Powered by Deep Web Technologies
Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Considers Natural Gas Utility Service Options: Proposal Includes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Considers Natural Gas Utility Service Options: Proposal Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering natural gas transportation and distribution requirements to support the Waste Treatment Plant (WTP) and evaporator operations at the Hanford Site in southeastern Washington State. DOE awarded a task order worth up to $5 million to the local, licensed supplier of natural gas in the Hanford area, Cascade Natural Gas Corporation (Cascade). Cascade will support DOE and its Environmental

2

Repair, sidetrack, drilling, and completion of EE-2A for Phase 2 reservoir production service  

DOE Green Energy (OSTI)

Hot Dry Rock (HDR) geothermal energy well EE-2 at Fenton Hill, New Mexico, was sidetracked and redrilled into the HDR Phase II reservoir after two unsuccessful attempts to repair damage in the lower wellbore. Before sidetracking was begun, six cement slurries were pumped to plug the abandoned lower wellbore and to support the production casing where drilling wear was predicted and where sidetracking was to occur. This work and the redrill of EE-2A were completed in November 1987. Specifications were prepared for a state-of-the-art tie-back casing, which was procured, manufactured, and delivered to Fenton Hill in May 1988. The well was then completed in June 1988 for hot-water production service by cementing in a liner and the upper section of production casing and installing and cementing a tie-back casing string. 24 refs., 17 figs., 5 tabs.

Dreesen, D.S.; Cocks, G.G.; Nicholson, R.W.; Thomson, J.C.

1989-08-01T23:59:59.000Z

3

Optimizing drilling performance using a selected drilling fluid  

DOE Patents (OSTI)

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

4

Drill string enclosure  

DOE Patents (OSTI)

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

5

Drill string enclosure  

DOE Patents (OSTI)

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1993-03-02T23:59:59.000Z

6

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

7

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

8

Drill string enclosure  

DOE Patents (OSTI)

This invention is comprised of a drill string enclosure which consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1992-12-31T23:59:59.000Z

9

Drilling Waste Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

The Drilling Waste Management Information System is an online resource for technical and regulatory information on practices for managing drilling muds and cuttings, including...

10

Managed Pressure Drilling Candidate Selection  

E-Print Network (OSTI)

Managed Pressure Drilling now at the pinnacle of the 'Oil Well Drilling' evolution tree, has itself been coined in 2003. It is an umbrella term for a few new drilling techniques and some preexisting drilling techniques, all of them aiming to solve several drilling problems, including non-productive time and/or drilling flat time issues. These techniques, now sub-classifications of Managed Pressure Drilling, are referred to as 'Variations' and 'Methods' of Managed Pressure Drilling. Although using Managed Pressure Drilling for drilling wells has several benefits, not all wells that seem a potential candidate for Managed Pressure Drilling, need Managed Pressure Drilling. The drilling industry has numerous simulators and software models to perform drilling hydraulics calculations and simulations. Most of them are designed for conventional well hydraulics, while some can perform Underbalanced Drilling calculations, and a select few can perform Managed Pressure Drilling calculations. Most of the few available Managed Pressure Drilling models are modified Underbalanced Drilling versions that fit Managed Pressure Drilling needs. However, none of them focus on Managed Pressure Drilling and its candidate selection alone. An 'Managed Pressure Drilling Candidate Selection Model and software' that can act as a preliminary screen to determine the utility of Managed Pressure Drilling for potential candidate wells are developed as a part of this research dissertation. The model and a flow diagram identify the key steps in candidate selection. The software performs the basic hydraulic calculations and provides useful results in the form of tables, plots and graphs that would help in making better engineering decisions. An additional Managed Pressure Drilling worldwide wells database with basic information on a few Managed Pressure Drilling projects has also been compiled that can act as a basic guide on the Managed Pressure Drilling variation and project frequencies and aid in Managed Pressure Drilling candidate selection.

Nauduri, Anantha S.

2009-05-01T23:59:59.000Z

11

Advanced Drilling through Diagnostics-White-Drilling  

DOE Green Energy (OSTI)

A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional drilling costs; and downhole weight-on-bit and drilling torque for diagnosing drill bit performance. In general, any measurement that could shed light on the downhole environment would give us a better understanding of the drilling process and reduce drilling costs.

FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

1999-10-07T23:59:59.000Z

12

Development of modifications for Coflexip flexible drilling pipe for high-temperature and -pressure geothermal service. Final report  

DOE Green Energy (OSTI)

Coflexip (France) flexible drilling pipe can provide economies in drilling geothermal wells. However, the current liner materials cannot take the high temperatures (approx.250C) and pressures (approx.69 MPa). Development was undertaken to replace the liner with higher temperature materials and, thus increase the temperature capability of the flexible pipe. DuPont Teflon PFA 350, L'Garde EPDM Y267 and L'Garde AFLAS 291 were considered but they all require backing by a closely woven stainless steel fabric to prevent extrusion. A graphite-reinforced EPDM elastomer was developed which has the potential of meeting the pressure-temperature requirements without the metal fabric reinforcement.

Friese, G.J.

1983-02-01T23:59:59.000Z

13

Drill report  

SciTech Connect

North Slope drilling activity is described. As of November 14, 1984, four rigs were actively drilling in the Kuparuk River field with another two doing workovers. Only one rig was drilling in the Prudhoe Bay field, with another doing workovers and one on standby.

Not Available

1984-12-01T23:59:59.000Z

14

UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common area utilities, groundskeeping services, and repairs and  

E-Print Network (OSTI)

UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common. Tenants pay for their own utilities (i.e., electricity, gas, water, telephone and cable services). A $750 for current rental rates): 1 bedroom 1 bdrm deluxe 2 bdrm/1 bath 2 bdrm/2 bath) If you are interested in a two

California at Santa Cruz, University of

15

Advanced drilling systems study.  

Science Conference Proceedings (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

16

Combination drilling and skiving tool  

DOE Patents (OSTI)

A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

Stone, William J. (Kansas City, MO)

1989-01-01T23:59:59.000Z

17

Drill drive mechanism  

DOE Patents (OSTI)

A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

Dressel, Michael O. (Englewood, CO)

1979-01-01T23:59:59.000Z

18

High speed drilling research advances  

Science Conference Proceedings (OSTI)

This article reports that the Amoco Production Company's Tulsa Research Center is developing a High Speed Drilling System (HSDS) to improve drilling economics for both exploration and development wells. The system is targeted for areas where historically the drilling rate is less than 25 ft/hr over a large section of hole. Designed as a five-year development program, work began on the system in late 1984. A major service company is participating in the project. The objective of the HSDS project is to improve drilling efficiency by developing improvements in the basic mechanical drilling system. The HSDS approach to improved drilling economics is via the traditional routes of increasing penetration rate (ROP) and bit life, increasing hole stability and reducing trouble time.

Warren, T.M.; Canson, B.E.

1987-03-01T23:59:59.000Z

19

Rotary steerable motor system for underground drilling  

Science Conference Proceedings (OSTI)

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

20

Subsurface drill string  

DOE Patents (OSTI)

A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

Casper, William L. (Rigby, ID); Clark, Don T. (Idaho Falls, ID); Grover, Blair K. (Idaho Falls, ID); Mathewson, Rodney O. (Idaho Falls, ID); Seymour, Craig A. (Idaho Falls, ID)

2008-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Drill pipe protector development  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

Thomerson, C.; Kenne, R. [Regal International Corp., Corsicanna, TX (United States); Wemple, R.P. [Sandia National Lab., Albuquerque, NM (United States)] [ed.] [and others

1996-03-01T23:59:59.000Z

22

Continental drilling  

DOE Green Energy (OSTI)

The Workshop on Continental Drilling was convened to prepare a report for submission to the US Geodynamics Committee with respect to the contribution that could be made by land drilling to resolve major problems of geodynamics and consider the mechanisms by which the responsibility for scientific planning, establishment of priorities, administration, and budgeting for a land-drilling program within the framework of the aims of the Geodynamics Project would best be established. A new and extensive program to study the continental crust is outlined in this report. The Workshop focused on the following topics: processes in the continental crust (mechanism of faulting and earthquakes, hydrothermal systems and active magma chambers); state and structure of the continental crust (heat flow and thermal structure of the crust; state of ambient stress in the North American plate; extent, regional structure, and evolution of crystalline continental crust); short hole investigations; present state and needs of drilling technology; drill hole experimentation and instrumentation; suggestions for organization and operation of drilling project; and suggested level of effort and funding. Four recommendations are set down. 8 figures, 5 tables. (RWR)

Shoemaker, E.M. (ed.)

1975-01-01T23:59:59.000Z

23

Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Services ESnet provides interoperable, effective, reliable, and high performance network communications infrastructure, and certain collaboration services, in support of the Office of Science (SC)'s large-scale, collaborative science programs. ESnet provides users with high bandwidth access to DOE sites and DOE's primary science collaborators including Research and

24

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

25

Graphene Compositions And Drilling Fluids Derived Therefrom ...  

Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide ...

26

Managed pressure drilling techniques and tools  

E-Print Network (OSTI)

The economics of drilling offshore wells is important as we drill more wells in deeper water. Drilling-related problems, including stuck pipe, lost circulation, and excessive mud cost, show the need for better drilling technology. If we can solve these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures in the wellbore to prevent these drillingrelated problems. This paper traces the history of MPD, showing how different techniques can reduce drilling problems. MPD improves the economics of drilling wells by reducing drilling problems. Further economic studies are necessary to determine exactly how much cost savings MPD can provide in certain situation. Furter research is also necessary on the various MPD techniques to increase their effectiveness.

Martin, Matthew Daniel

2003-05-01T23:59:59.000Z

27

Near-Term Developments in Geothermal Drilling  

DOE Green Energy (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

28

Drilling and general petroleum engineering  

Science Conference Proceedings (OSTI)

Forty-nine papers are included in the Drilling and General Petroleum Engineering Volume of the SPE Annual Conference and Exhibition proceedings. The conference was held in New Orleans, Louisiana, September 25-28, 1994. The papers cover such topics as: extended reach well drilling, development of marginal satellite fields, slim hole drilling, pressure loss predictions, models for cuttings transport, ester-based drilling fluid systems, borehole stability, cementing, operations, bit failures, roller core bits, well tracking techniques, nitrogen drilling systems, plug failures, drill bit and drillstring dynamics, slim hole vibrations, reserve estimates, enhanced recovery methods, waste disposal, and engineering salary trends. A separate abstract and indexing was prepared for each paper for inclusion in the Energy Science and Technology Database.

Not Available

1994-01-01T23:59:59.000Z

29

Newberry Exploratory Slimhole: Drilling And Testing  

E-Print Network (OSTI)

During July-November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5360' exploratory slimhole (3.895" diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia's program to evaluate slimholes as a geothermal exploration tool. During and after drilling we performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well's data set includes: over 4000' of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for ...

John Finger Ronald; Ronald D. Jacobson; Charles E. Hickox

1997-01-01T23:59:59.000Z

30

Assembly for directional drilling of boreholes  

Science Conference Proceedings (OSTI)

This patent describes a drilling assembly for directional drilling of boreholes in subsurface formations. The assembly comprising a downhole drilling motor. The motor having an output shaft which is suitable to drive a rotary drill bit and a motor housing which is suitable to be arranged at the lower end of a drill string; stabilizing means for stabilizing the assembly; means in the assembly for permanently tilting the central axis of the output shaft with respect to the longitudinal axis of the drill string in the borehole. It is characterized in that the stabilizing means include a lower-most stabilizer which is secured to and rotates with the output shaft.

Steiginga, A.; Worrall, R.N.

1989-11-14T23:59:59.000Z

31

Method for drilling directional wells  

Science Conference Proceedings (OSTI)

A method is described of locating a substantially horizontal bed of interest in a formation and maintaining a drill string therein during the drilling operation, said drill string including a measurement-while-drilling (MWD) electromagnetic propagation resistivity sensor, comprising the steps of: drilling a substantially vertical offset well in a formation having at least one selected substantially horizontal bed therein; measuring resistivity in the formation at the offset well to provide a first resistivity log as a function of depth; modeling the substantially horizontal bed to provide a modeled resistivity log indicative of the resistivity taken along the substantially horizontal bed, said modeling being based on said first resistivity log; drilling a directional well in said formation near said offset well, a portion of said directional well being disposed in said substantially horizontal bed; measuring resistivity in said directional well using the MWD electromagnetic propagation resistivity sensor to provide a second log of resistivity taken substantially horizontally; comparing said second log to said modeled log to determine the location of said directional well; and adjusting the directional drilling operation so as to maintain said drill string within said substantially horizontal bed during the drilling of said directional well in response to said comparing step.

Wu, Jianwu; Wisler, M.M.

1993-07-27T23:59:59.000Z

32

Drilling optimization using drilling simulator software  

E-Print Network (OSTI)

Drilling operations management will face hurdles to reduce costs and increase performance, and to do this with less experience and organizational drilling capacity. A technology called Drilling Simulators Software has shown an extraordinary potential to improve the drilling performance and reduce risk and cost. Different approaches have been made to develop drilling-simulator software. The Virtual Experience Simulator, geological drilling logs, and reconstructed lithology are some of the most successful. The drilling simulations can run multiple scenarios quickly and then update plans with new data to improve the results. Its storage capacity for retaining field drilling experience and knowledge add value to the program. This research shows the results of using drilling simulator software called Drilling Optimization Simulator (DROPS®) in the evaluation of the Aloctono block, in the Pirital field, eastern Venezuela. This formation is characterized by very complex geology, containing faulted restructures, large dips, and hard and abrasive rocks. The drilling performance in this section has a strong impact in the profitability of the field. A number of simulations using geological drilling logs and the concept of the learning curve defined the optimum drilling parameters for the block. The result shows that DROPS® has the capability to simulate the drilling performance of the area with reasonable accuracy. Thus, it is possible to predict the drilling performance using different bits and the learning-curve concept to obtain optimum drilling parameters. All of these allow a comprehensive and effective cost and drilling optimization.

Salas Safe, Jose Gregorio

2003-05-01T23:59:59.000Z

33

Turnkey drilling  

SciTech Connect

The recent surge in the popularity of turnkey drilling has produced a number of questions about turnkey operations from both operators and contractors. The International Association of Drilling Contractors (IADC) has no approved turnkey contract (although several of the member districts have printed one), leaving the parties participating in a turnkey well unsure of their responsibilities and obligations. Additionally, operators are finding liens filed against turnkey wells they thought were paid for. The term turnkey itself is often misunderstood and applied to a variety of guaranteed well commitments. Some turnkeys require the contractor to provide everything from location preparation to final production pipe or plugs. Others allow contingencies for stuck pipe, lost circulation, kicks and bad storms.

Pierce, D.

1986-11-01T23:59:59.000Z

34

Underbalanced drilling solves difficult drilling problems and enhances production  

Science Conference Proceedings (OSTI)

An alternate approach to drilling, completing and working over new and existing wells has dramatically improved the efficiency of these operations. This method is called underbalanced drilling (UBD). Improvements in both the equipment and technique during the past 5 years have made this process economical and necessary to solve many difficult drilling problems. Additionally, by reducing drilling or workover damage, dramatic improvements in oil and gas production rates and ultimate reserves are realized, resulting in extra profits for today`s operators. This article will detail the advantages of UBD and give specific examples of its applications, A series of related articles will follow, including: new UBD equipment, land and off-shore case histories, coiled tubing drilling, underbalanced workovers, software technology and subsea applications to examine the reality and future of this technology.

Cuthbertson, R.L.; Vozniak, J.

1997-02-01T23:59:59.000Z

35

Downhole drilling network using burst modulation techniques  

DOE Patents (OSTI)

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

36

Establishing nuclear facility drill programs  

SciTech Connect

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

37

EIS-0442: Forest Service Reauthorization of Transmission Lines on Forest Service Lands in Colorado, Utah and Nebraska for Routine Maintenance Practices including Changes in Vegetation Management  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement: Comment Period Ends 10/12/13This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

38

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

39

Drilling for energy resources  

DOE Green Energy (OSTI)

Drilling is integral to the exploration, development, and production of most energy resources. Oil and natural gas, which are dependent on drilling technology, together account for about 77% of the energy sources consumed in the US. Thus, the limitations of current drilling technology also restrict the rate at which new energy supplies can be found, extracted, and brought to the marketplace. The purpose of the study reported was to examine current drilling technology, suggest areas where additional research and development (R and D) might significantly increase drilling rates and capabilities, and suggest a strategy for improving drilling technology. An overview is provided of the US drilling industry. The drilling equipment and techniques now used for finding and recovering oil, natural gas, coal, shale oil, nuclear fuels, and geothermal energy are described. Although by no means exhaustive, these descriptions provide the background necessary to adequately understand the problems inherent in attempts to increase instantaneous and overall drilling rates.

Not Available

1976-01-01T23:59:59.000Z

40

Navigation drilling technology progresses  

SciTech Connect

This article reports that navigation drilling - an approach that combines advanced drill bit, downhole motor, measurement-while-drilling, and well planning technology into an integrated, steerable drilling system - has reduced drilling time for operating companies worldwide. A major operating advantage of navigation drilling is the ability to drill both straight and directional intervals with a single assembly. In conventional directional drilling, a bent sub and downhole motor (or a bent housing motor) are used to initiate kick-offs and make course corrections. The bent sub is made-up above the motor, tilting the motor's axis 1 to 3 degrees compared to the axis of the drill string. The assembly toolface can be aligned in the desired direction with a single-shot, a steering tool or an MWD system.

Bayne, R.

1986-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Well drilling apparatus and method  

DOE Patents (OSTI)

Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

Alvis, Robert L. (Albuquerque, NM); Newsom, Melvin M. (Albuquerque, NM)

1977-01-01T23:59:59.000Z

42

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents (OSTI)

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

43

DRILLED HYDROTHERMAL ENERGY Drilling for seawater  

E-Print Network (OSTI)

technologies to obtain thermal energy (and other benefits) from a large body of water #12;Microgrid Customer ENERGY : Underground Technologies #12;#12;Microgrid Customer Facilities Drilled Hydrothermal Energy Plant;#12;Microgrid Customer Facilities Drilled Hydrothermal Energy Plant Cooling Power Biofuel / H2 Fresh Water

44

Drilling Fluid Corrosion  

Science Conference Proceedings (OSTI)

Table 8   Drilling fluid corrosion control troubleshooting chart...Table 8 Drilling fluid corrosion control troubleshooting chart Corrosion cause Primary source Identification Major corrosion forms Remedies Oxygen Atmosphere, mud conditioning, equipment, oxidizing

45

RECIPIENT:Potter Drilling Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potter Drilling Inc Potter Drilling Inc u.s. DEPARTUEN T OF ENERG¥ EERE PROJECT MANAGEMENT CENT ER NEPA DEIERl\IINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS Page 1 0[2 STATE: CA Funding Opportunity Announ<:ement Number Procurement Instrument Number NEPA Control Number CID Number OE·PS36-09G099016 OE· EE0002746 ~FO . 10 - [r,,~ G02746 Based on my review of the information concerning the proposed action, as NEPA ComplianC:f Offkrr (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited 10, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

46

Hydromechanical drilling device  

DOE Patents (OSTI)

A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

Summers, David A. (Rolla, MO)

1978-01-01T23:59:59.000Z

47

Coiled tubing drilling (CTD) moves to commercial viability  

Science Conference Proceedings (OSTI)

Shell Western E and P, Inc. (SWEPI) California Drilling Operations was interested in coiled tubing (CT) for drilling slimhole steam injectors. A four-well pilot project at South Belridge field, Kern County, Calif., was targeted for immediate CT use. Well programs included completion, a goal not previously attempted on wells drilled from surface with CT. This paper reviews the primary project focus which was to develop slimhole steam injectors and improve injection profiles in lower Tulare formation E and G sands. Feasibility of drilling wells with CT and having CT crews run and cement completion tubulars in place was an issue to be determined. Conventional tubing installation is usually outside the scope of CT operations, so it was not known if this would be technically or economically feasible. Another goal was to refine personnel expertise to further develop CTD services as a successful business line. Other items targeted for investigation were: deviation control; lost circulation solutions; WOB optimization to obtain maximum ROP; potential steam blowout intervals; and high temperature. Finally, economic feasibility of using CTD as a rotary rig alternative for specific applications like slimhole wells on sites where surface location is limited was to be determined.

Romagno, R. (Shell Western E and P, Inc., Bakersfield, CA (United States)); Walker, R. (Schlumberger Dowell, Bakersfield, CA (United States))

1994-12-01T23:59:59.000Z

48

HydroPulse Drilling  

Science Conference Proceedings (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

49

Multi-gradient drilling method and system  

DOE Patents (OSTI)

A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

2003-01-01T23:59:59.000Z

50

Status Report A Review of Slimhole Drilling  

DOE Green Energy (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

51

Drill string gas data  

DOE Green Energy (OSTI)

Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

Siciliano, E.R.

1998-05-12T23:59:59.000Z

52

Vale exploratory slimhole: Drilling and testing  

SciTech Connect

During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

1996-06-01T23:59:59.000Z

53

Strong growth projected for underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of underbalanced drilling technology should grow steadily during the next decade. The projected growth is primarily driven by increased concern about formation damage, the potential for higher penetration rates, and the ability to reduce lost circulation in depleted reservoirs. The Department of Energy`s Morgantown Energy Technology Center manages a portfolio of drilling-related research, development, and demonstration (RD and D) projects designed to reduce costs and improve efficiencies. The Department of Energy sponsored Maurer Engineering Inc. (MEI) to develop a user-friendly foam drilling model that can accurately predict pressure drops, cuttings lifting velocities, foam quality, and other foam drilling variables. A second objective of the project was to develop a light-weight drilling fluid that would allow underbalanced drilling in low-pressure reservoirs without the limitations commonly associated with existing light-weight fluids. Maurer performed a study to gauge the potential for light-weight drilling fluids and the extent of underbalanced drilling activity in the US. Data from many industry sources, including recent publications on the potential for air drilling, were evaluated and incorporated into this study. This paper discusses the findings from this survey.

Duda, J.R. [Dept. of Energy, Morgantown, WV (United States); Medley, G.H. Jr.; Deskins, W.G. [Maurer Engineering Inc., Houston, TX (United States)

1996-09-23T23:59:59.000Z

54

Challenges of deep drilling  

SciTech Connect

Deep drilling poses major problems when high temperatures, high pressures, and acid gases are encountered. A combination of these items usually requires extensive planning, exotic materials, long drilling times, and heavy expenditures. Only 2 wells have been drilled below 30,000 ft in the US, the deeper a 31,441-ft hole in 1974. The deepest well in the world is reported to be in the Soviet Union, recently drilled below 34,895 ft, with a target depth of 15,000 m (49,212 ft). A review of current deep drilling technology and its capabilities is given.

Chadwick, C.E.

1981-07-01T23:59:59.000Z

55

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

56

Services  

Energy.gov (U.S. Department of Energy (DOE))

The Human Capital Office offers benefit, new employee orientation and some learning & development related services to all DOE employees. Additionally the Office supplies employee and labor...

57

Development and testing of underbalanced drilling products  

Science Conference Proceedings (OSTI)

The first objective of this project is to develop a user-friendly, PC, foam drilling computer model, FOAM, which will accurately predict frictional pressure drops, cuttings lifting velocity, foam quality, and other drilling variables. The model will allow operating and service companies to accurately predict pressures and flow rates required at the surface and downhole to efficiently drill oil and gas wells with foam systems. The second objective of this project is to develop a lightweight drilling fluid that utilizes hollow glass spheres to reduce the density of the fluid and allow drilling underbalanced in low-pressure reservoirs. Since the resulting fluid will be incompressible, hydraulics calculations are greatly simplified, and expensive air compressors and booster pumps are eliminated. This lightweight fluid will also eliminate corrosion and downhole fire problems encountered with aerated fluids. Many tight-gas reservoirs in the US are attractive targets for underbalanced drilling because they are located in hard-rock country where tight, low-permeability formations compound the effect of formation damage encountered with conventional drilling fluids.

