits were used to drill these wells. While the cutting structures of mining bits were well-suited for air drilling, the open roller bearings invariably shortened the useful life of the bit, particularly when water was present in the hole. This paper will highlight the development of a new IADC Class 539Y oilfield roller cone bit that is establishing performance records in air drilling applications throughout the Appalachian Basin. Essentially, the latest generation evolved from a roller cone bit successfully introduced in 1985 that combined a specialized non-offset cutting structure with a premium oilfield journal bearing package. Since its introduction, several sizes and types of oilfield air bits have been developed that have continually decreased drilling costs through enhanced performance and reliability. The design and evolution of rock bit cutting structures and bearing packages for high-performance oilfield air drilling applications will be detailed. Laboratory drilling test data will demonstrate the difference in drilling efficiencies between air drilling and conventional fluid drilling. Case studies taken from throughout the Appalachian Basin will be presented to illustrate the improvements in cost per foot, penetration rate, total footage drilled, drilling hours, and bit dull grades.

  11. Fundamental Investigation of Pore Pressure Prediction During Drilling from the Mechanical Behavior of Rock

    E-Print Network [OSTI]

    Rivas Cardona, Juan 1980-

    2011-07-18T23:59:59.000Z

    An investigation was conducted as a preliminary effort to develop a methodology to predict pore pressure in a rock formation during drilling, for all types of rocks and situations. Specifically, it was investigated whether or not the virgin pore...

  12. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA)

    2000-01-01T23:59:59.000Z

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  13. Laser rock drilling by a super-pulsed CO{sub 2} laser beam.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Parker, R. A.; Gahan, B. C.; Graves, R. M.; Figueroa, H.

    2002-08-12T23:59:59.000Z

    High power carbon dioxide lasers have successfully been used in drilling or cutting engineering materials such as metals, polymers and ceramics over the years. Can a carbon dioxide laser be used to efficiently drill different rocks in a deep gas well? Research sponsored by US Department of Energy has been carried out to answer this question. This paper will report the study results of using a super-pulsed CO{sub 2} laser beam to drill rocks. A 6 kW CO{sub 2} laser operated at superpulse mode was used to carry out the tests. Both linear tracks and deep holes were produced on the rocks. The energy required to remove a unit volume of rock, specific energy, was determined. Test results show that superpulsed CO{sub 2} laser beam can be efficiently used to drill deep, large diameter holes in petroleum rocks with the assistance of purging gas.

  14. The development and utilization of a high-speed laboratory rock drilling apparatus

    E-Print Network [OSTI]

    Day, Jeffrey Dale

    1988-01-01T23:59:59.000Z

    THE DEVELOPMENT AND UTILIZATION OF A HIGH-SPEED LABORATORY ROCK DRILLING APPARATUS A Thesis by JEFFREY DALE DAY Submitted to the Graduate College of Texas AGM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1988 Major Subject: Petroleum Engineering THE DEVELOPMENT AND UTILIZATION OF A HIGH-SPEED LABORATORY ROCK DRILLING APPARATUS A Thesis by JEFFREY DALE DAY Approved as to style and content by: Hans C. Juvkam-Wold (Chair of Committee...

  15. Riser and wellhead monitoring for improved offshore drilling operations

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Riser and wellhead monitoring for improved offshore drilling operations Gullik A. Jensen, Ph ­ Offshore drilling with riser ­ On the riser and the riser joints ­ On damage and consequences · Operational Page 2 #12;The KONGSBERG Riser Management Systems (RMS) Integrity of drilling riser based on monitoring

  16. Lowering Drilling Cost, Improving Operational Safety, and Reducing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact through Zonal Isolation Improvements for Horizontal Wells Drilled in the Marcellus Shale 10122.19.Final 11132014 Jeff Watters, Principal Investigator General Manager CSI...

  17. WATERJET ASSISTED POLYCRYSTALLINE DIAMOND INDENTATION DRILLING OF ROCK

    E-Print Network [OSTI]

    ., and Summers, D.A., University of Missouri-Rolla, USA Pixton, D., Novatek, Provo, Utah USA Abstract The use of drilling and completions of the wells can account for 25 ­ 50% of the cost of the electricity which

  18. Precision directional drilling of hot-dry-rock geothermal production well EE-3

    SciTech Connect (OSTI)

    Carden, R.S.; Rowley, J.C.; Helmick, C.

    1982-01-01T23:59:59.000Z

    The deviated directional drilling of the hot dry rock (HDR) geothermal production well EE-3 (Energy Extraction No. 3) was successfully completed on August 1981. The injection well, EE-2, previously had been drilled with its lower part at an inclination of 35/sup 0/ to the vertical. It reached an on-line depth of 15,292 feet and its bottom-hole temperature was 608/sup 0/F (320/sup 0/C). The production well EE-3 was required to be drilled 1200 feet (370 m) above and parallel to the injection well. This necessitated high precision, controlled-trajectory directional drilling operations. The directional drilling of EE-3 was accomplished within the required tolerances at a depth of 13,933 feet and a bottom-hole temperature of 580/sup 0/F (280/sup 0/C).

  19. Improved Efficiency of Oil Well Drilling through Case Based Reasoning

    E-Print Network [OSTI]

    Aamodt, Agnar

    to give the operator valuable advise on how to go about solving the new case. Introduction Drilling of oil1 Improved Efficiency of Oil Well Drilling through Case Based Reasoning Paal Skalle Norwegian University of Science and Technology, Dept. of Petroleum Technology, N-7491, Trondheim, Norway (pskalle

  20. XXI ICTAM, 1521 August 2004, Warsaw, Poland IMPACT FRACTURE OF ROCK MATERIALS DUE TO PERCUSSIVE DRILLING ACTION

    E-Print Network [OSTI]

    Krivtsov, Anton M.

    DRILLING ACTION Anton M. Krivtsov, Ekaterina E. Pavlovskaia, Marian Wiercigroch St. Petersburg State fracture of rocks caused by percussive drilling is presented. The process is modeled using particle are investigated. INTRODUCTION Percussive drilling is proved to be superior when compared to a convention rotary

  1. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  2. Drill-back studies examine fractured, heated rock

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01T23:59:59.000Z

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences in compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.

  3. Field drilling tests on improved geothermal unsealed roller-cone bits. Final report

    SciTech Connect (OSTI)

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-05-01T23:59:59.000Z

    The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  4. Bent-housing turbodrills improve hard-formation directional drilling

    SciTech Connect (OSTI)

    Koot, L.; Koole, K. (Shell U.K. Exploration and Production, Lowestoft (United Kingdom)); Gaynor, T. (Neyrfor-Weir Ltd., Aberdeen (United Kingdom))

    1993-02-15T23:59:59.000Z

    Improvements in the design of turbine-powered downhole motors allowed steerable drilling in a hard formation at a high rate of penetration (ROP). Drilling in this dolomite formation with the rotary or with positive-displacement motors (PDMs) was slow during steering operations. Shell's solution to the steering penetration rate problems was to change the well plans if suitable directional drilling tools weren't available. Where possible, the wells were designed with the Zechstein interval drilled as a tangent section with non-steerable turbodrills. However, a better solution was the use of a steerable turbodrill-a tool unavailable on the market at that time. The paper describes motor development, a field test, and the design and operation of the motor.

  5. Extended-length power sections improve PDM drilling

    SciTech Connect (OSTI)

    Moles, H. [Baker Hughes INTEQ, Aberdeen (United Kingdom)

    1995-12-01T23:59:59.000Z

    Since being introduced in the 1960s, downhole positive displacement motors (PDMs) have evolved steadily from early applications. Initially considered only for high-speed, medium-torque, initial directional kickoffs; and short, corrective directional operations, these tools were not expected to operate for more than a few hours at a time. Progressive improvements have led to tools that are capable of extended runs in a variety of configurations. Current generation PDMs have a broad range of applications and include fully steerable systems for directional or horizontal drilling, and instrumented motors incorporating formation evaluation measurement-while-drilling (FEMWD) systems for geological steering and reservoir navigation. Design improvements also expanded PDM applications to include hole sections traditionally drilled with conventional rotary-driven bottomhole assemblies (BHAs). This paper reviews these new motor designs and provides case histories of their performance.

  6. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect (OSTI)

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01T23:59:59.000Z

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  7. Program for the improvement of downhole drilling motors

    SciTech Connect (OSTI)

    Finger, J.T.

    1983-11-01T23:59:59.000Z

    This report describes the work done under contract to Sandia National Labs and to the Department of Energy for improvement of downhole drilling motors. The focus of this program was the development of a better bearing-and-seal assembly that could be used in different kinds of drilling motors in a geothermal environment. Major tasks were: (1) design and construction of seal testing devices, (2) screening and evaluation of candidate seals in a simulated bearing/seal package, (3) tests of the most promising candidates in a full-scale bearing/seal package, and (4) analysis of failed seals after testing. The key results from this program were: (1) identification of seal/shaft/lubricant systems that performed well at high pressure and temperature, (2) identification of other seal designs that should be avoided for similar applications, and (3) evaluation of the test machines' design.

  8. An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars

    E-Print Network [OSTI]

    McConnell, Joshua B

    2000-01-01T23:59:59.000Z

    with investigating the properties of the created liner. Research Goal The Rock Melt Drill is one of several drilling technologies that may possess the potential for being an optimum choice for drilling on Mars, as will be discussed in greater depth in Chapter...

  9. Drilling optimization using drilling simulator software

    E-Print Network [OSTI]

    Salas Safe, Jose Gregorio

    2004-09-30T23:59:59.000Z

    al. 8 ) Select Bits and Operational Parameters Determine The Drilling Cost Drilling Data Recorded(Offset Well) Drilling ROP Model Labs Test and Correlations GDL (Unconfined Rock Strength) Drilling ROP Model New Set Operational Parameters and Bits... ROP PredictionsBits Wear DeterminationCost per Foot Drilling Data Recorded(Offset Well) Drilling ROP Model Labs Test and Correlations GDL (Unconfined Rock Strength) Drilling ROP Model New Set Operational Parameters and Bits ROP PredictionsBits Wear...

  10. Planning and drilling geothermal energy extraction hole EE-2: a precisely oriented and deviated hole in hot granitic rock

    SciTech Connect (OSTI)

    Helmick, C.; Koczan, S.; Pettitt, R.

    1982-04-01T23:59:59.000Z

    During the preceding work (Phase I) of the Hot Dry Rock (HDR) Geothermal Energy Project at Fenton Hill, two holes were drilled to a depth of nearly 3048 m (10,000 ft) and connected by a vertical hydraulic fracture. In this phase, water was pumped through the underground reservoir for approximately 417 days, producing an energy equivalent of 3 to 5 MW(t). Energy Extraction Hole No. 2 (EE-2) is the first of two deep holes that will be used in the Engineering-Resource Development System (Phase II) of the ongoing HDR Project of the Los Alamos National Laboratory. This phase of the work consists of drilling two parallel boreholes, inclined in their lower, open-hole sections at 35/sup 0/ to the vertical and separated by a vertical distance of 366 m (1200 ft) between the inclined parts of the drill holes. The holes will be connected by a series of vertical, hydraulically produced fractures in the Precambrian granitic rock complex. EE-2 was drilled to a depth of 4660 m (15,289 ft), where the bottom-hole temperature is approximately 320/sup 0/C (608/sup 0/F). Directional drilling techniques were used to control the azimuth and deviation of the hole. Upgrading of the temperature capability of existing hardware, and development of new equipment was necessary to complete the drilling of the hole in the extremely hot, hard, and abrasive granitic formation. The drilling history and the problems with bits, directional tools, tubular goods, cementing, and logging are described. A discussion of the problems and recommendations for overcoming them are also presented.

  11. Radical improvements to blast hole drilling cost and productivity thru integrated teams

    SciTech Connect (OSTI)

    Thomas, R.W. [Baker Hughes Mining Tools, Inc., Grand Prairie, TX (United States)

    1996-12-31T23:59:59.000Z

    This paper explores the possibilities of generating radical improvements in the drilling costs and productivity of blastholes through the efforts of integrated teams as opposed to traditional customer/vendor relationships. The formation and operation of teams comprising both mine operations personnel and key vendors will be presented and explained. Further, the author will present an expanded Total Drilling Cost Formula, followed by a hypothetical example of how the formula and teams can be applied to a mining project to produce significant improvement in value and drilling/producing efficiency. The primary driving force to achieve the aforementioned benefits is the rate of production, or in drilling vernacular, the rate of penetration (ROP). For the purpose of this paper, ROP will refer to the net production rate of footage drilled, rather than the instantaneous rate of penetration achieved during the drilling process. This definition opens up an array of issues that can be addressed to improve actual production rates.

  12. An integrated approach to characterize reservoir connectivity to improve waterflood infill drilling recovery

    E-Print Network [OSTI]

    Malik, Zaheer Ahmad

    1993-01-01T23:59:59.000Z

    Infill drilling can significantly improve reservoir interwell connectivity in heterogeneous reservoirs, thereby enhances the waterflood recovery. This study defines and investigates the Hydraulic Interwell Connectivity (HIC) concept to characterize...

  13. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2005-09-30T23:59:59.000Z

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.

  14. Air drilling operations improved by percussion-bit/hammer-tool tandem

    SciTech Connect (OSTI)

    Whiteley, M.C.; England, W.P.

    1986-10-01T23:59:59.000Z

    Contractors and operators air drill whenever possible to improve rate of penetration (ROP). This is done with pneumatic hammer tools (HT's) and various bit types used with standard rotary air rigs. The recent application of a ''flat-bottomed'' percussion bit (FPB) combined with a custom-designed HT originally developed for mining operations has significantly improved air drilling operations in the Arkoma basin. The improvements include a large increase in ROP, improved hole geometry, reduced drillstring stresses, and a substantial reduction in cost per foot. This paper describes (1) a discussion of the engineering design and operation of the FPB/HT tandem, (2) applications and limitations of the tools, (3) guidelines for optimization of performance, and (4) documentation of field performance on Arkoma basin wells to demonstrate the improvements in air drilling operations.

  15. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29T23:59:59.000Z

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  16. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.

  17. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2003-10-01T23:59:59.000Z

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  18. Advanced Drilling Systems for EGS

    Broader source: Energy.gov [DOE]

    Project objectives: Apply Novateks Stinger and JackBit technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

  19. Optimizing drilling performance using a selected drilling fluid

    DOE Patents [OSTI]

    Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

    2011-04-19T23:59:59.000Z

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  20. StarWars technology may revolutionize natural gas drilling

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    A 2-year basic research project will examine the feasibility, costs, benefits and environmental impact of applying laser technologies to drill and complete wells. An improved understanding of laser applications could lead to the development of several products, including a downhole laser drilling machine, laser-assisted drill bits for both conventional and coiled tubing applications, a laser perforating tool and sidetrack and directional laser drilling devices. The laser drilling consortium has five primary objectives: determine the amount of data available on StarWars laser technologies; evaluate the capabilities and limitations of applying lasers to drill and complete gas wells; decide what areas of laser drilling research need to be addressed; quantify benefits that can be obtained from laser drilling, such as higher penetration rates, reduced rig day rates and casing requirements, and improved safety and economics; and undertake laboratory research to understand laser, rock and fluid interactions.

  1. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect (OSTI)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19T23:59:59.000Z

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  2. Application of high powered lasers to drilling and completing deep walls.

    SciTech Connect (OSTI)

    Reed, C. B.; Xu, Z.; Parker, R. A.; Gahan, B. C.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Deeg, W.

    2003-07-30T23:59:59.000Z

    High powered laser rock drilling was studied as a revolutionary method for drilling and completing deep gas and oil wells. The objectives of this 2002 to 2003 fiscal year research were to study the concept that large diameter holes can be created by multiple overlapping small beam spots, to determine the ability of lasers to drill rock submerged to some depth in water, to demonstrate the possibilities of lasers for perforating application, and to determine the wavelength effects on rock removal. Laser technology applied to well drilling and completion operations is attractive because it has the potential to reduce drilling time, create a ceramic lining that may eliminate the need for steel casing, provide additional monitor-on-drilling laser sensors and improve well performance through improved perforation. The results from this research will help engineering design on a laser-based well drilling system.

  3. Program for the improvement of downhole drilling motor bearings and seals. Phase V. Final report

    SciTech Connect (OSTI)

    DeLafosse, P.H.; Tibbitts, G.A.; Black, A.D.; DiBona, B.G.

    1983-08-01T23:59:59.000Z

    The work done during the fifth and final phase of a program to improve downhole drilling motor bearing and seals is described. The principal activities in this phase were: (a) testing seals with abrasive-laden mud on the low-pressure side; (b) test second and third generation designs of both elastomeric chevron seals and Teflon U-seals; and (c) testing a full-scale bearing/seal package. Several operating parameters which have a radical effect on seal life were identified, and some promising designs and materials were tested.

  4. Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology

    SciTech Connect (OSTI)

    Dinesh Agrawal; Paul Gigl; Mark Hunt; Mahlon Dennis

    2007-07-31T23:59:59.000Z

    The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

  5. OCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    designed bare rock guide base and use new drilling technology. The drillship JOIDES Resolution is scheduledOCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS BARE ROCK DRILLING IN THE KANE FRACTURE ZONE Drilling Program Texas A & M University College Station, TX 77843-3469

  6. OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 109 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 Philip D. Rabinowitz Director Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean Drilling Program Louis E

  7. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust, High-ThroughputRocks Rocks

  8. Progress in the Advanced Synthetic-Diamond Drill Bit Program

    SciTech Connect (OSTI)

    Glowka, D.A. [Sandia National Labs., Albuquerque, NM (United States); Dennis, T. [Dennis Tool Co., Houston, TX (United States); Le, Phi [Security DBS, Houston, TX (United States); Cohen, J. [Maurer Engineering, Inc., Houston, TX (United States); Chow, J. [Hughes Christensen Co., Salt Lake City, UT (United States)

    1995-11-01T23:59:59.000Z

    Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.

  9. Directional Drilling and Equipment for Hot Granite Wells

    SciTech Connect (OSTI)

    Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

    1981-01-01T23:59:59.000Z

    Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

  10. Fluid-rock interactions in the Rhine Graben: A thermodynamic model of the hydrothermal alteration observed in deep drilling

    SciTech Connect (OSTI)

    Komninou, A.; Yardley, B.W.D. [Univ. of Leeds (United Kingdom)] [Univ. of Leeds (United Kingdom)

    1997-02-01T23:59:59.000Z

    Deep drilling at Soultz-sous-Forets, France, on the western flanks of the Rhine Graben, has penetrated Hercynian granite underlying Mesozoic sediments. Veins are present throughout the drilled granite, and there are flows of warm water localized in fractures within the granite. Detailed mineralogical study of core material from the research drillhole EPSI has been carried out in order to assess the alteration history of the Soultz granite, part of the crystalline basement of the Rhine Graben. The results of the study have been used, in conjunction with analyses of present-day fluids from deep drilling in the Rhine Graben reported in the literature, to model thermodynamically the alteration process, and in particular to evaluate if it is likely to be continuing today. Reaction-path calculations show that if deep basinal brines, such as are known from sediments of the central Rhine Graben, react with Hercynian granite, they will form different alteration assemblages depending on both the path that the fluid follows (e.g., descending through sediments or through granite) and the extent of preexisting alteration of the granite. The calculations suggest that fluid now sampled from granite in EPS-1 achieved its peak temperature, c. 200{degrees}C while within Permo-Triassic sandstone. The modeling also indicates that present-day fluids from the Rhine Graben system are capable of producing the vein quartz and possibly also the baryte veins, seen in the EPSI core. Much of the alteration present in the granite in the vicinity of veins and fractures may have been produced by a flow regime similar to that prevailing today. 48 refs., 15 figs., 4 tabs.

  11. Numerical Simulation Study to Investigate Expected Productivity Improvement Using the "Slot-Drill" Completion

    E-Print Network [OSTI]

    Odunowo, Tioluwanimi Oluwagbemiga

    2012-07-16T23:59:59.000Z

    The "slot-drill" completion method, which utilizes a mechanically cut high-conductivity "slot" in the target formation created using a tensioned abrasive cable, has been proposed as an alternative stimulation technique for shale-gas and other low...

  12. OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 106 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 ±nuwiLZ" ector ODP Drilling Program, Texas A & M University, College Station, Texas 77843-3469. In some cases, orders

  13. Improved microstructure of cement-based composites through the addition of rock wool particles

    SciTech Connect (OSTI)

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15T23:59:59.000Z

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: We report the microstructural characterization of cement-based composites. Different mixes produced with various rock wool particles have been tested. The influence of different mixes on macro and micro properties has been discussed. The macro properties are included compressive strength and permeability. XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  14. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

  15. Exotic drilling: contractor drills pipelines

    SciTech Connect (OSTI)

    McReynolds, L.

    1980-04-01T23:59:59.000Z

    Drilling of pipelines has been technologically developed for applications such as river crossings, tunnelling through tar-sand or oil-shale strata for more effective in situ combustion production projects, and drilling inside rather than through heavy oil pays to create extensive horizontal well bores suitable for steam heating the formation. The horizontal drilling concept for river crossing involves installation of pipelines in an inverted arc 25 to 100 ft below a river bed. The directional control required to produce a curved hole is maintained by rotating the bit without rotating the pipe. When the drill string is activated by a forward thrust, it creates a reactive subsurface pressure against the front surface of the bent sub, thus causing the bend. The bit then deviates in the direction of the bend. Little disruption of the environment occurs, and the directionally drilled crossings offer improved pipeline security, maintenance of year-round construction schedules, easier permitting, no navigational hazards or interruption for waterway traffic, elimination of bank restoration costs and most repair costs, and a maintenance-free crossing section.

  16. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  17. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  18. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01T23:59:59.000Z

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  19. Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990

    SciTech Connect (OSTI)

    Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

    1990-06-01T23:59:59.000Z

    The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a revolutionary modification in recent history was the complete displacement of cable tool rigs by rotary drilling rigs in the late 1920s.