Maurer, W.; Medley, G. Jr.

1995-07-01T23:59:59.000Z

58

Advanced drilling systems study  

DOE Green Energy (OSTI)

This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-03-01T23:59:59.000Z

59

Method of deep drilling  

DOE Patents (OSTI)

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

60

Remote drill bit loader  

DOE Patents (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.

Dokos, J.A.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal Drilling Organization  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

62

Drilling in the Rockies  

Science Conference Proceedings (OSTI)

Despite rugged drilling conditions and high drilling costs, rig employment and drilling operations in the Rocky Mountain region of the Overthrust Belt have increased significantly since 1979. Rate of rig employment, well depths, and number of operating companies and contractors in the area are reported. By October 1980, more than 500 active rigs were working in the region, 30% more than were working during the entirety of 1979. (3 photos)

Peacock, D.

1980-12-01T23:59:59.000Z

63

Drill Press Speed Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

operating speeds (RPM) Accessory Softwood (Pine) Hardwood (Hard Maple) Acrylic Brass Aluminum Steel Shop Notes Twist drill bits 116" - 316" 14" - 38" 716"- 58" 11...

64

Drilling motor deviation tool  

Science Conference Proceedings (OSTI)

An extension for a down hole drilling motor is described, which adapts the motor for selective configuration for straight hole drilling or directional drilling, selectively. It consists of: an elongated generally tubular body, adapted at a first end to rigidly attach to the lower end of a down hole drilling motor housing, the body having an opening extending along the general centerline of the body; fluid channel means situated in the opening to conduct drilling fluid from the motor fluid output means to a downwardly continuing drill string element; output shaft means situated in the body and extending from a second end of the body, the output shaft adapted at the extended extreme for attachment to a downwardly continuing drill string element; selector valve means situated in the body, operatively associated with drilling fluid channels in the body, responsive to drilling fluid flow to produce a first output signal in response to fluid flow manipulations having a first characteristic and to produce a second output signal in response to fluid flow manipulations having a second characteristic; and driveshaft connector means in the opening, operatively associated with the output shaft of the motor and the output shaft means to connect the two for sympathetic rotation.

Falgout, T.E.; Schoeffler, W.N.

1989-03-14T23:59:59.000Z

65

Drilling in 2000 taps technology explosion  

Science Conference Proceedings (OSTI)

While major oil and gas companies all but ended research and development programs, the burden for technological advancement fell to service companies. And service companies allotted their R and D investment to activities whose return they could fairly predict. But even as cost-cutting measured devastated engineering staffs, a profit-growth strategy was forming that understood that profit could be enhanced by not just cutting the per barrel cost to producers but by producing more barrels per investment dollar. In other words, get more oil and gas from the same well through applied drilling and production technology. In the drilling industry all things technical revolve around six areas of expertise: bits, rotation systems, tripping systems, control systems, information systems and direction drilling systems. The paper discusses these six technologies.

NONE

1996-09-01T23:59:59.000Z

66

Underbalanced drilling: Praises and perils  

Science Conference Proceedings (OSTI)

Underbalanced drilling (UBD) has been used with increasing frequency to minimize problems associated with invasive formation damage, which often greatly reduce the productivity of oil and gas reservoirs, particularly in openhole horizontal well applications. UBD, when properly designed and executed, minimizes or eliminates problems associated with the invasion of particulate matter into the formation as well as a multitude of other problems such as adverse clay reactions, phase trapping, precipitation, and emulsification, which can be caused by the invasion of incompatible mud filtrates in an overbalanced condition. In many UBD operations, additional benefits are seen because of a reduction in drilling time, greater rates of penetration, increased bit life, a rapid indication of productive reservoir zones, and the potential for dynamic flow testing while drilling. Potential downsides and damage mechanisms associated with UBD will be discussed. These include the following: (1) Increased cost and safety concerns; (2) Difficulty in maintaining a continuously underbalanced condition; (3) Spontaneous inhibition and countercurrent inhibition effects; (4) Glazing, mashing, and mechanically induced wellbore damage; (5) Macroporosity gravity-induced invasion; (6) Difficulty of application in zones of extreme pressure and permeability; and (7) Political/career risk associated with championing a new and potentially risky technology. The authors discuss reservoir parameters required to design an effective underbalanced or overbalanced drilling program, laboratory screening procedures to ascertain the effectiveness of UBD in a specific application and review the types of reservoirs that often present good applications for UBD technology.

Bennion, D.B.; Thomas, F.B.; Bietz, R.F.; Bennion, D.W. [Hycal Energy Research Labs., Ltd., Calgary, Alberta (Canada)

1998-12-01T23:59:59.000Z

67

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

68

Advanced drilling systems  

DOE Green Energy (OSTI)

Drilling is ubiquitous in oil, gas, geothermal, minerals, water well, and mining industries. Drilling and well completion account for 25% to 50% of the cost of producing power from geothermal energy. Reduced drilling costs will reduce the cost of electricity produced from geothermal resources. Undoubtedly, there are concepts for advanced drilling systems that have yet to be studied. However, the breadth and depth of previous efforts in this area almost guarantee that any new efforts will at least initially build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts, coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems, provide the basis for this study.

Pierce, K.G.; Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-12-31T23:59:59.000Z

69

Computers aid drilling planning  

Science Conference Proceedings (OSTI)

This article reports that computers are rapidly becoming an indispensable tool for the drilling engineer both in town and at the wellsite. Two factors have contributed to the sudden increase in their use. The first is the need to cut drilling costs. Engineers have been forced to take a more critical look at plans and past experience. The second is the falling price (and increased portability) of hardware and software. Several major operators have demonstrated that careful planning of drilling operations based on local knowledge and data from offset wells can reduce the drilling learning curve substantially. Computers make it possible to retrieve and process offset well data rapidly and efficiently. They also offer powerful mathematical models which describe complicated aspects of drilling.

Burgess, T.

1986-11-01T23:59:59.000Z

70

Noble Drilling DRILLING, COMPLETION AND STIMULATION PROGRAM  

E-Print Network (OSTI)

Friendly Drilling Systems" Environmental issues are a significant part of every energy industry endeavor challenges facing the energy industry but also the considerable resources of the University and industry Petroleum and other industry sponsors from the Global Petroleum Research Institute (GPRI) to identify

71

Drilling Waste Management Technology Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

skip navigation Drilling Waste Management Information System: The information resource for better management of drilling wastes DWM Logo Search Search you are in this section...

72

8. annual international energy week conference and exhibition: Conference papers. Book 3: Drilling and production operations  

Science Conference Proceedings (OSTI)

The three volumes within this book are subdivided as follows: (1) Drilling Technology -- underbalanced drilling; field and laboratory testing; drilling systems and dynamics; advances in drill bits; coiled tubing and tubulars; advances in drilling fluids; novel/scientific drilling; and drillstrings; (2) Petroleum Production Technology -- environmental health and safety issues; production technology for deepwater; disposal methods for production waste; and offshore facility abandonment; and (3) Offshore Engineering and Operations -- floating production systems; strategic service alliance; offshore facility abandonment; offshore development economics; heavy construction, transportation, and installation for offshore fields; and subsea technology. Papers have been processed separately for inclusion on the data base.

NONE

1997-07-01T23:59:59.000Z

73

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

74

Steamboat Hills exploratory slimhole: Drilling and testing  

DOE Green Energy (OSTI)

During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

1994-10-01T23:59:59.000Z

75

Drilling operations at the Nevada Test Site  

SciTech Connect

The Nevada Operations Office (NV) is responsible for supporting the nuclear test programs of the Los Alamos and Lawrence Livermore National Laboratories. This support includes the drilling of test holes for nuclear device testing a the Nevada Test Site (NTS). The purpose of this audit was to assess the effectiveness of the Department of Energy's management of test hole inventories at the NTS. Our audit disclosed that NV accumulated a large inventory of unused test holes and approved drilling additional holes for which neither laboratory (Los Alamos nor Livermore) had identified a need. The overdrilling of test holes occurred because NV did not comply with good inventory practices that would have had NV's approving official question the need for, and the timing of, the laboratories' drilling requests. Instead, NV gave perfunctory approval to the laboratories' work orders for drilling test holes, and emphasized keeping two drill rig crews busy and satisfying the laboratories' demands for dedicated drilling personnel. Although NV did not agree that overdrilling had occurred, it has cut back its drilling activities and estimated that this will save abut $7.6 million annually. NV agreed with the recommendations in the report and has taken corrective actions.

1990-05-29T23:59:59.000Z

76

Technology assessment of vertical and horizontal air drilling potential in the United States. Final report  

SciTech Connect

The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

Carden, R.S.

1993-08-18T23:59:59.000Z

77

Drilling Waste Management Fact Sheet: Drilling Practices That Minimize  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Practices Drilling Practices Fact Sheet - Drilling Practices That Minimize Generation of Drilling Wastes How Are Wells Typically Drilled? The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or muds. As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drill cuttings. This section of the Drilling Waste Management Information System website discusses several alternative drilling practices that result in a lower volume of waste being generated. Oil and gas wells are constructed with multiple layers of pipe known as casing. Traditional wells are not drilled from top to bottom at the same diameter but rather in a series of progressively smaller-diameter intervals. The top interval is drilled starting at the surface and has the largest diameter hole. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters. Some of the common hole diameters are: 17.5", 14.75", 12.25", 8.5", 7.875", and 6.5".

78

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

79

Formation damage in underbalanced drilling operations  

E-Print Network (OSTI)

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation is exposed to a series of fluids and operations that can reduce its productive capacity. Any process that causes a loss in the productivity of an oil-, gas-, or water-saturated formation has a damaging effect on the reservoir. These damage mechanisms predominantly fall into three major classifications: mechanical, chemical, and biological. Underbalanced drilling operations involve drilling a portion of the wellbore at fluid pressures less than that of the target formation. This technology has been used to prevent or minimize problems associated with invasive formation damage, which often greatly reduces the productivity of oil and gas reservoirs, mainly in openhole horizontal-well applications. Underbalanced drilling is not a solution for all formation-damage problems. Damage caused by poorly designed and/or executed underbalanced drilling programs can equal or exceed that which may occur with a well-designed conventional overbalanced drilling program. Four techniques are currently available to achieve underbalanced conditions while drilling. These include using lightweight drilling fluids, injecting gas down the drillpipe, injecting gas into a parasite string, and using foam. This study provides an analysis of a number of potential damage mechanisms present when drilling underbalanced. It describes each one and its influence on the productivity of a well. Additionally it presents a general description of the different techniques that can be applied to carry out successful, cost-effective UBD operations, and discusses how these techniques may be used to reduce or eliminate formation damage.

Reyes Serpa, Carlos Alberto

2003-01-01T23:59:59.000Z

80

Method for controlling directional drilling in response to horns detected by electromagnetic energy propagation resistivity measurements  

Science Conference Proceedings (OSTI)

For use in conjunction with an earth borehole drilling apparatus that includes: a drilling rig; a drill string operating from said drilling rig for drilling an earth borehole, said drill string including a bottom hole arrangement comprising a drill bit, a downhole resistivity measuring subsystem for measuring downhole formation resistivity near said bit by propagating electromagnetic energy into earth formations near said bit, receiving electromagnetic energy that has propagated through the formations and producing measurement signals that depend on the received signals; a method is described for directing the drilling of a well bore with respect to a geological bed boundary in said earth formations, comprising the steps of: producing from said measurement signals a recording of downhole formation resistivity as a function of borehole depth, determining the presence of a horn in said resistivity recording; and implementing a change in the drilling direction of said drill bit in response to said determination of the presence of a horn.

Luling, M.

1993-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal spallation drilling  

DOE Green Energy (OSTI)

Thermal spallation drilling is an underdeveloped process with great potential for reducing the costs of drilling holes and mining shafts and tunnels in most very hard rocks. Industry has used this process to drill blast holes for emplacing explosives and to quarry granite. Some theoretical work has been performed, and many signs point to a great future for this process. The Los Alamos National Laboratory has studied the theory of the spallation process and is conducting experiments to prove out the system and to adapt it for use with a conventional rotary rig. This report describes work that has been accomplished at the Laboratory on the development of thermal spallation drilling and some work that is projected for the future on the system. 3 references, 3 figures.

Williams, R.E.

1985-01-01T23:59:59.000Z

82

Update on slimhole drilling  

DOE Green Energy (OSTI)

Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

Finger, J.T.

1996-01-01T23:59:59.000Z

83

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

Science Conference Proceedings (OSTI)

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

84

Apparatus for downhole drilling communications and method for making and using the same  

DOE Patents (OSTI)

An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe.

Normann, Randy A. (Edgewood, NM); Lockwood, Grant J. (Albuquerque, NM); Gonzales, Meliton (Albuquerque, NM)

1998-01-01T23:59:59.000Z

85

Apparatus for downhole drilling communications and method for making and using the same  

DOE Patents (OSTI)

An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe. 6 figs.

Normann, R.A.; Lockwood, G.J.; Gonzales, M.

1998-03-03T23:59:59.000Z

86

Distribution network modeling and optimization for rapid and cost-effective deployment of oilfield drilling equipment  

E-Print Network (OSTI)

AAA, a large oil and gas field services company, is in the business of providing drilling services to companies that extract and market hydrocarbons. One of the key success factors in this industry is the ability to provide ...

Martchouk, Alexander

2010-01-01T23:59:59.000Z

87

Review of the Drilling R and D Program at Sandia  

DOE Green Energy (OSTI)

Drilling projects conducted for the Division of Geothermal Energy (DGE) and the Office of Energy Research (OER), both of the Department of Energy (DOE), are described. The DGE Well Technology Program includes drilling, well completion, and high temperature logging instrumentation R and D for geothermal applications. Accomplishments to date include successful laboratory testing of the continuous chain drill and development of temperature, pressure, and flow sondes capable of operation at 275/sup 0/C. Efforts are also under way to develop high-temperature, high-performance bits, high-temperature drilling fluids, and high-temperature downhole motors. Bearings, seals, and lubricants for use in high-temperature bits and motors are also being developed and tested. Recent results are presented. An OER drilling experiment into a lava lake at Kilauea Iki, Hawaii, is being conducted. Materials and techniques for drilling into an active magma/hydrothermal system are in a preliminary phase of study.

Stoller, H.M.

1978-01-01T23:59:59.000Z

88

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

DOE Patents (OSTI)

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

89

Raytheon downhole information system. Electromagnetic borehole measurements while drilling system. Final report  

DOE Green Energy (OSTI)

A description is given of the Raytheon Downhole Information System (RDIS), a real time electromagnetic borehole measurements while drilling system, applicable to oil, gas, and geothermal drilling. It communicates in both directions through the earth in a single hop at a downlink data rate of 3 bps and uplink rates dependent on depth--typically 6 bits/second at 10,000 ft and 2 bits/second at 15,000 ft; electromagnetic signal transmission time of approximately .1 second. Downhole hardware for communications, sensors, and power are packaged in three 30 ft subs. Downhole hardware can be developed to permit operation in a 275/sup 0/C geothermal environment. A cost analysis is included that predicts RDIS service could be economically priced at approximately $1000/day. Commercial availability depends primarily on proof of capability by demonstration in a working drilling well. The most significant portions of needed hardware are available. A description of a geothermal drilling telemetry system is included in Appendix A.

Kolker, M.; Greene, A.H.; Kasevich, R.S.; Robertson, J.C.; Grossi, M.D.

1978-03-01T23:59:59.000Z

90

Qualification of a computer program for drill string dynamics  

DOE Green Energy (OSTI)

A four point plan for the qualification of the GEODYN drill string dynamics computer program is described. The qualification plan investigates both modal response and transient response of a short drill string subjected to simulated cutting loads applied through a polycrystalline diamond compact (PDC) bit. The experimentally based qualification shows that the analytical techniques included in Phase 1 GEODYN correctly simulate the dynamic response of the bit-drill string system. 6 refs., 8 figs.

Stone, C.M.; Carne, T.G.; Caskey, B.C.

1985-01-01T23:59:59.000Z

91

Underbalanced drilling in the Piceance basin. Final report, June 1997  

Science Conference Proceedings (OSTI)

Underbalanced drilling technology is established and fairly well understood in some areas in the U.S. such as Appalachia. The primary objective of this cooperative project in the Piceance Basin was to use underbalanced drilling technologies to reduce rates of penetration such that significant cost reductions could occur. Fluids evaluated included air/mist, stiff foams and aerated muds. Underbalanced drilling was successful particularly in the surface hole; however, heaving shales in the Wasatch section were problematic.

Lewis, C.A.; Graham, R.L.

1997-06-01T23:59:59.000Z

92

Guided Horizontal Drilling: A Primer for Electric Utilities  

Science Conference Proceedings (OSTI)

This document is intended to be an introduction to guided horizontal drilling, also termed horizontal directional drilling (HDD), as an alternative construction method to open trenching for the installation of underground power cables, pipes, ducts, or conduits. It is written for an audience that includes electric power engineers, designers, operations and procurement personnel. The document introduces guided horizontal drilling technology, the equipment, and several critical aspects of operating the equ...

1997-02-18T23:59:59.000Z

93

Drilling technology/GDO  

DOE Green Energy (OSTI)

The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

Kelsey, J.R.

1985-01-01T23:59:59.000Z

94

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

95

Proper planning improves flow drilling  

Science Conference Proceedings (OSTI)

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

96

Mechanical drill string jar  

SciTech Connect

An improved mechanical drill string jar is described that allows uninhibited telescoping movement to the normal drilling condition. The drill string jar consists of: (a) an elongated, generally cylindrical, body usable as a drill string element; (b) axial motion resistance means situated in the annular opening; (c) bias means operatively associated with at least one element of the splined pair to rotate the pair out of alignment when the splined pair is rotationally disengaged; (d) opposed cooperating surfaces on at least two of the spline teeth situated such that forced axial relative motion of the splined pair will produce opposed radial forces on the teeth; (e) means intrinsic to at least one element of the splined pair to permit resisted radial displacement of the spline teeth when forced axial relative motion occurs, to permit one element to move axially through the other; (f) cam surfaces on at least one of the teeth situated to force rotational alignment of the splined pair when telescoping movement is from a jarring condition toward the normal drilling condition; (g) relative rotation resistance means situated in the annular opening, structurally engaged with the pair of telescoping members such that relative rotation therebetween will be resisted; (h) striker and anvil means situated in the annular opening, operatively associated with the telescoping pair of elements, such that axial relative movement therebetween will be solidly stopped at the axial extreme condition; (i) a flow-through fluid channel means extending between the means to attach to the continuing drill string; and (j) seal means situated in the annular opening, operatively associated with the telescoping pair of members, to provide fluid tightness therebetween.

Buck, D.A.

1987-08-25T23:59:59.000Z

97

The South Campus Precinct is comprised of those portions of Main Campus south of the Cascadilla Creek. It includes the service and administrative areas of the  

E-Print Network (OSTI)

and adjacent Central Combined Heat and Power Plant, additional service-related areas along Maple Avenue and accommodate growth, South Campus is anticipated to evolve significantly over the coming decades. The best PLANT SCHOELLKOPF MEMORIAL HALL PINETREEROAD DRYDEN ROAD ROUTE 366 ONEIDAPLACE FAIRMOUNTAVENUE ELM W OOD

Wang, Z. Jane

98

Compendium of regulatory requirements governing underground injection of drilling waste.  

Science Conference Proceedings (OSTI)

Large quantities of waste are produced when oil and gas wells are drilled. The two primary types of drilling wastes include used drilling fluids (commonly referred to as muds), which serve a variety of functions when wells are drilled, and drill cuttings (rock particles ground up by the drill bit). Some oil-based and synthetic-based muds are recycled; other such muds, however, and nearly all water-based muds, are disposed of. Numerous methods are employed to manage drilling wastes, including burial of drilling pit contents, land spreading, thermal processes, bioremediation, treatment and reuse, and several types of injection processes. This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies. The material included in the report was derived primarily from a review of state regulations and from interviews with state oil and gas regulatory officials.

Puder, M. G.; Bryson, B.; Veil, J. A.

2002-11-08T23:59:59.000Z

99

Critique of Drilling Research  

SciTech Connect

For a number of years the Department of Energy has been funding research to reduce the cost of drilling geothermal wells. Generally that research has been effective and helped to make geothermal energy economically attractive to developers. With the increased competition for the electrical market, geothermal energy needs every advantage it can acquire to allow it to continue as a viable force in the marketplace. In drilling related research, there is essentially continuous dialogue between industry and the national laboratories. Therefore, the projects presented in the Program Review are focused on subjects that were previously recommended or approved by industry.

Hamblin, Jerry

1992-03-24T23:59:59.000Z

100

Deepwater drilling riser system  

Science Conference Proceedings (OSTI)

The principal focus of this paper is to discuss and summarize, from the manufacturer's perspective, the primary milestones in the development of the marine riser system used to drill in record water depths off the U.S. east coast. This riser system is unique in that it used advanced designs, material technology, and quality control to enable safe operation in water depths beyond the capability of conventional drilling riser systems. Experience and research have led to design improvements that are now being incorporated in new riser systems that have the potential of expanding the frontiers to increasingly deeper water.

Chastain, T.; Stone, D.

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites  

Science Conference Proceedings (OSTI)

The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.

NONE

1995-09-01T23:59:59.000Z

102

Drilling Operations Plan for the Magma Energy Exploratory Well  

DOE Green Energy (OSTI)

This paper is a summary of the proposed drilling plan for the first phase (to 2500 feet depth) of the Magma Energy Exploratory Well. The drilling program comprises four phases, spaced approximately one year apart, which culminate in a large-diameter well to a total depth near 20,000 feet. Included here are descriptions of the well design, predictions of potential drilling problems, a list of restrictions imposed by regulatory agencies, an outline of Sandia's management structure, and an explanation of how the magma energy technology will benefit from this drilling.

Finger, John T.; Livesay, Bill J.; Ash, Don

1989-03-21T23:59:59.000Z

103

A number of Western employees will participate in a disaster drill on Wednesday, October 27th. The drill will simulate an emergency response  

E-Print Network (OSTI)

A number of Western employees will participate in a disaster drill on Wednesday, October 27th. The drill will simulate an emergency response to an earthquake, including exercises for damage assessment to the web4u. Employees may also call Human Resources at x3774. Disaster drill planned for October 27th

Zaferatos, Nicholas C.

104

Foam drilling simulator  

E-Print Network (OSTI)

Although the use of compressible drilling fluids is experiencing growth, the flow behavior and stability properties of drilling foams are more complicated than those of conventional fluids. In contrast with conventional mud, the physical properties of foam change along the wellbore. Foam physical and thermal properties are strongly affected by pressure and temperature. Many problems associated with field applications still exist, and a precise characterization of the rheological properties of these complex systems needs to be performed. The accurate determination of the foam properties in circulating wells helps to achieve better estimation of foam rheology and pressure. A computer code is developed to process the data and closely simulate the pressure during drilling a well. The model also offers a detailed discussion of many aspects of foam drilling operations and enables the user to generate many comparative graphs and tables. The effects of some important parameters such as: back-pressure, rate of penetration, cuttings concentration, cuttings size, and formation water influx on pressure, injection rate, and velocity are presented in tabular and graphical form. A discretized heat transfer model is formulated with an energy balance on a control volume in the flowing fluid. The finite difference model (FDM) is used to write the governing heat transfer equations in discretized form. A detailed discussion on the determination of heat transfer coefficients and the solution approach is presented. Additional research is required to analyze the foam heat transfer coefficient and thermal conductivity.

Paknejad, Amir Saman

2005-12-01T23:59:59.000Z

105

Drilling, Completing, and Maintaining Geothermal Wells in Baca, New Mexico  

DOE Green Energy (OSTI)

A 55-MWe power plant is planned for development in the Baca location in the Jemez Mountains of New Mexico. Union Geothermal has contracted to provide the steam for the power plant. This paper uses Baca Well No. 13 as a case history to describe the drilling methods, casing program, cementing program, and completion methods used by Union. The discussion includes aerated-water drilling and the methods of solving corrosion problems in aerated water. lost circulation control in mud drilling and its effect on the subsequent casing cementing program are discussed. The paper also includes a case history of scale removal methods used in Baca Well No. 11, including drilling the scale out with a turbo-drill and attempts at chemical inhibition.

Pye, S.

1981-01-01T23:59:59.000Z

106

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

107

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

108

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

109

Cost effectiveness of sonic drilling  

SciTech Connect

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

110

Horizontal drilling method and apparatus  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for drilling a highly deviated well into a petroleum formation the apparatus comprising a drill pipe extending from a surface location to a down-hole drilling assembly through a curved wellbore. It comprises a down-hole motor attached to a bit at a first end, the down-hole motor having a bent housing; a bent sub in the down-hole drilling assembly located above the motor; and a pony collar located between the motor and the bent sub, the pony collar having sufficient mass to substantially hold the motor against a wellbore wall during drilling operations.

Rehm, W.A.; Trunk, T.D.; Baseflug, T.D.; Cromwell, S.L.; Hickman, G.A.; Nickel, R.D.; Lyons, M.S.

1991-08-27T23:59:59.000Z

111

New surface equipment for underbalanced drilling  

Science Conference Proceedings (OSTI)

Perhaps the single most exciting development in the area of new drilling technology in this decade is underbalanced drilling (UBD). This category includes both jointed pipe and coiled tubing applications. Each has advantages and disadvantages in UBD operations. Regardless of the method selected for a particular UBD application, equipment similarities exist. The surface control and production equipment must be correctly sized and designed for the overall total UBD engineering solution. This article describes the various types, applications and purposes of special surface equipment needed in underbalanced operations. This is the second in a series of articles on UBD technology and its rapid development is this field.

Cuthbertson, R.L.; Vozniak, J.; Kinder, J.

1997-03-01T23:59:59.000Z

112

Data transmission element for downhole drilling components  

DOE Patents (OSTI)

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

113

Borehole measurements while drilling: systems and activities  

DOE Green Energy (OSTI)

Attention is focused on all potential methods of drilling safer and cheaper. Real time data from the bit offers the greatest potential for meeting these needs. As a result, numerous companies are actively competing to develop this oil field service capability and to capture a world wide market. Two basic categories of service are sought. The first, and highest priority, is drilling safety and efficiency; the second is real-time logging, or formation evaluation. This study addresses the types of systems being studied, describes company activity and projects underway, estimates the practical potential for success and considers the commercial market for successful systems. The need for research data on bit hydraulics and drill string dynamics, special deep, hot or sour gas situations and other relatively unusual requirements may become exceptions to the general conclusions that are drawn. Historical and present activity are documented through presenting the results of extensive literature and patent researches. A breakdown is presented of activity by company along with names and addresses for further contact.

McDonald, W.J.

1977-06-01T23:59:59.000Z

114

OCEAN DRILLING PROGRAM LEG 119 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

Program, Texas A&M University, as an account of work performed under the international Ocean Drilling sheet, including the 3000-m-high subglacial Gamburtsev Mountains. The glacier follows the line ice drainage basin is believed to be long-lived because of this structural control, and Prydz Bay

115

GRR/Section 5-FD-b - Drilling Pre-Application Process NV only | Open Energy  

Open Energy Info (EERE)

5-FD-b - Drilling Pre-Application Process NV only 5-FD-b - Drilling Pre-Application Process NV only < GRR(Redirected from GRR/Section 5-FD-b - Drilling Application Process) Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-FD-b - Drilling Pre-Application Process NV only 05-FD-b - DrillingApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies Energy Policy Act of 2005 Geothermal Steam Act of 1970 43 CFR 3261: Drilling Operations, Getting A Permit Triggers None specified Click "Edit With Form" above to add content 05-FD-b - DrillingApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

116

Coiled tubing - Operations and services  

Science Conference Proceedings (OSTI)

Drilling with a continuous (rather than jointed) drill string is an old concept that is gaining new attention as a result of recent advances made in coiled tubing and drilling technology. The development of larger diameter, reliable, high-strength coiled tubing and smaller diameter, positive displacement motors, orienting tools, surveying systems and fixed cutting drill bits have given drilling with a continuous drill string a capability that was previously unattainable. Like its many other uses, (e.g., squeeze cementing, wellbore cleanouts, flow initiation, logging) the continuity of coiled tubing gives it several advantages over conventional drill strings. These include: drilling underbalanced safely, significantly reduced trip time, continuous circulation, smaller surface requirements. Coiled tubing drilling operations have smaller surface lease requirements than most conventional rigs due to the smaller footprint of the coiled tubing unit and associated equipment. Current coiled tubing drilling operations have the following limitations: conventional rig assistance is required for well preparation; conventional rigs must assist in running long protective and production casing strings or liners; hole sizes are smaller; working depth capabilities are shallower, coiled tubing life is less. This paper goes on to discuss the history of continuous drill strings and includes information on tubing units, circulating systems, drilling fluids, well control systems, downhole tools, orientation tools, and bottomhole assemblies. It then gives a cost comparison and an application of this type of drilling.

Gronseth, J.M. (Imperial Oil Resources Ltd., Calgary, Alberta (Canada))

1993-04-01T23:59:59.000Z

117

Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling  

Science Conference Proceedings (OSTI)

The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

Larry Stolarczyk

2008-08-08T23:59:59.000Z

118

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network (OSTI)

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases detail within the context of shale gas drilling activities in New York, as well as their uses

Wang, Z. Jane

119

Drill bit assembly for releasably retaining a drill bit cutter  

DOE Patents (OSTI)

A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

2002-01-01T23:59:59.000Z

120

Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalanced Drilling Operations.  

E-Print Network (OSTI)

??Feasibility of drilling with supercritical carbon dioxide to serve the needs of deep underbalanced drilling operations has been analyzed. A case study involving underbalanced drilling… (more)

Gupta, Anamika

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Horizontal drilling in the Lower Glen Rose Formation, Maverick County, Texas  

Science Conference Proceedings (OSTI)

This paper presents preliminary results of a project to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing Department of Energy investigation of directional drilling in the development of gas resources within the United States. The paper includes: project description; results covering geologic setting, reservoir engineering, and seismic surveys; and future work on drilling location selection, drilling, and well completion. (AT)

Drimal, C.E.; Muncey, G.

1992-01-01T23:59:59.000Z

122

Horizontal drilling in the Lower Glen Rose Formation, Maverick County, Texas  

Science Conference Proceedings (OSTI)

This paper presents preliminary results of a project to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing Department of Energy investigation of directional drilling in the development of gas resources within the United States. The paper includes: project description; results covering geologic setting, reservoir engineering, and seismic surveys; and future work on drilling location selection, drilling, and well completion. (AT)

Drimal, C.E.; Muncey, G.

1992-10-01T23:59:59.000Z

123

Resonant acoustic transducer and driver system for a well drilling string communication system  

DOE Patents (OSTI)

The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

Chanson, Gary J. (Weston, MA); Nicolson, Alexander M. (Concord, MA)

1981-01-01T23:59:59.000Z

124

Pad drilling and rig mobility lead to more efficient drilling ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Pad drilling allows producers to target a significant area of underground resources while minimizing impact on the surface.

125

Apparatus in a drill string  

DOE Patents (OSTI)

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

Hall, David R. (Provo, UT); Dahlgren, Scott (Alpine, UT); Hall, Jr., Tracy H. (Provo, UT); Fox, Joe (Lehi, UT); Pixton, David S. (Provo, UT)

2007-07-17T23:59:59.000Z

126

Feasibility study of a hybrid erosion drilling concept  

DOE Green Energy (OSTI)

The results of a system analysis of the ERODRILL concept are presented. ERODRILL is an erosion drilling technique that uses a stream of propellant capsules carried in the drilling mud and ignited near the bottom of the drill hole to provide a fluid jet on the rock face. The concept evaluated in this study was a hybrid system using the erosion drill to cut a kerf for a conventional rotary drill to break to. A preliminary design was made and a hypergolic propellant, Hercules HES 6573, was chosen. The background and rationale for this program are presented. The system, from its initial conception to its current hybrid design, is described. The propellant selection process is presented. The hazard evaluation, reliability analysis, and the economic analysis are given. Conclusions and recommendations are included. (MHR)

Not Available

1977-06-01T23:59:59.000Z

127

An innovative drilling system  

Science Conference Proceedings (OSTI)

The principal project objectives were the following: To demonstrate the capability of the Ultrashort Radius Radial System to drill and complete multiple horizontal radials in a heavy oil formation which had a production history of thermal operations. To study the effects that horizontal radials have on steam placement at specific elevations and on reducing gravity override. To demonstrate that horizontal radials could be utilized for cyclic production, i.e. for purposes of oil production as well as for steam injection. Each of these objectives was successfully achieved in the project. Early production results indicate that radials positively influenced cyclic performance. This report documents those results. 15 refs., 29 figs., 1 tab.

Nees, J.; Dickinson, E.; Dickinson, W.; Dykstra, H.

1991-05-01T23:59:59.000Z

128

Pioneering work, economic factors provide insights into Russian drilling technology  

Science Conference Proceedings (OSTI)

In Russia and America, individual ingenuity and economic forces have produced a variety of drilling technologies, resulting in the development of disparate drilling systems. Endeavors by the US Department of Energy, the Gas Research Institute, Sandia Laboratories, and private industry have promoted exchanges of knowledge since the 1980s, and now that the barriers to technology transfer are being lifted, engineers from both countries have the opportunity to exchange knowledge and incorporate the best of both. The Russian drilling industry, like the Russian space program, has achieved tremendous success in implementing product and process innovations including the first directional (1940s), horizontal (1950s), and multilateral (1950s) wells. In addition, Russian engineers built the first turbodrills, electrodrills, novel drills (lasers, explosives), aluminum drill pipe, downhole electric submersible pumps, and mud hammers. This first part of a two-part series describes the achievements of Russian engineers in horizontal and multilateral drilling technologies followed by a discussion of the economic differences that led Russian and American drillers to develop dissimilar drilling systems. The second part describes a variety of innovative Russian technologies and provides details on the technical advantages they offer for the drilling process.

Gaddy, D.E.

1998-07-06T23:59:59.000Z

129

Energy week `96: Conference papers. Book 3: Drilling and production economics  

Science Conference Proceedings (OSTI)

The papers of Section 1, Drilling Technology, relate to advanced materials for downhole tools, underbalanced drilling, horizontal drilling technology/new trajectory control device, horizontal drilling HP/HT well control, advances in drill bits, slim-hole drill bits and tubulars, novel/scientific drilling, and coiled tubing/slim-hole drilling/short radius. The topics of Section 2, Ocean Engineering, include marine pollution and diving equipment. Section 3, Petroleum Production Technology, relate to what`s new in regulations and standards in petroleum production. Papers in Section 4, Offshore and Arctic Operations, cover offshore platforms, floating production systems, offshore pipelines, offshore construction and installation, offshore facilities, and environmental and safety issues. Most papers have been processed separately for inclusion on the data base.

NONE

1996-09-01T23:59:59.000Z

130

Potential use of hollow spheres in dual gradient drilling  

E-Print Network (OSTI)

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper target depths with greater final hole size, which in turn will permit setting larger tubing strings, and hence allowing for higher production rates. DGD can be accomplished by either lifting the mud returns mechanically or diluting the mud returns at the seafloor level by injecting lightweight components. Recently, a novel concept involving the use of hollow spheres in DGD applications has been introduced. In this research, we have evaluated the technical feasibility of using hollow spheres in DGD. We found that hollow spheres have high potential for such an application. They are stable to the drilling fluid additives and components and decrease the density of the drilling mud. The effect on pressure reduction at the seafloor can be significant even when the concentration of spheres injected is smaller than that required to reduce the mud density to seawater density. If the base mud is the carrier fluid, the hollow spheres DGD systems do not require equipment at the seafloor. Additionally, the injection of spheres does not affect the wellbore hydraulics under dynamic conditions. We have identified the constraints for using hollow spheres in DGD. These include particle size of the spheres, collapse of first spheres to be injected at deeper water depths, achieving high concentrations for systems using the mud base as the carrier fluid, and lack of technology to separate the spheres from the mud. In this research, we have developed a friendly, in-house computer program to model features specific to hollow-spheres DGD systems, such as wellbore hydraulics under static and dynamic conditions and the u-tube phenomenon. The results generated by our model match those produced by a field-tested computer program that performs the same task for a similar application. Our findings can be used for further studies of the constraints on the spheres identified in this research, to field test the advantages we predict that hollow spheres will have, and to develop software to fully model hollow-spheres DGD systems.

Vera Vera, Liliana

2002-01-01T23:59:59.000Z

131

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

132

Managing pressure during underbalanced drilling.  

E-Print Network (OSTI)

?? AbstractUnderbalanced drilling has received more and more attention in recent years. The reason for that may be because many oil fields, especially on the… (more)

Råen, Jostein

2012-01-01T23:59:59.000Z

133

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network (OSTI)

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper waters to its environmental impact on global warming and cooling. Gas hydrates are ice-like structures of a water lattice with cavities, which contain guest gases. Gas hydrates are stable at low temperatures and high pressures. The amount of energy trapped in gas hydrates all over the world is about twice the amount found in all recoverable fossil fuels today. This research identifies the problems facing the oil and gas industry as it drills in deeper waters where gas hydrates are present and suggests solutions to some of the problems. The problems considered in this research have been approached from a drilling point of view. Hence, the parameters investigated and discussed are drilling controlled parameters. They include rate of penetration, circulation rate and drilling fluid density. The rate of penetration in offshore wells contributes largely to the final cost of the drilling process. These 3 parameters have been linked in the course of this research in order to suggest an optimum rate of penetration. The results show the rate of penetration is directly proportional to the amount of gas released when drilling through gas hydrate. As the volume of gas released increases, the problems facing the drilling rigs, drilling crew and environment is seen to increase. The results also show the extent of risk to be expected while drilling through gas hydrate formations. A chart relating the rate of penetration, circulation rate and effective mud weight was used to select the optimum drilling rate within the drilling safety window. Finally, future considerations and recommendations in order to improve the analyses presented in this work are presented. Other drilling parameters proposed for future analysis include drill bit analysis with respect to heat transfer and the impact of dissociation of gas hydrate around the wellbore and seafloor stability.

Amodu, Afolabi Ayoola

2008-08-01T23:59:59.000Z

134

Field Investigations And Temperature-Gradient Drilling At Marine...  

Open Energy Info (EERE)

years. Work has included self-potential (SP) surveys, fault structure analyses using LiDAR surveys, and drilling and assessment of five (5) temperature-gradient holes. For...

135

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

136

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

Brian C. Gahan; Samih Batarseh

2004-09-28T23:59:59.000Z

137

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

138

Practical applications of a drilling data center  

SciTech Connect

Tenneco Oil is using a real-time drilling-data acquisition, telemetry, data base, and applications-program system for Gulf of Mexico operations. The system provides for data acquisition in real time from commercially available logging units. The data are transmitted into a central office onshore via microwave or satellite telemetry links. Up to 352 drilling parameters are transmitted from each computerized logging unit and archived in the data base every 20 sec. Parameters can include measurement-while-drilling (MWD) data as well as mud-logging data. Applications programs utilizing these parameters are available in the central site data center (CSDC) and in locations throughout Tenneco's facilities in Lafayette, La. Access to the CSDC and its computing power is also available on the offshore rig. Backup surveillance of critical drilling parameters is provided through alarms and continuous monitoring of the parameters, thus providing for a safer operation. Rig efficiency has also been improved through analysis of the data and comparison of the data between various rig operations and rigs. Both tangible and intangible cost savings are discussed.

Graff, R.L.; Segrest, R.P.

1986-05-19T23:59:59.000Z

139

Electric drill-string telemetry  

Science Conference Proceedings (OSTI)

We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics ... Keywords: drill string, low frequency, simulation, transmission line, voltage

José M. Carcione; Flavio Poletto

2003-04-01T23:59:59.000Z

140

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydraulic Pulse Drilling  

NLE Websites -- All DOE Office Websites (Extended Search)

REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE 0 4/13/2004 Final Report Author: J. Kolle Hunter/Theimer 4/13/2004 Document No.: TR- 053 HydroPulse(tm) Drilling Final Report Prepared by J.J. Kolle April 2004 U.S. Department of Energy Cooperative Development Agreement No. DE-FC26-FT34367 Tempress Technologies, Inc. 18858 - 72 ND Ave S. Kent, WA 98032 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

142

GRR/Section 5-FD-b - Drilling Pre-Application Process NV only | Open Energy  

Open Energy Info (EERE)

5-FD-b - Drilling Pre-Application Process NV only 5-FD-b - Drilling Pre-Application Process NV only < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-FD-b - Drilling Pre-Application Process NV only 05-FD-b - DrillingApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies Energy Policy Act of 2005 Geothermal Steam Act of 1970 43 CFR 3261: Drilling Operations, Getting A Permit Triggers None specified Click "Edit With Form" above to add content 05-FD-b - DrillingApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

143

GRR/Section 5-FD-a - Drilling Application Process | Open Energy Information  

Open Energy Info (EERE)

5-FD-a - Drilling Application Process 5-FD-a - Drilling Application Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-FD-a - Drilling Application Process 05-FD-a - DrillingPreApplicationProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies Energy Policy Act of 2005 Geothermal Steam Act of 1970 43 CFR 3261: Drilling Operations, Getting A Permit Triggers None specified Click "Edit With Form" above to add content 05-FD-a - DrillingPreApplicationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

144

OCEAN DRILLING PROGRAM LEG 179 PRELIMINARY REPORT  

E-Print Network (OSTI)

using a section of drill-in casing connected to a free-fall reentry cone. This hole was drilled to 95

145

From drawing board to drill string  

SciTech Connect

This article explains that justification for a new downhole tool typically involves maintaining performance at reduced costs or increasing performance. Some new tool concepts are derived from a management decision to replace or improve old or obsolete equipment. The newer models typically have increased performance ratings and are better suited to meet the growing downhole needs of modern drilling. A new tool will usually fill one or some combination of three roles: providing services that were previously not available; complimenting and increasing usage of an existing tool; and, expanding operations into a new field of service. One of the more fundamental trends affecting development of virtually all downhole tools is increased average depth per well. The deeper wells require tools and materials that will withstand higher pressures and temperature and more corrosive environments.

Ward, M.

1986-10-01T23:59:59.000Z

146

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

147

Drainhole drilling projects under way  

Science Conference Proceedings (OSTI)

This paper reports that many operators are taking advantage of continued developments in drainhole drilling technology to increase productivity in certain fields. Previously untapped prospects are under renewed scrutiny to determine if drainhole and horizontal drilling can make them more attractive. Producing properties are being reevaluated as well. Drainhole drilling typically involves reentering an existing well and cutting through the casing to drill a relatively short length of horizontal wellbore. Although separating drainhole and horizonal or extended-reach drilling is somewhat of a gray area, one difference is that a drainhole well turns to the horizontal much quicker. The radius of turn to 90/sup 0/ can be as little as 30 to 50 ft. Additionally, the length of horizontal kick in a drainhole well is typically in the 300- to 500-ft range compared to 1000 ft or more in extended-reach drilling. A final separating characteristic is that drainhole drilling can be associated with several horizontal lengths of wellbore coming off a single vertical hole.

Burton, B.

1987-07-01T23:59:59.000Z

148

Acoustical properties of drill strings  

DOE Green Energy (OSTI)

The recovery of petrochemical and geothermal resources requires extensive drilling of wells to increasingly greater depths. Real-time collection and telemetry of data about the drilling process while it occurs thousands of feet below the surface is an effective way of improving the efficiency of drilling operations. Unfortunately, due to hostile down-hole environments, telemetry of this data is an extremely difficult problem. Currently, commercial systems transmit data to the surface by producing pressure pulses within the portion of the drilling mud enclosed in the hollow steel drill string. Transmission rates are between two and four data bits per second. Any system capable of raising data rates without increasing the complexity of the drilling process will have significant economic impact. One alternative system is based upon acoustical carrier waves generated within the drill string itself. If developed, this method would accommodate data rates up to 100 bits per second. Unfortunately, the drill string is a periodic structure of pipe and threaded tool joints, the transmission characteristics are very complex and exhibit a banded and dispersive structure. Over the past forty years, attempts to field systems based upon this transmission method have resulted in little success. This paper examines this acoustical transmission problem in great detail. The basic principles of acoustic wave propagation in the periodic structure of the drill string are examined through theory, laboratory experiment, and field test. The results indicate the existence of frequency bands which are virtually free of attenuation and suitable for data transmission at high bit rates. 9 refs., 38 figs., 2 tabs.

Drumheller, D.S.

1988-08-01T23:59:59.000Z

149

Underbalanced drilling in remedial operations  

Science Conference Proceedings (OSTI)

Operators are finding additional applications for underbalanced drilling (UBD) technology that deliver benefits besides faster, more trouble-free drilling and improved well productivity. Underbalanced workovers, completions and re-drills are being performed with impressive results. This article will describe some of the jobs and applications, and detail the special surface equipment being used to make this a success. This is the fifth in a series of articles on UBD technology and its rapid development in this field. The paper discusses deep gas wells in the Texas Panhandle, gas and condensate wells near Mobile, Alabama, and the Austin Chalk wells in Texas and Louisiana.

Cuthbertson, R.L.; Vozniak, J.

1997-06-01T23:59:59.000Z

150

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

151

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

152

Low-pressure reservoir drilled with air/N[sub 2] in a closed system  

Science Conference Proceedings (OSTI)

Ignition tests on simulated produced fluids helped determine the ideal air/nitrogen mixture for an underbalanced drilling operation that used a closed surface system to process return fluids. The low-pressure, heavy-oil target reservoir required underbalanced drilling to minimize formation damage. Underbalanced or near-balanced drilling can improve production from pressure-depleted reservoirs by reducing the chance of formation damage from drilling fluid losses. Underbalanced drilling technology currently available includes the use of gas injection through parasite strings or through drilling tubulars. No one (to the author's knowledge) has combined concentric-string commingled gas injection with through-drilling-tubular commingled gas injection. The paper describes lab work, test results, surface returns, downhole design, operations, and field results.

Teichrob, R.R. (Husky Oil Operations Ltd., Calgary, Alberta (Canada))

1994-03-21T23:59:59.000Z

153

On-Site Services  

Science Conference Proceedings (OSTI)

... the Boulder Laboratories Employees Association ... a variety of health services including emergency ... emergency ambulance service; administration of ...

2010-12-21T23:59:59.000Z

154

Handbook 1: Introduction to drilling mud systems  

Science Conference Proceedings (OSTI)

This is the first of the 11 handbook that make up the IADC Mud Equipment Manual. The manual is designed to provide information on all pieces of drilling rig equipment from the flow line to the mud pump section. This book focuses on drilling fluids and their properties and treatment, and thoroughly examines mud solid characteristics. Methods of controlling formation pore pressure, and cut points, as well as cuttings removal (viscosity, yield point, gel strengths, hole cleaning, etc.), are followed by a discussion of solid sizes and solid size distribution. Special features include a glossary of mud terms, a section on ''hard-to-find'' information such as gold concentration, wind forces, and AC motor current requirements, and a comprehensive index for all 11 handbooks.