  20. The Use of WBM to Improve ROP in HTHP/Hard Rock Environments

    E-Print Network [OSTI]

    Kraussman, Andrew

    2012-07-16T23:59:59.000Z

    Modern day oil & gas well costs are driven by drilling performance as time becomes the dominant capital expense source. The ability to lower drilling costs becomes paramount when tight economic margins and high uncertainties/risk exist...

  1. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Brian C. Gahan; Samih Batarseh

    2005-09-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  2. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  3. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    SciTech Connect (OSTI)

    Jill S. Buckley; Norman R. Morrow

    2006-01-01T23:59:59.000Z

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  4. Program for the improvement of downhole drilling-motor bearings and seals. Final report: Phase III, Part 1

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    A systematic laboratory testing and evaluation program to select high-temperature seals, bearings, and lubricants for geothermal downhole drilling motors is summarized.

  5. Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch

    E-Print Network [OSTI]

    KELLOGG, RYAN M

    2007-01-01T23:59:59.000Z

    and Henry Licis, Improving Drilling Performance ThroughJ.F. and K.K. Millheim, The Drilling Performance Curve: AYardstick for Judging Drilling Performance, Society of

  6. Development of a Hydrothermal Spallation Drilling System for...

    Open Energy Info (EERE)

    in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface...

  7. A Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding in Sandstone Rock

    E-Print Network [OSTI]

    Nasralla, Ramez

    2013-05-02T23:59:59.000Z

    -salinity water has an impact on the rock wettability; the more reduction in water salinity, the more a water-wet rock surface is produced. In addition, NaCl solutions made the rock more water-wet compared to CaCl2 or MgCl2 at the same concentration. Low...

  8. Geothermal drilling research in the United States

    SciTech Connect (OSTI)

    Varnado, S.G.; Maish, A.B.

    1980-01-01T23:59:59.000Z

    The high cost of drilling and completing geothermal wells is an impediment to the development of this resource. The Department of Energy (DOE), Division of Geothermal Energy (DGE), is conducting an R and D program directed at reducing well costs through improvements in geothermal drilling and completion technology. This program includes R and D activities in high temperature drilling hardware, drilling fluids, lost circulation control methods, completion technology, and advanced drilling systems. An overview of the program is presented.

  9. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    SciTech Connect (OSTI)

    Arnis Judzis

    2006-03-01T23:59:59.000Z

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

  10. Comprehensive Ocean Drilling

    E-Print Network [OSTI]

    Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

  11. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program U.S. Implementing Organization FY12 Annual Report #12;Handling downhole tool string #12;The Integrated Ocean Drilling Program (IODP) is an international marine research in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling Project (DSDP

  12. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program U.S. Implementing Organization FY11 Annual Report #12;Sunset aboard the JOIDES Resolution #12;The Integrated Ocean Drilling Program (IODP) is an international marine as recorded in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling

  13. Drill bit assembly for releasably retaining a drill bit cutter

    DOE Patents [OSTI]

    Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

    2002-01-01T23:59:59.000Z

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  14. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  15. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2005-07-05T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  16. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect (OSTI)

    None

    2010-01-15T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energys laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  17. drilling.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DRILLING PROGRAM Objective R MOTC's Drilling Program provides opportuni- ties for testing and demonstrating a broad range of new drilling technologies. Background RMOTC is a U.S....

  18. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    SciTech Connect (OSTI)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31T23:59:59.000Z

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

  19. Optical coherence tomography guided dental drill

    DOE Patents [OSTI]

    DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

    2002-01-01T23:59:59.000Z

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  20. DRILLED HYDROTHERMAL ENERGY Drilling for seawater

    E-Print Network [OSTI]

    DRILLED HYDROTHERMAL ENERGY Drilling for seawater An "ALL of the ABOVE" Approach to Ocean Thermal-Arsène d'Arsonval in 1881 conceptualized producing electricity from ocean temperature difference DRILLED HYDROTHERMAL ENERGY BACKGROUND #12;DRILLED HYDROTHERMAL ENERGY BACKGROUND French Inventor Georges Claude

  1. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  2. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30T23:59:59.000Z

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  3. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02T23:59:59.000Z

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  4. Drilling equipment to shrink

    SciTech Connect (OSTI)

    Silverman, S.

    2000-01-01T23:59:59.000Z

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  5. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    SciTech Connect (OSTI)

    Hamrick, Todd

    2011-05-25T23:59:59.000Z

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

  6. Ice Drilling Gallonmilkjugs

    E-Print Network [OSTI]

    Saffman, Mark

    Ice Drilling Materials · Gallonmilkjugs · Syringes,largeand small · Pitchers · Spraybottles · 13x9? ·Isitbettertosquirtthewaterslowlyorasquicklyaspossible? ·Doestherateatwhichyousquirtthewaterchangethediameteroftheholes? ·Doesthetypeof`drill

  7. Drilling optimization using drilling simulator software

    E-Print Network [OSTI]

    Salas Safe, Jose Gregorio

    2004-09-30T23:59:59.000Z

    the results of using drilling simulator software called Drilling Optimization Simulator (DROPS) in the evaluation of the Aloctono block, in the Pirital field, eastern Venezuela. This formation is characterized by very complex geology, containing faulted...

  8. Compliance Monitoring of Underwater Blasting for Rock Removal at Warrior Point, Columbia River Channel Improvement Project, 2009/2010

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.; Woodley, Christa M.; Skalski, J. R.; Seaburg, Adam

    2011-05-10T23:59:59.000Z

    The U.S. Army Corps of Engineers, Portland District (USACE) conducted the 20-year Columbia River Channel Improvement Project (CRCIP) to deepen the navigation channel between Portland, Oregon, and the Pacific Ocean to allow transit of fully loaded Panamax ships (100 ft wide, 600 to 700 ft long, and draft 45 to 50 ft). In the vicinity of Warrior Point, between river miles (RM) 87 and 88 near St. Helens, Oregon, the USACE conducted underwater blasting and dredging to remove 300,000 yd3 of a basalt rock formation to reach a depth of 44 ft in the Columbia River navigation channel. The purpose of this report is to document methods and results of the compliance monitoring study for the blasting project at Warrior Point in the Columbia River.

  9. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Brian C. Gahan; Samih Batarseh

    2004-09-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

  10. Horizontal drilling: Overview of geologic aspects and opportunities

    SciTech Connect (OSTI)

    Stark, P.H. (Petroleum Information Corp., Denver, CO (United States))

    1991-06-01T23:59:59.000Z

    Horizontal drilling and completions may become the most significant petroleum technology enhancement since reflection seismic. Through September 1990, 640 US horizontal completions were recorded, resulting in 532 oil and 69 gas producers. In addition, 345 horizontal wells were drilling or completing and 255 permits were outstanding. Mroe than 60% of historic US horizontal wells will be completed during 1990. Case studies demonstrate higher production rates and improved recoveries for horizontal completions. There are abundant global geologic opportunities for horizontal well technolgoy. Eight geologic criteria with potential for horizontal technology are reviewed. Models and examples showing results are presented for each. Source rocks - Bakken Shale case history, North Dakota; Fractured reservoirs - Austin Chalk case history, Texas; Paleokarst reservoirs - Liuhua field example, South China Sea; and karst reservoir potential, Mediterranean region; Chalk reservoirs - global distribution and Niobrara example, Colorado and Wyoming; Stratigraphic traps - Niagaran Reef example, Michigan basin; and tight, overpressured gas sands, northern Rocky Mountains; Reservoir/heterogeneity - Spraberry trend example, Midland basin; Coal-bed methane - US potential; Coning - Prudhoe Bay example, Alaska. Forecasts showing 5,000 worldwide horizontal completions by the year 2000 are tempered by limited equipment, crews, and recognized opportunity. If, however, economic benefits from case histories are creatively applied to potential geologic opportunities, then horizontal technology may comprise 30% or more of worldwide drilling at the turn of the century. Certainly, a technology that reduces dry-hole and environmental risks, increases productivity, and generates profits with $20/bbl oil could revitalize the domestic onshore industry.

  11. DRILLING MACHINES GENERAL INFORMATION

    E-Print Network [OSTI]

    Gellman, Andrew J.

    TC 9-524 Chapter 4 DRILLING MACHINES GENERAL INFORMATION PURPOSE This chapter contains basic information pertaining to drilling machines. A drilling machine comes in many shapes and sizes, from small hand-held power drills to bench mounted and finally floor-mounted models. They can perform operations

  12. ResonantSonic drilling: History, progress and advances in environmental restoration programs

    SciTech Connect (OSTI)

    Volk, B.W.; McLellan, G.W.; Moak, D.J.; Lerch, R.E. [Westinghouse Hanford Co., Richland, WA (United States); Thompson, K.M. [USDOE, Richland, WA (United States); Barrow, J.C. [Water Development Corp., (United States)

    1993-09-29T23:59:59.000Z

    ResonantSonic{sup SM} drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. ResonantSonic is a registered service mark of the Water Development Corporation, Woodland, California. The ResonantSonic drilling method, requires no mud, air or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. The specialized drill head imparts high frequency vibrations into a steel drill pipe creating a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ReasonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs are utilizing the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites.

  13. INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from Geo Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

  14. Oilfield rock bits: Are they a commodity

    SciTech Connect (OSTI)

    Caldwell, R.

    1994-05-01T23:59:59.000Z

    This paper discusses the quality of various types of rock drill bits and evaluates cost of these bits against service and performance to determine if bits should be viewed as a commodity when drilling a production or exploration well. Continuing advancements in materials technology, machining capabilities, hydraulics arrangements, bearing configuration, seal technology and cutter design continue to push the performance curve for oilfield rock bits. However, some very important advancements are patented, proprietary features of individual manufacturers. This paper reviews some of these design and performance features to help determine if they are worth the extra investment based on actual field drilling experience.

  15. Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Serrano, Gerardo Enrique

    2000-01-01T23:59:59.000Z

    Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper cleanup treatments for reservoir conditions analyzed...

  16. Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Lacewell, Jason Lawrence

    1999-01-01T23:59:59.000Z

    of well planning, completion and cleanup operations. Our objectives are to present a complete examination of the openhole horizontal well construction/completion process using a new drill-in fluid (DIF). Further, we will establish data critical...

  17. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, E.L.; Lundin, R.L.

    1988-06-20T23:59:59.000Z

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  18. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, Edward L. (Santa Fe, NM); Lundin, Ralph L. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  19. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect (OSTI)

    Kent Perry

    2009-04-30T23:59:59.000Z

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

  20. 2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project-

    E-Print Network [OSTI]

    2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project- and Ocean Drilling Program Services on behalf of the Integrated Ocean Drilling Program September 2007 #12;#12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE The Ocean Drilling Citation Database, which in February 2007 contained

  1. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  2. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30T23:59:59.000Z

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  3. Westinghouse GOCO conduct of casualty drills

    SciTech Connect (OSTI)

    Ames, C.P.

    1996-02-01T23:59:59.000Z

    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility.

  4. INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE

    SciTech Connect (OSTI)

    John V. Fernandez; David S. Pixton

    2005-12-01T23:59:59.000Z

    A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.

  5. Geothermal drilling in Cerro Prieto

    SciTech Connect (OSTI)

    Dominguez, B.; Sanchez, G.

    1981-01-01T23:59:59.000Z

    To date, 71 goethermal wells have been drilled in Cerro Prieto. The activity has been divided into several stages, and, in each stage, attempts have been made to correct deficiencies that were gradually detected. Some of these problems have been solved; others, such as those pertaining to well casing, cement, and cementing jobs, have persisted. The procedures for well completion - the most important aspect for the success of a well - that were based on conventional oil well criteria have been improved to meet the conditions of the geothermal reservoir. Several technical aspects that have improved should be further optimized, even though the resolutions are considered to be reasonably satisfactory. Particular attention has been given to the development of a high-temperature drilling fluid capable of being used in drilling through lost circulation zones. Conventional oil well drilling techniques have been used except where hole-sloughing is a problem. Sulfonate lignitic mud systems have been used with good results. When temperatures exceed 300/sup 0/C (572/sup 0/F), it has been necessary to use an organic polymer to stabilize the mud properties.

  6. Reactive Imbibition of WC-Co Substrate for PDC Cutters Used in Oil and Gas and Mining Drilling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reactive Imbibition of WC-Co Substrate for PDC Cutters Used in Oil and Gas and Mining Drilling O Abstract Cemented carbides are used in rock drilling for mining tools and wear resistant parts the service life of drilling tools. A continuous composition gradient on several millimetres is generated

  7. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

  8. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2006-01-31T23:59:59.000Z

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  9. Overview of GRI research at the Rock Creek Site, Black Warrior Basin. Overview of GRI research at Rock Creek: Eight years of cooperative research, coalbed methane shortcourse. Held in Birmingham, Alabama on October 21, 1992. Topical report

    SciTech Connect (OSTI)

    Schraufnagel, R.

    1992-10-01T23:59:59.000Z

    The presentation slides from the October 21, 1992 workshop on coalbed methane exploration and production are assembled in this volume. They illustrate the following discussions Overview of GRI Research at Rock Creek: Eight Years of Cooperative Research, Drilling and Completing Coalbed to the Formation: Perforations vs. Slotting, Coalbed Methane Well Testing in the Warrior Basin, Reservoir Engineering: A Case Study at Rock Creek, Fraccing of Multiple Thin Seams: Considerations and Constraints, Implementing Coal Seam Stimulations: Requirements for Successful Treatments, Coal-Fluid Interactions, Mine-Through Observations of Coal Seam Stimulations: Reality vs. Theory, and Improving Gas Production: Techniques of Operations.

  10. Vertical seismic profiling technique emerges as a valuable drilling tool

    SciTech Connect (OSTI)

    Roberts, R.J.; Platt, J.D.

    1984-03-19T23:59:59.000Z

    The new downhole measurement technique known as vertical seismic profiling entails lowering a geophone down ahead of the bit to acquire data on the well pressure and to determine (in strata not yet drilled) the depth to formation tops, the compaction curves, and the hardness of the rock. The basic VSP provides data useful in surface seismic interpretation, formation evaluation, and onsite decision making for the drilling program.

  11. Compendium of regulatory requirements governing underground injection of drilling waste.

    SciTech Connect (OSTI)

    Puder, M. G.; Bryson, B.; Veil, J. A.

    2002-11-08T23:59:59.000Z

    Large quantities of waste are produced when oil and gas wells are drilled. The two primary types of drilling wastes include used drilling fluids (commonly referred to as muds), which serve a variety of functions when wells are drilled, and drill cuttings (rock particles ground up by the drill bit). Some oil-based and synthetic-based muds are recycled; other such muds, however, and nearly all water-based muds, are disposed of. Numerous methods are employed to manage drilling wastes, including burial of drilling pit contents, land spreading, thermal processes, bioremediation, treatment and reuse, and several types of injection processes. This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies. The material included in the report was derived primarily from a review of state regulations and from interviews with state oil and gas regulatory officials.

  12. Closed-loop guided directional drilling: Fundamentals, concepts and simulations

    SciTech Connect (OSTI)

    Heisig, G.; Oppelt, J. [Baker Hughes INTEQ GmbH, Celle (Germany); Neubert, M. [Technical Univ. Braunschweig (Germany); Donati, F. [Agip S.p.A., Milan (Italy)

    1996-09-01T23:59:59.000Z

    This paper introduces the fundamentals of directional drilling with a closed-loop control. In the discussion of different signal flow concepts a surface controlled system is identified as the original approach to automatic directional drilling. The success of the directional drilling operation depends on the proper layout of the controller in the control loop. A control method is introduced which anticipates direction changes on the planned path. The algorithm is tested by applying computer simulation techniques. The simulator is based on a mathematical model of a directional drilling system with an adjustable stabilizer. Coupling this model with a rock/bit interaction model yields a non-linear differential equation system for the drilling trajectory. The equations can be solved numerically. The simulation results prove the importance of anticipation in the control algorithm.

  13. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01T23:59:59.000Z

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  14. Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990

    SciTech Connect (OSTI)

    None

    1990-06-01T23:59:59.000Z

    This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

  15. Training and Drills

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

  16. Rock Art

    E-Print Network [OSTI]

    Huyge, Dirk

    2009-01-01T23:59:59.000Z

    The archaeology of early Egypt: Social transformations inAlexander 1938 Rock-drawings of southern Upper Egypt. Vol.1. London: The Egypt Exploration Society. 1939 Rock-drawings

  17. Disposal of drilling fluids

    SciTech Connect (OSTI)

    Bryson, W.R.

    1983-06-01T23:59:59.000Z

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  18. Distributed downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21T23:59:59.000Z

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  19. Advances in Drilling Technology -E-proceedings of the First International Conference on Drilling Technology (ICDT -2010) and National Workshop on Manpower Development in Petroleum Engineering (NWMDPE -2010), November 18-21, 2010.

    E-Print Network [OSTI]

    Aamodt, Agnar

    Advances in Drilling Technology - E-proceedings of the First International Conference on Drilling of Technology Madras, Chennai (TN) - 600 036, India. Transfer of experience for improved oil well drilling Pål The drilling process is getting increasingly more complex as oil fields mature and technology evolves

  20. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie

    2008-12-31T23:59:59.000Z

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  1. Report of the Offset Drilling Workshop Ocean Drilling Program

    E-Print Network [OSTI]

    Report of the Offset Drilling Workshop held at Ocean Drilling Program Texas A&M University College Need for an Engineering Leg 35 Realistic Strategies for Offset Drilling 37 Appendix 1 Workshop (Leg 153) 21 Figure 4 "Rig Floor Perception" of Generic Boreholes Drilled During Leg 153 22 Figure 5

  2. Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration

    E-Print Network [OSTI]

    Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration Paul Loschak1 , Kechao Xiao1 is required to perform the drilling w devices on the market. Although frequent monitoring has been correlated of a sufficient number of neurosurgeons [3]. The cranial drilling device described in this paper designed to allow

  3. The use of predictive lithostratigraphy to significantly improve the ability to forecast reservoir and source rocks? Final CRADA report.

    SciTech Connect (OSTI)

    Doctor, R. D.; Moore, T. L.; Energy Systems

    2010-06-29T23:59:59.000Z

    The purpose of this CRADA, which ended in 2003, was to make reservoir and source rock distribution significantly more predictable by quantifying the fundamental controls on stratigraphic heterogeneity. To do this, the relationships among insolation, climate, sediment supply, glacioeustasy, and reservoir and source rock occurrence were investigated in detail. Work current at the inception of the CRADA had uncovered previously unrecognized associations among these processes and properties that produce a phenomenon that, when properly analyzed, will make lithostratigraphic variability (including texture, porosity, and permeability) substantially more understandable. Computer climate simulations of selected time periods, compared with the global distribution of paleoclimatic indicators, documented spatial and temporal climate changes as a function of insolation and provided quantitative changes in runoff, lake level, and glacioeustasy. The effect of elevation and climate on sediment yield was assessed numerically by analyzing digital terrain and climate data. The phase relationships of climate, yield, and glacioeustatic cycles from the Gulf of Mexico and/or other sedimentary basins were assessed by using lacunarity, a statistical technique.

  4. Managed Pressure Drilling Candidate Selection

    E-Print Network [OSTI]

    Nauduri, Anantha S.

    2010-07-14T23:59:59.000Z

    Managed Pressure Drilling now at the pinnacle of the 'Oil Well Drilling' evolution tree, has itself been coined in 2003. It is an umbrella term for a few new drilling techniques and some preexisting drilling techniques, all of them aiming to solve...

  5. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 209 SCIENTIFIC PROSPECTUS DRILLING MANTLE PERIDOTITE ALONG Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. D. Jay Miller Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University

  6. January 2003 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    January 2003 OCEAN DRILLING PROGRAM LEG 210 SCIENTIFIC PROSPECTUS DRILLING THE NEWFOUNDLAND HALF OF THE NEWFOUNDLAND­IBERIA TRANSECT: THE FIRST CONJUGATE MARGIN DRILLING IN A NON-VOLCANIC RIFT Brian E. Tucholke Co Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery

  7. December 2001 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  8. Development of a Mine Rescue Drilling System (MRDS) :

    SciTech Connect (OSTI)

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom; Knudsen, Steven D.; Broome, Scott Thomas; Su, Jiann-Cherng; Blankenship, Douglas A.; Costin, Laurence S.

    2014-06-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  9. Investigation of the feasibility of deep microborehole drilling

    SciTech Connect (OSTI)

    Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

    1997-01-01T23:59:59.000Z

    Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

  10. Directional drilling sub

    SciTech Connect (OSTI)

    Benoit, L.F.

    1980-09-02T23:59:59.000Z

    A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

  11. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  12. Drill wear: its effect on the diameter of drilled holes

    E-Print Network [OSTI]

    Reichert, William Frederick

    1955-01-01T23:59:59.000Z

    genoa arrrZgg zo gaamWra gHZ. zo ZaaXm axz:gVm VZXgg DRILL WEhR: ITS EFFECT ON THE DlhEETER GF DRILLED HOLES h Thesis Villian Frederick Reiehert, Jr. hpproved as to style and oontent by: a rman o onn ee ea o par nen hugus t 1955 h.... I RTRONCTIOE ~ ~ ~ ~ ~ ~ e s ~ o e o o o ~ N I I DRILLS AND DRXLLXNG ~ ~ ~ ~ ~ o e ~ o ~ ~ Twist Drills Drill Presses Cutting Fluids . . . ~ Drill Pigs IIX DESCRIPTXOM OF EQUIPRERT AND PROCEXlIRE 6 13 19 23 27 Drilliag Eguipeeat...

  13. Finite Element Modeling of Drilling Using DEFORM

    E-Print Network [OSTI]

    Gardner, Joel D.; Dornfeld, David

    2006-01-01T23:59:59.000Z

    Vijayaraghavan, A. (2005), Drilling of Fiber- ReinforcedFINITE ELEMENT MODELING OF DRILLING USING DEFORM J. Gardner,of Comprehensive Drilling Simulation Tool ABSTRACT DEFORM-

  14. Evaluation of an air drilling cuttings containment system

    SciTech Connect (OSTI)

    Westmoreland, J.

    1994-04-01T23:59:59.000Z

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  15. Directional drilling equipment and techniques for deep hot granite wells

    SciTech Connect (OSTI)

    Brittenham, T.L.; Sursen, G.; Neudecker, J.W.; Rowley, J.C.; Williams, R.E.

    1980-01-01T23:59:59.000Z

    Conventional directional drilling technology has been extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, Hot dry Rock (HDR) experimental site. Completing the first of a two-wellbore HDR system has resulted in the definition of operational limitations of many conventional directional drilling tools, instrumentation and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-2), to a measured depth of 15,300 ft (4.7 km) in granite reservoir rock with a bottomhole temperature of 530/sup 0/F (275/sup 0/C) required the development of a new high temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 8500 ft (2.6 km) of directional hole to a final inclination of 35/sup 0/ from the vertical at a controlled azimuthal orientation.

  16. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect (OSTI)

    Robert Radtke

    2006-01-31T23:59:59.000Z

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  17. Drill pipe corrosion control using an inert drilling fluid

    SciTech Connect (OSTI)

    Caskey, B.C.; Copass, K.S.

    1981-01-01T23:59:59.000Z

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  18. Managed pressure drilling techniques and tools

    E-Print Network [OSTI]

    Martin, Matthew Daniel

    2006-08-16T23:59:59.000Z

    The economics of drilling offshore wells is important as we drill more wells in deeper water. Drilling-related problems, including stuck pipe, lost circulation, and excessive mud cost, show the need for better drilling ...

  19. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01T23:59:59.000Z

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  20. Development of a high-temperature diagnostics-while-drilling tool.

    SciTech Connect (OSTI)

    Chavira, David J.; Huey, David (Stress Engineering Services, Inc.); Hetmaniak, Chris (Stress Engineering Services, Inc.); Polsky, Yarom; King, Dennis K.; Jacobson, Ronald David; Blankenship, Douglas Alan; Knudsen, Steven Dell; Henfling, Joseph Anthony; Mansure, Arthur James

    2009-01-01T23:59:59.000Z

    The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picture of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.

  1. Combination drilling and skiving tool

    DOE Patents [OSTI]

    Stone, William J. (Kansas City, MO)

    1989-01-01T23:59:59.000Z

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  2. RECIPIENT:Potter Drilling Inc

    Broader source: Energy.gov (indexed) [DOE]

    Potter Drilling Inc u.s. DEPARTUEN T OF ENERG EERE PROJECT MANAGEMENT CENT ER NEPA DEIERlIINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS...

  3. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  4. Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report

    SciTech Connect (OSTI)

    Oglesby, Kenneth [Impact Technologies LLC; Woskov, Paul [MIT; Einstein, Herbert [MIT

    2014-12-30T23:59:59.000Z

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called Direct Energy Drilling, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2 diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260oC, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650oC, even exceeding 3000oC, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

  5. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  6. Well drilling tool

    SciTech Connect (OSTI)

    Fox, F.K.

    1981-04-07T23:59:59.000Z

    There is disclosed a turbodrill having an axial thrust bearing section which is contained within a lubricant chamber arranged within an annular space between the case and shaft of the turbodrill above the turbine section, and which is defined between means sealing between the shaft and the case which, in use of the turbodrill, are above the drilling fluid circulating therethrough.

  7. Proposed Drill Sites

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-28T23:59:59.000Z

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  8. Drilling subsurface wellbores with cutting structures

    DOE Patents [OSTI]

    Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

    2010-11-30T23:59:59.000Z

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  9. Measurement of drilling properties

    SciTech Connect (OSTI)

    Gault, A.D.

    1987-06-01T23:59:59.000Z

    Rock-bit performance is related in this paper to formation strength. Bingham mathematical models and steel-tooth rock bits are used in a procedure to optimize rates of penetration (ROP's) and to extend bit life. The ability to distinguish elastic formations from plastic formations has been used to introduce polycrystalline-diamond-composite (PDC) bits in the Gulf of Mexico, where shale is the predominant formation. The validity of the mathematical models has been confirmed on long, homogeneous shale sections, and the models have also been expanded to include soft-formation insert rock bits.

  10. Measurement-While-Drilling (MWD) development for air drilling

    SciTech Connect (OSTI)

    Harrison, W.A.; Rubin, L.A.

    1993-12-31T23:59:59.000Z

    When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

  11. Cost effectiveness of sonic drilling

    SciTech Connect (OSTI)

    Masten, D.; Booth, S.R.

    1996-03-01T23:59:59.000Z

    Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

  12. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01T23:59:59.000Z

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  13. ForPeerReview Interpretation of hydraulic rock types with resistivity logs in

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    Subject Areas: Borehole and log interpretation, Integrated workflows and best practices (with broad hydraulic rock types. Core data and well logs acquired from a deep-drilling exploration well penetrating

  14. Alphine 1/Federal: Drilling report. Final report, Part 1

    SciTech Connect (OSTI)

    Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; Pisto, L. [Tonto Drilling Services, Inc., Salt Lake City, UT (United States); Hahman, W.R. [Hahman (W. Richard), Las Cruces, NM (United States); Swanberg, C.A. [Swanberg (Chandler A.), Phoenix, AZ (United States)

    1994-06-01T23:59:59.000Z

    Regional geologic and geophysical surveys, shallow temperature-gradient drilling, and published reconnaissance geothermal studies infer possible hot dry rock (HDR) geothermal resources in the Alpine-Springerville area. This report discusses the results of a State of Arizona and US Department of Energy funded drilling project designed to gather the deep temperature and stratigraphic data necessary to determine if near-term HDR geothermal potential actually exists in this portion of the White Mountains region of Arizona. A 4505 feet deep slim-hole exploratory well, Alpiner/Federal, was drilled within the Apache-Sitgreaves National Forest at Alpine Divide near the Alpine Divide Camp Ground about 5 miles north of Alpine, Arizona in Apache County (Figure 1).

  15. Geothermal Drilling and Completion Technology Development Program Annual Progress Report

    SciTech Connect (OSTI)

    Varnado, S. G.

    1981-03-01T23:59:59.000Z

    The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

  16. Development of a micro-drilling burr-control chart for PCB drilling

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    single- or double-sided). Drilling provides the holes forstandard conditions. Fig. 4. Drilling experimental setup.a standard procedure in PCB drilling). These were clamped

  17. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05T23:59:59.000Z

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  18. Blasthole drilling technology

    SciTech Connect (OSTI)

    Zink, C. [Atlas Copco BHMT, Inc., Grand Prairie, TX (United States)

    2006-09-15T23:59:59.000Z

    Drilling in Appalachian coal overburdens presents challenges to conventional tricone bit operations due to the high rates of advance. In 2005, design engineers Atlas Copco BHMT (formerly Baker Hughes Mining Tools) began creating and testing a new lug design for bits used in these coalfields. The design was aided by use of computational flow dynamics. The article describes the design development and testing. Average footage drilled per bit by the new streamlined lug increased an average of 32.3% at Coal Mine No. 1 and 34.5% at Coal Mine No. 2 over the standard lug previously used. Average bit life increased by 32.3% at Coal Mine No.1 and 34.5% at Coal Mine No. 2. 3 figs., 2 photos.

  19. Evaluation of high rotary speed drill bit performance

    E-Print Network [OSTI]

    Ray, Randy Wayne

    1990-01-01T23:59:59.000Z

    Research COMPONENTS OF THE DRILLING TEST STAND Support Frame Assembly Hydraulic Ram Assembly Rock Sample Holder Assembly . Vibration Dampening Assembly . Positive Displacement Mud Motor Centrifugally Charged Triplex Mud Pump Data Aquisition System... operations. Dr. Robert R. Berg for serving as a com- mittee member during this research project. Dr. William C. Maurer and Fred J. Pittard, with 5 limdri 1 International, Inc. , for supplying the downhole mud motor and the TSP bit. Their support turned a...

  20. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    SciTech Connect (OSTI)

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31T23:59:59.000Z

    On October 1, 2008 US DOE-sponsored research project entitled Geomechanical Study of Bakken Formation for Improved Oil Recovery under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

  1. Practical applications of a drilling data center

    SciTech Connect (OSTI)

    Graff, R.L.; Segrest, R.P.

    1986-05-19T23:59:59.000Z

    Tenneco Oil is using a real-time drilling-data acquisition, telemetry, data base, and applications-program system for Gulf of Mexico operations. The system provides for data acquisition in real time from commercially available logging units. The data are transmitted into a central office onshore via microwave or satellite telemetry links. Up to 352 drilling parameters are transmitted from each computerized logging unit and archived in the data base every 20 sec. Parameters can include measurement-while-drilling (MWD) data as well as mud-logging data. Applications programs utilizing these parameters are available in the central site data center (CSDC) and in locations throughout Tenneco's facilities in Lafayette, La. Access to the CSDC and its computing power is also available on the offshore rig. Backup surveillance of critical drilling parameters is provided through alarms and continuous monitoring of the parameters, thus providing for a safer operation. Rig efficiency has also been improved through analysis of the data and comparison of the data between various rig operations and rigs. Both tangible and intangible cost savings are discussed.

  2. Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds

  3. Greening PCB Drilling Process: Burr Minimization and Other Strategies

    E-Print Network [OSTI]

    Huang, Yu-Chu; Linke, Barbara; Bhandari, Binayak; Ahn, Sung-Hoon; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Multi-layer PWB by LASER Direct Drilling, The proceedingsresearch about using laser direct drilling to drill hole in

  4. Technology Development and Field Trials of EGS Drilling Systems...

    Open Energy Info (EERE)

    compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling...

  5. Q00906010024 rock check dam

    E-Print Network [OSTI]

    00906010024 rock check dam Q00906010025 rock check dam Q00906010021 rock check dam Q00906010022 rock check dam Q00906010027 rock check dam Q00906010026 rock check dam Q00906010018 rock check dam Q00906010023 rock check dam Q00906010011 rock check dam Q00906010008 rock check dam Q00906010007 rock check dam Q

  6. Alliance yields new understanding of bit wear-drilling performance relationship

    SciTech Connect (OSTI)

    Kenner, J.V. [Hughes Christensen Co., Melbourne (Australia); Waughman, R. [Woodside Offshore Petroleum, Perth (Australia); Windham, T. [Chevron (Nigeria)

    1998-12-31T23:59:59.000Z

    This paper explores the potential for reducing, drilling cost by employing an improved understanding of the bit wear-performance relationship and thereby optimizing when to replace a worn bit. Recognizing when a bit is dull and hence past its true economic life is a difficult process. Proper identification of bit dull state depends on several geological, financial, and environmental factors. This study presents full scale rock bit laboratory wear-performance data for all major bit types. Differing bit types were studied in the lab in order to more fully define the effect of wear on performance. A case study employing and validating this methodology will be presented in a separate work. The exact dulling characteristics of diamond and roller cone bits are not well understood. The mechanisms leading to bit wear have been previously discussed in the literature; e.g., gradual abrasive wear and erosion, chipping induced by impacts, thermal induced cracking, and catastrophic dynamic events resulting in immediate failure. Previous laboratory experiments on individual bit components have been utilized to reproduce dulling mechanisms in order to provide a measure of a bit`s resistance to a given dulling characteristic; e.g,, abrasion test of metallic specimens. However, accurate prediction of bit life in a given application based on these measures remains difficult due to composite effects. Therefore drilling system optimization and bit design remain iterative procedures.

  7. Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s with

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s, or the Moho). This project, known as Mohole, was succeeded by the Deep Sea Drilling Project, the International Phase of Ocean Drilling, the Ocean Drilling Program, and the current Integrated Ocean Drilling Program

  8. Flexible shaft and roof drilling system

    DOE Patents [OSTI]

    Blanz, John H. (Carlisle, MA)

    1981-01-01T23:59:59.000Z

    A system for drilling holes in the roof of a mine has a flexible shaft with a pair of oppositely wound, coaxial flat bands. One of the flat bands defines an inner spring that is wound right handed into a helical configuration, adjacent convolutions being in nesting relationship to one another. The other flat band defines an outer spring that is wound left handed into a helical configuration about the inner band, adjacent convolutions being nesting relationship with one another. A transition member that is configured to hold a rock bit is mounted to one end of the flexible shaft. When torque and thrust are applied to the flexible shaft by a driver, the inner spring expands outwardly and the outer spring contracts inwardly to form a relatively rigid shaft.

  9. February 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE, Italy, The Netherlands, Norway, Spain, Sweden, and Switzerland) Institut National des Sciences de l States) Natural Environment Research Council (United Kingdom) Ocean Research Institute of the University

  10. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01T23:59:59.000Z

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  11. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22T23:59:59.000Z

    OM300 Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1 Inclination and Tool Face, 0.5 Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  12. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

    1995-01-01T23:59:59.000Z

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  13. Mineralogy of drill hole UE-25p#1 at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Chipera, S.J.; Bish, D.L.

    1988-05-01T23:59:59.000Z

    Drill hole UE-25p{number_sign}1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p{number_sign}1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs.

  14. Sandia National Laboratories: Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

  15. alternative is rock or other noncombustible material; avoid bark or wood chip mulch in

    E-Print Network [OSTI]

    alternative is rock or other noncombustible material; avoid bark or wood chip mulch in this area. 6 needles and leaves to eliminate an ignition source for firebrands, especially during the hot, dry weather escape drill. Know where safety areas are within your subdivision. Meadows, rock outcrops, and wide roads

  16. Improved Electrical Contact For Dowhhole Drilling Networks

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT)

    2005-08-16T23:59:59.000Z

    An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

  17. Elk's drilling pace steadies

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    The production level in the Elk Hills oil field in California (normally 161,000 bpd) is expected to remain constant in 1980 with the possibility of a 2000 to 3000 bpd increase in the second 6 months. The drilling pace also is expected to follow the same pattern of increased activity in the second 6 months of the year. The field is part of Naval Petroleum Reserve No. 1, where operation of a gas plant and construction of new production facilities also is occurring. The predicted increase in Elk Hills production would come from operations of the gas plant as it comes fully on stream. The new production facilities include a low temperature separation facility. The possibility of implementing a waterflood program in part of the reserve and the future development of fractured shale sections also are discussed.

  18. Establishing nuclear facility drill programs

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  19. Drilling engineering package used for extended reach project

    SciTech Connect (OSTI)

    Chapman, P. (BP Exploration, Sunbury (United Kingdom)); Good, A. (Baker Hughes Inteq, Houston, TX (United States))

    1995-02-20T23:59:59.000Z

    Extended reach drilling can improve the economics of some field developments by minimizing the number of facilities required to access remote reserves. The technique requires detailed engineering design and monitoring, however, to minimize the risk of operating at the limits of drilling equipment. Working as a team over the past 4 years, BP Exploration (BPX) and Baker Hughes Inteq have developed an integrated drilling engineering package for the planning, monitoring, and review of well construction data. The drilling engineering application platform (DEAP) is now used by BP Exploration worldwide for the integrated engineering design, monitoring, and review of its wells. These engineering applications are linked together via a data base and drilling reporting system. Integration between rig site reporting and the engineering applications allows the current drilling operation to be analyzed at the touch of a single computer button. DEAP also provides links to commercially available software packages. This facility, along with its graphical user interface, encourages and simplifies the use of engineering tools at the rig site. The full capabilities of DEAP can perhaps be seen as four key functions necessary for successful well bore construction management.

  20. Geothermal drill pipe corrosion test plan

    SciTech Connect (OSTI)

    Caskey, B.C.; Copass, K.S.

    1980-12-01T23:59:59.000Z

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  1. REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN

    E-Print Network [OSTI]

    REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY;PREFACE Attached is the "REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN" that will be used for ODP coring and drilling operations on legs where hydrogen sulfide is likely to be encountered. Prior

  2. OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS HAMMER DRILLING and NERO Dr. Jack Casey Chief.S.A. Tom Pettigrew Chief Engineer, Leg 179 Ocean Drilling Program Texas A&M University Research Park 1000 Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

  3. OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS DRILLING AT THE H2O LONG-TERM SEAFLOOR Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  4. OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS NORWEGIAN SEA Olav Eldholm Co-Chief Scientist Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Pni±ip o Rabinowitz Director Ocean Drilling Program Robert B Kidd Manager of Science Operations Ocean Drilling Program Louis E

  5. HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN

    E-Print Network [OSTI]

    HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

  6. OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS LOGGING WHILE DRILLING AND ADVANCED CORKS Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  7. OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS BASEMENT DRILLING OF THE ONTONG JAVA PLATEAU of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 U.S.A. May 2000

  8. INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)

    E-Print Network [OSTI]

    INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

  9. OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS FRACTURE ZONE DRILLING ON THE SOUTHWEST INDIAN Oceanographic Institution Woods Hole, MA 02543 Andrew C. Adamson Staff Scientist, Leg 118 Ocean Drilling Program the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  10. The Study of Drilling and Countersink Technology in Robot Drilling End-effector

    E-Print Network [OSTI]

    The Study of Drilling and Countersink Technology in Robot Drilling End-effector Chengkun Wang--Aiming at the drilling verticality in aircraft assembly, this paper presents a design method of a Double- Eccentricdisc by the interaction of two eccentric discs, and make the drill axis coincide with the normal direction of the drilling

  11. DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto

    E-Print Network [OSTI]

    Boyer, Edmond

    DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill in the analysis of the nonlinear dynamics of a drill-string. The aim of this paper is to investigate how the fluid

  12. Focused shock spark discharge drill using multiple electrodes

    DOE Patents [OSTI]

    Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  13. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2010-07-27T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  14. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2008-06-24T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  15. Hot-dry-rock geothermal-energy development program. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Smith, M.C.; Ponder, G.M. (comps.)

    1981-01-01T23:59:59.000Z

    During fiscal year 1981, activities of the Hot Dry Rock Geothermal Energy Development Program were concentrated in four principal areas: (1) data collection to permit improved estimates of the hot dry rock geothermal energy resource base of various regions of the United States and of the United States as a whole, combined with detailed investigations of several areas that appear particularly promising either for further energy extraction experiments or for future commercial development; (2) successful completion of a 9-month, continuous, closed-loop, recirculating flow test in the enlarged Phase I System at Fenton Hill, New Mexico - a pressurized-water heat-extraction loop developed in low-permeability granitic rock by hydraulic fracturing; (3) successful completion at a depth of 4084 m (13,933 ft) of well EE-3, the production well of a larger, deeper, and hotter, Phase II System at Fenton Hill. Well EE-3 was directionally drilled with control of both azimuth and inclination. Its inclined section is about 380 m (1250 ft) vertically above the injection well, EE-2, which was completed in FY80; and (4) supporting activities included new developments in downhole instrumentation and equipment, geochemical and geophysical studies, rock-mechanics and fluid-mechanics investigations, computer analyses and modeling, and overall system design. Under an International Energy Agency agreement, the New Energy Development Organization, representing the Government of Japan has joined Kernforschungsanlage-Juelich GmbH, representing the Federal Republic of Germany, and the US Department of Energy as an active participant in the Fenton Hill Hot Dry Rock Project.

  16. JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study

    E-Print Network [OSTI]

    Lindanger, Catharina

    2014-05-03T23:59:59.000Z

    The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

  17. Friction Reduction for Microhole CT Drilling

    SciTech Connect (OSTI)

    Ken Newman; Patrick Kelleher; Edward Smalley

    2007-03-31T23:59:59.000Z

    The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was concluded following completion of Phase 1, and Phase 2 (design, fabrication, and testing of a prototype surface vibration system) was not pursued.

  18. V00306010057 rock check dam

    E-Print Network [OSTI]

    XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063

  19. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems...

  20. BOREHOLE DRILLING AND RELATED ACTIVITIES AT THE STRIPA MINE

    E-Print Network [OSTI]

    Kurfurst, P.J.

    2011-01-01T23:59:59.000Z

    Drilling Costs and Rates . . . . . . . . . . , . .TABLES I. II. III. Costs of Core Drilling Per Meter. . . . .ABSTRACT . . L vi vi vii INTRODUCTION DRILLING . Surface

  1. Greening PCB Drilling Process: Burr Minimization and Other Strategies

    E-Print Network [OSTI]

    Huang, Yu-Chu; Linke, Barbara; Bhandari, Binayak; Ahn, Sung-Hoon; Dornfeld, David

    2011-01-01T23:59:59.000Z

    of Analytical Model for Drilling Burr Formation in DuctileJ. and Chen, L. , Drilling Burr Formation in Titaniumfor Burr Minimization in Drilling, PhD dissertation, The

  2. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIEStimes are calculated for a mining and drilling progrilln toof cost and time to compl mining and core drilling for

  3. VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK

    SciTech Connect (OSTI)

    David S. Pixton

    2002-11-01T23:59:59.000Z

    Testing of a high-speed digital data transmission system for drill pipe is described. Passive transmission of digital data through 1000 ft of telemetry drill pipe has been successfully achieved. Data rates of up to 2 Mbit/sec have been tested through the 1000 ft system with very low occurrence of data errors: required error correction effort is very low or nonexistent. Further design modifications have been made to improve manufacturability and high pressure robustness of the transmission line components. Failure mechanisms of previous designs at high pressure and high temperature are described. Present design limitations include high temperature application.

  4. Subsea Mudlift Drilling: evaluation of the pressure differential problem with subsea pump

    E-Print Network [OSTI]

    Johansen, Tarjei

    2000-01-01T23:59:59.000Z

    The petroleum industry is trying to develop new and improved technology to safely, successfully and profitably extract hydrocarbons in deep water. One such technology under development is subsea mudlift drilling (SMD), a joint industry project...