Not Available

1985-01-01T23:59:59.000Z

155

Advanced Mud System for Microhole Coiled Tubing Drilling  

Science Conference Proceedings (OSTI)

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

156

Evaluation of commercially available geothermal drilling fluids  

DOE Green Energy (OSTI)

A review of geothermal drilling in the United States has revealed that serious problems are being encountered with corrosion and degradation of drilling fluids in high temperature wells. The best high temperature drilling fluids that could be formulated from commercially available materials were obtained from the five largest mud companies. These included samples of 9 and 18 lb/gal water muds and 18 lb/gal oil muds. Over 4,000 tests were conducted on these muds to evaluate their performance at high temperature. This included testing at temperatures to 550/sup 0/F and pressures to 15,000 psi. These tests revealed that most of the water muds had high viscosity, high filtration rates and poor corrosivity characteristics at temperatures above 350/sup 0/F. Although the oil muds performed better than water muds at high temperatures, some problems were encountered with viscosity at temperatures above 450/sup 0/F and with filtration at temperatures above 500/sup 0/F. Generally the corrosivity characteristics of the oil muds were much better than those of the water muds. Overall, oil muds have better temperature stability than water muds but their use is often limited because of problems with surface pollution, contamination of water zones and reservoir damage. Biodegradable oil mud systems would overcome some of these limitations.

Remont, L.J.; Rehm, W.A.; McDonald, W.J.; Maurer, W.C.

1976-11-01T23:59:59.000Z

157

Infill drilling enhances waterflood recovery  

Science Conference Proceedings (OSTI)

Two sets of west Texas carbonate reservoir and waterflood data were studied to evaluate the impact of infill drilling on waterflood recovery. Results show that infill drilling enhanced the current and projected waterflood recovery from most of the reservoirs. The estimated ultimate and incremental infill-drilling waterflood recovery was correlated with well spacing and other reservoir and process parameters. Results of the correlation indicate that reducing well spacing from 40 to 20 acres (16 to 8 ha) per well would increase the oil recovery by 8 to 9% of the original oil in place (OOIP). Because of the limited data base and regressional nature of the correlation models, the infill-drilling recovery estimate must be used with caution.

Wu, C.H.; Jardon, M. (Texas A and M Univ., College Station, TX (USA)); Laughlin, B.A. (Union Pacific Research Co. (US))

1989-10-01T23:59:59.000Z

158

OCEAN DRILLING PROGRAM LEG 158 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

for the Ocean Drilling Program Deutsche Forschungsgemeinschaft (Federal Republic of Germany) Institut Français

159

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany

160

OCEAN DRILLING PROGRAM LEG 160 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal drill pipe corrosion test plan  

DOE Green Energy (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

162

PAO lubricant inhibits bit balling, speeds drilling  

Science Conference Proceedings (OSTI)

For drilling operations, a new polyalphaolefin (PAO) lubricant improves penetration rates by reducing bit balling tendencies in water-based mud. The additive also reduces drillstring drag. This enables the effective transmission of weight to the bit and thereby increases drilling efficiency in such applications as directional and horizontal drilling. The paper describes drilling advances, bit balling, laboratory testing, and test analysis.

Mensa-Wilmot, G. [GeoDiamond, Houston, TX (United States); Garrett, R.L. [Garrett Fluid Technology, The Woodlands, TX (United States); Stokes, R.S. [Coastal Superior Solutions Inc., Lafayette, LA (United States)

1997-04-21T23:59:59.000Z

163

Field Investigations And Temperature-Gradient Drilling At Marine Corps  

Open Energy Info (EERE)

Investigations And Temperature-Gradient Drilling At Marine Corps Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Field Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Details Activities (4) Areas (1) Regions (0) Abstract: The U.S. Navy's Geothermal Program Office (GPO) has been conducting geothermal exploration activities in the Camp Wilson area of Marine Corps Air-Ground Combat Center (MCAGCC), Twenty-nine Palms, CA, for almost two years. Work has included self-potential (SP) surveys, fault structure analyses using LiDAR surveys, and drilling and assessment of five (5) temperature-gradient holes. For several decades the GPO has worked

164

Field application of lightweight, hollow-glass-sphere drilling fluid  

Science Conference Proceedings (OSTI)

A new class of underbalanced drilling fluids being developed under US Dept. of Energy (US DOE) sponsorship was recently successfully field tested. The fluid uses hollow glass spheres (HGS`s) to decrease the fluid density to less than that of the base mud while maintaining incompressibility. Concentrations of up to 20 vol% were used to decrease the fluid density to 0.8 lbm/gal less than normally used in the field. Potential benefits of using these fluids include higher penetration rates, decreased formation damage, and lost-circulation mitigation. When used in place of aerated fluid, they can eliminate compressor usage and allow the use of mud-pulse measurement-while-drilling tools. These and other recent advances in technology have spurred interest in underbalanced drilling to the highest level in 30 years. Industry-wide surveys indicate that more than 12% of wells drilled in the US in 1997 will intentionally use underbalanced techniques.

NONE

1997-11-01T23:59:59.000Z

165

Chemical damage due to drilling operations  

DOE Green Energy (OSTI)

The drilling of geothermal wells can result in near wellbore damage of both the injection wells and production wells if proper precautions are not taken. Very little specific information on the chemical causes for drilling damage that can directly be applied to the drilling of a geothermal well in a given situation is available in the literature. As part of the present work, the sparse literature references related to the chemical aspects of drilling damage are reviewed. The various sources of chemically induced drilling damages that are related to drilling operations are summarized. Various means of minimizing these chemical damages during and after the drilling of a geothermal well are suggested also.

Vetter, O.J.; Kandarpa, V.

1982-07-14T23:59:59.000Z

166

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

167

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results  

DOE Green Energy (OSTI)

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. (eds.)

1992-04-01T23:59:59.000Z

168

Downhole Temperature Prediction for Drilling Geothermal Wells  

DOE Green Energy (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

169

Smaller Footprint Drilling System for  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-03NT15401 Final Report Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling Submitted by: TerraTek, A Schlumberger Company 1935 Fremont Drive Salt Lake City, UT 84104 Prepared for: United States Department of Energy National Energy Technology Laboratory 2 February 2010 Office of Fossil Energy Feasibility of Ultra-High Speed Diamond Drilling DE-FC26-03NT15401 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

170

Method and apparatus for jet-assisted drilling or cutting  

Science Conference Proceedings (OSTI)

An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

2012-09-04T23:59:59.000Z

171

Method and apparatus for jet-assisted drilling or cutting  

DOE Patents (OSTI)

An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

2013-07-02T23:59:59.000Z

172

System and method for damping vibration in a drill string  

DOE Patents (OSTI)

A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

Wassell, Mark Ellsworth (Kingwood, TX); Turner, William Evans (Durham, CT); Burgess, Daniel E. (Middletown, CT); Perry, Carl Allison (Middletown, CT)

2011-08-16T23:59:59.000Z

173

System and method for damping vibration in a drill string  

DOE Patents (OSTI)

A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

Wassell, Mark Ellsworth (Kingwood, TX); Turner, William Evans (Durham, CT); Burgess, Daniel E. (Middletown, CT); Perry, Carl Allison (Middletown, CT)

2008-05-27T23:59:59.000Z

174

System and method for damping vibration in a drill string  

DOE Patents (OSTI)

A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

Wassell, Mark Ellsworth (Kingwood, TX); Turner, William Evans (Durham, CT); Burgess, Daniel E. (Middletown, CT); Perry, Carl Allison (Middletown, CT)

2007-05-22T23:59:59.000Z

175

System and method for damping vibration in a drill string  

Science Conference Proceedings (OSTI)

A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

Wassell, Mark Ellsworth (Kingswood, TX); Turner, William Evans (Durham, CT); Burgess, Daniel E. (Middletown, CT); Perry, Carl Allison (Middletown, CT)

2012-08-14T23:59:59.000Z

176

Apparatus for measuring weight, torque and side force on a drill bit  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for measuring at least one load applied to a drill bit during the drilling of a well, including: drill string sub means adapted to be connected in a drill string above the drill bit; hole means for defining a pair of diametrically opposite through-hole means in the wall of the sub; plug means in each of the hole means, the plug means cooperating with the through hole means to define an atmospheric chamber means in each of the through hole means; ring means in the centerbore of the drillstring sub; fastener means for connecting the plug means to the annular ring means; weight sensor means in each of the through hole means for generating an output in response to at least the parameter of weight on the drill bit.

Maron, R.

1989-04-18T23:59:59.000Z

177

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

178

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

179

Acoustic data transmission through a drill string  

DOE Patents (OSTI)

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

180

Solicitation - Geothermal Drilling Development and Well Maintenance Projects  

DOE Green Energy (OSTI)

Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

Sattler, A.R.

1999-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Simulation of air and mist drilling for geothermal wells  

SciTech Connect

An air drilling model has been developed that accounts for cuttings and mist. Comparison of the model results with previous work shows this model to be more conservative. The equations developed are simple enough to be used in hand calculations, but the full capability of the model is more easily obtained with a computer program. Studies with the model show that volume requirements and standpipe pressures are significantly different for mist drilling compared with air drilling. An improved method for calculating downhole temperatures, pressures, fluid densities, and velocities during air drilling has been developed. Improvements on previous methods include the following. A fully transient thermal analysis of the wellbore and formation is used to determine the flowing temperatures. The effects of flow acceleration are included explicitly in the calculation. The slip velocity between the gas and the cuttings is determined by the use of a separate momentum equation for the cuttings. The possibility of critical flow in the wellbore is tested and appropriate changes in the volume flow rate and standpipe pressure are made automatically. The standpipe and flowing pressures are predicted. The analysis is conservative. The effect of the cuttings on the wellbore flow will tend to overpredict the required volume flow rates. In this paper, the basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressure in typical air and mist drilling situations.

Mitchell, R.F.

1983-11-01T23:59:59.000Z

182

Well descriptions for geothermal drilling  

DOE Green Energy (OSTI)

Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

Carson, C.C.; Livesay, B.J.

1981-01-01T23:59:59.000Z

183

Temperature histories in geothermal wells: survey of rock thermomechanical properties and drilling, production, and injection case studies  

DOE Green Energy (OSTI)

Thermal and mechanical properties for geothermal formations are tabulated for a range of temperatures and stress conditions. Data was obtained from the technical literature and direct contacts with industry. Thermal properties include heat capacity, conductivity, and diffusivity. Undisturbed geothermal profiles are also presented. Mechanical properties include Youngs modulus and Poisson ratio. GEOTEMP thermal simulations of drilling, production and injection are reported for two geothermal regions, the hot dry rock area near Los Alamos and the East Mesa field in the Imperial Valley. Actual drilling, production, and injection histories are simulated. Results are documented in the form of printed GEOTEMP output and plots of temperatures versus depth, radius, and time. Discussion and interpretation of the results are presented for drilling and well completion design to determine: wellbore temperatures during drilling as a function of depth; bit temperatures over the drilling history; cement temperatures from setting to the end of drilling; and casing and formation temperatures during drilling, production, and injection.

Goodman, M.A.

1981-07-01T23:59:59.000Z

184

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer (OSTI)

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

185

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for the Ocean Drilling Program Deutsche

186

OCEAN DRILLING PROGRAM LEG 201 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for the Ocean Drilling Program Deutsche

187

National advanced drilling and excavation technologies program: Summary of third meeting of interested Federal agencies  

DOE Green Energy (OSTI)

The purpose of the meeting was: (1) to discuss a proposal by the Massachusetts Institute of Technology (MIT) outlining a National Advanced Drilling and Excavation Technologies Program, (2) to brief participants on events since the last meeting, and (3) to hear about drilling research activities funded by the Department of Energy. The meeting agenda is included as Attachment B.

None

1993-12-07T23:59:59.000Z

188

Use of geothermal heat for sugar refining in Imperial County: drilling and resource development plan  

DOE Green Energy (OSTI)

The project plans and procedures to be used in drilling and completing both the production and injection wells for Holly Sugar Company are described. The following are included: general site activities, occupational health and safety, drilling operations, permits, environmental report, and schedule.

Not Available

1979-06-01T23:59:59.000Z

189

Microhole Drilling Tractor Technology Development  

SciTech Connect

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

190

Directional drilling and equipment for hot granite wells  

DOE Green Energy (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

191

Reducing the risk, complexity and cost of coiled tubing drilling  

Science Conference Proceedings (OSTI)

Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

Portman, L. [BJ Services, Houston, TX (United States)

1999-07-01T23:59:59.000Z

192

Recent developments in polycrystalline diamond-drill-bit design  

DOE Green Energy (OSTI)

Development of design criteria for polycrystalline diamond compact (PDC) drill bits for use in severe environments (hard or fractured formations, hot and/or deep wells) is continuing. This effort consists of both analytical and experimental analyses. The experimental program includes single point tests of cutters, laboratory tests of full scale bits, and field tests of these designs. The results of laboratory tests at simulated downhole conditions utilizing new and worn bits are presented. Drilling at simulated downhole pressures was conducted in Mancos Shale and Carthage Marble. Comparisons are made between PDC bits and roller cone bits in drilling with borehole pressures up to 5000 psi (34.5 PMa) with oil and water based muds. The PDC bits drilled at rates up to 5 times as fast as roller bits in the shale. In the first field test, drilling rates approximately twice those achieved with conventional bits were achieved with a PDC bit. A second test demonstrated the value of these bits in correcting deviation and reaming.

Huff, C.F.; Varnado, S.G.

1980-05-01T23:59:59.000Z

193

High-temperature directional drilling turbodrill  

DOE Green Energy (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

194

Downhole mud properties complicate drilling hydraulics  

Science Conference Proceedings (OSTI)

This paper explains that wellsite parameters such as penetration rate, hole cleaning, hole erosion and overall wellbore stability are directly related to the hydraulic conditions occurring while drilling. Drilling hydraulics, in turn, are largely a function of the drilling mud's properties, primarily viscosity and density. Accurate pressure loss calculations are necessary to maximize bit horse-power and penetration rates. Also, annular pressure loss measurements are important to record equivalent circulating densities, particularly when drilling near balanced formation pressures or when approaching formation fracture pressures. Determination of the laminar, transitional or turbulent flow regimes will help ensure the mud will remove drill cuttings from the wellbore and minimize hole erosion.

Leyendecker, E.A.; Bruton, J.R.

1986-10-01T23:59:59.000Z

195

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

196

Drill string transmission line  

DOE Patents (OSTI)

A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Bradford, Kline (Orem, UT); Fox, Joe (Spanish Fork, UT)

2006-03-28T23:59:59.000Z

197

Conformable apparatus in a drill string  

DOE Patents (OSTI)

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2007-08-28T23:59:59.000Z

198

Innovative techniques cut costs in wetlands drilling  

Science Conference Proceedings (OSTI)

This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential.

Navarro, A.R. (ARCO Oil and Gas Co., Lafayette, LA (US))

1991-10-14T23:59:59.000Z

199

Underbalanced drilling with air offers many pluses  

Science Conference Proceedings (OSTI)

A pressure overbalance during conventional drilling can cause significant fluid filtrate invasion and lost circulation. Fluid invasion into the formation can lead to formation damage, high mud costs, a need for expensive completions, and well productivity impairment. Because underbalanced drilling creates a natural tendency for fluid and gas to flow from the formation to the borehole, successful underbalanced drilling depends upon the appropriate selection of circulating fluid. The use of a compressible fluid in the circulating system, referred to as air drilling, lowers the downhole pressure, allowing drilling into and beyond these sensitive formations. The paper discusses the equipment needed; well control; downhole air requirements; air drilling techniques using dry air, air-mist, stable foam, stiff foam, and aerated-fluid; downhole fires; directional air drilling; and well completions.

Shale, L. [Baker Hughes Inteq, Houston, TX (United States)

1995-06-26T23:59:59.000Z

200

Chemical Speciation of Chromium in Drilling Muds  

Science Conference Proceedings (OSTI)

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Downhole replaceable drill bit: progress report and program plan  

DOE Green Energy (OSTI)

The significant progress in the development of the downhole replaceable drill bit which had been completed by the end of January 1976 is reviewed. A long-range program plan is included to indicate the level of effort required to bring this system to commercial production.

Newsom, M.M.; St. Clair, J.A.; Ashmore, R.F.; Dodd, H.M. Jr.

1976-06-01T23:59:59.000Z

202

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

203

Filter for a drill string  

DOE Patents (OSTI)

A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

2007-12-04T23:59:59.000Z

204

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2001 through September 2001. Accomplishments to date include the following: TerraTek highlighted DOE's National Energy Technology Laboratory effort on Mud Hammer Optimization at the recent Annual Conference and Exhibition for the Society of Petroleum Engineers. The original exhibit scheduled by NETL was canceled due to events surrounding the September tragedies in the US. TerraTek has completed analysis of drilling performance (rates of penetration, hydraulics, etc.) for the Phase One testing which was completed at the beginning of July. TerraTek jointly with the Industry Advisory Board for this project and DOE/NETL conducted a lessons learned meeting to transfer technology vital for the next series of performance tests. Both hammer suppliers benefited from the testing program and are committed to pursue equipment improvements and ''optimization'' in accordance with the scope of work. An abstract for a proposed publication by the society of Petroleum Engineers/International Association of Drilling Contractors jointly sponsored Drilling Conference was accepted as an alternate paper. Technology transfer is encouraged by the DOE in this program, thus plans are underway to prepare the paper for this prestigious venue.

Gordon Tibbitts; Arnis Judzis

2001-10-01T23:59:59.000Z

205

Indonesian drilling maintains steady pace  

SciTech Connect

Offshore drilling activity in Indonesia increased nominally the first quarter of 1985 to an average 29 rigs. Barring any further problems with oil prices and markets, operators are expected to maintain essentially the current general level of appraisal/development work for the rest of this year. There are still a number of prospective regions to be explored in Southeast Asia. Regional developments are described for the South China Sea area, the Java Sea, South Sumatra, Kalimantan, Irian Jaya and the Malacca Strait.

Not Available

1985-05-01T23:59:59.000Z

206

Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells  

DOE Green Energy (OSTI)

This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

Huttrer, G.W. [Geothermal Management Company, Inc., Frisco, CO (United States)

1997-11-01T23:59:59.000Z

207

Slant rigs offer big payoffs in shallow drilling  

Science Conference Proceedings (OSTI)

Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology.

Smith, J. (George E. Failing Co., Enid, OK (US)); Edwards, B. (Sierra Drilling Co., Calgary (CA))

1992-03-30T23:59:59.000Z

208

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

209

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

210

Development of a Low-Cost Rotary Steerable Drilling System  

DOE Green Energy (OSTI)

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

211

Underbalanced drilling guidelines improve safety, efficiency  

Science Conference Proceedings (OSTI)

In underbalanced drilling, the primary means of well control, the hydrostatic head of the drilling fluid, is lost either unavoidably because of hole problems (such as abnormally high pressure or lost circulation) or intentionally because of economics or to prevent formation damage. Because of complications with underbalanced drilling, however, several rigs have been destroyed by fire. Operational guidelines are being developed in close cooperation with industry. The final guidelines will be consistent with the existing standards of well control practices in Alberta, yet applicable for underbalanced drilling operations world-wide. Until formal guidelines are completed in Alberta, operators interested in underbalanced drilling should work closely with the Energy Resources Conservation Board in preparing site-specific programs. Although underbalanced drilling is often associated with horizontal wells, the majority of underbalanced drilling operations in Alberta are conducted on vertical wells. The paper describes underbalanced drilling, blowout prevention, surface BOP equipment (stripper, annular pack off, rotating head, rotating BOP, coiled tubing), subsurface BOP, drilling fluids, nitrified drilling fluids, surface equipment, well-site supervision, well control equipment, and the surface handling of fluids.

Eresman, D. (Energy Resources Conservation Board, Calgary, Alberta (Canada))

1994-02-28T23:59:59.000Z

212

Annex 7 - The Iea'S Role In Advanced Geothermal Drilling | Open Energy  

Open Energy Info (EERE)

Annex 7 - The Iea'S Role In Advanced Geothermal Drilling Annex 7 - The Iea'S Role In Advanced Geothermal Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Annex 7 - The Iea'S Role In Advanced Geothermal Drilling Details Activities (0) Areas (0) Regions (0) Abstract: No abstract prepared. Author(s): John Travis Finger, Eddie Ross Hoover Published: Publisher Unknown, Date Unknown Document Number: Unavailable DOI: Unavailable Retrieved from "http://en.openei.org/w/index.php?title=Annex_7_-_The_Iea%27S_Role_In_Advanced_Geothermal_Drilling&oldid=389771" Category: Reference Materials What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

213

Reservoir screening criteria for underbalanced drilling  

Science Conference Proceedings (OSTI)

Properly designed and executed underbalanced drilling operations can eliminate or significantly reduce formation damage, mud or drill solids invasion, lost circulation, fluid entrainment and trapping effects, and potential adverse reactions of drilling fluids with the reservoir matrix or in-situ reservoir fluids. The key to selecting appropriate reservoir candidates is achieving a balance of technical, safety and economic factors. Not every reservoir is an ideal candidate for an underbalanced drilling operation and in some cases distinct disadvantages may exist in trying to execute an underbalanced drilling operation in comparison to a simpler more conventional overbalanced application. Extensive field experience has played an important role in determining the following key criteria and design considerations that should be examined when evaluating a well. Screening criteria are also provided to help operators ascertain if a given formation is, in fact, a viable underbalanced drilling candidate.

Bennion, D.B. [Hycal Energy Research Labs. Ltd., Calgary, Alberta (Canada)

1997-02-01T23:59:59.000Z

214

Diffusion bonding of Stratapax for drill bits  

DOE Green Energy (OSTI)

A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

Middleton, J.N.; Finger, J.T.

1983-01-01T23:59:59.000Z

215

Report of the workshop on advanced geothermal drilling and completion systems  

DOE Green Energy (OSTI)

The discussions, conclusions, and recommendations of the Workshop on Advanced Geothermal Drilling and Completion Systems are summarized. The purpose of the workshop was to identify new drilling and completion systems that have the potential for significantly reducing the cost of geothermal wells, and to provide recommendations as to the research and development tasks that are required to develop these advanced systems. Participants in the workshop included representatives from private industry, universities, and government who were organized into four working groups as follows: Rock Drilling Technology, Surface Technology, Borehole Technology, and Directional Drilling Technology. The Panel on Rock Drilling Technology was charged with identifying advanced concepts for breaking rock that could result in instantaneous penetration rates three to five times higher than those of conventional rotary drilling. The Panel on Surface Technology discussed improvements in surface equipment and operating procedures that could contribute to reduced well costs. The Panel on Borehole Technology discussed problems associated with establishing and maintaining a stable borehole for the long-term production of geothermal wells. The Panel on Directional Drilling Technology addressed problems encountered in drilling deviated wells in geothermal reservoirs.

Varnado, S.G. (ed.)

1979-06-01T23:59:59.000Z

216

OCEAN DRILLING PROGRAM LEG 103 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

OCEAN DRILLING PROGRAM LEG 103 SCIENTIFIC PROSPECTUS GALICIA BANK Gilbert Boillot Edward L of Energy, Mines and Resources (Canada) Deutsche Forschungsgemeinschaft (Federal Republic of Germany

217

Driltac (Drilling Time and Cost Evaluation)  

Science Conference Proceedings (OSTI)

The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

None

1986-08-01T23:59:59.000Z

218

Alloy Development for Measurement While Drilling Tools  

Science Conference Proceedings (OSTI)

Abstract Scope, For oil and gas drilling applications, one of the giant technical ... of Type 2507 Duplex Stainless Steel in Synthetic Seawater and Hydraulic Fluids.

219

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents (OSTI)

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

220

Quantifying Edge Defects in Drilled FRP Composites  

E-Print Network (OSTI)

Drilling of Aramid and Carbon Fiber Polymer Composites”,the Exit Defects in Carbon Fiber-Reinforced Plastic Plateswith a High Modulus CFRP (Carbon- Fiber Reinforced Polymer)

Vijayaraghavan, Athulan; Dornfeld, David; Dharan, C. K. Hari

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Specific energy for pulsed laser rock drilling  

Science Conference Proceedings (OSTI)

Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes

Z. Xu; C. B. Reed; G. Konercki; R. A. Parker; B. C. Gahan; S. Batarseh; R. M. Graves; H. Figueroa; N. Skinner

2003-01-01T23:59:59.000Z

222

Crude Oil and Natural Gas Drilling Activity  

U.S. Energy Information Administration (EIA)

Crude Oil and Natural Gas Drilling Activity Period: Download Series History: Definitions, Sources & Notes: Data Series: Jun-13 Jul-13 Aug-13 ...