  5. Significant results of deep drilling at Elk Hills, Kern County, California

    SciTech Connect (OSTI)

    Fishburn, M.D. (Dept. of Energy, Elk Hills, CA (USA))

    1990-05-01T23:59:59.000Z

    Naval Petroleum Reserve 1 (Elk Hills) is located in the southwestern San Joaquin basin one of the most prolific oil-producing areas in the US. Although the basin is in a mature development stage, the presence of favorable structures and high-quality source rocks continue to make the deeper parts of the basin, specifically Elk Hills, an inviting exploration target. Of the three deep tests drilled by the US Department of Energy since 1976, significant geologic results were achieved in two wells. Well 987-25R reached low-grade metamorphic rock at 18,761 ft after penetrating over 800 ft of salt below the Eocene Point of Rocks Sandstone. In well 934-29R, the deepest well in California, Cretaceous sedimentary rocks were encountered at a total depth of 24,426 ft. In well 934-29R several major sand units were penetrated most of which encountered significant gas shows. Minor amounts of gas with no water were produced below 22,000 ft. In addition, production tests at 17,000 ft produced 46{degree} API gravity oil. Geochemical analysis of cores and cuttings indicated that the potential for hydrocarbon generation exists throughout the well and is significant because the possibility of hydrocarbon production exists at a greater depth than previously expected. A vertical seismic profile in the well indicated that basement at this location is at approximately 25,500 ft. Successful drilling of well 934-29R was attributed to the use of an oil-based mud system. The well took 917 days to drill, including 9,560 rotating hr with 134 bits. Bottom-hole temperature was 431{degree}F and pressures were approximately 18,000 psi. The high overburden pressure at 24,000 ft created drilling problems that ultimately led to the termination of drilling at 24,426 ft.

  6. Cascade geothermal drilling/corehole N-1

    SciTech Connect (OSTI)

    Swanberg, C.A.; Combs, J. (Geothermal Resources International, Inc., San Mateo, CA (USA)); Walkey, W.C. (GEO Operator Corp., Bend, OR (USA))

    1988-07-19T23:59:59.000Z

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table. 28 refs., 15 figs., 2 tabs.

  7. Cascade geothermal drilling/corehole N-3

    SciTech Connect (OSTI)

    Swanberg, C.A.

    1988-07-19T23:59:59.000Z

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core holes GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commercial exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table.

  8. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  9. OCEAN DRILLING PROGRAM LEG 190 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    164 Japan __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions) Natural Environment Research Council (United Kingdom) European Science Foundation Consortium for the Ocean

  10. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21T23:59:59.000Z

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  11. Stakeholder acceptance analysis ResonantSonic drilling

    SciTech Connect (OSTI)

    Peterson, T. [Battelle Seattle Research Center, WA (United States)

    1995-12-01T23:59:59.000Z

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders` perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face.

  12. Rock magnetism of remagnetized carbonate rocks: another look

    E-Print Network [OSTI]

    Jackson, M.; Swanson-Hysell, N. L

    2012-01-01T23:59:59.000Z

    and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

  13. V01406010015 rock check dam

    E-Print Network [OSTI]

    XY! V01406010015 rock check dam V01406010014 rock check dam V01406010013 rock check dam 1501403010012 earthen berm V01403010008 earthen berm V01406010003 rock check dam V01406010004 rock check dam V01406010010 rock check dam V01406010011 rock check dam 15-0651 15-0307 15-0588 15-0532 15-0575 stormdrain 7160

  14. Proposed scientific activities for the Salton Sea Scientific Drilling Project

    SciTech Connect (OSTI)

    Not Available

    1984-05-01T23:59:59.000Z

    The Salton Sea Scientific Drilling Project (SSSDP) has been organized for the purpose of investigating a hydrothermal system at depths and temperatures greater than has been done before. Plans are to deepen an existing well or to drill a new well for research purposes for which temperatures of 300/sup 0/C will be reached at a depth of less than 3.7 km and then deepen that well a further 1.8 km. This report recounts the Congressional history of the appropriation to drill the hole and other history through March 1984, gives a review of the literature on the Salton Sea Geothermal Field and its relationship to other geothermal systems of the Salton Trough, and describes a comprehensive series of investigations that have been proposed either in the well or in conjunction with the SSSDP. Investigations in geophysics, geochemistry and petrology, tectonics and rock mechanics, and geohydrology are given. A tabulation is given of current commercial and state-of-the-art downhole tools and their pressure, temperature, and minimum hole size limitations.

  15. AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program

    E-Print Network [OSTI]

    AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program U ANNUAL REPORT #12;#12;Integrated Ocean Drilling Program United States Implementing Organization JOI T his Integrated Ocean Drilling Program (IODP)-U.S. Implementing Organization (USIO) Fiscal Year 2006

  16. Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference

    E-Print Network [OSTI]

    Aamodt, Agnar

    Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference Case-Based Reasoning, a method for gaining experience and giving advise on how to avoid and how to free stuck drill strings. IADC Middle East Drilling Conference, Dubai, Nov. 3 - 4, 1998. P

  17. CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS**, Dr. VASILIS

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS, antoniadis@dpem.tuc.gr Abstract: Twist drills are geometrically complex tools, which are used in industry and experimental approaches for drilling simulation. The present paper is based on the ground that the increasing

  18. 2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database

    E-Print Network [OSTI]

    2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database The Ocean Drilling Citation Database, which contained almost 22,000 citation records related to the Deep Sea Drilling Institute (AGI). The database has been on line since August 2002. Beginning in 2006, citation records

  19. Downhole drilling network using burst modulation techniques

    DOE Patents [OSTI]

    Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

    2007-04-03T23:59:59.000Z

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  20. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean: National Science Foundation _______________________________ David L. Divins Director, Ocean Drilling

  1. OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A & M University College Manager of Engineering and Drilling Operations ODP/TAMU Louis E. Garrison Deputy Director ODP

  2. OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS FLUID FLOW AND SUBDUCTION FLUXES ACROSS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  3. OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS SOUTHEAST PACIFIC PALEOCEANOGRAPHIC TRANSECTS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  4. OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS CARIBBEAN OCEAN HISTORY AND THE CRETACEOUS Scientist, Leg 165 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College of any portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

  5. OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS MARIANA CONVERGENT MARGIN/ WEST PHILIPPINE SEA Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX

  6. OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS IZU-MARIANA MARGIN Dr. Terry Plank Co France Dr. Carlota Escutia Staff Scientist Ocean Drilling Program Texas A&M University Research Park 1000 the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  7. OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS SHAKEDOWN AND SEA TRIALS CRUISE Philip D. Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station

  8. SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD SCIENTISTS1 HANDBOOK OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY TECHNICAL NOTE 3 portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University be obtained from the Director, Ocean Drilling Program, Texas A & M University Research Park, 1000 Discovery

  9. OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT ENGINEERING II: WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A&M University and Drilling Operations ODP/TAMU Timothy J.G. Francis Deputy Director ODP/TAMU September 1990 #12;This informal

  10. OCEAN DRILLING PROGRAM LEG 100 REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 100 REPORT NORTHEASTERN GULF OF MEXICO Philip D Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843

  11. OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS THE COTE D'IVOIRE - GHANA TRANSFORM MARGIN, Leg 159 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station requires the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park

  12. drilling in Tapping Automaker Ingenuity to

    E-Print Network [OSTI]

    Kammen, Daniel M.

    drilling in detroit Tapping Automaker Ingenuity to Build Safe and Efficient Automobiles DAVID paper #12;iiiDrilling in Detroit Figures v Tables vii Acknowledgements xi Executive Summary xiii 1. Actual Motor Vehicle Crash Statistics 97 #12;vDrilling in Detroit Figures 1. US Oil Product Demand 2 2

  13. OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT HOLE 504B Dr. Henry Dick Dr. Jörg Erzinger Co Giessen Federal Republic of Germany Dr. Laura Stokking Staff Scientist, Leg 140 Ocean Drilling Program Copies of this publication may be obtained from the Director, Ocean Drilling Program, Texas A

  14. OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS LESSER ANTILLES FOREARC J. Casey Moore Staff Science Representative, Leg 110 Ocean Drilling Program Texas A&M University College Station, TX 77843-3469 Philip D. Direct* Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean

  15. ESF Consortium for Ocean Drilling White Paper

    E-Print Network [OSTI]

    Purkis, Sam

    ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven Amsterdam, The Netherlands #12;1 ESF Consortium for Ocean Drilling (ECOD) White Paper Foreword 3

  16. OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS NORTHWEST PACIFIC SEISMIC OBSERVATORY AND HAMMER DRILL ENGINEERING TESTS Dr. Toshihiko Kanazawa Co-Chief Scientist Earthquake Research Institute Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  17. OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS PALEOGENE EQUATORIAL TRANSECT Dr. Mitchell __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive

  18. OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS LABRADOR SEA - BAFFIN BAY Dr. Michael A. Bradford Clement Staff Science Representative, Leg 105 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469" Philip Director Ocean Drilling Program Robert B. Kidd Manager of Science

  19. OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS CENTRAL KERGUELEN PLATEAU Dr. Roland Schlich Drilling Program Texas A&M University College Station, TX 77841 Philip D.VRabinowitz Director ^^~-- ODP of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station

  20. LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM ENGINEERING PRELIMINARY REPORT NO. 3 EAST PACIFIC RISE 1992 #12;OCEAN DRILLING PROGRAM LEG 142 PRELIMINARY REPORT East Pacific Rise Dr. Rodey Batiza Co 96822 Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling

  1. OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS NORTHWEST AFRICA Dr. William Ruddiman Co Federal Republic of Germany Dr. Jack G. Baldauf Staff Scientist, Leg 108 Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Philip W Rabin Direct Ocean Drilling Program

  2. Geothermal drilling research in the United States

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-01-01T23:59:59.000Z

    Current research and development in the following areas are presented: geothermal roller cone bits, polycrystalline diamond compact bits, a continuous chain drill, drilling fluids test equipment, mud research, inert fluids, foam fluids, lost circulation control, completion technology, and advanced drilling and completion systems. (MHR)

  3. DEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS

    E-Print Network [OSTI]

    for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche&M University, as an account of work performed under the international Ocean Drilling Program which is managedDEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS Ocean Drilling Program Texas A&M University Technical

  4. Well descriptions for geothermal drilling

    SciTech Connect (OSTI)

    Carson, C.C.; Livesay, B.J.

    1981-01-01T23:59:59.000Z

    Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

  5. Directional drilling and equipment for hot granite wells

    SciTech Connect (OSTI)

    Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

    1981-01-01T23:59:59.000Z

    The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

  6. Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling

    SciTech Connect (OSTI)

    Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

    2012-12-31T23:59:59.000Z

    Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the concept that the same weight must be given to S-wave sequences and facies as is given to P-wave sequences and facies. This philosophy differs from the standard practice of depending on only conventional P-wave seismic stratigraphy to characterize reservoir units. The fundamental physics of elastic wavefield seismic stratigraphy is that S- wave modes sense different sequences and facies across some intervals than does a P-wave mode because S-wave displacement vectors are orthogonal to P- wave displacement vectors and thus react to a different rock fabric than do P waves. Although P and S images are different, both images can still be correct in terms of the rock fabric information they reveal.

  7. Potential for tunneling based on rock and soil melting. Abstracts

    SciTech Connect (OSTI)

    Rowley, J.C.

    1985-01-01T23:59:59.000Z

    The rock-melting drill was invented at Los Alamos Scientific Laboratory in 1960. Electrically heated, laboratory-scale drills were subsequently shown to penetrate igneous rocks at usefully high rates, with moderate power consumptions. The development of compact nuclear reactors and of heat pipes now makes possible the extension of this technology to much larger melting penetrators, potentially capable of producing holes up to several meters in diameter and several tens of kilometers long or deep. Development of a rapid, versatile, economical method of boring large, long shafts and tunnels offers solutions to many of man's most urgent ecological, scientific, raw-materials, and energy-supply problems. A melting method appears to be the most promising and flexible means of producing such holes. It is relatively insensitive to the composition, hardness, structure, and temperature of the rock, and offers the possibilities of producing self-supporting, glass-lined holes in almost any formation and (using a technique called lithofracturing) of eliminating the debris-removal problem by forcing molten rock into cracks created in the bore wall. Large rock-melting penetrators, called Electric Subterrenes or Nuclear Subterrenes according to the energy source used, are discussed in this report, together with problems anticipated in their development. It is concluded that this development is within the grasp of present technology.

  8. High-temperature directional drilling turbodrill

    SciTech Connect (OSTI)

    Neudecker, J.W.; Rowley, J.C.

    1982-02-01T23:59:59.000Z

    The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

  9. Source rock maturation, San Juan sag

    SciTech Connect (OSTI)

    Gries, R.R.; Clayton, J.L.

    1989-09-01T23:59:59.000Z

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  10. The US Hot Dry Rock project

    SciTech Connect (OSTI)

    Hendron, R.H.

    1987-01-01T23:59:59.000Z

    The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

  11. Conformable apparatus in a drill string

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2007-08-28T23:59:59.000Z

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

  12. Underbalanced drilling with air offers many pluses

    SciTech Connect (OSTI)

    Shale, L. [Baker Hughes Inteq, Houston, TX (United States)

    1995-06-26T23:59:59.000Z

    A pressure overbalance during conventional drilling can cause significant fluid filtrate invasion and lost circulation. Fluid invasion into the formation can lead to formation damage, high mud costs, a need for expensive completions, and well productivity impairment. Because underbalanced drilling creates a natural tendency for fluid and gas to flow from the formation to the borehole, successful underbalanced drilling depends upon the appropriate selection of circulating fluid. The use of a compressible fluid in the circulating system, referred to as air drilling, lowers the downhole pressure, allowing drilling into and beyond these sensitive formations. The paper discusses the equipment needed; well control; downhole air requirements; air drilling techniques using dry air, air-mist, stable foam, stiff foam, and aerated-fluid; downhole fires; directional air drilling; and well completions.

  13. Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report

    SciTech Connect (OSTI)

    Hibbs, L.E. Jr.; Sogoian, G.C.

    1983-05-01T23:59:59.000Z

    The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

  14. T00406010008 rock check dam

    E-Print Network [OSTI]

    XY! T00406010008 rock check dam T00406010009 rock check dam T00406010010 rock check dam T00406010011 rock check dam T-SMA-2.85 0.344 Acres 35-014(g) 35-016(n) T00406010005 rock check dam T00406010006 rock check dam T00403090004 curb T00402040007 established vegetation, green hatch area 7200 7200 7180

  15. Filter for a drill string

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

    2007-12-04T23:59:59.000Z

    A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

  16. Rock bed behavior and reverse thermosiphon effects

    SciTech Connect (OSTI)

    Perry, J.E.

    1980-01-01T23:59:59.000Z

    Two rock beds, in the Mark Jones and Doug Balcomb houses, have been instrumented, monitored, and analyzed. Observed experimental operation has been compared with, or explained by, theoretical predictions. The latter are based on one-dimensional finite-difference computer calculation of rock bed charging and discharging, with fixed or variable inputs of air flow rate and temperature. Both rock beds exhibit appreciable loss of stored heat caused by lack of backdraft dampers or incomplete closure of such dampers. These topics are discussed, and some improvements that might be made in future installations are noted.

  17. Horizontal well drill-in fluid utilizing alcohol ethoxylate

    SciTech Connect (OSTI)

    Jachnik, R.P.; Green, P.

    1995-11-01T23:59:59.000Z

    The drilling of horizontal wells in the last 6 years has significantly improved the economics of oil and gas production from depleted reservoirs or tight sands. This paper illustrates the application of an alcohol ethoxylate into a drill-in fluid designed to minimize formation damage in low permeability sandstones while drilling horizontal sections as long as 1,617 meters (5,306 ft) at depths approaching 6,580 meters (21,600 ft) and to facilitate formation cleanup. The chemistry of alcohol ethoxylates/alkoxylates are described and the more popular names used within the industry will be discussed. Laboratory results are presented which illustrate colloidal phenomena not previously reported with these systems, the routes taken for successful application into a drill-in fluid and how complex these particular colloidal systems are from a physical chemical viewpoint, along with the inevitable learning curve required to fully optimize these systems. Generalized case histories from the UK Southern North Sea will be described, along with field observations which back up the colloidal phenomena seen in the laboratory.

  18. Development of a method for predicting the performance and wear of PDC (polycrystalline diamond compact) drill bits

    SciTech Connect (OSTI)

    Glowka, D.A.

    1987-09-01T23:59:59.000Z

    A method is developed for predicting cutter forces, temperatures, and wear on PDC bits as well as integrated bit performance parameters such as weight-on-bit, drilling torque, and bit imbalance. A computer code called PDCWEAR has been developed to make this method available as a tool for general bit design and analysis. The method uses single-cutter data to provide a measure of rock drillability and employs theoretical considerations to account for interaction among closely spaced cutters on the bit. Experimental data are presented to establish the effects of cutter size and wearflat area on the forces that develop during rock cutting. Waterjet assistance is shown to significantly reduce cutting forces, thereby potentially extending bit life and reducing weight-on-bit and torque requirements in hard rock. The effects of several other design and operating parameters on bit life and drilling performance are also investigated.

  19. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01T23:59:59.000Z

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  20. Drill-in fluids control formation damage

    SciTech Connect (OSTI)

    Halliday, W.S. (Baker Hughes Inteq, Houston, TX (United States))

    1994-12-01T23:59:59.000Z

    Several factors led to development, oil company interest in, and use of payzone drilling fluids, including operator concern about maximizing well production, increasing acceptance of horizontal drilling and openhole completion popularity. This article discusses water-base drill-in'' fluid systems and applications. Payzone damage, including fine solids migration, clay swelling and solids invasion, reduces effective formation permeability, which results in lower production rates. Formation damage is often caused by invasion of normal drilling fluids that contain barite or bentonite. Drill-in systems are designed with special bridging agents to minimize invasion. Several bridging materials designed to form effective filter cake for instantaneous leak-off control can be used. Bridging materials are also designed to minimize stages and time required to clean up wells before production. Fluids with easy-to-remove bridging agents reduce completion costs. Drill-in fluid bridging particles can often be removed more thoroughly than those in standard fluids.

  1. Synthetic drill-in fluid for gravel packing depleted sands and pressured shale

    SciTech Connect (OSTI)

    Ali, S.; Griffith, G. [Chevron USA Production Co., New Orleans, LA (United States); Jones, T.; Hinojosa, R. [Baker Hughes INTEQ, Houston, TX (United States); Smejkal, K. [Baker Oil Tools, Houston, TX (United States)

    1999-03-01T23:59:59.000Z

    Weighted synthetic- or oil-base drill-in fluids offer an excellent solution to the problem of reactive, pressured shale. However, some operators remain uneasy about drilling into a reservoir with an invert emulsion drill-in fluid. This apprehension is partly due to the possibility of creating emulsion blocks or changing the rock matrix wettability. Either of these conditions may reduce the crude`s mobility by restricting flow. This formation damage is avoided with water-base drill-in fluids, but the borehole stability problem remains an issue. A synthetic drill-in fluid`s ability to stabilize reactive shales is well documented. There remains a concern that once reactive shales are exposed to completion brine, the inhibition imparted by a synthetic fluid is lost. If lost, the shale particles could spall (slough) freely into the wellbore, plugging the screens and resulting in an incomplete gravel placement. Another concern is the effective displacement of the synthetic fluid to the completion brine without creating undesirable emulsions and damaging the integrity of the synthetic-fluid filter cake. The key appears to be selecting a spacer system that prevents formation of viscous emulsions at the interfaces and would not aggressively attack the wellbore filter cake. The paper describes laboratory evaluation, simulated core tests, test results, a field case history in the South Timbalier field offshore Louisiana, and lessons learned.

  2. Drilling Report- First CSDP (Continental Scientific Drilling Program)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrilling Fluids MarketThermal

  3. Use of an inert drilling fluid to control geothermal drill pipe corrosion

    SciTech Connect (OSTI)

    Caskey, B.C.

    1981-04-01T23:59:59.000Z

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternatively used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico, USA. Data from corrosion rings, corrosion probes, fluid samples, and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid (nitrogen) reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an on-site inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  4. Evaluation of liquid lift approach to dual gradient drilling

    E-Print Network [OSTI]

    Okafor, Ugochukwu Nnamdi

    2008-10-10T23:59:59.000Z

    ............................................... 4 2.2 Dual Gradient Drilling Method.............................................. 5 2.3 Methods of Achieving Dual Gradient Drilling ...................... 9 2.3.1 Subsea Mudlift Drilling... ................................................... 9 2.5 Schematic diagram of a modified subsea mudlift system .......................... 11 2.6 Hollow glass-spheres dual gradient drilling system................................... 13 2.7 A typical offshore drilling rig modified...

  5. Introduction to the Ocean Drilling Program JOIDES RESOLUTION

    E-Print Network [OSTI]

    Introduction to the Ocean Drilling Program JOIDES RESOLUTION OCEAN DRILLING PROGRAM TECHNICAL NOTE 11 1989 #12;TEXAS A&M UNIVERSITY #12;INTRODUCTION TO THE OCEAN DRILLING PROGRAM Ocean Drilling Program Texas A&M University Technical Note No. 11 Anne Gilbert Graham Ocean Drilling Program Texas A

  6. 2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2009 Produced by Integrated Ocean Drilling Program

  7. 2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2008 Produced by Integrated Ocean Drilling Program

  8. 2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2012 Produced by Integrated Ocean Drilling Program

  9. Silica dust control when drilling concrete Page 1 of 2

    E-Print Network [OSTI]

    Knowles, David William

    Silica dust control when drilling concrete Page 1 of 2 Drilling into concrete releases a fine sandy and routinely drill into concrete are at risk of developing this disease. Controlling the dust Hammer drills are available with attached dust removal systems. These draw dust from the drill end, down the attachment

  10. 2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2007 Produced by Integrated Ocean Drilling Program

  11. 2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2011 Produced by Integrated Ocean Drilling Program

  12. Gravimeter yields rock density for cavern during operations

    SciTech Connect (OSTI)

    Folle, S.; Rolfs, O. [Kavernen Bau- and Betriebs-GmbH, Hannover (Germany)

    1996-01-22T23:59:59.000Z

    Designing underground cavities and especially planning for caverns in salt formations for storage require investigations of several questions that are posed in this paper. A downhole gravimeter can determine rock density in a natural gas storage cavern while it is in operation or still being solution mined. Operating conditions or solution mining in progress precludes use of a standard density tool during conventional well-logging procedures. Rock density is one of the principal input parameters for rock mechanical investigations in specifying optimum pressure levels in storage caverns. The advantages and disadvantages of the system, as well as of the technical logging procedures, follow. The gravimeter tool: measures rock densities up to approximately 20 m into the formation; logs through casing (independent of a drilling rig); is unaffected by drilling mud; is unaffected by size and variation of caliber. But it also: does not measure continuously; makes logging time-consuming and requires a certain mobilization time; delivers data whose accuracy depends o the homogeneity of the formation or level of information available on the structure in question.

  13. Development of hot dry rock geothermal resources; technical and economic issues

    SciTech Connect (OSTI)

    Tester, J.W.

    1980-01-01T23:59:59.000Z

    Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat are discussed. Topics covered include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return. The current status of research and deveopment efforts in the US are also summarized.

  14. High Temperature 300C Directional Drilling System

    Broader source: Energy.gov (indexed) [DOE]

    300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

  15. PDM vs. Turbodrill: A drilling comparison

    SciTech Connect (OSTI)

    De Lucia, F.; Herbert, P.

    1984-09-01T23:59:59.000Z

    This study was undertaken to investigate and compare the two most prevalent down-hole motor types, Positive-Displacement and Turbodrill. The intent of this comparison was to evaluate the technical and operational performance characteristics and present them in a manner to aid the drilling contractor or drilling engineer in determining the best down-hole motor for a specific drilling application. Each type of drilling tool utilizing either power source possesses unique characteristics which can be tailored to the overall system to optimize the target objective; increase ROP at less cost.

  16. Driltac (Drilling Time and Cost Evaluation)

    SciTech Connect (OSTI)

    None

    1986-08-01T23:59:59.000Z

    The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

  17. High Temperature 300C Directional Drilling System

    Broader source: Energy.gov [DOE]

    Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

  18. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01T23:59:59.000Z

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  19. West Coast drilling/production

    SciTech Connect (OSTI)

    Rintoul, B.

    1980-01-01T23:59:59.000Z

    Heavy California oil has come into its own as a likely source for increased production. The removal of price controls for crude 16 gravity and lower has given producers incentive, but obstacles remain in the regulatory atmosphere of uncertainty and confusion. Accelerated drilling operations in California aiming at heavy oil production are described. The Elk Hills field continues to be the main site of resurgence of California oil, and steamflooding is the primary method of recovery. Hot plate and hydraulic mining methods also are proposed for heavy oil recovery. Pacific Northwest activities outside of California also are mentioned.

  20. Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrilling Fluids

  1. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    SciTech Connect (OSTI)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-02-22T23:59:59.000Z

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windows{trademark}-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide-thallium activated crystal coupled to a photomultiplier tube (PMT). The output of the PMT goes to a multichannel analyzer (MCA).The MCA data is transmitted to the surface via a signal conditioning and transmitter board similar to that used with the GMT. The EMWD system is described and the results of the GRS field tests and field demonstration are presented.

  2. J00206010020 rock check dam

    E-Print Network [OSTI]

    XY! J00206010020 rock check dam J00206010023 rock check dam 09-009 09-009 09-009 PJ-SMA-2 0.901 Acres J00206010021 rock check dam J00206010019 rock check dam J00206010014 rock check dam J00203010007 Smith DATE: 14-November-2014 REVISION NUMBER: 8 XY! IP sampler location Berm Channel/swale Check dam

  3. W02106010008 rock check dam

    E-Print Network [OSTI]

    W-SMA-14.1 5.169 Acres W02106010008 rock check dam W02106010009 rock check dam W02106010010 rock check dam W02106010011 rock check dam W02106010012 rock check dam W02103010018 earthen berm W02103010016 dam Established vegetation Seed and mulch Sediment trap/basin Gabion Cap SWMU boundary SMA drainage

  4. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J. (Seattle, WA)

    2002-01-01T23:59:59.000Z

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  5. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect (OSTI)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31T23:59:59.000Z

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evalua

  6. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint Oceanographic Institutions, Inc. Executive Director, Ocean Drilling Programs Joint Oceanographic Institutions.................................... 19 3.3.1. Drilling and Science Services

  7. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SHAFT SINKING IN-MINE DRILLiNG NEW MINE - 1500 M SURFACEORILUNG SHAFT SINKiNG FACIUTY DEVELOPMENT IN-MINE DRILLINGSURFACE DRILLING FACIUTY DEVELOPMENT IN-MINE DRILLING ~~NGM!

  8. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs of work for Integrated Ocean Drilling Program (IODP) activities and deliverables for the current fiscal

  9. Chapter Eight Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    ) Coating Description Carbonate skin Coating composed primarily of carbonate, usually calcium carbonate; the agent may be manganese, sulphate, carbonate, silica, iron, oxalate, organisms, or anthropogenic Dust, cyanobacteria, algae Nitrate crust Potassium and calcium nitrate coatings on rocks, often in caves and rock

  10. The Effect of Rock Properties on Hydraulic Fracture Conductivity in the Eagle Ford and Fayetteville Shales

    E-Print Network [OSTI]

    Jansen, Timothy A

    2014-09-05T23:59:59.000Z

    . Optimizing fracture designs to improve well performance requires knowledge of how fracture conductivity is affected by rock and proppant characteristics. This study investigates the relationship between rock characteristics and laboratory measurements...

  11. Communication adapter for use with a drilling component

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Hall; Jr.; H. Tracy (Provo, UT); Bradford, Kline (Orem, UT); Rawle, Michael (Springville, UT)

    2007-04-03T23:59:59.000Z

    A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

  12. A concept for marine shallow drilling Drill test from R/V Hkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling

    E-Print Network [OSTI]

    Kristoffersen, Yngve

    A concept for marine shallow drilling Drill test from R/V Håkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling BACKGROUND There is a quantum leap between the costs of marine operations using conventional sediment coring devices with or without piston for 10-15 m of core recovery and drilling from

  13. Multi-gradient drilling method and system

    DOE Patents [OSTI]

    Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

    2003-01-01T23:59:59.000Z

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  14. Status Report A Review of Slimhole Drilling

    SciTech Connect (OSTI)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01T23:59:59.000Z

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  15. OCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    under the international Ocean Drilling Program which is managed by Joint Oceanographic Institutions, Inc by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche ForschungsgemeinschaftOCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS DSDP HOLE 504B REVISITED Keir Becker

  16. Incident at the Rock Pile

    E-Print Network [OSTI]

    Birgfeld, Doug

    2015-01-01T23:59:59.000Z

    At the off limit rock pile At a Portland school Where theDoug. Incident at the Rock Pile http://escholarship.org/Doug. Incident at the Rock Pile http://escholarship.org/

  17. Vibration monitoring system for drill string

    SciTech Connect (OSTI)

    Wassell, M.E.

    1993-07-13T23:59:59.000Z

    A vibration monitoring system is described for use in monitoring lateral and torsional vibrations in a drill string comprising: a drill string component having an outer surface; first accelerometer means A[sub 1] for measuring tangential acceleration; second accelerometer means A[sub 2] for measuring tangential acceleration; third accelerometer means A[sub 3] for measuring tangential acceleration; said first, second and third accelerometer means A[sub 1], A[sub 2] and A[sub 3] being mounted in said drill string component and being spaced from one another to measure acceleration forces on said drill string component tangentially with respect to the outer surface of said component wherein said first, second and third accelerometer means are adapted to measure and distinguish between lateral and torsional vibrations exerted on said drill string component.

  18. Odessa fabricator builds rig specifically for geothermal drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Odessa fabricator builds rig specifically for geothermal drilling Odessa fabricator builds rig specifically for geothermal drilling August 3, 2008 - 2:59pm Addthis For 35 years, MD...

  19. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs

  20. Evaluation of Emerging Technology for Geothermal Drilling and...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of...

  1. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. ______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  2. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  3. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling

  4. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

  5. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint, Ocean Drilling Programs Joint Oceanographic Institutions, Inc. Washington DC 20005 19 July 2005 #12

  6. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  7. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling Programs

  8. Temporary Bridging Agents for Use in Drilling and Completions...

    Broader source: Energy.gov (indexed) [DOE]

    Temporary Bridging Agents for Use in Drilling and Completions of EGS Temporary Bridging Agents for Use in Drilling and Completions of EGS DOE Geothermal Peer Review 2010 -...

  9. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs Joint Oceanographic

  10. Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

  11. Cretaceous shallow drilling, US Western Interior: Core research

    SciTech Connect (OSTI)

    Arthur, M.A.

    1993-02-17T23:59:59.000Z

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth exposures'' in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  12. DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001

    SciTech Connect (OSTI)

    William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

    2001-07-01T23:59:59.000Z

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

  13. A study of fatigue in drill collars

    E-Print Network [OSTI]

    Fowler, Joe Robert

    1969-01-01T23:59:59.000Z

    A STUDY OF FATIGUE IN DRILL COLLARS A Thesis by Joe Robert Feeler Approved as to style and content by: Chairman of Committee Head of Department Member /n/X~l~~ Member Member January 1969 ABSTRACT A Study of Fatigue in Drill Collars.... (January, 1969) Joe R. Fowler, B. S. , Texas A&M University; Directed by: Dr. P. D. Neiner Fatigue failures of drill collar connectors are presently cost- ing the major oil companies enormous sums of money in ruined equipment and lost time...

  14. Miniature CVD-diamond corning drills for robotic sample collection and analysis.

    SciTech Connect (OSTI)

    Vaniman, D. T. (David T.); Trava-Airoldi, V.J.; Bish, D. L. (David L.); Chipera, S. J. (Steve J.)

    2003-01-01T23:59:59.000Z

    Coring tools have been used etlectivelv on the Moon, but to date no such tools have been used on any other extraterrestrial surface. The lunar experience includes both manual (Apollo) and robotic (Luna) systems . These coring systems were concerned primarily with acquiring samples from depth for return to Earth or for the creation of instrument emplacement holes (e .g ., heat probes). Current designs for planetary drills differ from the lunar tools primarily in that they are integrated with robotic instrumentation for remote analysis, but the role of the drilling or coring system remains one of acquiring samples that must be extracted from the core barrel for analysis . Missing from current sample collection systems is a tool that can double as both a conng device and a sample holder. This dual utility can minimize the number of motions, the mass, and the power required for several classes of instruments in planetary surface exploration. To be effective, such a system must be durable and simple in operation. Hollow CVD diamond drills possess the hardness, excellent cutting properties, and heat resistance required for drilling into a wide variety of rocks and minerals. Because CVD diamond is also unreactive and transparent to infrared radiation and to X-rays of moderate to high energry, it can be used as a sample holder in various instruments for X-ray diffraction (XRD), Xray fluorescence (XRF), infrared spectroscopy, Raman spectroscopy, and thermal analysis.

  15. Hot Dry Rock Geothermal Energy Development Program Annual Report Fiscal Year 1988

    SciTech Connect (OSTI)

    Dash, Zora V.; Murphy, Hugh D.; Smith, Morton C.

    1988-01-01T23:59:59.000Z

    The complete list of HDR objectives is provided in Reference 10, and is tabulated below in Tables 1 and 2 for the reader's convenience. The primary, level 1, objective for HDR is ''to improve the technology to the point where electricity could be produced commercially from a substantial number of known HDR resource sites in a cost range of 5 to 8 cents/kWh by 1997''. A critically important milestone in attaining this cost target is the level II objective: ''Evaluate the performance of the Fenton Hill Phase II reservoir''. To appreciate the significance of this objective, a brief background is helpful. During the past 14 years the US DOE has invested $123 million to develop the technology required to make Hot Dry Rock geothermal energy commercially useful. The Governments of Japan and the Federal Republic of Germany have contributed an additional $32 million to the US program. The initial objectives of the program were met by the successful development and long-term operation of a heat-extraction loop in hydraulically-fractured hot dry rock. This Phase I reservoir produced pressurized hot water at temperatures and flow rates suitable for many commercial uses such as space heating and food processing. It operated for more than a year with no major problems or detectable environmental effect. With this accomplished and the technical feasibility of HDR energy systems demonstrated, the program undertook the more difficult task of developing a larger, deeper, hotter reservoir, called ''Phase II'', capable of supporting pilot-plant-scale operation of a commercial electricity-generating power plant. As described earlier in ''History of Research'', such a system was created and operated successfully in a preliminary 30-day flow test. However, to justify capital investment in HDR geothermal technology, industry now requires assurance that the reservoir can be operated for a long time without major problems or a significant decrease in the rate and quality of energy production. Industrial advisors to the HDR Program have concluded that, while a longer testing period would certainly be desirable, a successful and well-documented flow test of this high-temperature, Phase II reservoir lasting at least one year should convince industry that HDR geothermal energy merits their investment in its commercial development. This test is called the Long Term Flow Test (LTFT), and its completion will be a major milestone in attaining the Level 1 objective. However, before the LTFT could be initiated, well EE-2 had to be repaired, as also briefly described in the ''History of Research''. During this repair operation, superb progress was made toward satisfying the next most critically important Level II objective: Improve the Performance of HDR Drilling and Completion Technology. During the repair of EE-2, Los Alamos sidetracked by drilling out of the damaged well at 2.96 km (9700 ft), and then completed drilling a new-wellbore (EE-2A) to a total depth of 3.78 km (12,360 ft). As a consequence of this drilling experience, Los Alamos believes that if the original wells were redrilled today their combined cost would be only $8 million rather than the $18.8 million actually spent (a 60% cost saving). Further details, particularly of the completion of the well, can be found in the major section, ACCOMPLISHMENTS, but it can be seen that the second, Level II objective is already nearing attainment.

  16. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program U.S. Implementing Organization FY09 Annual Report #12;Discrete core sampling #12;The Integrated Ocean Drilling Program (IODP) is an international marine research successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs

  17. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program U.S. Implementing Organization FY10 Annual Report #12;Crane ball #12;The Integrated Ocean Drilling Program (IODP) is an international marine research program Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs that revolutionized our view

  18. Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg

    E-Print Network [OSTI]

    Bromberg, Kenneth

    Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg September 22, 2006 1 Introduction to such a deformation as drilling and results which compare the geometry of the original manifold to the geometry of the drilled manifold as drilling theorems. The first results of this type are due to Hodgson and Kerckhoff

  19. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program U.S. Implementing Organization FY13 Annual Report #12;Tripping Integrated Ocean Drilling Program (IODP) monitored subseafloor environments and explored Earth's history Drilling Project (DSDP) and the Ocean Drilling Program (ODP), which revolutionized our view of Earth

  20. Acronyms and Abbreviations Used in the Ocean Drilling Program

    E-Print Network [OSTI]

    Stone Soup Acronyms and Abbreviations Used in the Ocean Drilling Program Ocean Drilling Program Texas A&M University Technical Note No. 13 Compiled by Elizabeth A. Heise Ocean Drilling Program Texas A orpersonalresearchpurposes; however,republicationof any portion requires the written consent of the Director, Ocean Drilling

  1. OCEAN DRILLING PROGRAM LEG 207 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    3E3 Canada -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Foundation (United States) Natural Environment Research Council (United Kingdom) Ocean Research Institute

  2. OCEAN DRILLING PROGRAM LEG 166 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    Director ODP/TAMU _____________________ Jack Baldauf Manager Science Operations ODP Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract of the University of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council

  3. Sandia National Laboratories: percussive drilling with compressed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    percussive drilling with compressed air Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News &...

  4. Formation damage in underbalanced drilling operations

    E-Print Network [OSTI]

    Reyes Serpa, Carlos Alberto

    2003-01-01T23:59:59.000Z

    Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

  5. Limitations of extended reach drilling in deepwater

    E-Print Network [OSTI]

    Akinfenwa, Akinwunmi Adebayo

    2000-01-01T23:59:59.000Z

    As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

  6. Drill Rig Safety Topics of the Presentation

    E-Print Network [OSTI]

    ;Inspect Cooling System & Fan #12;The Most Injury Related Activity Handling Drill Pipe Tools Casing #12;Automated Loading Arms w/ Radio Remote Controls #12;Automatic Pipe Handling System w/ Tilt Out Top Head #12

  7. OCEAN DRILLING PROGRAM LEG 164 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 164 PRELIMINARY REPORT GAS HYDRATE SAMPLING ON THE BLAKE RIDGE of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council (United, Iceland, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey) Any opinions, findings

  8. The earliest history of the Skaergaard magma chamber: a textural and geochemical study of the Cambridge Drill Core

    E-Print Network [OSTI]

    Holness, Marian B.; Tegner, Christian; Namur, Olivier; Pilbeam, Llewellyn

    2015-01-01T23:59:59.000Z

    Pilbeam, Llewellyn; University of Cambridge, Dept of Earth Sciences Keyword: Skaergaard, magma chamber, intrusion, cumulate, gabbro, geochemistry, layered igneous rock, mineral chemistry http://www.petrology.oupjournals.org/ Manuscript submitted... and olivines (Nwe, 1975; 1976), plagioclase (Maale, 1976; Humphreys, 2009; Namur et al., 2014), rhythmic layering (Maale, 1978; 1987) and uranium content (Henderson, 1975). Maales detailed 1976 study of plagioclase in the drill core outlines the cryptic...

  9. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

    1998-01-01T23:59:59.000Z

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  10. Integrated services help drill horizontal well ahead of schedule

    SciTech Connect (OSTI)

    Rizk, G. (Baker Hughes Inteq, Houston, TX (United States)); Clough, M. (Baker Hughes Inteq, Aberdeen (United Kingdom))

    1994-03-14T23:59:59.000Z

    Integrated services and incentive contracts helped deliver an onshore horizontal gas well ahead of schedule. Elf Petroland BV's Harlingen 8 well in Holland was drilled and completed in 26 days, instead of the 33 days planned. Incentive bonuses were awarded, and the gas well began production early. Elf Petroland used one supplier to coordinate service operations and make rig site operations more efficient. The streamlined organization on site improved communication and simplified administration and logistics. Rig site problems were addressed quickly, and solutions implemented effectively because of the integrated-services structure. The paper discusses the organizational plan and how it was carried out.

  11. NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program

    E-Print Network [OSTI]

    Gilli, Adrian

    NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.14,September2012 ScientificDrilling ISSN: 1816-8957 Exp. 333: Nankai Trough Subduction Input and Records of Slope Instability 4 Lake Drilling In Eastern Turkey 18 Exp. 326 and 332: Nan

  12. Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France Abstract Drill pipe in a curved section of the drilled well is considered as a rotating

  13. NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program

    E-Print Network [OSTI]

    Demouchy, Sylvie

    NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.11,March2011 ScientificDrilling ISSN: 1816-8957 Climate and Ocean Change in the Bering Sea 4 San Andreas Fault Zone Drilling 14 Climate History from Lake El'gygytgyn, Siberia 29 World

  14. HP-41CV applied drilling engineering manual

    SciTech Connect (OSTI)

    Chenevert, M.; Williams, F.; Hekimian, H.

    1983-01-01T23:59:59.000Z

    Contents of this manual are as follows: average diameter of an open hole; pump cycle, pump factor, and annulus capacity; drilling-time and penetration rate predictions; nozzle selection; direction well survey; viscosity of drilling fluids; barite requirements with solids dilution; solids analysis and recommended flow properties; evaluation of hydrocyclones; frictional pressure loss; surge and swab pressures; pressure and average density of a gas column; cement additive requirements; kick tolerance, severity, length and density; and pump pressure schedule for well control operations.

  15. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01T23:59:59.000Z

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  16. ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS

    E-Print Network [OSTI]

    Verma, Ankit

    2010-07-14T23:59:59.000Z

    on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

  17. Regional geology of Georges Bank basin - OCS Sale 42 drilling results

    SciTech Connect (OSTI)

    High, L.R. Jr.

    1985-02-01T23:59:59.000Z

    Industry bid aggressively in OCS Sale 42, spending $816 million. Eight wildcats were drilled in 1981-82 to test 5 major plays. All wells were dry; no potential reservoir or source rocks were found. The tectonic-stratigraphic framework of the Georges Bank basin is that of an Atlantic-type plate margin. Two major unconformities divide the section into prerift, synrift, and postrift sequences. The prerift sequence consists of Paleozoic metasediments in basement fault blocks. Synrift sediments consist of Newark Group equivalents: the Argo Salt and the Iroquoi Formation. The postrift sequence consists of Mohican red beds overlain by progradational wedges, with the carbonate Abenaki Formation at the base. The objective in 4 of the 8 wildcats was the Iroquois Formation. Mobil 312-1 and Shell 357-1 were drilled into a seismic anomaly interpreted to be a reef. This structure was found to be a complex carbonate mound. Exxon 975-1 was drilled on a seismic amplitude anomaly variously interpreted to be the result of salt, coal, or porous carbonates. This anomaly proved to be caused by a salt bed. The objective in Shell 410-1R was carbonate banks over a basement horst block. No significant zones of porosity were found. The remaining 4 wildcats were drilled on Abenaki prospects. Mobil 273-1, Tenneco 187-1d, and Conoco 145-1 were drilled for possible carbonate banks over a salt structure. Only thin oolitic grainstone intervals were found. Exxon 133-1 was based on a seismic anomaly interpreted to be a patch reef. This feature was found to be a volcanic cone.

  18. Method and apparatus of assessing down-hole drilling conditions

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

    2007-04-24T23:59:59.000Z

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  19. Theoretical relation between water flow rate in a vertical fracture and rock temperature in the surrounding massif

    E-Print Network [OSTI]

    Marchal, Jean-Christophe

    2010-01-01T23:59:59.000Z

    A steady-state analytical solution is given describing the temperature distribution in a homogeneous massif perturbed by cold water flow through a discrete vertical fracture. A relation is derived to express the flow rate in the fracture as a function of the temperature measured in the surrounding rock. These mathematical results can be useful for tunnel drilling as it approaches a vertical cold water bearing structure that induces a thermal anomaly in the surrounding massif. During the tunnel drilling, by monitoring this anomaly along the tunnel axis one can quantify the flow rate in the discontinuity ahead before intersecting the fracture. The cases of the Simplon, Mont Blanc and Gotthard tunnels (Alps) are handled with this approach which shows very good agreement between observed temperatures and the theoretical trend. The flow rates before drilling of the tunnel predicted with the theoretical solution are similar in the Mont Blanc and Simplon cases, as well as the flow rates observed during the drilling....