223

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

224

NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena  

SciTech Connect

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

Lyons, K.D.; Honeygan, S.; Moroz, T

2007-06-01T23:59:59.000Z

225

NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena  

SciTech Connect

The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

Lyons, K.D.; Honeygan, S.; Moroz, T.H.

2008-12-01T23:59:59.000Z

226

Slim-hole Measurement While Drilling (MWD) system for underbalanced drilling  

Science Conference Proceedings (OSTI)

The objective of this program is to make commercially available, wireless Measurement-while-drilling tools to reliably operate in air, air-mist, air-foam, and other unbalanced drilling environments during oil and gas directional drilling operations in conjunction with down-hole motors or other assemblies. Progress is described.

Harrison, W.H.; Harrison, J.D.; Rubin, L.A.

1995-08-01T23:59:59.000Z

227

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

228

Composite drill pipe and method for forming same  

DOE Patents (OSTI)

A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

2012-10-16T23:59:59.000Z

229

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

230

Measurement-While-Drilling (MWD) development for air drilling  

Science Conference Proceedings (OSTI)

When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

Harrison, W.A.; Rubin, L.A.

1993-12-31T23:59:59.000Z

231

Electro jet drilling using hybrid NNGA approach  

Science Conference Proceedings (OSTI)

This paper presents a hybrid neural network and genetic algorithm (NNGA) approach for the multi-response optimization of the electro jet drilling (EJD) process. The approach first uses a neural network model to predict the response parameters of the ... Keywords: Electro jet drilling, Electrochemical machining, Genetic algorithm, Multi-response, Neural network, Optimization

Mohan Sen; H. S. Shan

2007-02-01T23:59:59.000Z

232

OCEAN DRILLING PROGRAM LEG 153 PRELIMINARY REPORT  

E-Print Network (OSTI)

Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M

233

OCEAN DRILLING PROGRAM LEG 138 PRELIMINARY REPORT  

E-Print Network (OSTI)

Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA, Texas A&M University, as an account of work performed under the international Ocean Drilling Program Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University

234

Balanced pressure techniques applied to geothermal drilling  

DOE Green Energy (OSTI)

The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

Dareing, D.W.

1981-08-01T23:59:59.000Z

235

Scientific drilling technologies for hostile environments  

DOE Green Energy (OSTI)

This paper briefly reviews the current United States Department of Energy Continental Scientific Drilling Program for Thermal Regimes and the related technologies being developed for geothermal drilling. Plans for penetrating into a molten magma body at temperatures from 800 to 1000{degree}C are also reviewed. 7 refs., 3 figs., 1 tab.

Traeger, R.K.

1988-01-01T23:59:59.000Z

236

Interpretation of drill cuttings from geothermal wells  

DOE Green Energy (OSTI)

Problems in interpreting drill cuttings, as opposed to drill cores, and methods to solve these problems are outlined. The following are covered: identification of lithology; recognition of faults and fractures; interpretation of hydrothermal alteration; geochemistry; sample collection; sample preparple examination; and sample storage. (MHR)

Hulen, J.B.; Sibbett, B.S.

1981-06-01T23:59:59.000Z

237

NSLS Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services NSLS Services Computing Services Lab Space Libraries Postal Services Procurement Repair & Equipment Services Shipping Procedures Storage User Accounts Workshop Procedures...

238

Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design  

Science Conference Proceedings (OSTI)

While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States); Heuze, F.E.; Butler, M.W. [Lawrence Livermore National Lab., CA (United States)

1996-09-01T23:59:59.000Z

239

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2002 through March 2002. Accomplishments include the following: In accordance to Task 7.0 (D. No.2 Technical Publications) TerraTek, NETL, and the Industry Contributors successfully presented a paper detailing Phase 1 testing results at the February 2002 IADC/SPE Drilling Conference, a prestigious venue for presenting DOE and private sector drilling technology advances. The full reference is as follows: (1) IADC/SPE 74540 ''World's First Benchmarking of Drilling Mud Hammer Performance at Depth Conditions'' authored by Gordon A. Tibbitts, TerraTek; Roy C. Long, US Department of Energy, Brian E. Miller, BP America, Inc.; Arnis Judzis, TerraTek; and Alan D. Black, TerraTek. Gordon Tibbitts, TerraTek, will presented the well-attended paper in February of 2002. The full text of the Mud Hammer paper was included in the last quarterly report. (2) The Phase 2 project planning meeting (Task 6) was held at ExxonMobil's Houston Greenspoint offices on February 22, 2002. In attendance were representatives from TerraTek, DOE, BP, ExxonMobil, PDVSA, Novatek, and SDS Digger Tools. (3) PDVSA has joined the advisory board to this DOE mud hammer project. PDVSA's commitment of cash and in-kind contributions were reported during the last quarter. (4) Strong Industry support remains for the DOE project. Both Andergauge and Smith Tools have expressed an interest in participating in the ''optimization'' phase of the program. The potential for increased testing with additional Industry cash support was discussed at the planning meeting in February 2002.

Gordon Tibbitts; Arnis Judzis

2002-04-01T23:59:59.000Z

240

Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling  

Science Conference Proceedings (OSTI)

Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

Arnis Judzis

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

Geothermal Drilling Geothermal Drilling Jump to: navigation, search Logo: Alpine Geothermal Drilling Name Alpine Geothermal Drilling Address PO Box 141 Place Kittredge, Colorado Zip 80457 Sector Geothermal energy Product Geothermal drilling solutions, subsidiary of Rocky Mountain GeoExploration Inc Website http://www.alpinegeothermal.co Coordinates 39.64888°, -105.2984842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.64888,"lon":-105.2984842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

243

Geothermal drilling and completion technology development  

SciTech Connect

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. Sandia Laboratories has been selected to manage this technology development program, and this paper presents an overview of the program. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies in current rotary drilling techniques for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.; Stoller, H.M.

1978-01-01T23:59:59.000Z

244

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

DOE Green Energy (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

245

Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site  

SciTech Connect

Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.

Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen

1999-07-01T23:59:59.000Z

246

Alaska Oil and Gas Conservation Commission: February 2011 Drilling...  

Open Energy Info (EERE)

Oil and Gas Conservation Commission: February 2011 Drilling & Permit Records This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas...

247

State-of-the-art of drilling thrusters  

DOE Green Energy (OSTI)

Several different concepts for applying force or thrust to drill bits are identified. Recommendations for further studies of drilling thrusters are made.

Dareing, D.W.

1980-01-01T23:59:59.000Z

248

Oil and Gas Exploration, Drilling, Transportation, and Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Eligibility...

249

Google.org-Backed Potter Drilling Blazing Geothermal Trail |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Google.org-Backed Potter Drilling Blazing Geothermal Trail Google.org-Backed Potter Drilling Blazing Geothermal Trail September 22, 2010...

250

NNSA Small Business Week Day 2: United Drilling, Inc. | National...  

National Nuclear Security Administration (NNSA)

business based in Roswell, N.M. United Drilling drills oil, gas, water, geothermal, and environmental wells throughout the southwestern U.S. The small business has...

251

Geotechnical Drilling in New-Zealand | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geotechnical Drilling in New-Zealand Citation SonicSampDrill. Geotechnical...

252

Water Wells and Drilled or Mined Shafts (Texas) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Wells and Drilled or Mined Shafts (Texas) Water Wells and Drilled or Mined Shafts (Texas) Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial...

253

NETL: News Release - DOE-Industry Breakthrough Turns Drilling...  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2002 DOE-Industry Breakthrough Turns Drilling System Into Lightning Fast Computer Network Energy Department Cites Remarkable Advance In 'Smart' Oil, Gas Drilling SAN ANTONIO,...

254

Improved Bottomhole Pressure Control for Underbalanced Drilling Operations.  

E-Print Network (OSTI)

??Maintaining underbalanced conditions from the beginning to the end of the drilling process is necessary to guarantee the success of jointed-pipe underbalanced drilling (UBD) operations… (more)

Perez-Tellez, Carlos

2003-01-01T23:59:59.000Z

255

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting April 2001 through June 2001. Accomplishments to date include the following: (1) DOE's National Energy Technology Laboratory highlighted the Mud Hammer Project at an exhibit at the Offshore Technology Conference April 30 through May 3. TerraTek assisted NETL personnel with presentation materials appropriate for the project and a demonstration sample of ''hard rock'' drilled in TerraTek's wellbore simulator. (2) TerraTek has completed 13 drilling tests in Carthage Marble and hard Crab Orchard Sandstone with the SDS Digger Tool, Novatek tool, and a conventional rock bit. After some initial mud pump and flow line problems at TerraTek, we completed the testing matrix for the SDS Digger Tool and the Novatek hammer on 27 June 2001. Overall the hammers functioned properly at ''borehole'' pressures up to 3,000 psi with weighted water based mud. The Department of Energy goals to determine hammer benchmark rates of penetration and ability to function at depth are being met. Additionally data on drilling intervals and rates of penetration specific to flow rates, pressure drops, rotary speed, and weights-on-bit have been given to the Industry Partners for detailed analysis. SDS and Novatek have gained considerable experience on the operation of their tools at simulated depth conditions. Some optimization has already started and has been identified as a result of these first tests.

Gordon Tibbitts; Arniz Judzis

2001-07-01T23:59:59.000Z

256

Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)  

DOE Green Energy (OSTI)

This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

Finger, J.T.; Jacobson, R.D.

1992-06-01T23:59:59.000Z

257

Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)  

SciTech Connect

This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

Finger, J.T.; Jacobson, R.D.

1992-06-01T23:59:59.000Z

258

An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands  

Science Conference Proceedings (OSTI)

This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.

Mese, Ali; Dvorkin, Jack; Shillinglaw, John

2000-09-11T23:59:59.000Z

259

DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001  

Science Conference Proceedings (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

2001-07-01T23:59:59.000Z

260

Development and Testing of Insulated Drill Pipe  

DOE Green Energy (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aqueous foam surfactants for geothermal drilling fluids: 1. Screening  

DOE Green Energy (OSTI)

Aqueous foam is a promising drilling fluid for geothermal wells because it will minimize damage to the producing formation and would eliminate the erosion problems of air drilling. Successful use of aqueous foam will require a high foaming surfactant which will: (1) be chemically stable in the harsh thermal and chemical environment, and (2) form stable foams at high temperatures and pressures. The procedures developed to generate and test aqueous foams and the effects of a 260/sup 0/C temperature cycle on aqueous surfactant solutions are presented. More than fifty selected surfactants were evaluated with representatives from the amphoteric, anionic, cationic, and nonionic classes included. Most surfactants were severely degraded by this temperature cycle; however, some showed excellent retention of their properties. The most promising surfactant types were the alkyl and alkyl aryl sulfonates and the ethoxylated nonionics.

Rand, P.B.

1980-01-01T23:59:59.000Z

262

Novell Services  

NLE Websites -- All DOE Office Websites (Extended Search)

CIS Department CIS Department Novell Services If you don't see the answer to your question here, contact the help desk at 486-HELP or submit a Help Request. Novell Netware is the labs main method of providing file and print services for the PC and Macintosh platforms. Novell end user services are free and include a backed up home directory and access to all distributed printers at LBL. Request a Novell account Request a new Novell printer Request a Novell file restore (choose PC for platform and Backups/Restores for problem) Novell iPrint Accessing Novell File Services Download the LBL Netware client Novell Server Information Novell Departmental Administrative Contacts Novell FAQ: How do I login to the Novell network? 9x | NT4/2000/XP Do I have the Netware client installed? 9x | NT4/2000/XP

263

Test report for core drilling ignitability testing  

DOE Green Energy (OSTI)

Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

Witwer, K.S.

1996-08-08T23:59:59.000Z

264

OCEAN DRILLING PROGRAM LEG 170 PRELIMINARY REPORT  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany Cypionka Microbiologist Institut für Chemie und Biologie Des Meeres (ICBM) Carl von Ossietzky Universität

265

OCEAN DRILLING PROGRAM LEG 197 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche.edu Marcel Regelous Petrologist Abteilung Geochemie Max-Planck-Institüt für Chemie Johannes J-Becherweg 27

266

OCEAN DRILLING PROGRAM LEG 176 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany Geochemist Institut für Chemie und Biologie des Meeres (ICBM) Carl von Ossietzky Universität Oldenburg

267

Investigation of percussion drills for geothermal applications  

DOE Green Energy (OSTI)

A series of tests was conducted to provide data for an economic evaluation of percussion drilling in geothermal reservoirs. Penetration rate, operation on aqueous foam, and high temperature vulnerabilities of downhole percussion tools are described.

Finger, J.T.

1981-01-01T23:59:59.000Z

268

April 25, 1997: Yucca Mountain exploratory drilling  

Energy.gov (U.S. Department of Energy (DOE))

April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

269

Offshore Drilling Safety and Response Technologies | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production increases are anticipated to come from onshore enhanced oil recovery projects, shale oil plays, and deepwater drilling in the Gulf of Mexico. They also project that U.S....

270

Underbalanced drilling benefits now available offshore  

Science Conference Proceedings (OSTI)

Offshore underbalanced drilling (UBD) is a reality. Applications in older, partially depleted fields and new fields are being considered. However, low productivity reservoirs and fields with sub normal pressures causing drilling problems are currently the main targets for offshore UBD. With proper planning and the correct technique, both jointed pipe and coiled tubing UBD drilling operations have been carried out offshore with success. The main concerns for offshore UBD have been altered drilling practices and surface production system operation. These issues have been examined and equipment has been designed and tested to address them. Environmental, safety and health issues are paramount and have been studied carefully. Detailed well planning, engineering, and flow modeling have proven critical for successful offshore UBD operations. Examples are given from oil and gas fields.

Vozniak, J.P.; Cuthbertson, B.; Nessa, D.O.

1997-05-01T23:59:59.000Z

271

Field results document underbalanced drilling success  

Science Conference Proceedings (OSTI)

Many different techniques are used to maintain underbalanced conditions at the toolface. Whether the operator is trying to avoid drilling problems or prevent formation damage, the key to a safe, successful operation is a reliable method of sealing around the tubulars at the surface for continuous well control. Globally, underbalanced drilling (UBD) is emerging as an important technology to improve production and solve drilling problems with success in many applications with different reservoirs. Improvements in initial flow rates using UBD are being supported by longer term production. UBD techniques and processes are improving through experience and implementation. UBD is becoming a more economical means to optimize reservoir management than conventional overbalanced operations. UBD operations are proving to be safer than conventional overbalanced drilling.

Vozniak, J.; Cuthbertson, R.L.

1997-04-01T23:59:59.000Z

272

Designing BHAs for better drilling jar performance  

SciTech Connect

Jars are a major component in drill string design, but considerations for proper placement often are neglected. The main purpose of running drilling jars is to provide an immediate jarring action when pipe becomes stuck. This report considers some of the mechanics of pipe sticking and why it must be considered in jar placement. It also focuses on their placement in the bottomhole assembly and the advantages of certain types of jars.

Schmid, J.T.

1982-10-01T23:59:59.000Z

273

Challenges of deep drilling. Part 2  

SciTech Connect

This installment delineates current deep drilling technology limitations and discusses needed advances for the future. Problem areas are identified as material and seal problems in wellhead equipment, new fluid carriers for well stimulation, quality control/inspection/testing for equipment and performance flaws, arctic environment conditions, and experienced personnel. The main factors of operating environment that challenge advanced deep drilling are identified as temperature extremes, pressure extremes, acid gases, and deep-water presence.

Chadwick, C.E.

1981-08-01T23:59:59.000Z

274

OCEAN DRILLING PROGRAM LEG 155 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

OCEAN DRILLING PROGRAM LEG 155 SCIENTIFIC PROSPECTUS AMAZON DEEP-SEA FAN Dr. Roger D. Flood Co of Canada P.O. Box 1006 Dartmouth, Nova Scotia Canada B2Y4A2 Dr. Adam Klaus Staff Scientist, Leg l55 Ocean and handling. D I S C L A I M E R This publication was prepared by the Ocean Drilling Program, Texas A

275

Study on an Electric Drilling Rig with Hydraulic Energy Storage  

Science Conference Proceedings (OSTI)

An electric drilling rig with hydraulic energy storage is researched. This rig can recover the potential energy of the drill stem lowered and owns remarkable energy-saving effect. The mathematical model of the new rig lifting the drill stem was deduced ... Keywords: electric drilling rig, energy-recovering, energy-saving

Zhang Lujun

2010-06-01T23:59:59.000Z

276

Ocean Drilling Program Texas A&M University  

E-Print Network (OSTI)

/small diameter drill collars/connections capable of surviving rotation above the seafloor without lateral support

277

DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selects Projects Aimed at Reducing Drilling Risks in Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater November 22, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy's Office of Fossil Energy (FE) has selected six new natural gas and oil research projects aimed at reducing risks and enhancing the environmental performance of drilling in ultra-deepwater settings. The projects have been selected for negotiation leading to awards totaling $9.6 million, and will add to the research portfolio for FE's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include the prevention of uncontrolled oil flow through new and better ways to cement well casing,

278

A study of geothermal drilling and the production of electricity from geothermal energy  

DOE Green Energy (OSTI)

This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, Inc., Encinitas, CA (United States)

1994-01-01T23:59:59.000Z

279

Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants  

Science Conference Proceedings (OSTI)

Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windows{trademark}-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide-thallium activated crystal coupled to a photomultiplier tube (PMT). The output of the PMT goes to a multichannel analyzer (MCA).The MCA data is transmitted to the surface via a signal conditioning and transmitter board similar to that used with the GMT. The EMWD system is described and the results of the GRS field tests and field demonstration are presented.

Lockwood, G.J.; Normann, R.A.; Williams, C.V.

1999-02-22T23:59:59.000Z

280

Impedance matched joined drill pipe for improved acoustic transmission  

DOE Patents (OSTI)

An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

Moss, William C. (San Mateo, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Brian C. Gahan; Samih Batarseh

2005-09-28T23:59:59.000Z

282

Innovative approach for restoring coastal wetlands using treated drill cuttings  

SciTech Connect

The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and field demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled.

Veil, J. A.; Hocking, E. K.

1999-11-02T23:59:59.000Z

283

Geopressured geothermal drilling and completions technology development needs  

DOE Green Energy (OSTI)

Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

Maish, A.B.

1981-03-01T23:59:59.000Z

284

NSLS Services | Postal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Postal Services Postal Services U.S. Postal Service BNL has a full-service U.S. Postal Service Office (Upton branch) located in Staff Services, Building 179, x2539. BNL Mail Service Mail is delivered and picked up twice a day from each building on site. Users should leave internal lab mail (brown envelopes, no stamps needed) and U.S. Mail (regular envelopes, stamps required) in the outgoing mail boxes at NSLS mail stop 725A, located in the lobby by the elevator. Receiving Mail During regular working hours, packages and other special deliveries are brought to the Stockroom while regular mail is taken to the mailstops around the building. Each beam port is assigned a mail slot at NSLS mail stop 725A near the elevator in the lobby. The beamline number should be on all mail addressed to users. Mail to users should be addressed as follows

285

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2003 through June 2003. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). Accomplishments included the following: (1) Hughes Christensen has recently expressed interest in the possibility of a program to examine cutter impact testing, which would be useful in a better understanding of the physics of rock impact. Their interest however is not necessarily fluid hammers, but to use the information for drilling bit development. (2) Novatek (cost sharing supplier of tools) has informed the DOE project manager that their tool may not be ready for ''optimization'' testing late summer 2003 (August-September timeframe) as originally anticipated. During 3Q Novatek plans to meet with TerraTek to discuss progress with their tool for 4Q 2003 testing. (3) A task for an addendum to the hammer project related to cutter impact studies was written during 2Q 2003. (4) Smith International internally is upgrading their hammer for the optimization testing phase. One currently known area of improvement is their development program to significantly increase the hammer blow energy.

Arnis Judzis

2003-07-01T23:59:59.000Z

286

An evaluation of flowmeters for the detection of kicks and lost circulation during drilling  

DOE Green Energy (OSTI)

An independent evaluation of current industry standard and state-of-the-art drilling fluid inflow and outflow meters was conducted during the drilling of a geothermal exploratory well. Four different types of fluid inflow meters and three different types of fluid outflow meters were tested and evaluated during actual drilling operations. The tested drilling fluid inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flow meters, and a Doppler ultrasonic flow meter. On the return flow line, a standard paddle meter, an acoustic level meter, and a prototype rolling float meter were evaluated to measure drilling fluid outflow rates. The prototype outflow meter utilizes a rolling float which rides on the surface of the flow thereby measuring the fluid height in the pipe. Both the prototype meter and the conventional paddle meter were also extensively tested under a variety of drilling conditions in a full-scale laboratory test facility. The meters were evaluated and compared on the basis of reliability and accuracy, and the results are presented in the paper.

Schafer, D.M.; Loeppke, G.E.; Glowka, D.A.; Scott, D.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, K.E. (Ktech Corp., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

287

Workshop on geothermal drilling fluids  

DOE Green Energy (OSTI)

Thirteen papers and abstracts are included. Seven papers were abstracted and six abstracts were listed by title. (MHR)

Not Available

1980-01-01T23:59:59.000Z

288

Deep drilling technology for hot crystalline rock  

SciTech Connect

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

289

Drilling costs drop 7% in 1985  

SciTech Connect

Drilling costs dropped about 7% last year. This decline cancels a slight increase in 1984. Total costs to drill now run about 59% of the 1981 highs. Comparable figures for the previous 2 years are 63 and 61%. Deeper wells showed the biggest drops. Shallow well costs fell about 6%. Energy Information Administration (EIA) indexes drilling costs on a 1976 base year. Costs for shallow wells (5,000 ft or less) show an index about 138. Deeper wells have an index around 149. Cost declines were the greatest in West and North Texas and the Rockies, of 11%. The Northeast and Western areas showed greater than average declines, 9% or so. The High Plains, New Mexico, and Midcontinent areas recorded near the average 7% decline. Costs in South Louisiana, the Southeast, and Ark-La-Tex 2%. West Central Texas costs were off only 1%. The Southeast was essentially unchanged. Indexes by area show generally that drilling costs have declined since 1983. The summary here comes from EIA's ''Indexes and Estimates of Domestic Well Drilling Costs 1984 and 1985''. That report covers oil, gas, and dry hole costs, cost components, and overall costs.

Anderson, T.; Funk, V.

1986-03-24T23:59:59.000Z

290

Resource Management Services: Mineral Resources, Parts 550-559 (New York) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mineral Resources, Parts 550-559 (New Mineral Resources, Parts 550-559 (New York) Resource Management Services: Mineral Resources, Parts 550-559 (New York) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation This section establishes a Bureau of Mineral Resources within the Department of Environmental Conservation, which has the authority to regulate the exploration and mining for oil and gas resources in New York State. The regulations include permitting and reporting requirements for exploration or production well drilling or deepening, well spacing, drilling practices, well plugging and abandonment, secondary recovery and

291

Program plan for the development of advanced synthetic-diamond drill bits for hard-rock drilling  

DOE Green Energy (OSTI)

Eight companys have teamed with Sandia Labs to work on five projects as part of a cooperative effort to advance the state of the ar in synthetic-diamond drill bit design and manufacture. DBS (a Baroid Company), Dennis Tool Company, Hughes Christensen Company, Maurer Engineering, Megadiamond, Security Diamond Products, Slimdril International, and Smith International. Objective of each project is to develop advanced bit technology that results in new commercial products with longer bit life and higher penetration rates in hard formations. Each project explores a different approach to synthetic-diamond cutter and bit design and, consequently, uses different approaches to developing the technology. Each of these approaches builds or the respective companies` capabilities and current product interests. Sandia`s role is to assure integration of the individual projects into a coherent program and tc provide unique testing and analytical capabilities where needed. One additional company, Amoco Production Research, will provide synthetic-diamond drill bit research expertise and field testing services for each project in the program.