  20. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

  1. Systems study of drilling for installation of geothermal heat pumps

    SciTech Connect (OSTI)

    Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

    1997-09-01T23:59:59.000Z

    Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

  2. Software Engineer RockAuto www.RockAuto.com

    E-Print Network [OSTI]

    Liblit, Ben

    Software Engineer RockAuto www.RockAuto.com Position Description Software is the foundation Familiarity with open-source development technologies like PHP, Perl, JavaScript and C (Linux system Lane, Madison, WI 53719) Why RockAuto? Strategic and tactical impact. We're an e-commerce company

  3. Greater Green River Basin production improvement project, Phase 1: Site characterization report

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Krystinik, L.F.; Mead, R.H.; Poe, S.C.

    1996-05-01T23:59:59.000Z

    Several tight, naturally-fractured, gas-productive formations in the Greater Green River Basin (GGRB) in Wyoming have been exploited using conventional vertical well technology. Typically, hydraulic fracture treatments must be performed in completing these wells to increase gas production rates to economic levels. However, with the maturation of horizontal drilling technology hydraulic fracture treatments may not be the most effective method for improving gas production from these tight reservoirs. Two of the most prolific tight gas reservoirs in the Green River Basin, the Frontier and the Mesaverde, are candidates for the application of horizontal well completion technology. The objective of the proposed project is to apply the DOE`s technical concept to the Second Frontier Formation on the western flank of the Rock Springs Uplift. Previous industry attempts to produce in commercial quantities from the Second Frontier Formation have been hampered by lack of understanding of both the in-situ natural fracture system and lack of adequate stimulation treatments. The proposed technical approach involves drilling a vertical characterization well to the Second Frontier Formation at a depth of approximately 16,000 ft. from a site located about 18 miles northwest of Rock Springs, Wyoming. Logging, coring, and well testing information from the vertical well will be used to design a hydraulic fracturing treatment and to assess the resulting production performance. Data from the vertical drilling phase will be used to design a 2,500 to 3,000-ft lateral wellbore which will be kicked off from the vertical hole and extend into the blanket marine sandstone bench of the Second Frontier Formation. The trajectory of this wellbore will be designed to intersect the maximum number of natural fractures to maximize production rates. Production testing of the resulting completion will provide an assessment of reserve potential related to horizontal lateral completions.

  4. Offshore application of a novel technology for drilling vertical boreholes

    SciTech Connect (OSTI)

    Foster, P.E. [Elf Enterprise Caldeonia Ltd., Aberdeen (United Kingdom); Aitken, A. [Baker Hughes INTEQ, Aberdeen (United Kingdom)

    1996-03-01T23:59:59.000Z

    A new concept for automatically drilling vertical boreholes was recently implemented by Elf Enterprise Caledonia called the vertical drilling system (VDS). The VDS was used to drill the 16-in. hole section of a North Sea exploration well. This was the first time this technology had been used offshore, drilling from a semisubmersible drilling unit. The VDS was shown to have an application in penetrating a drilling target that required a near-vertical wellbore. Technical functioning of the tool and field experience is reported along with performance comparisons to offset wells.

  5. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    SciTech Connect (OSTI)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.; Finger, J.T.; Keefe, R.; Neal, J.T.

    1996-10-01T23:59:59.000Z

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drilling method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).

  6. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01T23:59:59.000Z

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  7. Precision micro drilling with copper vapor lasers

    SciTech Connect (OSTI)

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-09-02T23:59:59.000Z

    The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

  8. Frictional heating and convective cooling of polycrystalline diamond drag tools during rock cutting

    SciTech Connect (OSTI)

    Ortega, A.; Glowka, D.A.

    1982-01-01T23:59:59.000Z

    A numerical-analytical model is developed to predict temperatures in stud-mounted polycrystalline diamond compact (PDC) drag tools during rock cutting. Experimental measurements of the convective heat transfer coefficient for PDC cutters are used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is shown that mean cutter wearflat temperatures can be maintained below the critical value of 750{sup 0}C only under conditions of low friction at the cutter/rock interface. This is true, regardless of the level of convective cooling. In fact, a cooling limit is established above which increases in convective cooling do not further reduce cutter temperatures. The ability of liquid drilling fluids to reduce interface friction is thus shown to be far more important in preventing excessive temperatures than their ability to provide cutter cooling. Due to the relatively high interface friction developed under typical air drilling conditions, it is doubtful that temperatures can be kept subcritical at high rotary speeds in some formations when air is employed as the drilling fluid, regardless of the level of cooling achieved.

  9. Directional drilling used in Mississippi River crossing

    SciTech Connect (OSTI)

    Fuess, G.T.

    1988-05-02T23:59:59.000Z

    Tennessee Gas Pipeline Co. recently completed its longest large-diameter directional bore and pulled nearly 3,000 feet of 20-in. replacement pipe under the Southwest Pass of the Mississippi River. The replacement was necessary to allow for planned widening and deepening of Southwest Pass. This article explains why conventional dredging methods were not possible. It then explains how the directional drilling was done. Given favorable soil conditions such as found along much of the Gulf Coast, the speed of installation, environmental consideration of dredging eliminated, and the cost-competitive posture Tennessee found among the directional drilling contractors, Tennessee plans to utilize this technique increasingly in the future.

  10. Geothermal wells: a forecast of drilling activity

    SciTech Connect (OSTI)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01T23:59:59.000Z

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  11. Analysis of drill stem test data

    E-Print Network [OSTI]

    Zak, Albin Joseph

    1956-01-01T23:59:59.000Z

    LI8RARY A s IN CNLLEGE OF TEXAS ANALYSIS OF DRILL STEM TEST DATA A THESIS By ALBIN J. ZAK, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August, 1956 Major Subject: Petroleum Engineering ANALYSIS OF DRILL STEM TEST DATA A THESIS ALBIN J. ZAK, JR. Approved as to style and content by; h irman of Committee Head of Department TABLE OF CONTENTS Page I. ABSTRAC...

  12. Horizontal drilling in shallow, geologically complex reservoirs

    SciTech Connect (OSTI)

    Venable, S.D. [Hillin-Simon Oil Co., Midland, TX (United States)

    1992-05-01T23:59:59.000Z

    Hillin-Simon Oil Company, in connection with the U.S. Department of Energy proposes to drill a horizontal well in the Niobrara formation, Yuma County, Colorado. The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in a favorable area of established production to avoid exploration risks.

  13. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOE Patents [OSTI]

    McCormick, S.H.; Pigott, W.R.

    1997-12-30T23:59:59.000Z

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  14. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOE Patents [OSTI]

    McCormick, Steve H. (Idaho Falls, ID); Pigott, William R. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  15. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect (OSTI)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01T23:59:59.000Z

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  16. PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS

    E-Print Network [OSTI]

    Ullmer, Brygg

    PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL parameters such as wellbore geometry, pump rate, drilling fluid rheology and density, and maximum drilling Computational Fluid Dynamics methods. Movement, concentration and accumulation of drilled cuttings in non

  17. Development of a High-Temperature Diagnostics-While-Drilling...

    Energy Savers [EERE]

    Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the...

  18. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program...

  19. Interaction between Drilled Shaft and Mechanically Stabilized Earth (MSE) Wall

    E-Print Network [OSTI]

    Aghahadi Forooshani, Mohammad

    2014-08-28T23:59:59.000Z

    Drilled shafts under horizontal loads are being constructed within Mechanically Stabled Earth (MSE) walls in the reinforced zone especially in overpass bridges and traffic signs. The interaction between the drilled shafts and the MSE wall...

  20. Adaptive tool selection strategies for drilling in flexible manufacturing systems

    E-Print Network [OSTI]

    Chander, Karthik Balachandran

    2004-09-30T23:59:59.000Z

    The thesis presents an approach to adaptive decision making strategies to reduce bottlenecks in a drilling operation and to extend tool life. It is an attempt to portray the real drilling system in a typical Flexible Manufacturing System (FMS...

  1. Geothermal COMPAX drill bit development. Final technical report, July 1, 1976-September 30, 1982

    SciTech Connect (OSTI)

    Hibbs, L.E. Jr.; Sogoian, G.C.; Flom, D.G.

    1984-04-01T23:59:59.000Z

    The objective was to develop and demonstrate the performance of new drill bit designs utilizing sintered polycrystalline diamond compacts for the cutting edges. The scope included instrumented rock cutting experiments under ambient conditions and at elevated temperature and pressure, diamond compact wear and failure mode analysis, rock removal modeling, bit design and fabrication, full-scale laboratory bit testing, field tests, and performance evaluation. A model was developed relating rock cutting forces to independent variables, using a statistical test design and regression analysis. Experiments on six rock types, covering a range of compressive strengths from 8 x 10/sup 3/ psi to 51 x 10/sup 3/ psi, provided a satisfactory test of the model. Results of the single cutter experiments showed that the cutting and thrust (penetration) forces, and the angle of the resultant force, are markedly affected by rake angle, depth of cut, and speed. No unusual force excursions were detected in interrupted cutting. Wear tests on two types of diamond compacts cutting Jack Fork Sandstone yielded wear rates equivalent at high cutting speeds, where thermal effects are probably operative. At speeds below approx. 400 surface feet per minute (sfm), the coarser sintered diamond product was superior. 28 refs., 235 figs., 55 tabs.

  2. Lowering Drilling Cost, Improving Operational Safety, and Reducing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, 2014Innovation PortalSoft Costs

  3. Los Alamos computer simulation improves offshore drill rig safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwardspublic EnvironmentalCatalyst couldComputer

  4. Mineralogic variation in drill core UE-25 UZ{number_sign}16, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Chipera, S.J.; Vaniman, D.T.; Carlos, B.A.; Bish, D.L.

    1995-02-01T23:59:59.000Z

    Quantitative X-ray powder diffraction methods have been used to analyze 108 samples from drill core UE-25 UZ{number_sign}16 at Yucca Mountain, Nevada. This drill hole, located within the imbricate fault zone east of the potential Yucca Mountain repository site, confirms the authors` previous knowledge of gross-scale mineral distributions at Yucca Mountain and provides insight into possible shallow pathways for hydrologic recharge into the potential host rock. Analyses of samples from UE-25 UZ{number_sign}16 have shown that the distribution of major zeolitized horizons, of silica phases, and of glassy tuffs are similar to those noted in nearby drill cores. However, the continuous core and closer sample spacing in UE-25 UZ{number_sign}16 provide a more exact determination of mineral stratigraphy, particularly in hydrologically important units such as the Paintbrush bedded tuffs above the Topopah Spring Tuff and in the upper vitrophyre of the Topopah Spring Tuff. The discovery of matrix zeolitization in the devitrified Topopah Spring Tuff of UE25 UZ{number_sign}16 shows that some unexpected mineralogic features can still be encountered in the exploration of Yucca Mountain and emphasizes the importance of obtaining a more complete three-dimensional model of Yucca Mountain mineralogy.

  5. Lateral load test of a drilled shaft in clay

    E-Print Network [OSTI]

    Kasch, Vernon R

    1977-01-01T23:59:59.000Z

    will be used to develop rational criteria for the design of drilled shafts that support precast panel retaining walls. The procedure used in conducting the study was: 1. Design and construct a reaction and loading system capable of applying large magnitude... lateral loads to large diameter drilled shafts. 2. Construct a large diameter instrumented drilled shaft. 3. Test the shaft by applying lateral loads. 4. Obtain undisturbed soil samples from the drilled shaft con- struction site and perform laboratory...

  6. Evaluation of Emerging Technology for Geothermal Drilling and...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories...

  7. Using Bayesian Network to Develop Drilling Expert Systems

    E-Print Network [OSTI]

    Alyami, Abdullah

    2012-10-19T23:59:59.000Z

    software. 3 Different types of cements are used in drilling and completion operations to: Isolate zones by preventing fluids immigration between formations Support and bond casings Protect casing from corrosive environments Seal and hold... well quality in deepwater environment such as caliper desirability, trajectory, skin factor and average drilling speed. Sorted well data from a global drilling database and drilling experience were gathered to develop a set of well quality metrics...

  8. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect (OSTI)

    Carroll, H.B.; Reeves, T.K.

    1999-04-27T23:59:59.000Z

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  9. ResonantSonic drilling. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes.

  10. Water's Journey Through the Shale Gas Drilling and

    E-Print Network [OSTI]

    Lee, Dongwon

    Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

  11. OCEAN DRILLING PROGRAM LEG 124E ENGINEERING PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 124E ENGINEERING PROSPECTUS PHILIPPINE SEA Michael A. Storms Supr. of Development Engineering Ocean Drilling Program Texas A & M University College Station, Texas 77840 Philip D. Rabinowitz Director ODP/TAMU- Barry W. Harding Manager of Engineering and Drilling Operations ODP/TAMU Louis

  12. FY04 Annual Report Integrated Ocean Drilling Program

    E-Print Network [OSTI]

    #12;#12;FY04 Annual Report Integrated Ocean Drilling Program United States Implementing and the Science Community . . . . . . . . . . 34 RESEARCH TOWARD ENHANCED DRILLING CAPABILITY . . . 37 JOI of the goals of scientific ocean drilling for 8 years (ODP: 1997­2003; IODP: 2003­2005), making many invaluable

  13. OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS EAST PACIFIC RISE Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling Operations Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

  14. Applications of CBR in oil well drilling "A general overview"

    E-Print Network [OSTI]

    Aamodt, Agnar

    Applications of CBR in oil well drilling "A general overview" Samad Valipour Shokouhi1,3 , Agnar. In this paper we present the evolving story of CBR applied in petroleum engineering especially in drilling engineering. Drilling engineering contains several potential domains of interest, in which CBR can be employed

  15. OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS BARBADOS ACCRETIONARY PRISM LOGGING WHILE DRILLING (LWD) Dr. J. Casey Moore Co-Chief Scientist, Leg 171A University of California, Santa Cruz Earth Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

  16. A simple model for laser drilling Jeb Collins a,1

    E-Print Network [OSTI]

    A simple model for laser drilling Jeb Collins a,1 , Pierre Gremaud b,2, aDepartment of Mathematics drilling is proposed. Assuming axi-symmetry of the process around the axis of the laser beam, a one, implemented and validated for drilling using lasers with intensities in the GW/cm2 range and microsecond

  17. Surface control bent sub for directional drilling of petroleum wells

    DOE Patents [OSTI]

    Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

    1986-01-01T23:59:59.000Z

    Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

  18. INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION FISCAL YEAR 2008 ANNUAL REPORT #12;#12;INTEGRATED OCEAN DRILLING PROGRAM UNITED STATES IMPLEMENTING ORGANIZATION CONSORTIUM FOR OCEAN LEADERSHIP FOUNDATION CONTRACT OCE-0352500 1 OCTOBER 2007­30 SEPTEMBER 2008 #12;INTEGRATED OCEAN DRILLING PROGRAM ii

  19. CARD No. 33 Consideration of Drilling Events in Performance Assessments

    E-Print Network [OSTI]

    CARD No. 33 Consideration of Drilling Events in Performance Assessments 33.A.1 BACKGROUND have an effect on the disposal system (61 FR 5228). Section 194.33, "Consideration of drilling events in performance assessments," sets forth specific requirements for incorporation of human-initiated drilling

  20. A Novel Membrane Finite Element with Drilling Rotations

    E-Print Network [OSTI]

    Kouhia, Reijo

    A Novel Membrane Finite Element with Drilling Rotations Reijo Kouhia 1 Abstract. A new low order interpolation is used for the drill rotation #12;eld. Both triangular and quadrilateral elements are considered of freedom. 1 INTRODUCTION In-plane rotational degrees of freedom, \\drilling de- grees of freedom

  1. Suggested drilling research tasks for the Federal Government

    SciTech Connect (OSTI)

    Carson, C.C.

    1984-04-01T23:59:59.000Z

    A brief summary discussion of drilling, drilling research and the role of the government in drilling research is presented. Specific research and development areas recommended for federal consideration are listed. The technical nature of the identified tasks is emphasized. The Appendices present the factual basis for the discussion and recommendations. Numerous references are noted in the Appendices.

  2. OCEAN DRILLING PROGRAM LEG 136 PRELIMINARY REPORT

    E-Print Network [OSTI]

    Operations ODP/TAI Timothy J.G. Francis Deputy Director ODP/TAMU May 1991 #12;This informal report Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Environment Research Council (United Kingdom) Ocean Research Institute of the University of Tokyo (Japan) Any

  3. Method of drill bit manufacture and product

    SciTech Connect (OSTI)

    Miller, R.R.; Ault, J.E.; Barber, R.B. Jr.; Hampel, D.A.

    1984-06-12T23:59:59.000Z

    A method is claimed for making a drill bit and product resulting therefrom in which carbide elements are coated with carbide and nitride materials such as those of titanium as by chemical vapor deposition after which the elements are cast in molten steel.

  4. Impedance-matched drilling telemetry system

    DOE Patents [OSTI]

    Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

    2008-04-22T23:59:59.000Z

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  5. Field Testing of Environmentally Friendly Drilling System

    SciTech Connect (OSTI)

    David Burnett

    2009-05-31T23:59:59.000Z

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  6. OCEAN DRILLING PROGRAM LEG 144 PRELIMINARY REPORT

    E-Print Network [OSTI]

    . Haggerty Co-Chief Scientist, Leg 144 Department of Geosciences University of Tulsa Tulsa, Oklahoma 74104 Dr of the Ocean Drilling Program: Janet A. Haggerty, Co-Chief Scientist (Research Office, University of Tulsa, Tulsa, Oklahoma 74104) Isabella Premoli Silva, Co-Chief Scientist (Departimento di Scienze della Terra

  7. OCEAN DRILLING PROGRAM LEG 146 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    at two sites to determine its nature and whether free gas is present beneath it. At all drill site Program (Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Norway, Spain, Sweden Science Foundation (United States) Natural Environment Research Council (United Kingdom) Ocean Research

  8. OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT ACTIVE CONTINENTAL EXTENSION IN THE WESTERN WOODLARK BASIN, PAPUA NEW GUINEA Dr. Philippe Huchon CNRS, Laboratoire de Géologie ?cole Normale Supérieure and Technology University of Hawaii at Manoa 2525 Correa Road Honolulu, HI 96822-2285 U.S.A. Dr. Adam Klaus Ocean

  9. Deep-hole drilling Fruit Flies & Zebrafish

    E-Print Network [OSTI]

    Li, Yi

    surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish Björk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New

  10. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  11. Recent Developments in Geothermal Drilling Fluids

    SciTech Connect (OSTI)

    Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

    1981-01-01T23:59:59.000Z

    In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

  12. Computational Approach to Photonic Drilling of Silicon Carbide

    SciTech Connect (OSTI)

    Samant, Anoop N [University of Tennessee, Knoxville (UTK); Daniel, Claus [ORNL; Chand, Ronald H [ORNL; Blue, Craig A [ORNL; Dahotre, Narendra B [University of Tennessee, Knoxville (UTK)

    2009-01-01T23:59:59.000Z

    The ability of lasers to carry out drilling processes in silicon carbide ceramic was investigated in this study. A JK 701 pulsed Nd:YAG laser was used for drilling through the entire depth of silicon carbide plates of different thicknesses. The laser parameters were varied in different combinations for a well controlled drilling through the entire thickness of the SiC plates. A drilling model incorporating effects of various physical phenomena such as decomposition, evaporation induced recoil pressure, and surface tension was developed. Such comprehensive model was capable of advance prediction of the energy and time required for drilling a hole through any desired depth of material.

  13. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    SciTech Connect (OSTI)

    Ikwuakor, K.C.

    1994-03-01T23:59:59.000Z

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  14. Down hole drilling motor with pressure balanced bearing seals

    SciTech Connect (OSTI)

    Maurer, W.C.

    1980-09-30T23:59:59.000Z

    A downhole drilling motor, e.g., a turbodrill is described, which is connected to a string of drill pipe has a rotating shaft for driving a drill bit which may be a rotary bit or a high speed solid head diamond bit. The turbine section has rotor and stator blades which are crescent shaped in cross section with each blade having an exit angle of 14-23/sup 0/ for maximum turbine efficiency. The drilling motor may alternatively be a positive displacement motor. The bearing shaft is provided with chevron rotary seals positioned below the rotary bearings carrying both radial and vertical thrust. Fluid lubricant fills the space from the rotary seals to a predetermined level above the bearings. A piston seals the lubricant chamber and is pressurized by drilling fluid (i.e. mud) flowing through the tool. A layer of lubricant fluid overlies the first piston and has a second piston covering said fluid and transmitting pressure from the drilling fluid to the lubricant fluid surrounding the bearings. The drilling mud is divided into two streams, one of which rotates the drill bit, and the other of which passes through the drill bit. The pressure drop across the drilling motor equals the pressure drop across the drill bit, thus balancing the pressure on the bearing seals.

  15. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    these recorded sources important rock pedagogical tools inwere a primary source of western rock music for young fans,Nevertheless, a source of funding for rock music performance

  16. Thermoporoelastic Effects of Drilling Fluid Temperature on Rock Drillability at Bit/Formation Interface

    E-Print Network [OSTI]

    Thepchatri, Kritatee 1984-

    2012-10-26T23:59:59.000Z

    IN GEOMECHANICS .............. 27 3.1 Stress and Strain ............................................................................................ 28 3.1.1 Definitions of Stress and Strain... for stress in this thesis is compressive positive following a standard of the geomechanic sign convention. However, the finite-element computer codes for the thermoporoelastic solution in this thesis use a tensile positive sign convention to comply with a...

  17. Preliminary cutting and drilling studies using new generation lasers

    SciTech Connect (OSTI)

    Kautz, D.D.; Sze, J.S.; Dragon, E.P.; Hargrove, R.S.

    1992-02-20T23:59:59.000Z

    High power and radiance dye lasers developed at Lawrence Livermore National Laboratory show promise for material processing tanks. Evaluation using welding heat flow models suggest significant increases in precision and speed are expected. We developed tooling and instrumentation to diagnose important parameters including spot geometry and optical train quality. We started processing studies to determine the viability of these lasers of cutting and drilling. We used titanium alloys first in the studies due to the availability of comparable parametric studies in the technical literature. Results show that cuts and holes with extremely fine features can be made with dye lasers. The high radiance beam produces low distortion and small heat-affected zones. We have accomplished very high aspect ratios and micron scale kerfs and holes. Through continued system improvement and process optimization, we believe that submicron levels will be achieved.

  18. Rock Properties Model

    SciTech Connect (OSTI)

    C. Lum

    2004-09-16T23:59:59.000Z

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  19. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock . . . . . . . . . . . . . . . . . . . . . . . . 194 Appendix C--Resource/Reserve Definitions . . . . . . 195 Commodities: Abrasives (Manufactured

  20. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare . . . . . . . . . . . . . . . . . . . . . . . . 190 Appendix C--A Resource/Reserve Classification for Minerals

  1. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01T23:59:59.000Z

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.

  2. Drilling fluids and reserve pit toxicity

    SciTech Connect (OSTI)

    Leuterman, A.J.J.; Jones, F.V.; Chandler, J.E. (M-I Drilling Fluids Co. (US))

    1988-11-01T23:59:59.000Z

    Drilling fluids are now classified as exempt under the Resource Conservation and Recovery Act (RCRA) hazardous waste laws. Since 1986, however, the U.S. Environmental Protection Agency (EPA) has been studying reserve pit contents to determine whether oilfield wastes should continue under this exemption. Concerns regarding reserve pit contents and disposal practices have resulted in state and local governmental regulations that limit traditional methods of construction, closure, and disposal of reserve pit sludge and water. A great deal of attention and study has been focused on drilling fluids that eventually reside in reserve pits. In-house studies show that waste from water-based drilling fluids plays a limited role (if any) in possible hazards associated with reserve pits. Reserve pit water samples and pit sludge was analyzed and collated. Analyses show that water-soluble heavy metals (Cr, Pb, Zn and Mn) in reserve pits are generally undetectable or, if found in the total analysis, are usually bound to clays or organics too tightly to exceed the limitations as determined by the EPA toxicity leachate test. The authors' experience is that most contamination associated with reserve pits involves high salt content from produced waters and/or salt formations, lead contamination from pipe dope, or poorly designed pits, which could allow washouts into surface waters or seepage into groundwater sources. The authors' analyses show that reserve its associated with water-based drilling fluid operations should not be classified as hazardous; however, careful attention attention should be paid to reserve pit construction and closure to help avoid any adverse environmental impact.

  3. Four rigs refurbished for West Africa drilling

    SciTech Connect (OSTI)

    Not Available

    1991-06-10T23:59:59.000Z

    In April and May 1990, Shell Petroleum Development Co. of Nigeria Ltd. awarded Noble Drilling West Africa Inc. four separate contracts to drill oil and gas wells in the inland waterways of Nigeria. The contracted rigs included a shallow water jack up, the NN-1, and three posted barges, the Gene Rosser, the Chuck Syring, and the Lewis Dugger. The jack up was built in 1978, and the three posted barges are 1980s vintage. Three of the rigs have been idle for a number of years. The Shell Nigeria contracts required major modifications to the rigs before putting them into international service. Noble replaced or refurbished all major pieces of equipment in the drilling, power, and service systems on the rigs. Rig crews serviced all other equipment. A significant amount of general service piping and electrical wiring was replaced. Each rig also required additional motor control centers to support the new drilling and mud processing equipment. Alfa-Laval waste-heat water desalination plants and new sewage treatment units were installed on all four rigs. Because of the tidal variances and high silt conditions expected in the African waterways, all engine cooling systems were converted from heat exchangers to radiators. Rotary tables were made common on all rigs at 37 1/2 in. Noble had all traveling equipment completely inspected and modified as necessary. Strict attention was paid to certification and documentation of all equipment. Safety upgrades conformed to both Shell and Noble standards. Fire and gas detection systems were installed throughout each rig. Water and foam deluge systems were installed in the wellhead areas, and new foam systems and monitors were installed on the helldecks.

  4. Microhole Wireless Steering While Drilling System

    SciTech Connect (OSTI)

    John Macpherson; Thomas Gregg

    2007-12-31T23:59:59.000Z

    A background to Coiled Tubing Bottom Hole Assemblies (CT-BHA) is given, and the development of a bi-directional communications and power module (BCPM)component is described. The successful operation of this component in both the laboratory and field environment is described. The primary conclusion of this development is that the BCPM component operates as anticipated within the CT-BHA, and significantly extends the possibility of drilling with coiled tubing in the microhole environment.

  5. Horizontal drilling in shallow, geologically complex reservoirs

    SciTech Connect (OSTI)

    Venable, S.D.

    1992-10-01T23:59:59.000Z

    The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

  6. Horizontal drilling in shallow, geologically complex reservoirs

    SciTech Connect (OSTI)

    Venable, S.D.

    1992-01-01T23:59:59.000Z

    The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

  7. Antiwhirl PDC bits increased penetration rates in Alberta drilling. [Polycrystalline Diamond Compact

    SciTech Connect (OSTI)

    Bobrosky, D. (Baker Hughes Inteq, Calgary, Alberta (Canada)); Osmak, G. (Petro-Canada, Calgary, Alberta (Canada))

    1993-07-05T23:59:59.000Z

    The antiwhirl PDC bits and an inhibitive mud system contributed to the quicker drilling of the time-sensitive shales. The hole washouts in the intermediate section were dramatically reduced, resulting in better intermediate casing cement jobs. Also, the use of antirotation PDC-drillable cementing plugs eliminated the need to drill out plugs and float equipment with a steel tooth bit and then trip for the PDC bit. By using an antiwhirl PDC bit, at least one trip was eliminated in the intermediate section. Offset data indicated that two to six conventional bits would have been required to drill the intermediate hole interval. The PDC bit was rebuildable and therefore rerunnable even after being used on five wells. In each instance, the cost of replacing chipped cutters was less than the cost of a new insert roller cone bit. The paper describes the antiwhirl bits; the development of the bits; and their application in a clastic sequence, a carbonate sequence, and the Shekilie oil field; the improvement in the rate of penetration; the selection of bottom hole assemblies; washout problems; and drill-out characteristics.

  8. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

    2006-02-20T23:59:59.000Z

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

  9. Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition

    SciTech Connect (OSTI)

    John H. Cohen; Greg Deskins

    2006-02-01T23:59:59.000Z

    This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

  10. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare Earths Rhenium Rubidium Salt Sand and Gravel Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  11. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    SciTech Connect (OSTI)

    Syd S. Peng

    2005-10-01T23:59:59.000Z

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting designs. Numerical simulations were performed to investigate the mechanisms of modern roof bolting systems including both the tension and fully grouted bolts. Parameters to be studied are: bolt length, bolt spacing, bolt size/strength, grout annulus, in-situ stress condition, overburden depth, and roof geology (massive strata, fractured, and laminated or thinly-bedded). Based on the analysis of the mechanisms of both bolting systems and failure modes of the bolted strata, roof bolting design criteria and programs for modern roof bolting systems were developed. These criterion and/or programs were combined with the MRGIS for use in conjunction with roof bolt installation.

  12. Overview of GRI research at the Rock Creek Site, Black Warrior Basin. Overview of GRI research at Rock Creek: Eight years of cooperative research, coalbed methane shortcourse. Held in Abingdon, Virginia on October 23, 1992. Topical report

    SciTech Connect (OSTI)

    Schraufnagel, R.

    1992-10-01T23:59:59.000Z

    The presentation slides from the October 23, 1992 workshop on coalbed methane exploration and production are assembled in this volume. They illustrate the following discussions: Overview of GRI Research at Rock Creek: Eight Years of Cooperative Research, Drilling and Completing Coalbed Methane Wells: Techniques for Fragile Formations, Connecting the Wellborne to the Formation: Perforations vs. Slotting, Coalbed Methane Well Testing in the Warrior Basin, Reservoir Engineering: A Case Study at Rock Creek, Fraccing of Multiple Thin Seams: Considerations and Constraints, Implementing Coal Seam Stimulations: Requirements for Successful Treatments, Coal-Fluid Interactions, Mine-Through Observations of Coal Seam Stimulations: Reality vs. Theory, and Recompleting Coalbed Methane Wells: The Second Try at Success.

  13. Incentive drilling contracts; A logical approach for enhancement of drilling efficiency

    SciTech Connect (OSTI)

    Moomjian, C.A. Jr. (Santa Fe Drilling Co. (US))

    1992-03-01T23:59:59.000Z

    Incentive drilling contracts historically have been based on the footage and turnkey concepts. Because these concepts have not been used widely in the international and offshore arenas, this paper discusses other innovative approaches to incentive contracts. Case studies of recently completed or current international and offshore contracts are presented to describe incentive projects based on a performance bonus (Case 1), lump sum per well (Case 2), target time and cap for a specified hole section (Case 3), and per-well target time (Case 4). This paper concludes with a review and comparison of the case studies and a general discussion of factors that produce successful innovative incentive programs that enhance drilling efficiency.

  14. Oil and Gas CDT Bots in Rocks: Intelligent Rock Deformation for Fault Rock

    E-Print Network [OSTI]

    Henderson, Gideon

    Heriot-Watt University, Institute of Petroleum Engineering Supervisory Team Dr Helen Lewis, Heriot://www.pet.hw.ac.uk/staff-directory/jimsomerville.htm Key Words Nano/Micro sensors; faults; fault zones; geomechanics; rock mechanics; rock deformation-deformed equivalent, a different lab-deformed example and a geomechanical simulation of a fault zone showing permanent

  15. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18T23:59:59.000Z

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  16. Conoco cuts North Sea drilling time by 40%

    SciTech Connect (OSTI)

    Shute, J.; Alldredge, G.

    1982-07-01T23:59:59.000Z

    The record-breaking Murchison platform has slashed development drilling time by an average of 20 days and in the process has attracted the interest of oil men over the world. This article details each aspect of the operation how the rig was modified for speed, mud and casing programs and how they were changed, computer-aided MWD directional program, special conductor pipe and the way straight-hole turbo drilling complemented conventional rotary drilling.

  17. 2014 Ocean Drilling Cita on Report Covering Cita ons Related to the

    E-Print Network [OSTI]

    2014 Ocean Drilling Cita on Report Covering Cita ons Related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and Interna onal Ocean Discovery Program from #12;22014 Ocean Drilling Cita on Report Introduc on At the end of each fiscal year, the Interna onal

  18. Rapid Characterization of Drill Core and Cutting Mineralogy using...

    Open Energy Info (EERE)

    Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid...

  19. Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)

    Broader source: Energy.gov [DOE]

    Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

  20. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

  1. atlantic drill site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    140 7th Avenue South, University of South Florida, St Atlantic DSDP (Deep Sea Drilling Project) Site 607 and South Atlantic ODP Site 1090. Data collected provide and...

  2. Type A Accident Investigation of the June 21, 2001, Drilling...

    Office of Environmental Management (EM)

    A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001 Type A Accident Investigation of the June 21,...

  3. Temporary Bridging Agents for Use in Drilling and Completions...

    Broader source: Energy.gov (indexed) [DOE]

    Temporary Bridging Agents for Use in Drilling and Completions of EGS Principal Investigator - Larry Watters Presenter - Jeff Watters CSI Technologies LLC Track Name May 18, 2010...

  4. Recent Drilling Activities At The Earth Power Resources Tuscarora...

    Open Energy Info (EERE)

    Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd to...

  5. Development of a Hydrothermal Spallation Drilling System for EGS

    Broader source: Energy.gov [DOE]

    Project objective: Build and demonstrate a working prototype hydrothermal spallation drilling unit that will accelerate commercial deployment of EGS as a domestic energy resource.

  6. advanced drill components: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agnar Aamodt and Odd Erik Norwegian University of Science and Technology, NTNU, Norway ABSTRACT The drilling process is getting increasingly more complex as oil fields...

  7. autolifting floating drilling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drilling Program (Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden) the concept of deploying a mining- type diamond coring system (DCS)...

  8. Geothermal: Sponsored by OSTI -- Vale exploratory slimhole: Drilling...

    Office of Scientific and Technical Information (OSTI)

    Vale exploratory slimhole: Drilling and testing Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New...

  9. Geothermal: Sponsored by OSTI -- A study of geothermal drilling...

    Office of Scientific and Technical Information (OSTI)

    A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  10. Geothermal: Sponsored by OSTI -- Chapter 6. Drilling and Well...

    Office of Scientific and Technical Information (OSTI)

    Chapter 6. Drilling and Well Construction Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot...

  11. Geothermal: Sponsored by OSTI -- Deep Geothermal Drilling Using...

    Office of Scientific and Technical Information (OSTI)

    Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic...

  12. Rapid characterization of drill core and cutting mineralogy using...

    Open Energy Info (EERE)

    characterization of drill core and cutting mineralogy using infrared spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid...

  13. Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...

    Open Energy Info (EERE)

    Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last...

  14. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov (indexed) [DOE]

    technologies (i.e. percussion hammers, PDC bits, hybrid bits, mud hammers, and turbo drills) - Select Two Candidate Options - Field test (Secure industry partner with...

  15. aid drilling decisions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROSPECTUS Geosciences Websites Summary: is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche Drilling Program (Belgium, Denmark,...

  16. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B. [Nevada Bureau of Mines and Geology, Reno, NV (United States); Lock, D.E. [Mackay School of Mines, Reno, NV (United States)

    1996-08-01T23:59:59.000Z

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  17. Prospects for hot dry rock in the future

    SciTech Connect (OSTI)

    Berger, M.E.; Murphy, H.D.

    1988-01-01T23:59:59.000Z

    The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. The program was reviewed five times in the past three years. Three of these reviews were done by the US Department of Energy (DOE) and a fourth was conducted by the National Research Council at the request of DOE. In addition, HDR was evaluated in the Energy Research Advisory Board's Solid Earth Sciences Report. Recent economic studies for HDR have been performed by Bechtel National, Inc., the Electric Power Research Institute, and the United Kingdom. These studies are reviewed in light of recent progress at Fenton Hill in reducing drilling costs, and mapping and in identifying drilling targets. All of the attention focused on HDR has resulted in evaluating the way in which HDR fits within the nation's energy mix and in estimating when HDR will contribute to energy security. To establish a framework for evaluating the future of HDR, the status and progress of HDR are reviewed and the remaining Fenton Hill program is outlined. Recommendations are also made for follow-on activities that will lead to achieving full development of HDR technologies in the appropriate time frame.

  18. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01T23:59:59.000Z

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  19. Sound Coiled-Tubing Drilling Practices

    SciTech Connect (OSTI)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

    2001-09-30T23:59:59.000Z

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  20. Drills and Classes | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | Documents Memorandum fromErnest MonizDrills

  1. Drilling Fluids Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrilling Fluids Market

  2. Monitoring temperature conditions in recently drilled nonproductive industry boreholes in Oklahoma

    SciTech Connect (OSTI)

    Harrison, W.E.; Luza, K.V.

    1985-06-01T23:59:59.000Z

    Temperature conditions were monitored in seven industry petroleum-test wells (called holes-of-opportunity in this report) that were drilled in central and eastern Oklahoma. Five of these wells provided useful temperature information, and two wells were used to determine the length of time needed for the borehole-fluid temperature to achieve thermal equilibrium with the formation rocks. Four wells were used to verify the validity of a geothermal-gradient map of Oklahoma. Temperature surveys in two wells indicated a gradient lower than the predicted gradients on the geothermal-gradient map. When deep temperature data, between 5000 and 13,000 feet, are adjusted for mud-circulation effects, the adjusted gradients approximate the gradients on the geothermal-gradient map. The temperature-confirmation program appears to substantiate the geographic distribution of the high- and low-thermal-gradient regimes in Oklahoma. 13 refs., 18 figs., 7 tabs.

  3. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    SciTech Connect (OSTI)

    Jill S. Buckley; Norman R. Morrow

    2004-11-01T23:59:59.000Z

    Contamination of crude oils by surface-active agents from drilling fluids or other oil-field chemicals is more difficult to detect and quantify than bulk contamination with, for example, base fluids from oil-based muds. Bulk contamination can be detected by gas chromatography or other common analytical techniques, but surface-active contaminants can be influential at much lower concentrations that are more difficult to detect analytically, especially in the context of a mixture as complex as a crude oil. In this report we present a baseline study of interfacial tensions of 39 well-characterized crude oil samples with aqueous phases that vary in pH and ionic composition. This extensive study will provide the basis for assessing the effects of surface-active contaminant on interfacial tension and other surface properties of crude oil/brine/rock ensembles.

  4. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect (OSTI)

    Syd S. Peng

    2005-04-15T23:59:59.000Z

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) the relationship among feed pressure, penetration rate and rotation rate seems to be a good indicator for estimating rock strength when both penetration rate and rotation rate are controlled or kept constant, (4) the empirical equations for eliminating the machine effect on drilling parameters were developed and verified, and (5) a real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, performs very well in underground production condition.

  5. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect (OSTI)

    Syd S. Peng

    2003-01-15T23:59:59.000Z

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed. It is found that the drilling power can be used as a supplementary method for detecting voids/fractures and rock interfaces.

  6. Drilling history and stratigraphic correlation of Rose Run sandstone of northeastern Ohio

    SciTech Connect (OSTI)

    Moyer, C.C.

    1988-08-01T23:59:59.000Z

    To date, 40 known tests have penetrated the Knox unconformity in Ashtabula, Lake, Trumbull, Geauga, and Portage Counties, Ohio. Prior to 1980, there were only 22 tests. Of these, only 10 penetrated and logged rocks older than the Rose Run sandstone. In the period 1980-1986, two Rose Run discoveries were drilled, one in New Lyme Township of Ashtabula County and one in Burton Township of Geauga County. Both discovery wells have been offset. Attempts have been made to correlate these two areas with older tests in northeastern Ohio and with the Rose Run sandstones of Coshocton County. In northeastern Ohio, preliminary studies indicate a Rose Run sandstone and/or dolomite interval approximately 100 ft thick. The upper 50 ft is predominantly sandstone and the lower 50 ft changes locally from sandstone to dolomite. The upper sandy member can be correlated to the A, B, and C sandstone units of Coshocton County.

  7. Strength of transversely isotropic rocks

    E-Print Network [OSTI]

    Pei, Jianyong, 1975-

    2008-01-01T23:59:59.000Z

    This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in formulating an anisotropic criterion ...

  8. Mining earth's heat: development of hot-dry-rock geothermal reservoirs

    SciTech Connect (OSTI)

    Pettitt, R.A.; Becker, N.M.

    1983-01-01T23:59:59.000Z

    The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program, as initially developed by the Los Alamos National Laboratory, is to mine this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large-diametervertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kW of electricity. A second-generation system, recently drilled to 4.5 km (15,000 ft) and temperatures of 320/sup 0/C (608/sup 0/F), entails creating multiple, parallel fractures between a pair of inclined boreholes. This system should produce 5 to 10 MW(e) for 20 years. Significant contributions to underground technology have been made through the development of the program.

  9. Public Support for Oil and Gas Drilling in California's Forests and Parks

    E-Print Network [OSTI]

    Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

    2004-01-01T23:59:59.000Z

    009 "Public Support for Oil and Gas Drilling in CaliforniasPublic Support for Oil and Gas Drilling in CaliforniasPublic Support for Oil and Gas Drilling in Californias

  10. Support for Offshore Oil and Gas Drilling among the California Public

    E-Print Network [OSTI]

    Smith, Eric R.A.N.

    2003-01-01T23:59:59.000Z

    005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

  11. Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch

    E-Print Network [OSTI]

    KELLOGG, RYAN M

    2007-01-01T23:59:59.000Z

    is particularly good at drilling wells in certain types offor depth, drilling time, and well type are presented ingas. The objective of drilling a well is to penetrate these

  12. Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions

    E-Print Network [OSTI]

    Ravi, Ashwin

    2012-10-19T23:59:59.000Z

    Proper selection of drilling fluids plays a major role in determining the efficient completion of any drilling operation. With the increasing number of ultra-deep offshore wells being drilled and ever stringent environmental and safety regulations...

  13. New Environmentally Friendly Dispersants for High Temperature Invert-Emulsion Drilling Fluids Weighted by Manganese Tetraoxide

    E-Print Network [OSTI]

    Rehman, Abdul

    2012-02-14T23:59:59.000Z

    This thesis provides a detailed evaluation of different environmentally friendly dispersants in invert-emulsion drilling fluids that can be used to drill wells under difficult conditions such as HPHT. The drilling fluid is weighted by manganese...

  14. Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch

    E-Print Network [OSTI]

    KELLOGG, RYAN M

    2007-01-01T23:59:59.000Z

    high-frequency data from oil and gas drilling. I find thatan examination of the oil and gas drilling industry. I findvertical integration. The oil and gas drilling industry is

  15. Multiple horizontal drainholes can improve production

    SciTech Connect (OSTI)

    Graves, K.S. (Baker Hughes Inteq, Houston, TX (United States))

    1994-02-14T23:59:59.000Z

    Drilling several horizontal sections from a single vertical well bore has improved the drilling and production economics on many wells, especially in South Texas, where multilateral wells are becoming more common. A multilateral well consists of two or more horizontal drainholes drilled from one primary vertical well bore, either as a new well or as a re-entry. There are a number of advantages to drilling multilateral drainholes. Multilateral drainholes reduce drilling costs because only one main vertical bore is drilled (reduces drilling time and wellhead and casing costs). Of primary importance is the increased well production compared to similar single horizontal wells and vertical wells. The use of a single vertical well bore minimizes location, access road, and cleanup costs. Fewer surface production facilities may be necessary, and offshore, increasing the drainage area for a fixed number of well slots gives greater platform flexibility and allows more extensive field development. One disadvantage, however, is the potential complications during well control because two or more well bores are open. Also, the ability to service a particular well bore is more complex. To prevent future well bore service problems, each drainhole must be designed for later re-entry.

  16. Vadose zone drilling at the NTS

    SciTech Connect (OSTI)

    Efurd, D.W.