Glowka, D.A.; Schafer, D.M.

1993-09-01T23:59:59.000Z

292

Ancillary services market in California  

SciTech Connect

This report includes sections on the following topics: (1) California restructured electricity system overview; (2) Reliability criteria; (3) Design of the California ISO ancillary services market; (4) Operation of ancillary services markets; (5) Ancillary services markets redesign; and (6) Conclusions.

Gomez, T.; Marnay, C.; Siddiqui, A.; Liew, L.; Khavkin, M.

1999-07-01T23:59:59.000Z

293

Automatic service deployment using virtualisation  

E-Print Network (OSTI)

Manual deployment of the application usually requires expertise both about the underlying system and the application. Automatic service deployment can improve deployment significantly by using on-demand deployment and selfhealing services. To support these features this paper describes an extension the Globus Workspace Service [10]. This extension includes creating virtual appliances for Grid services, service deployment from a repository, and influencing the service schedules by altering execution planning services, candidate set generators or information systems. 1 2 1.

Gabor Kecskemeti; Peter Kacsuk; Gabor Terstyanszky; Tamas Kiss; Thierry Delaitre

2008-01-01T23:59:59.000Z

294

Method for laser drilling subterranean earth formations  

DOE Patents (OSTI)

Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

Shuck, Lowell Z. (Morgantown, WV)

1976-08-31T23:59:59.000Z

295

Directional Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

Directional Drilling Systems Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

296

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network (OSTI)

kmichaud@umail.ucsb.edu Abstract: Offshore oil drilling hasto attitudes toward offshore oil drilling. This implies thats Forests and Parks 1 Offshore oil drilling has been a

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

297

Independent Statistics & Analysis Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis Independent Statistics & Analysis Drilling Productivity Report The six regions analyzed in this report accounted for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth during 2011-12. December 2013 For key tight oil and shale gas regions U.S. Energy Information Administration Contents Year-over-year summary 2 Bakken 3 Eagle Ford 4 Haynesville 5 Marcellus 6 Niobrara 7 Permian 8 Explanatory notes 9 Sources 10 Bakken Marcellus Niobrara Haynesville Eagle Ford Permian U. S. Energy Information Administration | Drilling Productivity Report 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville

298

Geothermal wells: a forecast of drilling activity  

DOE Green Energy (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

299

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

Science Conference Proceedings (OSTI)

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

300

Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling  

Science Conference Proceedings (OSTI)

This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

Tom Champness; Tony Worthen; John Finger

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Proposal for an Advanced Drilling System with Real-Time Diagnostics (Diagnostics-While-Drilling)  

DOE Green Energy (OSTI)

In this paper, we summarize the rationale for an advanced system called Diagnostics-While-Drilling (DWD) and describe its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. We outline a Program Plan for DOE, university, and industry to cooperate in the development of DWD technology.

Finger, J.T.; Mansure, A.J.; Prairie, M.R.

1999-07-12T23:59:59.000Z

302

Offset Printing, Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Printing Printing Our full service print shop provides prepress services, single and multicolor offset printing, and complete bindery. We print Reports Forms Brochures, leaflets and flyers Name tags and meal tickets Newsletters, etc Prepress Electronic files and paper copy prepared for printing. Complete Bindery Apply address labels or tabs to printed material. Machine fold documents and insert into envelopes for mailing. Laminate printed items up to 35" wide. Numbering and perforating. Trimming, drilling, padding and stitching. Special Printing Special reports, full color printing, continuous and carbon forms printed through the U.S. Government Printing Office. Additional Information Printing can be reached on X2953 The supervisor is Rick Backofen who can be reached on X6183

303

SERVICES Purpose  

E-Print Network (OSTI)

This Management Memo calls on all state agencies operating state motor vehicles to make every effort to “Flex Your Power at the Pump, ” and lower fuel costs for the State of California through vigorous compliance with the preventative maintenance standards identified in this management memo and in the Automobile Record, Standard (STD.) 271. Background Public Resources Code 25722 mandates the state reduce petroleum consumption of its vehicle fleet to the maximum extent practicable including improved preventative maintenance. State Administrative Manual Section (SAM) 4101 establishes the need to comply with minimum preventative maintenance standards listed in the Automobile Maintenance Record, STD. 271. This includes prescribed services and mechanical inspections that promote state vehicle efficiency and achieve optimum fuel mileage. SAM Section 3687.1 prohibits the purchase of premium grade gasoline for state vehicles. And, directs state drivers to make fuel purchases at lower priced self-service pumps whenever possible.

Manual Sections

2005-01-01T23:59:59.000Z

304

Materials to Support High Pressure, High Temperature (HPHT) Drilling  

Science Conference Proceedings (OSTI)

... HPHT drilling and the drill pipe materials currently available on the market. ... Computational Phase Studies in the (La,Sr)(Ga,Mg)O3-d System for IT-SOFC ...

305

Laser Oil & Gas Well Drilling [Laser Applications Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

benefit in reducing the high costs of operating a drill rig. Today, a typical land-based oil or gas well costs around 400,000 to drill, while costs for an offshore well average...

306

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Well Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not...

307

Drilling Waste Management Fact Sheet: Onsite Burial (Pits, Landfills...  

NLE Websites -- All DOE Office Websites (Extended Search)

management. During most U.S. onshore drilling operations, the cuttings separated by the shale shaker are sent to a pit called the reserve pit located near the drill rig. The pit is...

308

Analyzing the dynamic behavior of downhole equipment during drilling  

DOE Green Energy (OSTI)

Advanced geothermal drilling systems will require a bottom hole assembly (BHA) which utilizes sophisticated electronic and mechanical equipment to accomplish faster, more trouble free, smarter drilling. The bit-drill string/formation interaction during drilling imposes complex, intermittent dynamic loading on the downhole equipment. A finite element computer code, GEODYN, is being developed to allow analysis of the structural response of the downhole equipment during drilling and to simulate the drilling phenomena (i.e. penetration, direction, etc.). Phase 1 GEODYN, completed early in 1984, provides the capability to model the dynamic response of a polycrystalline diamond compact (PDC) bit interacting with a non-homogeneous formation. Succeeding development phases will allow inclusion of stabilizers and, eventually, the entire drill string in addition to facilitating drill ahead simulation.

Baird, J.A.; Caskey, B.C.

1984-01-01T23:59:59.000Z

309

Monitoring downhole pressures and flow rates critical for underbalanced drilling  

Science Conference Proceedings (OSTI)

True underbalanced drilling, and not just flow drilling, requires thorough engineering and monitoring of downhole pressures and flow rates to ensure the formations are drilled without formation damage. Underbalanced drilling involves intentionally manipulating the bottom hole circulating pressure so that it is less than static reservoir pressure. This underbalanced pressure condition allows reservoir fluids to enter the well bore while drilling continues, preventing fluid loss and many causes of formation damage. Applied correctly, this technology can address problems of formation damage, lost circulation, and poor penetration rates. Another important benefit of drilling underbalanced is the ability to investigate the reservoir in real time. The paper discusses the reasons for under balanced drilling, creating underbalance, well site engineering, fluids handling, rotating flow divertor injection gas, survey techniques, data acquisition, operations, maintaining under-balance, routine drilling, rate of penetration, misconceptions, and economics.

Butler, S.D.; Rashid, A.U.; Teichrob, R.R. [Flow Drilling Engineering Ltd., Calgary, Alberta (Canada)

1996-09-16T23:59:59.000Z

310

Coiled tubing drilling requires economic and technical analyses  

Science Conference Proceedings (OSTI)

Field experience has proven that coiled tubing drilling is a technical and economic option on some wells; however, coiled tubing drilling is not the solution to every drilling prospect or production-enhancement job. To determine if coiled tubing drilling is viable, the geographic, technical, and economic aspects of each project must be considered in detail. Generally, with some limitations, coiled tubing drilling is feasible primarily when jointed pipe cannot be used effectively. Also, coiled tubing drilling may be more appropriate because of some special well site requirements, such as environmental regulations requiring less surface disturbance. The paper discusses technical considerations which need to be considered, economic feasibility, limitations of well types (new shallow wells, conventional reentry, through-tubing reentry, and underbalanced drilling), and outlook for further growth in the coiled tubing drilling industry.

Gary, S.C. (Schlumberger Dowell, Sugar Land, TX (United States))

1995-02-20T23:59:59.000Z

311

Drilling and operating geothermal wells in California  

SciTech Connect

The following procedural points for geothermal well drilling and operation are presented: geothermal operators, definitions, geothermal unit, agent, notice of intention, fees, report on proposed operations, bonds, well name and number, well and property sale on transfer, well records, and other agencies. (MHR)

1979-01-01T23:59:59.000Z

312

OCEAN DRILLING PROGRAM LEG 176 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

-Canada-Chinese Taipei-Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany 68588-0340, U.S.A.; E-mail: nlg@unlinfo.unl.edu) Andreas Lückge, Organic Geochemist (Institut für Chemie

313

OCEAN DRILLING PROGRAM LEG 182 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

rain has built a mound over geologic time of almost pure calcareous and siliceous sediments stretching of this northward plate motion: (1) the thickest part of the equatorial mound of biogenic sediment is displaced drilling and coring of the central Pacific equatorial mound of sediments (e.g., DSDP Legs 5, 8, 9, and 16

314

OCEAN DRILLING PROGRAM LEG 169 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

rain has built a mound over geologic time of almost pure calcareous and siliceous sediments stretching of this northward plate motion: (1) the thickest part of the equatorial mound of biogenic sediment is displaced drilling and coring of the central Pacific equatorial mound of sediments (e.g., DSDP Legs 5, 8, 9, and 16

315

OCEAN DRILLING PROGRAM LEG 101 PRELIMINARY REPORT  

E-Print Network (OSTI)

Rickenbacker Causeway Miami, FL 33139 Amanda A. Palmer Staff Science Representative, Leg 101 Ocean Drilling Schlager (Rosenstiel School of Marine and Atmospheric Sciences, Miami, Florida) Co-Chief Scientist Paul of Marine and Atmospheric Sciences, Miami, Florida) Gregor Eberli (Geologisches Institute, ETH

316

Impedance-matched drilling telemetry system  

DOE Patents (OSTI)

A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

317

Forecast of geothermal-drilling activity  

DOE Green Energy (OSTI)

The number of geothermal wells that will be drilled to support electric power production in the United States through 2000 A.D. are forecasted. Results of the forecast are presented by 5-year periods for the five most significant geothermal resources.

Mansure, A.J.; Brown, G.L.

1982-07-01T23:59:59.000Z

318

SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM  

E-Print Network (OSTI)

Personnel 17 1. Laboratory Officer 17 2. Technicians 17 3. Computer System Manager 17 4. Curatorial. Logging Depth Measurements 34 D. Coring and Drilling Equipment and Usage 34 1. Rotary Coring (RCB) System 34 2. Advanced Piston Coring (APC) System 36 3. Extended Core Barrel (XCB) 37 4. Motor-Driven Core

319

Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas  

E-Print Network (OSTI)

This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units is established using decline curve analysis. The increase in incremental recovery is used to compute the amount of increased revenue and taxes (local, state and federal). A job market analysis is performed to determine the impact of these increased revenues on primary jobs in the oil industry and secondary jobs in the community. Secondary jobs are generated by oil industry workers spending money in the community. The appropriation of the estimated taxes is analyzed to determine which government agencies benefit most from the infill drilling. The observations from this research are that most of the San Andres and Clearfork carbonate reservoir units in the Permian Basin are potentially profitable to infill drill. The incremental oil and gas production from infill drilling could maintain or create many primary jobs within the local oil industry and also secondary jobs in the community. The incremental production could generate taxes which would greatly benefit certain local, state, and federal government agencies. This research proposal presents a methodology to calculate the amount of incremental oil and gas production from infill drilling, calculate the amount of revenue and taxes generated from the incremental production, determine how the increased reserves affects the job market in the communities and how the increased taxes help government agencies. These results could be helpful in bolstering the oil industries image in local town meetings, in government permitting processes, and in lobbying state and federal congresses to acquire investment aid or tax breaks for oil field investment projects. The technical contributions of this research proposal are as follows: (1) presents a methodology including the parameters used in determining profitable infill drilling projects in the San Andres and Clearfork units of the Permian Basin, (2) develops a correlation local town meetings, in lobbying state and aid or tax breaks for oil between the increased revenues of infill drilling and between the increased revenues of infill drilling and the creation of jobs in the Permian basin communities, and (3) develops a correlation between the increased tax revenues of infill drilling recovery and the benefits to local, state, and federal agencies.

Jagoe, Bryan Keith

1994-01-01T23:59:59.000Z

320

Laser Drilling with Gated High Power Fiber Lasers  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Laser Applications in Materials Processing. Presentation Title, Laser Drilling ...

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Drilling for Geothermal Resources Rules - Idaho | Open Energy...  

Open Energy Info (EERE)

Geothermal Resources Rules - Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Drilling for Geothermal Resources Rules - Idaho Details...

322

Horizontal drilling boosts Pennsylvania’s natural gas production ...  

U.S. Energy Information Administration (EIA)

Between 2009 and 2011, Pennsylvania's natural gas production more than quadrupled due to expanded horizontal drilling combined with hydraulic fracturing.

323

Liability issues surrounding oil drilling mud sumps  

Science Conference Proceedings (OSTI)

This presentation examines liability issues surrounding oil drilling mud sumps and discusses them in relation to two recent cases that arose in Ventura County, California. Following a brief history of regulatory interest in oil drilling mud and its common hazardous substances, various cause of action arising from oil drilling mud deposits are enumerated, followed by defenses to these causes of action. Section 8002 (m) of the Resource Conservation and Recovery Act is mentioned, as are constituents of oil and gas waste not inherent in petroleum and therefore not exempt from regulation under the petroleum exclusion in the Comprehensive Environmental Response, Compensation and Recovery Act. Key legal words such as hazardous substance, release, public and private nuisance, trespass, responsible parties, joint and several liability, negligence, and strict liability are explained. The effects on liability of knowledge of the deposits, duty to restore land to its original condition, consent to the deposit of oil drilling mud, and noncompliance and compliance with permit conditions are analyzed. The state-of-the-art defense and research to establish this defense are mentioned. The newly created cause of action for fear of increased risk of cancer is discussed. Issues on transfer of property where oil drilling mud has been deposited are explored, such as knowledge of prior owners being imputed to later owners, claims of fraudulent concealment, and as is' clauses. The effects on the oil and gas industry of the California Court of Appeals for the Second District rulings in Dolan v. Humacid-MacLeod and Stevens v. McQueen are speculated.

Dillon, J.J.

1994-04-01T23:59:59.000Z

324

Development of advanced drilling, completion, and stimulation systems for minimum formation damage and improved efficiency: A program overview  

SciTech Connect

The Department of Energy`s (DOE) Natural Gas Resource and Extraction Program consists of industry/government co-sponsored research, development, and demonstration (RD&D) projects, which focus on gas recovery from both conventional and nonconventional resources. The Drilling, Completion, and Stimulation (DCS) Project focuses on advanced, non-damaging technology systems and equipment for improving gas recovery from conventional and nonconventional reservoirs. As operators move from development of current day economically attractive gas-field development to the lower permeability geologic regions of domestic onshore plays, increasing the emphasis on minimum formation damage DCS will permit economic development of gas reserves. The objective of the Project is to develop and demonstrate cost-effective, advanced technology to accelerate widespread use and acceptance of minimum formation damage DCS systems. The goal of this product development effort is to reduce costs and improve the overall efficiency of vertical, directional, and horizontally drilled wells in gas formations throughout the US. The current focus of the Project is on the development of underbalanced drilling technology and minimum formation damage stimulation technology concurrently with the appropriate completion hardware to improve the economics of domestic natural gas field development. Ongoing drilling technology projects to be discussed include development of an electromagnetic measurement while drilling system for directional and horizontal drilling in underbalanced drilling applications and the development of a steerable air percussion drilling system for hard formation drilling and improved penetration rates. Ongoing stimulation technology projects to be discussed include introduction of carbon dioxide/sand fracturing technology for minimal formation damage.

Layne, A.W.; Yost, A.B. II

1994-07-01T23:59:59.000Z

325

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2004 through June 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 4Q 2004 or later. Smith International's hammer was tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek re-tested the ''optimized'' fluid hammer provided by Smith International during April 2004. Many improvements in mud hammer rates of penetration were noted over Phase 1 benchmark testing from November 2002. (2) Shell Exploration and Production in The Hague was briefed on various drilling performance projects including Task 8 ''Cutter Impact Testing''. Shell interest and willingness to assist in the test matrix as an Industry Advisor is appreciated. (3) TerraTek participated in a DOE/NETL Review meeting at Morgantown on April 15, 2004. The discussions were very helpful and a program related to the Mud Hammer optimization project was noted--Terralog modeling work on percussion tools. (4) Terralog's Dr. Gang Han witnessed some of the full-scale optimization testing of the Smith International hammer in order to familiarize him with downhole tools. TerraTek recommends that modeling first start with single cutters/inserts and progress in complexity. (5) The final equipment problem on the impact testing task was resolved through the acquisition of a high data rate laser based displacement instrument. (6) TerraTek provided Novatek much engineering support for the future re-testing of their optimized tool. Work was conducted on slip ring [electrical] specifications and tool collar sealing in the testing vessel with a reconfigured flow system on Novatek's collar.

Arnis Judzis

2004-07-01T23:59:59.000Z

326

Development and evaluation of a meter for measuring return line fluid flow rates during drilling  

DOE Green Energy (OSTI)

The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.

Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, E.K. (Ktech Corp., Albuquerque, NM (United States))

1992-06-01T23:59:59.000Z

327

Progress Toward an Advanced Geothermal Deep-Drilling System  

DOE Green Energy (OSTI)

A previously developed concept for an advanced geothermal drilling system (AGDS) has been extended toward a feasibility design stage. Hardware projects for two percussion, air and hydraulic, hammer drills are underway. Two drill string options and an unique nitrogen supply system are described.

Rowley, J.; Saito, S.; Long, R.

1995-01-01T23:59:59.000Z

328

An Intelligent System for Petroleum Well Drilling Cutting Analysis  

Science Conference Proceedings (OSTI)

Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting ... Keywords: Cutting analysis, petroleum well drilling monitoring, optimum-path forest

Aparecido N. Marana; Giovani Chiachia; Ivan R. Guilherme; João P. Papa

2009-09-01T23:59:59.000Z

329

Surface control bent sub for directional drilling of petroleum wells  

DOE Patents (OSTI)

Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

1986-01-01T23:59:59.000Z

330

Suggested drilling research tasks for the Federal Government  

DOE Green Energy (OSTI)

A brief summary discussion of drilling, drilling research and the role of the government in drilling research is presented. Specific research and development areas recommended for federal consideration are listed. The technical nature of the identified tasks is emphasized. The Appendices present the factual basis for the discussion and recommendations. Numerous references are noted in the Appendices.

Carson, C.C.

1984-04-01T23:59:59.000Z

331

Screening criteria help select formations for underbalanced drilling  

Science Conference Proceedings (OSTI)

Certain laboratory screening procedures can help determine the effectiveness of underbalanced drilling in a specific application. These screening criteria can help in analyzing the types of reservoirs which present good applications for underbalanced drilling technology. This paper discusses the types of information that should be obtained for any reservoir prior to designing the underbalanced drilling program for optimum performance.

Bennion, D.B. [Hycal Energy Research Labs. Ltd., Calgary, Alberta (Canada)

1996-01-08T23:59:59.000Z

332

Finite element analysis of the electro jet drilling process  

Science Conference Proceedings (OSTI)

The electro jet drilling (EJD) process is gaining prominence in the machining of micro and macro holes in difficult-to-machine materials used in aerospace, electronics and computers, medical, and automobile industries. As the trend towards miniaturization ... Keywords: electro jet drilling, electrochemical drilling, finite element method, radial overcut

M. Sen; H. S. Shan

2007-01-01T23:59:59.000Z

333

Development and testing of a high-pressure downhole pump for jet-assist drilling. Topical report, Phase II  

Science Conference Proceedings (OSTI)

The goal of jet-assisted drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, lower drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{reg_sign}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The U.S. Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, {open_quotes}Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,{close_quotes} is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase II. In the downhole pump approach shown in the following figure, conventional drill pipe and drill collars are used, with the DHP as the last component of the bottom hole assembly next to the bit. The DHP is a reciprocating double ended, intensifier style positive displacement, high-pressure pump. The drive fluid and the high-pressure output fluid are both derived from the same source, the abrasive drilling mud pumped downhole through the drill string. Approximately seven percent of the stream is pressurized to 30,000 psi and directed through a high-pressure nozzle on the drill bit to produce the high speed jet and assist the mechanical action of the bit to make it drill faster.

NONE

1997-10-01T23:59:59.000Z

334

An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration  

Science Conference Proceedings (OSTI)

A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

TerraTek

2007-06-30T23:59:59.000Z

335

Semi-annual report on the project to design and experimentally test an improved geothermal drill bit  

DOE Green Energy (OSTI)

Considerable progress has been made in understanding the causes of premature drill-bit failure in the geothermal well drilling environment. Drill-bits of high-temperature steels are being fabricated, as well as a test chamber to simulate the geothermal environment. In addition, several basic properties of the candidate steels and of the conventional drill-bit steels have been gathered from the literature, and provisions have been made for completing the material property picture through a materials testing program at Terra Tek. Considerable background material has been gathered on the drill-bit seal problem and on candidate seal materials. Some seal materials have been selected for further testing, and a seal tester is being designed to provide a very good simulation of the environment experienced by seals in geothermal well drill-bits. Major guidance meetings on the project to develop an improved geothermal drill-bit were held on June 10--11, August 13, and December 10--11. Appendix B includes the reports of these meetings.

Barker, L.M.; Green, S.J.; Maurer, W.C.

1976-01-01T23:59:59.000Z

336

High pressure drilling system triples ROPS, stymies bit wear  

Science Conference Proceedings (OSTI)

Recent West Texas field tests of an experiental high-pressure drilling system have nearly tripled typical penetration rates in hard dolomite while putting virtually no visible wear on the bits, even those designed for much softer formations. With this drilling system, developed by FlowDril Corp. of Kent, Wash., and their joint-venture partner Grace Drilling Co., clarified drilling fluids (minimum solids) are pressurized to nearly 30,000 psi and directed to the bottom of the hole through a special nozzle attached to the drill bit. The action of this high pressure stream augments the bit's job, resulting in higher ROPs and decreased bit wear.

Killalea, M.

1989-03-01T23:59:59.000Z

337

NETL: News Release - DOE-Funded "Smart" Drilling Prototype On Track for  

NLE Websites -- All DOE Office Websites (Extended Search)

September 13, 2004 September 13, 2004 DOE-Funded "Smart" Drilling Prototype On Track for Commercialization A Department of Energy-sponsored technology that allows natural gas and oil explorers to drill safer, more productive wells by using a high-speed, down-hole communications system has crossed a major milestone: A prototype is being successfully tested in a full-scale commercial well for the first time, putting it on the fast track to commercialization. MORE INFO Read about the June, 2003 IntellipipeTM field test The technology, called Intellipipe(TM), is able to transmit large bits of data to the surface as a well is being drilled. About 1 million bits of information-including temperature, geology, pressure, and rate of penetration-can be transmitted in a single second, which is

338

IADC mud equipment manual. Handbook 1: Introduction to Drilling Mud Systems  

SciTech Connect

This is the first of the 11 handbooks that make up the IADC Mud Equipment Manual. The manual is designed to provide information on all pieces of drilling rig equipment from the flow line to the mud pump section. Hanbook 1: Introduction to Drilling Mud Systems focuses on drilling fluids and their properties and treatment, and thoroughly examines mud solid characteristics. Methods of controlling formation pore pressure, and cut points, as well as cuttings removal (viscosity, yield point, gel strengths, hole cleaning, etc.), are followed by a discussion of solid sizes and solid size distribution. Special features include a glossary of mud terms, a section on ''hard-to-find'' information such as gold concentration, wind forces, and AC motor current requirements, and a comprehensive index for all 11 handbooks.