    1994-08-01T23:59:59.000Z

    The Yucca Mountain Project has an opportunity to evaluate possible mobilization and transport of radioactive materials away from the storage horizon in the proposed repository. One scenario by which such transport could occur involves water leaving the storage area and carrying radioactive particulates of colloidal size. The colloids could move along the gas-liquid interface in partially filled fractures within the vadose zone. It should be possible to check the reality of this proposed scenario by examining ``anthropogenic analogs`` of the repository. These are sites of nuclear tests conducted in unsaturated tuff at the Nevada Test Site (NTS). We propose to drill under one or more such sites to determine if radionuclides have moved from their original confinement in the puddle- glass at the bottom of the cavity. This document examines the characteristics of an ideal test site for such a study, suggests several possible locations that have some of the desired characteristics, and recommends one of these sites for the proposed drilling.

  17. Pioneering work, economic factors provide insights into Russian drilling technology

    SciTech Connect (OSTI)

    Gaddy, D.E.

    1998-07-06T23:59:59.000Z

    In Russia and America, individual ingenuity and economic forces have produced a variety of drilling technologies, resulting in the development of disparate drilling systems. Endeavors by the US Department of Energy, the Gas Research Institute, Sandia Laboratories, and private industry have promoted exchanges of knowledge since the 1980s, and now that the barriers to technology transfer are being lifted, engineers from both countries have the opportunity to exchange knowledge and incorporate the best of both. The Russian drilling industry, like the Russian space program, has achieved tremendous success in implementing product and process innovations including the first directional (1940s), horizontal (1950s), and multilateral (1950s) wells. In addition, Russian engineers built the first turbodrills, electrodrills, novel drills (lasers, explosives), aluminum drill pipe, downhole electric submersible pumps, and mud hammers. This first part of a two-part series describes the achievements of Russian engineers in horizontal and multilateral drilling technologies followed by a discussion of the economic differences that led Russian and American drillers to develop dissimilar drilling systems. The second part describes a variety of innovative Russian technologies and provides details on the technical advantages they offer for the drilling process.

  18. Penetration rate prediction for percussive drilling via dry friction model

    E-Print Network [OSTI]

    Krivtsov, Anton M.

    Penetration rate prediction for percussive drilling via dry friction model Anton M. Krivtsov a of percussive drilling assuming a dry friction mechanism to explain the experimentally observed drop in pene as a frictional pair, and this can generate the pattern of the impact forces close to reality. Despite quite

  19. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P. (Burlington, MA)

    1981-01-01T23:59:59.000Z

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  20. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H. (Westford, MA); Mitchell, Peter G. (Concord, MA)

    1981-01-01T23:59:59.000Z

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  1. Integrated Ocean Drilling Program Hints for a Happy Existence

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program #12;Hints for a Happy Existence #12;Accommodations Area QUIET your shift, take everything you need with you. Quiet during boat drills Unlock Bathroom Doors before, during, and soon after core is received #12;Movies Selection of DVDs, VHS, and Laser Discs

  2. Calculator program optimizes bit weight, rotary speed, reducing drilling cost

    SciTech Connect (OSTI)

    Simpson, M.A.

    1984-04-23T23:59:59.000Z

    Bit selection, bit weight, and rotary speed have repeatedly proven to be the most important and commonly overlooked alterable factors which control penetration rate, footage, and overall drilling cost. This is particularly true in offshore operations where drilling costs are highest and the greatest cost savings stand to be achieved through implementation of proven optimization techniques. The myth that bit weights and rotary speeds cannot be optimized in directional holes has hindered the industry from using this virtually cost-free method for reducing drilling cost. The use of optimized bit weights and rotary speeds in conjunction with minimum cost bit programs based on cost per foot analysis of previous bit runs in the area was implemented on a five-well platform in the Grand Isle Block 20 field, offshore Louisiana. Each of the directional wells was drilled substantially faster and cheaper than the discovery well, which was a straight hole. Average reductions in footage cost of 31.3%, based on daily operating cost of $30,000/day, and increase in average daily footage drilled of 45.2% were effected by ''collectively optimizing'' drilling performance. The ''Optimizer'' program is an HP-41CV adaptation of the Bourgoyne and Young drilling model. It was used to calculate the optimum bit weights and rotary speeds based on field drilling tests; historical bit and bearing wear data; and current operating conditions, cost, and constraints.

  3. a microsoft white paper Drilling for new Business Value

    E-Print Network [OSTI]

    Bernstein, Phil

    a microsoft white paper Drilling for new Business Value How innovative oil and gas companies Perez, Enterprise Architect, Microsoft #12;a microsoft white paper Drilling for new B usiness Value 2 for new B usiness Value 3 executive summary as the buzz about big data makes the leap from technology

  4. KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING

    E-Print Network [OSTI]

    Aamodt, Agnar

    for capturing and reusing experience and best practice in industrial operations5-7 . CBR as a technology has nowKNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING Combining general and case-specific knowledge of Computer and Information Science. agnar.aamodt@idi.ntnu.no Abstract: Oil well drilling is a complex process

  5. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect (OSTI)

    Larry Stolarczyk

    2008-08-08T23:59:59.000Z

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  6. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  7. Source rock study of Smackover Formation from east Texas to Florida

    SciTech Connect (OSTI)

    Sassen, R.; Moore, C.H.

    1987-05-01T23:59:59.000Z

    Analyses of core and crude oil samples indicate that the laminated lime mudstone facies of the lower Smackover Formation is a significant source rock across the trend. The source facies was deposited in an anoxic and hypersaline environment that permitted preservation of algal kerogen. Moreover, source potential also occurs in undifferentiated Gilmer-Smackover rocks of east Texas deposited in a carbonate slope environment. Thermal maturity is the key factor that controls the generation of crude oil by the carbonate source facies and the eventual destruction of hydrocarbons in upper Smackover and Norphlet reservoirs. Once the regional thermal maturity framework is understood, it is possible to construct a source rock model that explains the distribution of crude oil, gas condensate, and methane across the trend. Calculated thermal maturity histories provide insight to the timing of hydrocarbon generation and migration and to the timing of hydrocarbon destruction and sulfate reduction in deep reservoirs. Basic geochemical strategies for exploration are suggested. One strategy is to focus exploration effort on traps formed prior to the time of crude oil migration that were nearest to effective source rocks. Another strategy is to avoid drilling reservoir rocks that are thermally overmature for preservation of hydrocarbons.

  8. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect (OSTI)

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22T23:59:59.000Z

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  9. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect (OSTI)

    Xiaodi Huang; Richard Gertsch

    2005-02-04T23:59:59.000Z

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  10. An engineering approach to characterizing synthetic-based drilling fluids for deepwater and extended reach drilling applications

    SciTech Connect (OSTI)

    Dye, W.M. [Baker Hughes INTEQ, Houston, TX (United States); Robinson, G.; Mullen, G.A.

    1998-12-31T23:59:59.000Z

    Rheological techniques currently employed to characterize drilling fluids are based upon models and instrumentation that were in existence over forty years ago. A great deal of literature exists that questions the degree to which these techniques address the requirements placed on drilling muds in today`s drilling environment. The solution to many of the problems facing companies operating in deepwater requires an in-depth understanding of the rheological properties of synthetic-based drilling muds. These problems include lost circulation, hole cleaning and barite sag. This paper discusses the application of sophisticated rheological instrumentation and techniques that specifically address the needs of deepwater drilling operations. Focus has been placed on studying the gel structure of synthetics, particularly at low temperatures, in order to provide engineered solutions to get strength-related problems encountered in deepwater.

  11. Kinetics of CO2-Fluid-Rock Reactions in a Basalt Aquifer, Soda Springs, Idaho

    E-Print Network [OSTI]

    Maskell, Alexandra; Kampman, Niko; Chapman, Hazel; Condon, Daniel J.; Bickle, Mike

    2015-06-24T23:59:59.000Z

    of the fluvial Salt Lake Formation unconformably above Proterozoic and Palaeozoic rocks characterise this extensional period (e.g. Miller, 1991; Oriel, 1968; Oriel and Platt, 1980; Sacks and Platt, 1985). Several generations of faults cut the Salt Lake... 30.2' ???? ? ??? ??? [1] This gave a bulk hydraulic conductivity of 1.2 x 10-4 1.8 x 10-5 m/min. Uncertainty was calculated using the equations in Appendix A. Drilling conducted by the U.S. Army Engineers (1968) in the upper aquifer...

  12. High Temperature Battery for Drilling Applications

    SciTech Connect (OSTI)

    Josip Caja

    2009-12-31T23:59:59.000Z

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  13. Lateral drilling and completion technologies for shallow-shelf carbonates of the Red River and Ratcliffe Formations, Williston Basin. Topical report, July 1997

    SciTech Connect (OSTI)

    Carrell, L.A.; George, R.D.; Gibbons, D.

    1998-07-01T23:59:59.000Z

    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil-well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius lateral in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2,590 to 2,890 m in Richland County, MT; Bowman County, ND; and Harding County, SD. In theory, all of the horizontal drilling techniques explored in this project have merit for application fitting specific criteria. From a realistic point of view, the only relatively trouble-free, adequately-proven technology employed was the medium-radius steered motor/MWD technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but appears to still be significantly in developmental stages. This technology will probably always be more troublesome than the technology used to drill new wells because the smaller diameter required for the tools contributes to both design and operational complexities. Although limited mechanical success has been achieved with some of the lateral jetting technologies and the Amoco tools, their predictability and reliability is unproven. Additionally, they appear to be limited to shallow depths and certain rock types. The Amoco technology probably has the most potential to be successfully developed for routinely reliable, field applications. A comparison of the various horizontal drilling technologies investigated is presented.

  14. Computation modeling of drill bits : a new method for reproducing bottom hole geometry and a second-order explicit integrator via composition for coupled rotating rigid bodies

    E-Print Network [OSTI]

    Endres, Lanson Adam

    2007-01-01T23:59:59.000Z

    rotary drilling. A method of drilling wells where the bit isin drilling to remove cuttings from a borehole as well asDrilling System The bit is just one part of a complex system required to drill a well.

  15. Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field

    SciTech Connect (OSTI)

    Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

    2005-10-27T23:59:59.000Z

    During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by of a mile toward the north and is located over mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

  16. Cretaceous shallow drilling, US Western Interior: Core research. Technical progress report

    SciTech Connect (OSTI)

    Arthur, M.A.

    1993-02-17T23:59:59.000Z

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth ``exposures`` in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  17. Geothermal drilling and completion technology development program plan

    SciTech Connect (OSTI)

    Varnado, S.G.; Kelsey, J.R.; Wesenberg, D.L.

    1981-02-01T23:59:59.000Z

    A long-range plan for the development of new technology that will reduce the cost of drilling and completing geothermal wells is presented. The role of this program in relation to the total Federal Geothermal Energy Program is defined and specific program goals are identified. Then, the current status of the program, initiated in FY 1978, is presented, and research and development activities planned through 1987 are described. Budget and milestone estimates for each task are provided. The management plan for implementing the program is also discussed. The goals of this program are to develop the technology required to reduce the cost of drilling and completing geothermal wells by 25% in the near term and by 50% in the long term. Efforts under this program to date have resulted in new roller bit designs that will reduce well costs by 2% to 4%, new drag bits that have demonstrated marked increases in penetration rate, and the field verification of the effectiveness of inert drilling fluids in reducing drill pipe corrosion. Activities planned for the next six years for achieving the program goals are described. Technical activities include work in the areas of drilling hardware, drilling fluids, lost circulation control methods, completion technology, advanced drilling systems, and supporting technology.

  18. Deep water drilling risers in calm and harsh environments

    SciTech Connect (OSTI)

    Olufsen, A.; Nordsve, N.T. [Statoil, Trondheim (Norway). Research Centre

    1994-12-31T23:59:59.000Z

    The overall objective of the work presented in this paper is to increase the knowledge regarding application of deep water drilling risers in different environmental conditions. Identification of key parameters and their impact on design and operation of deep water drilling risers are emphasized. Riser systems for two different cases are evaluated. These are: drilling offshore Nigeria in 1,200 m water depth; drilling at the Voering Plateau offshore Northern Norway in 1,500 m water depth. The case studies are mainly referring to requirements related to normal drilling operation of the riser. They are not complete with respect to describe of total riser system design. The objectives of the case studies have been to quantify the important of various parameters and to establish limiting criteria for drilling. Dynamic riser analyses are also performed. For the Nigeria case, results for a design wave with 100 years return period show that the influence of dynamic response is only marginal (but it may of course be significant for fatigue damage/life time estimation). The regularity of the drilling operation is given as the probability that jointly occurring wave heights and current velocities are within the limiting curve.

  19. Down hole drilling motor with pressure balanced bearing seals

    SciTech Connect (OSTI)

    McDonald, W.J.

    1981-01-27T23:59:59.000Z

    A down hole drilling motor, e.g., A turbodrill, which is connected to a string of drill pipe has a rotating shaft for driving a drill bit which may be a rotary bit or a high speed solid head diamond bit. The turbine section has rotor and stator blades which are crescent shaped in cross section with each blade having an exit angle of 14*-23* for maximum turbine efficiency. The bearing shaft is provided with chevron rotary seals positioned below the rotary bearings carrying both radial and vertical thrust. Fluid lubricant fills the space from the rotary seals to a predetermined level above the bearings. A piston seals the lubricant chamber and is pressurized by drilling fluid (I.E. Mud) flowing through the tool. A layer of lubricant fluid overlies the first piston and has a second piston covering said fluid and transmitting pressure from the drilling fluid to the lubricant fluid surrounding the bearings. The drilling mud that causes the turbodrill to rotate is pumped away from the bearing seals by pump means operated by the drilling motor to balance the pressure on the upper and lower bearing seals.

  20. Basin center - fractured source rock plays within tectonically segmented foreland (back-arc) basins: Targets for future exploration

    SciTech Connect (OSTI)

    Weimer, R.J. [Colorado School of Mines, Golden, CO (United States)

    1994-09-01T23:59:59.000Z

    Production from fractured reservoirs has long been an industry target, but interest in this type play has increased recently because of new concepts and technology, especially horizontal drilling. Early petroleum exploration programs searched for fractured reservoirs from shale, tight sandstones, carbonates, or basement in anticlinal or fault traps, without particular attention to source rocks. Foreland basins are some of the best oil-generating basins in the world because of their rich source rocks. Examples are the Persian Gulf basin, the Alberta basin and Athabasca tar sands, and the eastern Venezuela basin and Orinoco tar sands. Examples of Cretaceous producers are the wrench-faulted La Paz-Mara anticlinal fields, Maracaibo basin, Venezuela; the active Austin Chalk play in an extensional area on the north flank of the Gulf of Mexico continental margin basin; and the Niobrara Chalk and Pierre Shale plays of the central Rocky Mountains, United States. These latter plays are characteristic of a foreland basin fragmented into intermontane basins by the Laramide orogeny. The Florence field, Colorado, discovered in 1862, and the Silo field, Wyoming, discovered in 1980, are used as models for current prospecting and will be described in detail. The technologies applied to fracture-source rock plays are refined surface and subsurface mapping from new log suites, including resistivity mapping; 3D-3C seismic, gravity, and aeromagnetic mapping; borehole path seismic mapping associated with horizontal drilling; fracture mapping with the Formation MicroScanner and other logging tools; measurements while drilling and other drilling and completion techniques; surface geochemistry to locate microseeps; and local and regional lineament discrimination.

  1. Production casing for hot-dry-rock wells EE-2 and EE-3

    SciTech Connect (OSTI)

    Nicholson, R.W.; Pettitt, R.; Sims, J.

    1982-01-01T23:59:59.000Z

    The production casing for a pair of hot dry rock (HDR) energy extraction wells had to be designed for unique conditions. Two hot dry rock wells (EE-2 and EE-3) were drilled and production casing installed at Fenton Hill, NM for the Los Alamos National Laboratory HDR program. The design of the production casing and subsequent completion operations in these wells revealed that thermal cycling, anticipated operating pressures, and wear during downhole operations are major considerations for both casing specifications and installation procedures. The first well (Energy Extraction No. 2; EE-2) is intended to be the injection well and EE-3 the production well. The top joint strain in EE-3 was monitored during installation, cementing and tensioning.

  2. Texas Eastern tests directional drilling in Little Missouri crossing

    SciTech Connect (OSTI)

    Becker, P.J.

    1988-04-25T23:59:59.000Z

    This article discusses the replacement of Texas Eastern Gas Pipeline Company's 24-inch War Emergency Pipeline (WEP) crossing the Little Missouri River near Prescott, Arkansas. It was the company's first experience with horizontal directionally drilled river crossing and represented a test case for future river-crossing applications. Initially two methods for pipe installation were considered: conventional dredging and horizontal directional drilling. The most economical method of pipe installation proved to be the horizontal directionally drilled method. The article discusses the installation of this river crossing.

  3. Drilling, completing, and maintaining geothermal wells in Baca, New Mexico

    SciTech Connect (OSTI)

    Pye, S.

    1981-01-01T23:59:59.000Z

    A 55-MWe power plant is planned for development in the Baca location in the Jemez Mountains of New Mexico. Union Geothermal has contracted to provide the steam for the power plant. This paper uses Baca Well No. 13 as a case history to describe the drilling methods, casing program, cementing program, and completion methods used by Union. The discussion includes aerated-water. Lost circulation control in mud drilling and its effort on the subsequent casing cementing program are discussed. The paper also includes a case history of scale removal methods used in Baca Well No. 11, including drilling the scale out with a turbodrill and attempts at chemical inhibition.

  4. Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:

    SciTech Connect (OSTI)

    Satrape, J.V.

    1987-11-24T23:59:59.000Z

    The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

  5. Development of a Low-Cost Rotary Steerable Drilling System

    SciTech Connect (OSTI)

    Roney Nazarian

    2012-01-31T23:59:59.000Z

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

  6. Transistor-Based Miniature Microwave-Drill Applicator Yehuda Meir and Eli Jerby*

    E-Print Network [OSTI]

    Jerby, Eli

    ). Experimental results of glass processing, basalt melting and drilling, and thermite powder ignition

  7. Scientific Drilling, No. 6, July 2008 55 Marine Impacts and Environmental Consequences

    E-Print Network [OSTI]

    Claeys, Philippe

    Scientific Drilling, No. 6, July 2008 55 Marine Impacts and Environmental Consequences ­ Drilling of extraterrestrial bodies into marine environment and to prepare for the drilling of the 142-Ma-old Mjølnir impact this background were a) concrete drilling targets formulated, b) plans outlined for compiling data from existing

  8. Experimental Verification of the Control of Automatic Drilling Module in Surgery

    E-Print Network [OSTI]

    Borissova, Daniela

    5 3 Experimental Verification of the Control of Automatic Drilling Module in Surgery Tony Boiadjiev drilling (in part or of all) of the corresponding bones. The main problems when the hand drilling takes place can be described as follows: bone overheating caused by inappropriate drilling velocity

  9. A Real-Time Decision Support System for High Cost Oil-Well Drilling Operations

    E-Print Network [OSTI]

    Aamodt, Agnar

    A Real-Time Decision Support System for High Cost Oil-Well Drilling Operations Odd Erik Gundersen In this paper we present DrillEdge - a commercial and award winning software system that monitors oil-well drilling operations in order to reduce non-productive time (NPT). DrillEdge utilizes case-based reasoning

  10. 4 Scientific Drilling, No. 3, September 2006 Science ReportsScience Reports

    E-Print Network [OSTI]

    Demouchy, Sylvie

    4 Scientific Drilling, No. 3, September 2006 Science ReportsScience Reports IODP Expeditions 304 forty years after the Mohole Project (Bascom, 1961), the goal of drilling a complete section through in situ oceanic crust remains unachieved. Deep Sea Drilling Project ­ Ocean Drilling Program (DSDP

  11. Solidi cation of a high-Reynolds-number ow in laser percussion drilling

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Solidi#12;cation of a high-Reynolds-number ow in laser percussion drilling W. R. Smith y and R. M laser percussion drilling. 1 Introduction Laser percussion drilling is used to machine gas turbine with conventional mechanical drills. The term percussion refers to the repeated operation of the laser in short

  12. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  13. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1981-03-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  14. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1981-06-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

  15. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    SciTech Connect (OSTI)

    Zemach, Ezra

    2010-01-01T23:59:59.000Z

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  16. Reconstruction of Sedimentary Rock Based on Mechanical Properties

    E-Print Network [OSTI]

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2008-01-01T23:59:59.000Z

    the veri?cation of rock mechanical properties. The dynamicis white. IV. ROCK MECHANICAL PROPERTIES FIG. 9: Cementationextracting meaningful rock transport properties from these

  17. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Kyanite Lead Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium information on the USGS--the Federal source for science about the Earth, its natural and living resources

  18. 2008 Rock Deformation GRC - Conference August 3-8, 2008

    SciTech Connect (OSTI)

    James G. Hirth

    2009-09-21T23:59:59.000Z

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the shallow crust that are important for developing ideas in CO2 sequestration, geothermal and petrochemical research and the mechanics of shallow faults.

  19. Closed loop drilling systems can eliminate reserve pit costs

    SciTech Connect (OSTI)

    Astrella, L.; Wiemers, R. [Environmental Equipment Corp., Denver, CO (United States)

    1996-05-27T23:59:59.000Z

    Closed loop systems have become more dependable and efficient, making drilling without a mud pit an economically attractive alternative in many drilling programs. A closed loop system is defined simply as a mechanical and chemical system which will allow an operator to drill a well without using a reserve pit. A closed loop system includes some solids control equipment (such as the shaker, desander, desilter, and proper centrifuge), which may already be on the rig, and a polymer flocculation unit, which is not part of a conventional rig`s solids control system. This paper reviews the various methods of flocculation and the performance of the different units. It then goes on to describe costs and regulations associated with both methods of handling drilling wastes.

  20. The Temperature Prediction in Deepwater Drilling of Vertical Well

    E-Print Network [OSTI]

    Feng, Ming

    2012-07-16T23:59:59.000Z

    The extreme operating conditions in deepwater drilling lead to serious relative problems. The knowledge of subsea temperatures is of prime interest to petroleum engineers and geo-technologists alike. Petroleum engineers are interested in subsea...