Not Available

1985-01-01T23:59:59.000Z

339

GRR/Section 5 - Drilling Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 5 - Drilling Overview GRR/Section 5 - Drilling Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5 - Drilling Overview 05DrillingPermittingOverview.pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 30 USC § 1001 Triggers None specified On top of acquiring the correct drilling permits a developer needs to consider issues such as land and mineral ownership and right of way access. 05DrillingPermittingOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 5.1 - Review Potential Construction Permits In addition to drilling permits, the developer may require other

340

NEPA COMPLIANCE SURVEY Project Information Project Title: Liner Drilling Date:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liner Drilling Date: Liner Drilling Date: 4-5-10 DOE Code: 71092 Cont ractor Code: 8067-766 Project Lead: Frank Ingham Project Overview Nothing out of the ordinary for drilling an existing location 1. What are the environmental impacts? NE SW Sec 21 , T39N, R78W (45-3-X-21 well) 2. What is the legal location? 3. What is the duration of the project? Approximately a week 4 . What major equipment will be used if any (work over rig, drilling rig, Drilling Rig etc.)? Will Drill out of 9 5/8 caslng with liner drillng assembly. After drilling approximately 750 to 1000 ft, will test liner hanging assembly set and retrieve multiple times. The table b elow is to be completed by the Project Lead and reviewed by the Environmental Specialis t and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey a

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING  

DOE Green Energy (OSTI)

Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

Walsh, S C; Lomov, I; Roberts, J J

2012-01-19T23:59:59.000Z

342

Integrating surface systems with downhole data improves underbalanced drilling  

Science Conference Proceedings (OSTI)

An integrated approach of using special downhole sensors and transmission capabilities in conjunction with a surface drilling optimization system has improved the management and understanding of the underbalanced drilling environment within a closed loop system. Improving the underbalanced drilling operation and obtaining quality data in real time can help eliminate damage to the formation and increase ultimate production. Recent advances in drilling technology have made it possible to drill horizontal wells underbalanced more safely and effectively. This technology has greatly reduced the potential for skin damage to the bore hole. Experience from western Canadian underbalanced horizontal drilling clearly demonstrates that a well bore`s initial productive potential is very accurately predicted from its productive behavior during drilling operations.

Comeau, L. [Sperry-Sun Drilling Services, Calgary, Alberta (Canada)

1997-03-03T23:59:59.000Z

343

Horizontal flow drilling requires focus on well control  

Science Conference Proceedings (OSTI)

Horizontal wells drilled underbalanced or while flowing must have surface equipment and a blow-out preventer stack specially designed for circulating operations. Functional well control methods for drilling horizontal wells have been developed in specific regions worldwide. Special safety equipment and procedures, however, are still required in most horizontal development applications. The challenge for horizontal drilling development and underbalanced drilling is to overcome the obstacles of government regulation, reduce pollution dangers, and improve personnel and equipment safety. Well control techniques tailored to the demands of each field can help overcome these challenges. Several well control elements must be addressed carefully on each horizontal well: drilling fluid requirements, well control procedures and equipment, and surface equipment and special considerations for handling hydrocarbons produced while drilling. The paper discusses each of these elements for underbalanced horizontal drilling.

Tangedahl, M.J. (RBOP Oil Tools International Inc., Houston, TX (United States))

1994-06-13T23:59:59.000Z

344

Crisman EFD Program 08122-35 The Environmentally Friendly Drilling Systems Program -Houston Advanced  

E-Print Network (OSTI)

Resources Defense Council, New York State Energy Research and Development Authority Industry has made great Industry Partnership (JIP) will provide cost share. The JIP includes BP, CSI Technologies, Devon EnergyPlatforms, LLC, the Environmentally Friendly Drilling Joint Industry Partnership, The Nature Conservancy, Natural

345

Transportation Services | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Services Transportation Services The BNL Transportation Office, located at 20 Brookhaven Avenue, Building 400A, is available to assist BNL employees, guests and visitors with transportation needs in support of Laboratory programs. The hours of operation are 8:30 AM - 5:00 PM Monday through Friday. To contact the Transportation Office call (631) 344-2535. Stony Brook Parking Passes The Transportation Office has a limited number of parking passes for the three (3) parking garages at Stony Brook University. The passes are available to and are intended for use by BNL employees/scientific staff on official business only. Passes may be used at the Administration, University Hospital and Health Services Center garages on the Stony Brook campus when visiting SBU on official business.

346

How borehole ballooning alters drilling responses  

Science Conference Proceedings (OSTI)

From field observations of drilling and hole instability problems over a 30-year period, a new and more complete understanding of plastic well-bore behavior - under certain pressure imbalance conditions - is being developed and verified with detailed well histories. Rock mechanics theory, thus far primarily concerned with plastic behavior and borehole collapse on the underbalanced side, is in at least partial agreement with these observations. This article further elaborates on the pressure-responsive plastic behavior of shales under tremendous downhole stresses, particularly in the overbalanced, ballooning mode. The primary subject matter of the article is divided into the following areas: Stable operating margin; Plastic behavior region; Wellbore wall yields; Brittle sloughings; Loss of mud; Gain of mud; Shut-in pressure; Reflex gas; Charged RFT's; Preexisting balloon; Drilling rate.

Gill, J.A.

1989-03-13T23:59:59.000Z

347

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-01-01T23:59:59.000Z

348

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-10-01T23:59:59.000Z

349

Microhole Wireless Steering While Drilling System  

SciTech Connect

A background to Coiled Tubing Bottom Hole Assemblies (CT-BHA) is given, and the development of a bi-directional communications and power module (BCPM)component is described. The successful operation of this component in both the laboratory and field environment is described. The primary conclusion of this development is that the BCPM component operates as anticipated within the CT-BHA, and significantly extends the possibility of drilling with coiled tubing in the microhole environment.

John Macpherson; Thomas Gregg

2007-12-31T23:59:59.000Z

350

Middle East: Output expansions boost drilling  

SciTech Connect

Iraqi exports may return to the market in limited fashion, but none of the region`s producers seems particularly concerned. They believe that global oil demand is rising fast enough to justify their additions to productive capacity. The paper discusses exploration, drilling and development, and production in Saudi Arabia, Kuwait, the Neutral Zone, Abu Dhabi, Dubai, Oman, Iran, Iraq, Yemen, Qatar, Syria, Turkey, and Sharjah. The paper also briefly mentions activities in Bahrain, Israel, Jordan, and Ras al Khaimah.

NONE

1996-08-01T23:59:59.000Z

351

Self propelled drilling rig starts offshore exploration  

SciTech Connect

Ocean Drilling and Exploration Co. recently commissioned its new $12 million self-propelled, semisubmersible drilling rig, Ocean Prospector, at Mitsubishi Shipyard, Japan, where the rig was built. Initial trail runs completed adjacent to the shipyard indicated that the ship has a speed of 7 kn ahead and 3 kn astern. Steering also is reported to be excellent. The rig has a minimum turning radius of approx. 2 barge lengths and shows instant response. This rig is powered by 4 Fairbanks Morse, 10-cylinder opposed piston, model 38D8-1/8 diesel engines. Each engine is rated at 1,600 hp at 720 rpm and they drive eight 1,600 kw, traction type D-C generators and two 1,000 kw A-C generators. The rated operating depth of the unit afloat is 600 ft of water. The overall length of Ocean Prospector is just over 344 ft, with the beam measuring 263-1/2 ft. During transit, when the rig will be completely deballasted, it will have a draft of approx. 20 ft. When it reaches the drilling site, ballast water will be pumped into the 18 ballast tanks until the draft is increased to 70 ft. At this point, the underside of the main deck will be 50 ft above the mean surface of the sea. Drilling operations will be conducted while the rig is at the 70 ft draft. The mooring system will consist of eight 2-3/4 in. chains, each measuring 3,300 ft in length and connected to a 15-ton anchor.

1971-05-01T23:59:59.000Z

352

Research drilling in young silicic volcanoes  

DOE Green Energy (OSTI)

Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by which recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.

Eichelberger, J.C.

1989-06-30T23:59:59.000Z

353

EM Telemetry Tool for Deep Well Drilling Applications  

Science Conference Proceedings (OSTI)

This final report discusses the successful development and testing of a deep operational electromagnetic (EM) telemetry system, produced under a cooperative agreement with the United States Department of Energy's National Energy Technology Laboratory. This new electromagnetic telemetry system provides a wireless communication link between sensors deployed deep within oil and gas wells and data acquisition equipment located on the earth's surface. EM based wireless telemetry is a highly appropriate technology for oil and gas exploration in that it avoids the need for thousands of feet of wired connections. In order to achieve the project performance objectives, significant improvements over existing EM telemetry systems were made. These improvements included the development of new technologies that have improved the reliability of the communications link while extending operational depth. A key element of the new design is the incorporation of a data-fusion methodology which enhances the communication receiver's ability to extract very weak signals from large amounts of ambient environmental noise. This innovative data-fusion receiver based system adapts advanced technologies, not normally associated with low-frequency communications, and makes them work within the harsh drilling environments associated with the energy exploration market. Every element of a traditional EM telemetry system design, from power efficiency to reliability, has been addressed. The data fusion based EM telemetry system developed during this project is anticipated to provide an EM tool capability that will impact both onshore and offshore oil and gas exploration operations, for conventional and underbalanced drilling applications.

Jeffrey M. Gabelmann

2005-11-15T23:59:59.000Z

354

DOE-HDBK-1099-96; Establishing Nuclear Facility Drill Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-HDBK-1099-96 March 1996 DOE HANDBOOK ESTABLISHING NUCLEAR FACILITY DRILL PROGRAMS U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE96008247 DOE-HDBK-1099-96 iii FOREWORD This Department of Energy (DOE) Handbook, DOE-HDBK-1099-95, Establishing Nuclear Facility Drill Programs, is approved

355

DOE/NV-441 Nevada Environmental Restoration Project Rulison Drilling Effluent  

Office of Legacy Management (LM)

Ru\-- 7-2-4@ Ru\-- 7-2-4@ DOE/NV-441 Nevada Environmental Restoration Project Rulison Drilling Effluent Pond Site Long-Term Groundwater Monitoring Plan July 1996 Environmental Restoration U.S. Department of Energy This report has been reproduced from the best available copy. Available in paper copy and microfiche. Number of pages in this report: 5 1 DOE and DOE contractors cari obtain copies of this report from: Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 3783 1. (61 5) 576-8401. This report is publicly available from the Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22 16 1. (703) 487-4650. RULISON DRILLING EFFLUENT POND SITE LONG-TERM GROUNDWATER MONITORING PLAN DOE Nevada Operations Office

356

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2004 through March 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 3Q 2004. Smith International's hammer will be tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek presented a paper for publication in conjunction with a peer review at the GTI Natural Gas Technologies Conference February 10, 2004. Manuscripts and associated presentation material were delivered on schedule. The paper was entitled ''Mud Hammer Performance Optimization''. (2) Shell Exploration and Production continued to express high interest in the ''cutter impact'' testing program Task 8. Hughes Christensen supplied inserts for this testing program. (3) TerraTek hosted an Industry/DOE planning meeting to finalize a testing program for ''Cutter Impact Testing--Understanding Rock Breakage with Bits'' on February 13, 2004. (4) Formal dialogue with Terralog was initiated. Terralog has recently been awarded a DOE contract to model hammer mechanics with TerraTek as a sub-contractor. (5) Novatek provided the DOE with a schedule to complete their new fluid hammer and test it at TerraTek.

Arnis Judzis

2004-04-01T23:59:59.000Z

357

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

358

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

359

Recruitment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

IAEA Recruitment Services Personal History Form (PHF) and Job Opportunities IAEA Employment Benefits Relevant Publications and Brochures Interview Process This service is provided...

360

Workshop on magma/hydrothermal drilling and instrumentation  

DOE Green Energy (OSTI)

The discussions, conclusions, and recommendations of the Magma/Hydrothermal Drilling and Instrumentation Workshop, Albuquerque, NM, May 31--June 2, 1978 are summarized. Three working groups were organized as follows: Drilling Location and Environment, Drilling and Completion Technology, and Logging and Instrumentation Technology. The first group discussed potential drilling sites and the environment that could be expected in drilling to magma depth at each site. Sites suggested for early detailed evaluation as candidate drilling sites were The Geysers-Clear Lake, CA, Kilauea, HI, Long Valley-Mono Craters, CA, and Yellowstone, WY. Magma at these sites is expected to range from 3 to 10 km deep with temperatures of 800 to 1100{sup 0}C. Detailed discussions of the characteristics of each site are given. In addition, a list of geophysical measurements desired for the hole is presented. The Drilling and Completion Group discussed limitations on current rotary drilling technology as a function of depth and temperature. The group concluded that present drilling systems can be routinely used to temperatures of 200{sup 0}C and depths to 10 km; drilling to 350{sup 0}C can be accomplished with modifications of present techniques, drilling at temperatures from 350{sup 0}C to 1100{sup 0}C will require the development of new drilling techniques. A summary of the limiting factors in drilling systems is presented, and recommendations for a program directed at correcting these limitations is described. The third group discussed requirements for instrumentation and established priorities for the development of the required instruments. Of highest priority for development were high resolution temperature tools, sampling techniques (core, formation fluids), chemical probes, and communications techniques. A description of instrumentation requirements for the postulated hole is given, and the tasks necessary to develop the required devices are delineated.

Varnado, S.G.; Colp, J.L. (eds.)

1978-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

362

Copy Service, Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Copy Service Copy Service Copying in color or black-and-white from hard copy or electronic files. Paper size up to 13" x 19" in a variety of stocks and colors. Larger Documents (up to 36" wide and 100" long) can be reproduced in Black & White from prints or files and can be saved in a variety of electronic format Variable Data Printing - personalized document production Tab Printing Forms CD/DVD Duplication CD/DVD direct printing Binding Collate documents, insert tab dividers, punch holes for binding Stapling documents up to 1 inch thick Spiral, adhesive and perfect binding. Hard covers also available upon request Folding & Mailing Print and apply mailing addresses and labels Machine fold documents and insert into envelopes for mailing Laminate printed items up to 35" wide.

363

NETL: News Release - New Projects to Investigate Smart Drilling Options  

NLE Websites -- All DOE Office Websites (Extended Search)

February 20, 2004 February 20, 2004 New Projects to Investigate "Smart Drilling" Options Promise Lower Cost, More Reliable Gas Drilling Two additional projects have been selected under a Department of Energy solicitation designed to advance performance when drilling for natural gas. The projects are a key component of the Department's gas exploration and production research program, and support the President's National Energy Policy, which calls for boosting domestic production of natural gas to ensure an adequate future supply at reasonable prices. With shallow and conventional natural gas resources in the United States being depleted, drillers must reach for gas miles below the earth's surface, where temperatures run up to 450 EF and pressures are hundreds of times greater than atmospheric pressure. "Smart drilling" options can increase productivity, improve drilling safety, and lower costs when drilling for these hard-to-reach deep gas supplies.

364

Development and Manufacture of Cost-Effective Composite Drill Pipe  

SciTech Connect

Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

James C. Leslie

2008-12-31T23:59:59.000Z

365

INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE  

Science Conference Proceedings (OSTI)

A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.

John V. Fernandez; David S. Pixton

2005-12-01T23:59:59.000Z

366

Code Thrust 1400 Aeronautical/Astronautical Engineering (including Aerodynamics, Aerospace Engineering, and Space Technology)  

E-Print Network (OSTI)

Sciences (including Clinical/Medical Laboratory Technologies, Communication Disorders Sciences and Services, Gerontology, Health and Medical Administrative Services, Other Health Professions and Related Services, Environmental health, Geotechnical, Hydraulic, Hydrologic, Sanitary, Structural, and Transportation) 1404

Alabama in Huntsville, University of

367

Shallow horizontal drilling in unconsolidated sands offshore California  

SciTech Connect

Four shallow horizontal wells were drilled from Platform C in Dos Cuadras field offshore California to recover reserves inaccessible with conventional drilling techniques. The wells had true vertical depths (TVD's) ranging from 746 to 989 ft with total horizontal displacements from 1,613 to 3,788 ft. The wells had horizontal displacement TVD ratios up to 3.95. The targets were unconsolidated, high-permeability sands. This paper details well planning, drilling, and completion.

Payne, J.D.; Bunyak, M.J. (Unocal Corp., Los Angeles, CA (United States)); Huston, C.W. (Smith International Inc., Tyler, TX (United States))

1993-12-01T23:59:59.000Z

368

Development of drilling foams for geothermal applications  

DOE Green Energy (OSTI)

The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

1980-01-01T23:59:59.000Z

369

Rig scarcity prompts innovative drilling solution  

Science Conference Proceedings (OSTI)

Unable to locate a shallow-water offshore rig for its program in Indonesia, British Gas International developed an innovative pad/ballasted barge configuration to utilize a land rig, which was available. Many non-typical problems were encountered and solved to establish the drilling location 600 m (2,000 ft) from the shore in Bintuni Bay in Irian Jaya, eastern Indonesia. The final hybrid configuration has sparked interesting debate as to whether the operation should be designated as onshore or offshore. The paper discusses the project overview, concept development, construction, and operations.

Lattimore, G.M.; Gott, T.; Feagin, J.

1997-11-01T23:59:59.000Z

370

Sound Coiled-Tubing Drilling Practices  

Science Conference Proceedings (OSTI)

This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

2001-09-30T23:59:59.000Z

371

Evaluation of high-pressure drilling fluid supply systems  

DOE Green Energy (OSTI)

A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.

McDonald, M.C.; Reichman, J.M.; Theimer, K.J.

1981-10-01T23:59:59.000Z

372

Automatic detection and diagnosis of problems in drilling geothermal wells  

DOE Green Energy (OSTI)

Sandia National Laboratories and Tracor Applied Sciences have developed a proof-of-concept Expert System for the automatic detection and diagnosis of several important problems in geothermal drilling. The system is designed to detect loss of circulation, influx, loss of pump efficiency, and sensor problems. Data from flow sensors (including the rolling float meter), the pump stroke counter and other sensors are processed and examined for deviations from expected patterns. The deviations from expected patterns. The deviations are transformed into evidence for a Bayesian Network (a probabilistic reasoning tool), which estimates the probability of each fault. The results are displayed by a Graphical User Interface, which also allows the user to see data related to a specific fault. The prototype was tested on real data, and successfully detected and diagnosed faults.

Harmse, J.E.; Wallace, R.D.; Mansure, A.J.; Glowka, D.A.

1997-11-01T23:59:59.000Z

373

From: Development of New Types of Non-Damaging Drill-in and Completion Fluids  

E-Print Network (OSTI)

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid’s behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. This is the final report on a program that has been operating for 7 years, including the last four years under the sponsorship of the U.S. DOE. Accomplishments of Research Program The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a “removable filtercake ” has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed. The program has been an unqualified success. We have accomplished the following: Development of New Laboratory Testing Practices Established standard testing practices Identification of key factors involved in formation damage Established appropriate cleanup practices for removal of formation damage to optimize productivity. DE26-98FT34174.000 Development of New Drilling Fluids Established New Guidelines for horizontal well completion practices Drill in fluid design and maintenance Cleanup fluid design and use Development of new well drill in fluids Low solids polymer carbonate DIFs Polymer free high density DIFs Low Density Drill in fluid design

David B. Burnett Harold Vance

2003-01-01T23:59:59.000Z

374

By Matthew J. Kotchen o drill or not to drill? That is the ques-  

E-Print Network (OSTI)

. But conflict re- mains about whether to allow drilling in the federal portion of ANWR. While ANWR is thought in North America. Thus, the ANWR question is typically cast in symbolic terms -- "big oil" looking to cash a simple thought ex- periment to help cut through the symbol- ism. Imagine that ANWR -- both the region

Kotchen, Matthew J.

375

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

376

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...  

Open Energy Info (EERE)

major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted....

377

Challenges in Applying Diamond Coatings to Carbide Twist Drills  

Science Conference Proceedings (OSTI)

Despite of the attractive advantage of applying diamond coating to drills, ... Investigation of a Hybrid Cutting Tool Design for Shearing Operations of Sheet Metals.

378

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

December 2013 December 2013 Explanatory notes Drilling Productivity Report The Drilling Productivity Report uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells do that. Monthly additions from one average rig Monthly additions from one average rig represent EIA's estimate of an average rig's

379

Corrosion Resistant Metallic Materials for Ultra-deep Well Drilling ...  

Science Conference Proceedings (OSTI)

... corrosion fatigue, etc., can be a primary cause of catastrophic degradation of tubular components during ultra-deep drilling of oil and natural gas shale.

380

Corrosion Control Methods of Drilling Tools – Effectiveness and ...  

Science Conference Proceedings (OSTI)

... and high temperature, makes corrosion of drilling tools a major concern. In this paper ... Nanocrystalline and Nanotwinned Metals under Extreme Environment.

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technology Development and Field Trials of EGS Drilling Systems...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Technology Development and Field Trials of EGS Drilling Systems Geothermal Lab Call...

382

NETL: News Release - Drilling Operators Receive Boost from New...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Operators Receive Boost from New Database to Weigh Options Regarding Waste Management Interactive Website Provides Easy Access to Technological, Environmental, and...

383

High Temperature 300°C Directional Drilling System Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Directional Drilling Systems Project Description The development plan...

384

Geothermal: Sponsored by OSTI -- Chapter 6. Drilling and Well...  

Office of Scientific and Technical Information (OSTI)

Chapter 6. Drilling and Well Construction Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

385

Pressure Sensor and Telemetry Methods for Measurement While Drilling...  

Open Energy Info (EERE)

MWD Tools for Directional Drilling Project Description - Phase I: Integrate and test pressure sensor system consisting of a commercial off the shelf silicon-on-sapphire...

386

Drilling often results in both oil and natural gas production ...  

U.S. Energy Information Administration (EIA)

Solar › Energy in Brief ... Btu = British thermal units. ... A future Today in Energy article will focus on how drilling efficiency relates to ...

387

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production...

388

NETL: News Release - DOE-Funded 'Microhole' Drilling Rig Demonstrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rig Demonstrated Successfully in Midcontinent New Technology Initiative Slashes Drilling Costs, Benefits Environment, Energy Security WASHINGTON, DC - A U.S. Department of...

389

Safety Measures a hinder for Geothermal Drilling | Open Energy...  

Open Energy Info (EERE)

2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Safety Measures a hinder for Geothermal Drilling Citation Renewable Power...

390

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

391

Development of a Hydrothermal Spallation Drilling System for...  

Open Energy Info (EERE)

this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology...

392

Laser Drilling of a Superalloy Coated with Ceramic  

Science Conference Proceedings (OSTI)

Laser drilling has been developed in advanced aircraft industry in particular to achieve the intricate hole network of the combustion chamber because of several .

393

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperatures,...

394

Trends in Eagle Ford drilling highlight the search for oil ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... In major shale plays, drilling activity depends largely on the resource mix and relative fuel ...

395

Drilling Sideways -- A Review of Horizontal Well Technology and ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-TR-0565 Distribution Category UC-950 Drilling Sideways -- A Review of Horizontal Well Technology and Its Domestic Application April 1993 Energy Information ...

396

EIA Corrects Errors in Its Drilling Activity Estimates Series  

U.S. Energy Information Administration (EIA)

gas and oil wells relative to total wells, improved greatly as early as 1986 as seen in the revised drilling statistics. The prior well data series did

397

DEVELOPMENT OF A MUD-PULSE HIGH-TEMPERATURE MEASUREMENT-WHILE-DRILLING (MWD) SYSTEM  

SciTech Connect

The overall program objective is to develop a mud-pulse measurement-while-drilling (MWD) tool for oil and gas drilling operations that can be used where downhole temperatures are as high as 195 C (383 F). The work was planned to be completed in two phases: Phase I and an optional Phase II. The objectives of Phase I were first to identify critical components of existing MWD systems that can or cannot operate at 195 C. For components not able to meet the higher standard, one of several strategies was pursued: (1) locate high-temperature replacement components, (2) develop new designs that eliminate the unavailable components, or (3) use cooling to keep components at acceptable operating temperatures (under 195 C). New designs and components were then tested under high temperatures in the laboratory. The final goal of Phase I was to assemble two high-temperature MWD prototype tools and test each in at least one low-temperature well to verify total system performance. Phase II was also envisioned as part of this development. Its objective would be to test the two new high-temperature MWD prototype tools in wells being drilled in the United States where the bottom-hole temperatures were 195 C (or the highest temperatures attainable). The high-temperature MWD tool is designed to send directional and formation data to the surface via mud pulses, to aid in the drilling of guided wellbores. The modules that comprise the tool are housed in sealed barrels that protect the electronics from exposure to down-hole fluids and pressures. These pressure barrels are hung inside a non-magnetic collar located above the drilling assembly. A number of significant accomplishments were achieved during the course of the Phase I project, including: (1) Tested two MWD strings for function in an oven at 195 C; (2) Conducted field test of prototype 195 C MWD tool (at well temperatures up to 140-180 C); (3) Tested ELCON hybrid chip with processor, clock, and memory in a custom package for 700 hours at 200 C; (4) Contracted with APS Technology to conduct study of thermoelectric cooling of downhole electronics; (5) Conducted successful Peltier cooling test with APS Technology; (6) Tested and improved the electronics of Sperry Sun's Geiger Muller-based gamma detector for operation at 195 C; (7) Developed two high-temperature magnetometers (one in-house, one with Tensor); and (8) Encouraged outside source to develop lithium/magnesium high-temperature batteries (operating temperature of 125 to 215 C). One of this project's greatest achievements was improvement in Sperry Sun's current tool with changes made as a direct result of work performed under this project. These improvements have resulted in longer life and a more robust MWD tool at the previous temperature rating of 175 C, as well as at higher temperatures. A field test of two prototype 195 C MWD tools was conducted in Lavaca County, Texas. The purpose of this operation was to provide directional services on a sidetrack of a straight hole. The sidetrack was to intersect the formation up-dip above the water/gas interface. In addition, the gamma tool provided formation data including seam tops and thickness. Results from these field tests indicate progress in the development of a 195 C tool. Although the pulsers failed downhole in both tools, failure of the pulsers was determined to be from mechanical rather than electrical causes. Analysis of the economics of the 195 C tool highlights the greatest obstacle to future commercialization. Costs to screen individual components, then subassemblies, and finally completed tools for high-temperature operations are very high. Tests to date also show a relatively short life for high-temperature tools--on the order of 300 hours. These factors mean that the daily cost of the tool will be higher (3 to 5 times more) than a conventional tool.

John H. Cohen; Greg Deskins; William Motion; Jay Martin

2002-01-01T23:59:59.000Z

398

Malaysian food service organisations and transaction cost.  

E-Print Network (OSTI)

??Portfolio includes: paper 1. Malaysian food service organisations and transaction cost: literature review  – paper 2. Malaysian food service organisations and transaction cost: comparative analysis… (more)

Lok, Stanley Yap Peng.

2007-01-01T23:59:59.000Z

399

Development Methods for Web Services  

E-Print Network (OSTI)

Services, such as location services for GSM, fleet-management (e.g. taxi-companies), maps, hotel reservations, holiday planning, ticket booking etc. The chosen implementa- tion will include optional utility

400

2013 AOCS Technical Services Workshop  

Science Conference Proceedings (OSTI)

AOCS Technical Services workshop includes educational sessions designed for lab technicians. 2013 AOCS Technical Services Workshop Meetings, Conferences and Short Courses aocs AOCS Annual Meeting & Expo Call for Papers Conferences Congress control

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Drilling Waste Management Technology Identification Module  

NLE Websites -- All DOE Office Websites (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

402

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 22, quarter ending March 31, 1980  

Science Conference Proceedings (OSTI)

This report contains statements of objectives and summaries of technical progress on all DOE contracts pertaining to enhanced oil recovery and improved drilling techniques. Subject categories include chemical flooding; carbon dioxide injection; thermal recovery of heavy oil; resource assessment; improved drilling technology; residual oil; environmental; petroleum technology; and microbial enhanced oil recovery. An index containing the names of the companies and institutions involved is included. Current publications resulting from the DOE contractual program are listed. (DMC)

Linville, B. (ed.)

1980-07-01T23:59:59.000Z

403

Directional Drilling and Equipment for Hot Granite Wells  

DOE Green Energy (OSTI)

Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

1981-01-01T23:59:59.000Z

404

Independent one-way acting hydraulic jar sections for a rotary drill string  

SciTech Connect

First and second separate one-way acting hydraulic jar sections each include inner and outer telescopically arranged tubular members with means for connecting one end of each the inner and outer tubular members of each jar section in the drill string. Spaced seal means between the inner and outer tubular members form a chamber in each jar section for confining hydraulic operating fluid. Hydraulic jar means are formed by cooperating means on the inner and outer tubular members within each operating fluid chamber. The cooperating means is spaced axially and disengaged in each fluid chamber when the drill string is in tension and compression during rotary drilling operation to inhibit damage and wear thereto. The hydraulic jar means in the first jar section is constructed to deliver an up jar and the jar means in the separate second jar section is constructed to deliver a down jar to the drill string. Drive means in a sealed chamber in each jar section connect the inner and outer tubular members of each jar section to allow relative longitudinal movement while preventing relative rotation therebetween. Means to equalize pressure adjacent one end of each of the chambers with the pressure in the well bore is provided in each jar section, which accommodates relative longitudinal movement of the inner and outer tubular members of each jar section for selectively creating an up or down jarring force independently of the well bore pressure.

Anderson, E.A.; Webb, D.D.

1980-10-07T23:59:59.000Z

405

Geometry and material choices govern hard-rock drilling performance of PDC drag cutters.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories has partnered with industry on a multifaceted, baseline experimental study that supports the development of improved drag cutters for advanced drill bits. Different nonstandard cutter lots were produced and subjected to laboratory tests that evaluated the influence of selected design and processing parameters on cutter loads, wear, and durability pertinent to the penetration of hard rock with mechanical properties representative of formations encountered in geothermal or deep oil/gas drilling environments. The focus was on cutters incorporating ultrahard PDC (polycrystalline diamond compact) overlays (i.e., diamond tables) on tungsten-carbide substrates. Parameter variations included changes in cutter geometry, material composition, and processing conditions. Geometric variables were the diamond-table thickness, the cutting-edge profile, and the PDC/substrate interface configuration. Material and processing variables for the diamond table were, respectively, the diamond particle size and the sintering pressure applied during cutter fabrication. Complementary drop-impact, granite-log abrasion, linear cutting-force, and rotary-drilling tests examined the response of cutters from each lot. Substantial changes in behavior were observed from lot to lot, allowing the identification of features contributing major (factor of 10+) improvements in cutting performance for hard-rock applications. Recent field demonstrations highlight the advantages of employing enhanced cutter technology during challenging drilling operations.

Wise, Jack LeRoy

2005-06-01T23:59:59.000Z

406

Interim report for SNL/NM environmental drilling project  

SciTech Connect

Concern for the environment and cost reduction are the driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. Preliminary activities included surveying the directional drilling access needs of various DOE sites, identifying an existing class of machinery that could be enhanced for environmental work through development, and establishing a mutually beneficial working relationship with an industry partner. Since that time the project has tested a variety of prototype machinery and hardware built by the industrial partner, and SNL. The project continues to test and develop the machinery and technique refinements needed for future applications at DOE, DOD, and private sector sites. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of ``cut/thrust and compact cuttings without adding large quantities of fluid`` to an environmental problem site. Technology transfer to the private sector is ongoing and ultimately should result in commercial availability of the machinery. Education of regulatory agencies resulting in restructuring appropriate regulatory standards for specification of the horizontal drilling techniques will be a final project goal.

Wemple, R.P.; Meyer, R.D. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

1994-02-01T23:59:59.000Z

407

Ocean Drilling Program Texas A&M University  

E-Print Network (OSTI)

Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA, Texas A&M University, as an account of work performed under the international Ocean Drilling Program Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University

408

Water's Journey Through the Shale Gas Drilling and  

E-Print Network (OSTI)

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

Maranas, Costas

409

Resonant acoustic transducer system for a well drilling string  

DOE Patents (OSTI)

For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

Nardi, Anthony P. (Burlington, MA)

1981-01-01T23:59:59.000Z

410

Resonant acoustic transducer system for a well drilling string  

DOE Patents (OSTI)

For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

Kent, William H. (Westford, MA); Mitchell, Peter G. (Concord, MA)

1981-01-01T23:59:59.000Z

411

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network (OSTI)

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and Controversies Kyle J Ferrar;UNITED STATES SHALE BASINS Modern Shale Gas Development in the U.S.: A Primer, (2009) U.S. Dept of Energy Development http://www.secinfo.com/DB/SEC/2007 #12;Where to Drill? Harper, John A. (2008). The Marcellus Shale

Sibille, Etienne

412

Evaluation of slurry injection technology for management of drilling wastes.  

Science Conference Proceedings (OSTI)

Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process.

Veil, J. A.; Dusseault, M. B.

2003-02-19T23:59:59.000Z

413

Mailing Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Mailing Services Mailing Services Use the form below to add your name to the Depleted UF6 Mailing List. First Name: Last Name: Organization: Address: City: State: Postal Code:...

414

Exhibitor Services Kit  

Science Conference Proceedings (OSTI)

Nov 9, 2009 ... company's look and image, attracts business and shows off your most important assets. ...... On-site supervisors with dedicated floor managers ...... Wireless Service (Enterprise) includes one (1) 256Kbps shared Ethernet ...

415

Copy Services | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Copy Services Copy Services Copy Services The Copier Management Team is here to make sure your copier needs are met. Our products and services include: Acquisition of New and Replacement Copiers Copier Maintenance/Repairs Copier Relocation Monthly Working Capital Fund Billing Reports Copier supplies Other services include needs assessment analysis to determine workload and most appropriate equipment to: Perform acquisition activities on behalf of program customers. Negotiation of equipment trade-in allowance where applicable. Arrange for delivery and installation of newly purchased equipment. Coordinate training for key operators and users on newly acquired equipment. Establish annual maintenance agreements with vendors (including negotiation of most cost-effective terms and conditions).

416

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network (OSTI)

009 "Public Support for Oil and Gas Drilling in California’s5180 www.ucei.org Public Support for Oil and Gas Drilling inAbstract: Offshore oil drilling has been controversial in

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

417

Illinois. The injection well is being drilled into a test area...  

NLE Websites -- All DOE Office Websites (Extended Search)

option for CO 2 storage. This is the first drilling into the Mount Simon Sandstone since oil and gas exploratory drilling was conducted some 15 to 40 years ago. Drilling...

418

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network (OSTI)

high-frequency data from oil and gas drilling. I find thatan examination of the oil and gas drilling industry. I findvertical integration. The oil and gas drilling industry is

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

419

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network (OSTI)

005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

420

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network (OSTI)

009 "Public Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’s

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Calibration Services  

Science Conference Proceedings (OSTI)

... of these applications, the Optoelectronics Division provides measurement services at laser power levels from nanowatts to kilowatts and pulse ...

2012-11-28T23:59:59.000Z

422

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

423

Geothermal gradient drilling, north-central Cascades of Oregon, 1979  

DOE Green Energy (OSTI)

A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

Youngquist, W.

1980-01-01T23:59:59.000Z

424

Slimhole Drilling, Logging, and Completion Technology - An Update  

DOE Green Energy (OSTI)

Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

FINGER,JOHN T.; JACOBSON,RONALD D.

1999-10-07T23:59:59.000Z

425

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

426

Study of the radon released from open drill holes  

Science Conference Proceedings (OSTI)

The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm/sup 2//sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm/sup 2//sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft/sup 2/ of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water.

Pacer, J C

1981-06-01T23:59:59.000Z

427

High Temperature Battery for Drilling Applications  

SciTech Connect

In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

Josip Caja

2009-12-31T23:59:59.000Z

428

Drilling Waste Management Fact Sheet: Land Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Land Application Land Application Fact Sheet - Land Application The objective of applying drilling wastes to the land is to allow the soil's naturally occurring microbial population to metabolize, transform, and assimilate waste constituents in place. Land application is a form of bioremediation, and is important enough to be described in its own fact sheet; other forms of bioremediation are described in a separate fact sheet. Several terms are used to describe this waste management approach, which can be considered both treatment and disposal. In general, land farming refers to the repeated application of wastes to the soil surface, whereas land spreading and land treatment are often used interchangeably to describe the one-time application of wastes to the soil surface. Some practitioners do not follow the same terminology convention, and may interchange all three terms. Readers should focus on the technologies rather than on the specific names given to each process.

429

Behavior of oil muds during drilling operations  

Science Conference Proceedings (OSTI)

This paper presents an analysis of the behavior of diesel-oil-based muds with an advanced thermal and hydraulic wellbore mathematical simulator. Recent diesel-oil-mud rheological correlations have been incorporated into the model to account for viscosity and density variations of oil mud with temperature and pressure. As rheological correlations are developed for other oil-based muds, such as mineral-oil based muds, they can also be incorporated into the model. A specific deep-well application of the model illustrates the behavior of the oil-based muds and shows the differences between water-based mud and oil-mud for local fluid densities during drilling, circulating, and static conditions. Temperature and density profiles are presented for various operating conditions to show that modeling improves the understanding of oil-mud behavior downhole.

Galate, J.W.; Mitchell, R.F.

1986-04-01T23:59:59.000Z

430

Flexible shaft and roof drilling system  

DOE Patents (OSTI)

A system for drilling holes in the roof of a mine has a flexible shaft with a pair of oppositely wound, coaxial flat bands. One of the flat bands defines an inner spring that is wound right handed into a helical configuration, adjacent convolutions being in nesting relationship to one another. The other flat band defines an outer spring that is wound left handed into a helical configuration about the inner band, adjacent convolutions being nesting relationship with one another. A transition member that is configured to hold a rock bit is mounted to one end of the flexible shaft. When torque and thrust are applied to the flexible shaft by a driver, the inner spring expands outwardly and the outer spring contracts inwardly to form a relatively rigid shaft.

Blanz, John H. (Carlisle, MA)

1981-01-01T23:59:59.000Z

431

Concealed evaporite basin drilled in Arizona  

SciTech Connect

The White Mountains of Arizona are a high forested plateau underlain by volcanic rocks of Late Pliocene and Quaternary age on the south margin of the Colorado plateau province. Elevations range from 6,000--11,590 ft, with winter snow and summer rain but ideal conditions for much of the year. There was no evidence of a Permian evaporite basin concealed beneath the White Mountain volcanic field until 1993, when the Tonto 1 Alpine-Federal, a geothermal test well, was drilled. This test did not encounter thermal waters, but it did encounter a surprisingly thick and unexpected sequence of anhydrite, dolomite, and petroliferous limestone assigned to the Supai (Yeso) formation of Permian age. The Tonto test was continuously cored through the Permian section, providing invaluable information that is now stored at the Arizona Geological Survey in Tucson. The paper describes the area geology and the concealed basin.

Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-21T23:59:59.000Z

432

Predicting hole enlargement from drilling parameters  

Science Conference Proceedings (OSTI)

This article points out that most problems associated with inadequate hole cleaning stem from hole enlargement. Lower annular velocities are required if no enlargement occurs. However, hole enlargement is often significant and can reduce annular velocities below the critical values. A simple approach is performed to predict well bore hole enlargement from drilling parameters. While the equipment and techniques are available to control mud weight going into the hole, the annular mud weight may become excessive. This annular mud weight is utilized to predict hole enlargement. A balance of the mass rate of cuttings generated and the mass rate of mud pumped is performed in order to predict hole enlargement. Data required for this procedure are inlet mud density, outlet mud density, average formation density, average formation porosity, bit size, mud flow rate and the rate of penetration.

Bizanti, M.S.

1987-01-01T23:59:59.000Z

433

Characteristics and removal of filter cake formed by formate-based drilling mud  

E-Print Network (OSTI)

Formate-based mud has been used to drill deep gas wells in Saudi Arabia since 2004. This mud typically contains XC-polymer, starch, polyanionic cellulose, and a relatively small amount of calcium carbonate particles, and is used to drill a deep sandstone reservoir (310°F). Calcium carbonate particles are frequently used as weighting material to maintain the pressure that is required for well control and minimize the leak-off. Such solids become consolidated and trapped in the polymeric material and this makes the filter cake a strong permeability barrier. Various cleaning fluids were proposed to remove drilling mud filter cake; including: solid-free formate brine and formate brine doped with organic acids (acetic, formic, and citric acids), esters, and enzymes. The main objective of this research is to assess the effectiveness of these cleaning fluids in removing drilling mud filter cake. A dynamic high-pressure/high-temperature (HPHT) cell was used to determine characteristics of the drilling mud filter cake. Drilling mud and completion fluids were obtained from the field. Compatibility tests between potassium formate brine, cleaning fluids, and formation brine were performed at 300ºF and 200 psi using HPHT visual cells. Surface tensions of various cleaning fluids were also measured at high temperatures. The conventional method for cleaning the filter cake is by circulating solid-free formate brines at a high flow rate. This mechanical technique removes only the external drilling fluid damage. Citric acid at 10 wt%, formic acid, and lactic acid were found to be incompatible with formate brine at room temperature. However, these acids were compatible with formate brine at temperatures greater than 122°F. Only acetic acid was compatible with formate brine. A formula was developed that is compatible at room and reservoir temperature. This formula was effective in removing filter cake. A corrosion inhibitor was added to protect downhole tubulars. In general detail, this research will discuss the development of this formula and all tests that led to its development.

Alotaibi, Mohammed Badri

2008-05-01T23:59:59.000Z

434

Biometric Web Services  

Science Conference Proceedings (OSTI)

Biometric Web Services. The biometric web services project combines biometrics and web services to. ... What are Web services? ...

2012-08-15T23:59:59.000Z

435

Biased insert for installing data transmission components in downhole drilling pipe  

DOE Patents (OSTI)

An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.

Hall, David R. (Provo, UT); Briscoe, Michael A. (Lehi, UT); Garner, Kory K. (Payson, UT); Wilde, Tyson J. (Spanish Fork, UT)

2007-04-10T23:59:59.000Z

436

Services | Central Fabrication Services | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Services & Capabilities Services & Capabilities The Central Fabrication Services Division's capabilities range from an Electric Discharge Machining (EDM) capability, to a state of the art cleaning facility, to a large fabricating facility which includes CNC Machining, Automatic Tube Welding, CNC Punch Press capability, and 3-D printing. CNC Auto Feed Saw High Bay Area 3-D Printer Main Shop, Building 479 Maintenance Sheet Metal Area Water Jet Machine X-ray Generating Tube CR X-ray Processor with High Resolution Monitor Low Bay Area in Machine Shop Wire EDM Machine Wire EDM Machine Oil Recycling Facility, Building 495 UHV Cleaning Facility, Building 498 Material Storage and Stock Central Fabrication Services is proud of it's highly proficient technical staff all of which are available, at no cost to the customer, for

437

Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

None

2010-01-15T23:59:59.000Z

438

Drilling, instrumentation and sampling consideration for geoscience studies of magma-hydrothermal regimes  

DOE Green Energy (OSTI)

Drilling, diagnostic, and sampling technologies are reviewed and a strawman drill hole is used for identifying scientific and technological limitations. (MHR)

Traeger, R.K.; Varnado, S.G.; Veneruso, A.F.; Behr, V.L.; Ortega, A.

1981-05-01T23:59:59.000Z

439

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Deep Drilling act of 1975 (Georgia) Georgia Oil and Gas Deep Drilling act of 1975 (Georgia) Eligibility Commercial Construction Developer Fuel Distributor General...

440

Mechanistic Modeling of an Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide.  

E-Print Network (OSTI)

??Mechanistic modeling of an underbalanced drilling operation using carbon dioxide has been developed in this research. The use of carbon dioxide in an underbalanced drilling… (more)

ALAdwani, Faisal Abdullah

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "drilled services include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application  

Reports and Publications (EIA)

Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

Robert F. King

1993-04-01T23:59:59.000Z

442

Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome The Production Services site contains links to each of the division's groups with descriptions of their services. Our goal is to update this website frequently to reflect ongoing service upgrades which, by planning and design, are added so that we can continue to meet your needs in a constantly changing work environment. Note: The Graphic Design Studio has been relocated to the second floor in the north wing of the Research Support Building 400. The telephone number remains the same, X7288. If you have any questions, please call supervisor, Rick Backofen, X6183. Photography Photography services are available at no charge to BNL and Guest users. See a list of the complete range of photography services available. Video Video services are available at no charge to BNL and Guest users. See a list of the complete range of video services available.

443

The Temperature Prediction in Deepwater Drilling of Vertical Well  

E-Print Network (OSTI)

The extreme operating conditions in deepwater drilling lead to serious relative problems. The knowledge of subsea temperatures is of prime interest to petroleum engineers and geo-technologists alike. Petroleum engineers are interested in subsea temperatures to better understand geo-mechanisms; such as diagenesis of sediments, formation of hydrocarbons, genesis and emplacement of magmatic formation of mineral deposits, and crustal deformations. Petroleum engineers are interested in studies of subsurface heat flows. The knowledge of subsurface temperature to properly design the drilling and completion programs and to facilitate accurate log interpretation is necessary. For petroleum engineers, this knowledge is valuable in the proper exploitation of hydrocarbon resources. This research analyzed the thermal process in drilling or completion process. The research presented two analytical methods to determine temperature profile for onshore drilling and numerical methods for offshore drilling during circulating fluid down the drillstring and for the annulus. Finite difference discretization was also introduced to predict the temperature for steady-state in conventional riser drilling and riserless drilling. This research provided a powerful tool for the thermal analysis of wellbore and rheology design of fluid with Visual Basic and Matlab simulators.

Feng, Ming

2011-05-01T23:59:59.000Z

444

Horizontal underbalanced drilling of gas wells with coiled tubing  

Science Conference Proceedings (OSTI)

Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

Cox, R.J.; Li, J.; Lupick, G.S.

1999-03-01T23:59:59.000Z

445

Properly designed underbalanced drilling fluids can limit formation damage  

Science Conference Proceedings (OSTI)

Drilling fluids for underbalanced operations require careful design and testing to ensure they do not damage sensitive formations. In addition to hole cleaning and lubrication functions, these fluids may be needed as kill fluids during emergencies. PanCanadian Petroleum Ltd. used a systematic approach in developing and field testing a nondamaging drilling fluid. It was for use in underbalanced operations in the Glauconitic sandstone in the Westerose gas field in Alberta. A lab study was initiated to develop and test a non-damaging water-based drilling fluid for the horizontal well pilot project. The need to develop an inexpensive, nondamaging drilling fluid was previously identified during underbalanced drilling operations in the Weyburn field in southeastern Saskatchewan. A non-damaging fluid is required for hole cleaning, for lubrication of the mud motor, and for use as a kill fluid during emergencies. In addition, a nondamaging fluid is required when drilling with a conventional rig because pressure surges during connections and trips may result in the well being exposed to short periods of near balanced or overbalanced conditions. Without the protection of a filter cake, the drilling fluid will leak off into the formation, causing damage. The amount of damage is related to the rate of leak off and depth of invasion, which are directly proportional to the permeability to the fluid.

Churcher, P.L.; Yurkiw, F.J. [PanCanadian Petroleum Ltd., Calgary, Alberta (Canada); Bietz, R.F.; Bennion, D.B. [Hycal Energy Research Ltd., Calgary, Alberta (Canada)

1996-04-29T23:59:59.000Z